
Trabajo de Fin de Máster
”Máster Universitario en

Microelectónica:
Diseño y Aplicaciones de Sistemas

Micro/Nanométricos”

Optimización del flujo de simulación
de defectos y fallos en circuitos

analógicos y de señal mixta

Estudiante: Valent́ın Gutiérrez Gil

Tutor: Gildas Leger

Septiembre 2018

Optimization of the defect and

fault simulation flow in analog

and mixed signal circuits

Student: Valentin Gutierrez Gil

Advisor: Gildas Leger

Trabajo Fin de Máster:

Máster Universitario en Microelectónica:

Diseño y Aplicaciones de Sistemas

September 2018

Acknowledgements

I would like to express my deepest appreciation to all those who provided
me the possibility to complete this work. A special gratitude I give to my
advisor, Dr. Gildas Leger, whose contribution in stimulating suggestions and
encouragement, helped me to coordinate my project especially in writing this
report.

Furthermore, I would like to with much appreciation to the members of
the n-PATETIC project, namely, Adoración Rueda, Antonio López, Antonio
Ginés, Eduardo Peraĺıas and my advisor for giving me not only the opportunity
but for teaching me everything I’m proud of.

Finally, an special thank to my family, whether blood or friendship, for
enduring this whole journey with me.

Contents

1 Introduction 1

1.1 The goal: Test validation . 1

1.2 The issue: Reducing the computational cost 2

1.3 Clarification on vocabulary . 3

1.4 State-of-the-Art . 5

1.4.1 Defect extraction . 5

1.4.2 Defect modeling . 7

1.4.3 Defect simulation . 8

2 The proposed Framework 13

2.1 A complete picture of test quality 13

2.1.1 Modified Defect Coverage 14

2.1.2 Modified Fault Escape 14

2.1.3 Severity . 15

2.2 Sequential defect simulation with early stopping 16

3 Statistical evaluation of test metrics 23

3.1 Likelihood random sampling 23

3.2 Estimate of confidence intervals 25

3.2.1 Checking confidence intervals 27

4 Description of the developed tools 31

4.1 Defect models . 31

4.1.1 Convergence error with Open-Gate defect 33

4.2 Injection . 35

4.3 Simulation . 37

4.4 Collateral developments and applications 40

4.4.1 Monte-Carlo analysis 40

4.4.2 Single Event . 40

iii

5 Cases of study 43
5.1 First case of study: Resistive buffer 43

5.1.1 Circuit description . 43
5.1.2 Test description . 45
5.1.3 Results discussion . 47

5.2 Second case of study: Source follower 51
5.2.1 Circuit description . 52
5.2.2 Test description . 53
5.2.3 Results discussion . 54

6 Conclusions 61

Chapter 1

Introduction

1.1 The goal: Test validation

Historically, the golden standard for analog, Mixed-signal and RF circuit
(AMS-RF) test has been functional testing. Indeed, an AMS-RF circuit
is defined by its datasheet: a number of performance metrics associated
with standard measurement procedures are guaranteed to be within a given
range. For instance, the static Integral Non-Linearity of and Analog-to-Digital
Converter can be specified to be below 1.4 Least Significant Bits and there
that metric can be measured in several ways like histogram testing or servo-
loop, as defined in the IEEE 1241 standard [1]. With such a definition, it
seems perfectly logical to consider functional testing as a reference: since the
datasheet is what is sold to the customer, performing the measurements that
are associated to the specified performance parameters should, by definition,
guarantee the detection of any faulty behavior.

While this is still true, there are two trends that challenge the suitability
of functional test. The first and oldest one is cost: AMS-RF circuits are more
and more complex and embedded in larger systems. As a result, it may be
difficult to reach the primary input and output of the circuits. In addition,
the number of specifications increases and some of them can involve lengthy
measurements (the direct measurement of the Error Vector Magnitude in
transceivers is a good example). The test time is thus on the rise and so
the test cost. By the way, the test cost of a modern System-on-Chip can be
dominated by the analog section in spite of the clear superiority of digital
circuits in terms of area.

The second and more recent trend questions the quality of functional test
itself. Indeed, functional test is performed at time zero but there may be
defects or deficiencies that cause a minimum performance degradation at time

1

2 CHAPTER 1. INTRODUCTION

zero, still within the specifications, but may evolve in time with circuit aging,
or simply be stimulated by real-world usage. In safety- or mission-critical
applications (like automotive, health-care, space, ...), defects are perceived
as a threat even if they do not impact performance in the production line.
In the automotive industry, some cases of field issues could be traced to
manufacturing defects that were not actually detected by functional test.

As a response to these two trends, there exist a demand for test alternatives
to functional test. Some of the proposed solutions respond essentially to the
cost issue like reduced (non-exhaustive) functional test, indirect test [2–4] and
its recent machine-learning update, Built-In Self-Test (BIST) approaches, etc.
And other solutions rather try to mimic what happened in the digital world
–where functional test quickly became prohibitive due to the ever increasing
number of states to be tested. These solutions aim at detecting defect and
their primary goal is not to measure the specifications but rather to guarantee
that the circuit exactly corresponds to what was designed. These solutions
are gathered under the term of Defect-Oriented Testing, even if they are
mostly ad-hoc to a particular topology or at least circuit family.

Independently of the cause, the shift from exhaustive functional testing
is a paradigm change from the point of view of validation: If exhaustive
functional test is impossible, too costly or simply not considered as perfect
anymore, then the test strategy has to be validated before its implementation
in the production line. If it involves some design modifications (DfT or BIST)
the quality must be assessed at early phases of the design. Unless some
mathematical proof of test quality could obtained through formal methods,
that validation necessarily involves defect simulation [5, 6].

1.2 The issue: Reducing the computational

cost

In the case of an exhaustive functional test, part of its validation is implicitly
done in the design phase. Indeed, the performance measurements are simulated
under both process and mismatch variations and the obtained metrics are
verified to remain within their specified validity ranges. By definition, an
exhaustive functional test would detect any deviation out of the specifications.
However, if the target is to assess the defect coverage (which in the case
of exhaustive functional case is the proportion of defects that do affect
performance), defect simulation has to be done.

If a Defect-Oriented Test or any alternative to exhaustive functional test
has to be evaluated, then it should be validated with respect to process and

1.3. CLARIFICATION ON VOCABULARY 3

mismatch variations to verify that it does not produce yield losses (i.e. false
positive) or test escapes (i.e. false negatives) under normal process conditions.
And obviously, a defect simulation would also have to be performed to assess
the defect coverage of the proposed test. So as we can see, defect simulation
seems unavoidable.

The number of possible defects sites obviously increases with the number
of nodes and transistors. Defect simulation can be very challenging from a
computational viewpoint, particularly if the tests to be evaluated involve long
transient simulation times. If we center our attention only on the possible
CMOS transistor defects the relation is straightforward. An approximation
for 3 terminal models considers 3 different shorts (Gate-Source, Gate-Drain
and Source-Drain) and 3 opens (Source, Gate and Drain). There are thus
6 different defects per transistor and ICs with analog transistor counts in
the range of 5000 (a medium complexity) would thus lead to 30000 potential
defects. Performing an exhaustive simulation of these candidates in not
affordable in practice.

Solutions are thus required to evaluate (validate or discard) test strategies
as fast as possible.

1.3 Clarification on vocabulary

With respect to the terminology, there are two terms that need to be clearly
defined: Defect and Fault. In the test bibliography, these two terms are
sometimes used indistinctly and this could lead to important conceptual
errors in the rest of this manuscript.

Using [7] as reference, we can define a Defect as a lack or excess of material
in any mask used during the fabrication process of an IC. In Fig. 1.1 we have
illustrated some examples of defects. Starting from a non defective transistor
(fig. 1.1a) we can add or remove material of any layer. For example, in Fig.
1.1b we removed some poly from the gate, generating an open on one of
the fingers gate. On the other hand, Fig. 1.1c shows a lack of metal in the
horizontal net that, a priori, would not produce any malfunction. Finally,
Fig. 1.1d represents a short-circuit between one finger gate and the transistor
drain/source. It is crucial to understand that Defects are only manifested in
the physical layer of the IC. This is usually a well-accepted definition.

With respect to faults, there are two interpretations that are most of the
time not explicitly stated in the bibliography.

The most generic definition would be that a fault is any defect that has an
electrical impact of some sort on the behavior of the circuit. In other words,
the fault-free and the defective circuits are not electrically equivalent.

4 CHAPTER 1. INTRODUCTION

(a) Golden transistor (b) Open gate defect

(c) Insignificant missing metal (d) Short circuit between terminals

Figure 1.1: Examples of possible defects on a two-finger transistor

Such a definition of a fault is most usual in the papers that deal with
defect modeling and simulation, which by the way is most of the time called
fault-modeling and fault-simulation. Indeed, defects as defined above do not
possess intrinsic electrical characteristics and evaluating their impact on a
given circuit thus requires a process of electrical modeling. For instance,
a short-circuit can be modeled by the inclusion of a extra resistor with a
given (parametrized) short resistance. However, such a definition entails a
major drawback: the level of detail of defect modeling is always ad-hoc. For
instance, the missing material in Fig. 1.1c could be considered irrelevant (and
the defect would thus be discarded) or eventually modeled as a slight increase
in the resistance of the metal line.

In most papers that deal with alternative test proposals, a fault is usually
defined as a defect that cause the test to fail. This looks like a clear definition
but it is indeed relative to the test under consideration. Since functional
test is still the golden standard in the industry (despite the above-mentioned
issue) the best definition of a fault is thus with respect to the functional test
of the circuit. In what follows, we will thus call a fault any defect which
brings the circuit out of one or more of its specifications.

For example, as we will see later, if we have a buffer with a 80dB specifi-
cation for the Total Harmonic Distortion, any chip that obtains a lower value
will be considered faulty. If the design has been properly centered (we thus
exclude parametric yield losses), this faulty behavior is necessarily produced
by a defect inside the circuit. However, not all defects have to produce a
fault.

1.4. STATE-OF-THE-ART 5

In order to clarify concepts, we will consider the Defects showed in Fig.
1.1. At first sight, we could affirm that 1.1c will not produce a fault itself,
since there is not a complete open in that terminal. But if we consider the
electromigration effect on that net we can not ensure that the circuit will
work properly as long as a non defective one. This defect, that right now can
not be considered a fault, could become one in the future.

Defect in 1.1b can be expected to affect performance, but not necessarily
cause a fault since it only affects one of the fingers. The electrical effects could
be treated as a parametric variation and, maybe, the result of the test would
comply the specification. As before, this does not mean that the service life
of the circuit is the same.

Finally, 1.1d is a short-circuit between the gate and the source or drain.
This is clearly bad, since all the finger gates are usually connected together.
This defect will most probably affect the behavior and cause a fault. From
now on, we will maintain this nomenclature, even though the references do
not mention it in the same way.

1.4 State-of-the-Art

It is not till the 80s that industry focused on DoT for AMS-RF circuits. Even
though many research groups where working on the field, the biggest changes
were made back then. During these years the main issues to be resolved
ranged from the definition of the models to the simulation process.

1.4.1 Defect extraction

One of the solutions proposed for defects extraction was the Inductive Fault
Analysis (IFA) process. The first mention of this where in [7]. The IFA
procedure involves, basically, three major steps. First defects are generated
base on statistical data obtained from the fabrication process. Second, the
defect behavior is analyzed and the a circuit level model is produced. Finally,
defects are classified in types and ranked according to their likelihood of
occurrence.

Different groups [2,6,7] have quoted that considering all defects as equally
probable is a poor approximation of reality that may induce a bias in the
estimate of test quality metrics. For that reason it is needed to take into
account the relative likelihood of the different defects RL, that is to say, the
relative probability of occurrence of each defect. Intrinsically to this definition
it is the fact that the sum of the RL of each defect is 1 (eq. 1.1), being N
the total number of possible defects in the circuit.

6 CHAPTER 1. INTRODUCTION

N∑
i

RLi = 1 (1.1)

This parameter is quite difficult to calculate. It is impossible to reach a
realistic set of values until the layout of the circuit is defined, and normally
the layout is done at the end of the design process. Defect insertion should
ideally be done at layout level either following the flow of IFA [7, 8] which
randomly inserts disks of missing or extra material according to the dust
particle distribution statistics provided by the fab, or resorting to the proxy
that consists in observing that the probability of occurrence of a short between
two nodes is proportional to the parasitic capacitor between these two nodes
while the probability of an open is proportional to the parasitic resistor. On
an extracted netlist, the list of parasitics provides a list of potential defect
sites together with their relative likelihood.

Unfortunately, test strategies must more often than not be evaluated
before the layout is available (particularly if DfT methods are not considered
as an afterthought). As a result, many defect simulation campaigns are
carried out at schematic level. In such cases, the 6-resistor model is often
considered [2, 9].

Another way to approach defect-extraction is based on the Monte-Carlo
method [10]. In this method, random defects are sprinkled over the layout
first. Their number varies from a few thousand to several millions. These
defects can be divided into a number of groups and the amount of defects
fitting into one group determines the chance a certain type of occurrence.
After performing transistor-level simulations the parametric defect model
is verifiable. As a result of the algorithm the parametric fault model is a
large set of functional circuit instances that range from nominal to marginally
functional. Therefore, the algorithm outputs the necessary data to estimate
fault coverage and yield coverage metrics of a test suite.

Another approach which leads to the same results is based on the critical
area principle [11]. This method determines the probability of a certain defect
to occur deterministically. The critical area is defined as the layout area that
is susceptible to defects. If the central point of a particle lies in this area, the
defect will cause a fault in the circuit.

As a a summary, IFA uses the layout as a defect probability extractor.
With it, we obtain the total number of possible defect candidates (and their
associated likelihoods). The simulator afterwards decides what to simulate
depending on it. Once the simulation is done, the evaluation of the test starts.

1.4. STATE-OF-THE-ART 7

1.4.2 Defect modeling

At this point, we keep having a nomenclature problem. In the digital field the
difference between fault and defect can be kept the same but they use fault
models instead of the defects ones. That is, they develop fault models of a
defective gate and check the performance of the whole circuit. One example
of this is the stack-at fault. This defect affects the state of logic signals, either
internal or external, in a logic circuit. It transforms the correct value on the
defective signal line to a constant logic value, either a logic 0 or a logic 1,
referred to as stuck-at-0 (SA0) or stuck-at-1 (SA1), respectively [12]. If we
consider this fault we only have to put a net, or part of a net, with a fixed
value. Here, the difference is clear, the fault refers to the bad performance of
the affected gate and the defect could be anything that produce that fault, a
short with power or ground, for example.

Defects have very complex physical characteristics and may be significantly
technology-dependent [13]. The description of the physical properties encloses
the relationship between process-induced defects and its effect, which allows
the definition of the models. Bubbles, falling particles, flakes or irregular dips
belong all to the same group are some of the well known spot defects.

In the analog field we can not set this differentiation with our definition.
In [14] is given a very good sum up of the types of spot defects we can consider
for an IC. These are classified in 11 groups and they involve the mistakes in
any mask used during the fabrication process [7]. As mentioned in [15], most
of the spot defects produced in a IC can be modeled as open or shorts. We
will insert different open or shorts in the circuit but, a priori, we do not know
the behavior of that defect. That is why we refer to Defect models instead of
Fault models.

At the IFA process, shorts and opens are inserted in the layout and then
the netlist is extracted in order to simulate but as mention before, this is
not always possible, so that there are equivalent models attending to the
transistors. The most extended defect model is the 6-resistor one. It consist
of a possible open in each transistor pin and a short-circuit between each of
them. Fig. 1.2 exemplifies that model. On the non-defective transistor each
transistor has an ideal value of infinity and zero depending on if the resistor
model is a short or an open, respectively. These models are good as a first
approximation but there may be convergence problems between SPICE and
the gate open model [9,16,17]. However, this point will be dealt with later in
Chapter 4.

8 CHAPTER 1. INTRODUCTION

dOpen

gdShort

gOpen dsShort

gsShort

sOpen

Figure 1.2: 6 transistor fault model

1.4.3 Defect simulation

Nowadays, there is only two commercial fault simulator for analog and mixed
signal circuits: Tessent® DefectSim [18], from Mentor®.

Tessent® DefectSim datasheet gives a brief explanation of the program
capabilities. It is able to simulate any combination of Spectre, SPICE, and
HDL models, analog/digital circuitry, pre/post-layout sub-circuit netlists. The
defect injection can be made from its library of shorts, opens and parametric
variabilities or from a custom model defined by the user. At the end of the
simulation, the program also outputs an estimated metric of the parametric
yield and defect coverage of the test. Automotive industry is one the of most
demanding non-defective circuits so it is not a surprise that the program
generate the metrics for the ISO-26262 too.

There is another software tool called DOTSS (Defect-Oriented Test Sim-
ulation System) from NXP® which van be used to perform the simula-
tions [10, 19, 20] but technical details cannot by found in the open litterature.
The most interesting part is how it fills the Design Database. It extracts the
possible defects from the layout and adapt the effect to the transistor ports
to generate a netlist with the fault. Unfortunately, this tool is sold with the
fabrication kit.

On the academic side, by contrast, there have been significantly more
contributions. It has already been said that the number of possible defects
make unmanageable an exhaustive simulation. That is why some of the first
efforts center the attention in simulation time reduction. One example of this

1.4. STATE-OF-THE-ART 9

can be found in [21]. They directly use the IFA flow extracting the defects
from the layout by the critical area process. Every defect is weighted using
the RL in order to obtain the most significance ones. The list is reduced to
the group of most likely defects.

Another method is to simplify the number of nodes. It is trivial to think
if the circuit is simpler the simulation will run faster. That is what is done
in [22]. They convert non-linear analog circuits into Boolean models, faster to
simulate. This method was used in [23] during the simulation process. They
only simulated SPICE level model if the block affected by the defect, letting
the rest of the circuit as an ideal behavior.

Very close to the previous approximation is in [24] but here they go to
a lower level of abstraction. They use a special model of stuck-at fault that
affects not the signal path, but the transistors’ logic gate. That is the stuck-
open and stuck-short. This model substitute the transistor by a unique resistor
between the drain and source pin, letting the gate floating. Obviously, this
simulation must be done at SPICE level netlist to be able to consider resistors
but they only substitute the SPICE model in the defective transistor. The
rest of the circuit is in HDL language. Doing this a mixed-signal simulation
must be performed and, basing on their results, is remarkably faster than the
complete SPICE netlist simulation.

In [25], during the defect extraction process, the authors generate connec-
tion schemes between the different sub-circuits that compose the circuit. By
doing this, they can isolate independent sections of the chip that does not
interact between each other, allowing a reliable divide and conquer approach.

The direct approach to increase simulation speed when we have a big
amount of them is to run them in parallel. This method, even though it could
be reducibly obvious, can not always be applied. In [26] reached this task with
a specific tool called CONCERT2, that can perform DC and transient fault
simulations. The simulation speedup is achieved by sharing the intermediate
results among the corresponding defective and fault-free circuits.

In another branch of research there are jobs that benefit from the fact
that defects which cause significant deviations from the fault-free response are
easier to detect than the others, so that simulation accuracy can be lowered.
By risking having to repeat the simulation of the defects that do not have a
significant effect on the circuit at the higher accurscy, they can reduce the
total simulation time for those who do not. In [27] this approach is done with
the DC simulation time. By only doing one-step Newton-Raphson iteration
to calculate the operating point they not only reduce simulation time but
speed up exact fault simulation based on simulation continuation.

A previous work implemented this same idea but trying to accelerate
transient simulations. In [28] the speed up the transient analysis by relaxing

10 CHAPTER 1. INTRODUCTION

and tighten the time step dynamically. In order to achieve that, the first
perform a DC analysis of all the faults and classify in groups with expected
equivalent behavioral. From echa group they simulate the most likely defects
in parallel step by step and sharing data between each process to save
unnecessary iterations.

Coming back with the first idea of reducing the number of defects to
simulate appears the Sensitivity Analysis. With the adjoint network method,
for example, the output sensitivities can be computed with respect to the
complete defect list at the same time. Indeed, the adjoint network method
allows to compute the sensitivity of one output parameter with respect to
all component variations (including non-existing components) in only two
simulations, one for the original network and one for the corresponding adjoint
network [9, 29]. This, however, is limited to Linear Time Invariant circuits.

In [30] is presented a technique that enables the derivation of the constraint
of an internal functional block with respect to the DC specification. Basing on
it, they have implemented a defect simulator that reduces the computational
effort by both, removing undetectable defects from the simulation list and
performing the defect simulation only in the blocks affected.

In the past few years, the way to consider the problem has changed [6].
Since we can acknowledge that an accurate and faithful defect simulation
is computationally too intensive, what is the best way to spend the limited
computational resources? As mentioned in [21], a solution is to reduce the
number of defects by limiting the evaluation to the most likely ones.

However this may not be representative of the real circuit. Very likely
defects (associated to large transistors and/or global nets) may behave differ-
ently from unlikely defects (associated to small transistors and or local nets)
with respect to test. And despite a significant likelihood difference between
individual defects, the population-wise probability of occurrence may not be
so different. Indeed, there may be very few though highly-probable defects
and many small and unlikely defects.

With this consideration in mind, it was proposed in [15] to use likelihood-
weighted defect sampling to obtain a statistically unbiased estimate of defect-
coverage. This approach was further refined in [2], proposing a simpler
selection algorithm and include the possibility of continuously parametrized
defects (i.e. opens and shorts with a given resistance probability density
function).

Since exhaustive defect simulation is intractable, the defect coverage
obtained by proper defect population sampling is a statistical estimate and
as such should be associated to a confidence interval.

In the next chapter, we will explain in more detail the path followed in this
work: We will argue that evaluating only the defect coverage is insufficient,

1.4. STATE-OF-THE-ART 11

since not all defects have to lead to a failure. In order to obtain a more
global vision of the test, this fact must be taken into account, as well as the
importance that these failures would have in the event of not being detected.
Consequently, we will provide a simulation framework to discard or validate
a test strategy and optimize the required computational resources.

12 CHAPTER 1. INTRODUCTION

Chapter 2

The proposed Framework

2.1 A complete picture of test quality

Since we are in Zero Defects era [19] the exhaustive fault analysis, perfect by
definition, has derived to more complex solutions. The imperfections in the
process of Defect-Oriented Test has questioned its quality and an evaluation
of it is needed. Generally, this problem has been solved by reporting Defect
Coverage but this metric presents some problems.

Defect Coverage is defined as the amount of detected defects divided by
the total number of considered defects, Eq. 2.1. Using this definition as the
only option to evaluate a Defect-Oriented Test only can lead to conclusive
results if the value is close to 1 or 0, allowing the validation or exclusion of
the test.

DC =
Detected defects

Simulated defects
(2.1)

FE =
Undetected faults

Simulated faults
(2.2)

For intermediate values of the metric it is necessary more information
in order to fully assess the test quality. That is why the fault analysis is
included in our test. The classical expression of this metric has practically the
same definition as de Defect Coverage. Fault Coverage is the ratio between
the detected faults and the total amount faults. The complementary metric,
Fault Escape, is defined as one minus the Fault Coverage. It is the amount of
undetected faults divided by the total of faults, Eq. 2.2.

These two metrics give a more complete vision of the test quality, but
there are cases where these metrics can still exclude some valuable info. That
is the case when we have with equal Defect Coverage and Fault Escape.

13

14 CHAPTER 2. THE PROPOSED FRAMEWORK

Here, the decision between two test should be done taking into account the
importance of the defects that have passed the test. Indeed, a circuit that
fails to meet the specification only marginally is undoubtedly better than one
with a catastrophic failure. In order to solve this problem we have provided a
new FoM that pretends to solve this problem.

2.1.1 Modified Defect Coverage

The classical expression of the Defect Coverage is in Eq. (2.1). This expression
does not consider the Relative Likelihood of happening of each defect. An
extended proposal is that of [15]. It consists of substituting the numerator
and denominator by the sum of the RL weights of each defect, Eq. (2.3).

DC∗ =

∑N
i Di ·RLi∑N
i RLi

(2.3)

Where Di switches its value between 1 and 0 if the defect i is detected or
not, RL is the array with all the weights and N the total number of considered
defects. This metric has resulted to be useful for the non-exhaustive defect
simulation, as it will be studied in chapter 4.

2.1.2 Modified Fault Escape

It has already been discussed that perform an exhaustive fault test is not
affordable due to the amount of possible defects in an IC. In addition, fault
simulations are presumably much longer to simulate than a defect simulation.
For the sake of brevity, we call fault simulation the simulation of a defect
to assess its impact on performance. It is thus using a functional test setup.
Conversely, we call defect simulation the simulation of the defect in the Defect-
Oriented Test setup. In order to lower computational burden, we propose to
simulate the performance of only those defects that have not been detected
by the test. Indeed, we do not really care if the detected defects produce a
fault or not since a defect is always a threat and should be discarded so no
interesting information is lost.

But the classical metrics cannot be computed since the denominator would
be a biased approximation. To clarify this problem we only have to observe
two tests. One of them lets go of a failure and the other a fault and a defect.
In the first case we would have a Fault Escape of 100% and in the second a
50%. Essentially, both test are equally bad with regard to fault escape but
the metrics are different. For that reason we proposed to reference the metric

2.1. A COMPLETE PICTURE OF TEST QUALITY 15

not to the total number of simulated escaped defects but to the total number
of defects, as with the Defect Coverage.

FE∗ =
Undetected faults

Simulated defects
(2.4)

The basic approximation is in Eq. (2.4). It has the same form as the
original Defect Coverage, but now the numerator only have the undetected
faults. As before, this metric can be reshaped for adding the RL, Eq. (2.5).

FE∗ =

∑N
i Fi ·RLi∑N
i RLi

(2.5)

Here Fi is set to 1 if the defect has passed the test and it is a fault, it has
a null value in any other case, if it has not passed the test or it is not a fault.

2.1.3 Severity

Severity is a metric that pretends to summarize how far are the undetected
faults from the specification. The problematic with this metric is that it
has to be referenced to the test, and not to the faults, since the exhaustive
simulation has not been performed, Eq. (2.6).

Severity =

√∑N
i Fi ·RLi (FVi − Spec)

2∑N
i RLi

(2.6)

FV is an array with the performance value measured and Spec the
specification value. The expression is justifiable if we understand the objective
of it.

• With (FVi − Spec) we measure the distance to the specification.

• Fi is the same array as before. It values 1 if it correspond to a escaped
fault and 0 in any other case.

• The sum of the squares,
∑Ne

i (...)2, ensure that every fault will increase
the metric.

• The root allows to resize the value to units of the specification.

16 CHAPTER 2. THE PROPOSED FRAMEWORK

• By dividing by the total of defect likelihood,
∑N

i RLi,we normalize the
value for comparison with other tests.

However, this metric is quite unintuitive so it only can be used for test
comparison, not for absolute results of how good is the test. We’re working
on another version of it.

2.2 Sequential defect simulation with early

stopping

The approach to carry out the simulation using these metrics is a sequential
simulation of defects. The idea is setting Defect Coverage and the Fault
Escape target and perform simulations till it is possible to ensure that the test
reaches or not these values. At first sight this could derive in an exhaustive
test, so some considerations must be taken into account.

For the defect selection we will use the ”Likelihood-sampling adaptive
defect simulation” [2]. This method consists of a random defect selection with
the Relative Likelihood as weight. Every time a defect is selected refreshes
an array that contain the number of occurrences of each one. On this way,
the same defect can be selected more than one time, but the simulation is
done only once. Once the simulation is finished, that array is normalized and
it contains the likelihood of each defect that has produced the simulation.

Metrics, in turn, are calculated after every simulation. The first problem
of not doing an exhaustive test is that metrics confidence is in question.
This makes that every metric must be calculated and showed with a level of
uncertainty. The process of metrics calculation from subpopulations, what is
called estimation, has been widely explored in other research fields and the
Confidence Interval calculus is widely extended.

Fig. 2.1 reflects the flow diagram developed. In order to explain it we are
going to assume that we have already obtained a list of defects that are saved
in the listOfDefects variable. Every defect listed in that array will have
an ideal Relative Likelihood associated in the corresponding position of the
RLideal variable. These two variables are considered global for allowing any
function to access them. Apart from that, the rest of variables initialization
has been separated in four different blocks to clarify the meaning of them.

• First block corresponds to the user input variables:

– desiredDC and desiredFE correspond with the desired Defect
Coverage and Fault Escape, respectively.

2.2. SEQUENTIAL DEFECT SIMULATIONWITH EARLY STOPPING17

length(sample) < 2

isEmpty(toSim)

INI desiredDC;

INI desiredFE;

INI CI;

INI alpha;

INI exit = 0;

WHILE exit == 0

[dc, dcCI] = evalDC();

[sample,dots] = simDefect();exit = 1;

END WHILE

toSim = find(dot == 0 && fsim == 0);

INI dc, dcCI = 0;

INI fe, feCI = 0;

[fe, feCI] = evalFE();

START

INI sample = [];

INI dots = [];

INI ft = [];

INI fsim = [];

INI toSim = [];

INI RLoutput = [];

[ft,fsim] = simDefect();

dcCI == 0 dcCI <= CI
dc-dcCI >

desiredDC

dc+dcCI <

desiredDC

feCI == 0 feCI <= CI
fe+feCI <

desiredDC

fe-feCI >

desiredDC

FINISH

listOfDefects

RLideal

GLOBAL

VARIABLES

TRUE TRUE TRUE TRUE

TRUE TRUE TRUE TRUE

TRUE

TRUE

Figure 2.1: Sequential simulation flow diagram.

18 CHAPTER 2. THE PROPOSED FRAMEWORK

– CI is the absolute value of the Confidence Interval width. It is
used to stop the simulation in the case the early stopping can not
be done.

– alpha determine the reliability of the calculated results.

• Second block corresponds to the simulation loop variables. In the arrays
are declared the simulation history.

– sample contains the defect index of the selected defects. For every
defect simulation, a defect is selected following the likelihood-
sampling. If the selected defect index is not in the array it is
pushed at the end, if not, this arrays is not updated. So that,
the length of the array will correspond with the total number of
different defects simulated.

– dots saves the results of the Defect-Oriented Test simulated. For
every defect on sample saves a 1 if the defect has been detected
and a 0 otherwise. Every time a defect is pushed in sample a 0
is pushed in this array at the same position. On this way, the
detection info saved in dots(i) correspond with both the i-th
defect simulated and the sample(i) index of the list of defects.

– ft the equivalent to the previous one but for the fault simula-
tion. Maintaining the reference, we push a 0 at the end with
every new defect selected. In the case the fault simulation of the
sample(i) defect is performed, the ft(i) is updated to 1 if the
defect sample(i) is a fault.

– fsim contains the list of performed fault simulations. Like ft, a
0 is pushed with every new defect selected but this array update
the fsim(i) value if the fault simulation of the sample(i) is
performed, independently of the result. It will be useful to select
the non-simulated escapes from the sample, as we will see soon.
With this definition, the sum of all the elements of this array will
be the number of defects used for the Fault Escape calculation.

– RLoutput contains the number of times a defect has been selected.
Intuitively, a 1 is pushed at the end with every new defect and
every time the sample(i)-th defect is selected, it increments the
i-th position by one.

• The third initialization contains the test evaluation itself. The estimated
Defect Coverage and Fault Escape, dc and fe, with its respective
Confidence Interval, dcCI and feCI. The last block only contains a
variable to stop the loop.

2.2. SEQUENTIAL DEFECT SIMULATIONWITH EARLY STOPPING19

Once the variables are correctly initialized the simulation loop starts
and maintain looping until the variable exit is not null. For clarity, some
variables have been omitted from the functions call but the will appear in
the explanation of each of them.

After loop initialization, two different defects are simulated, if this is
not done there are none statistics to calculate. simDefect() function,
Code 2.1, first perform the likelihood-sampling for defect selection from
the listOfDefects variable with the RLideal as weight. The next step is
to find out if the defect selected has been already simulated or not. If it has
been simulated we update RLoutput. If not, we update all the arrays. The
performDOTSimulation() function performs the injection of the defect in the
circuit netlist and simulate the Defect-Oriented Test that is being evaluated.
The output of the function will be a 1 if the defect is detected and 0 if not
and dots is updated accordingly.

1 f unc t i on [sample , dots , RLoutput , f t , f s im] = simDefect (sample , dots ,
RLoutput , f t , f s im)

2

3 d e f e c t = randsample (1 : l ength (l i s t O f D e f e c t s) ,1 , true , RLideal) ;
4

5 i f ismember (de f ec t , sample)
6 RLoutput (f i n d (sample == d e f e c t)) = . . .
7 RLoutput (f i n d (sample == d e f e c t)) + 1 ;
8 e l s e
9 sample (end+1) = d e f e c t ;

10 RLoutput (end+1) = 1 ;
11 dots (end+1) = performDOTSimulation (d e f e c t) ;
12 f t (end+1) = 0 ;
13 f s im (end+1) = 0 ;
14 end
15

16 end

Code 2.1: simDefect() function Matlab® code

After two simulations the first estimator can be calculated. The Defect
Coverage estimation and its Confidence Interval are obtained from the function
evalDC(), Code 2.2. In the code exposed only the estimator calculation has
been included. The acquisition of the alpha level of accuracy of the metric
will be explained in next section. We will only clarify that the Confidence
Interval estimates the error in the measurement done due to the calculation
from a subpopulation. From it, we obtain a upper and lower limit. The result
returned from the CIcalc() function is the distance to the center of that
interval. In this way, we can ensure that the metric is its value plus-minus
the CI value with an alpha-level of confidence.

20 CHAPTER 2. THE PROPOSED FRAMEWORK

1 f unc t i on [dc , dcCI] = evalDC (dots , RLoutput , alpha)
2

3 RL = RLoutput/sum(RLoutput) ;
4 dc = sum(dots .∗RL) /sum(RL) ;
5

6 dcCI = CIca lc (alpha , dots ,RL) ;
7

8 end

Code 2.2: evalDC() function Matlab® code

The Confidence Interval will be useful for the early stopping. That is
the objective of the four ifs statements in cascade. The first check if the
Confidence Interval is valid or not. This could happen if the sample does
not have enough diversity. As we will see, this is quite usual for the first few
iterations. The second checks if the lower limit is higher than the desired
value. If this is the case, we can ensure the test will be accepted so we can
start to simulate escapes. Third block checks if the test can be rejected, that
is, is the upper limit of the Confidence Interval is lower than the desired value.
The last one will stop simulating defects in the case the Confidence Interval
is narrow enough.

1 f unc t i on [fe , feCI] = evalFE (f t , f t s im , dots , RLoutput , alpha)
2

3 RL = RLoutput/sum(RLoutput) ;
4 simF = f i n d (f s im==1) ;
5

6 f e = sum(f t (simF) .∗ not (dots (simF)) .∗RL(simF)) /sum(RL) ;
7

8 f eCI = CIca lc (f t , f t s im , dots , RLoutput , alpha) ;
9

10 end

Code 2.3: evalFE() function Matlab® code

If the decision taken is to perform a fault simulation, Fault Escape is esti-
mated first (evalFE(), Code 2.3). With this, we follow the same comparison
as before, but with some different exits. The first one is the same, if cannot
trust the Confidence Interval we ask for another fault simulation. Otherwise,
we check the values. With this three conditionals we finish the loop whether
or not we accept the test or if the Confidence Interval is narrow enough.

simFault() function, Code 2.4, performs the fault simulation. It reads the
samples in the same order they have been selected until an undetected defect
that has not been simulated yet is found. In this way, the same simulation
method used for defect selection is virtually repeated for the fault simulation
and the metric calculations remains the same.

2.2. SEQUENTIAL DEFECT SIMULATIONWITH EARLY STOPPING21

1 f unc t i on [f t , f s im] = simFault (sample , dots , RLoutput , f t , f s im)
2

3 noSim = f i n d (f s im == 0) ;
4

5 f o r i = 1 : l ength (noSim)
6 i f dots (noSim (1)) == 1
7 f s im (noSim (i)) = 1 ;
8 e l s e
9 f t = performFTSimulation (sample (noSim (i))) ;

10 f s im (noSim (i)) = 1 ;
11 break ;
12 end
13 end
14

15 end

Code 2.4: simFault() function Matlab® code

The fault simulations have an especial consideration, they are only per-
formed if there are escapes that has not been simulated yet. So that, we first
look for among the escapes, that is dots==0, the defects that have not been
simulated, fsim==0. If the array is empty we perform a defect simulation
first to have another try. This loop is done this way do to the fact that we
could accept a test that meets Defect Coverage objective but the number of
samples is insufficient to ensure that the Fault Escape is low enough.

The gains in computation time comes from two fronts:

• The early stopping criterion, which allows validating or discarding the
test as soon as the metrics estimates are confident enough.

• The fact that we simulate for performance only the escapes of the test
instead of all the defects. Considering that performance test setups
usually require much more longer simulation time than defect oriented
ones, this can account for important savings.

22 CHAPTER 2. THE PROPOSED FRAMEWORK

Chapter 3

Statistical evaluation of test
metrics

3.1 Likelihood random sampling

In order to solve the problem of the quantity of possible defects to simulate
statistical test is performed. Statistics is the science of collecting, organizing,
and interpreting experimental data to draw conclusions about unknown
populations observed through experiment [5]. This approach can be directly
applied test evaluation for reducing simulation effort.

By following the IFA process we obtain the already mentioned Relative
Likelihood. As mentioned before, this metric give us information about how
likely is a defect to happen relative to the rest. It is rational to think that the
mentioned metrics in chapter 2 will be more affected by the defects with high
RL than any other, so this defects may be the most important to simulate.

In [2] this fact is discussed. They present the discussion between using
Likelihood random sampling or simulating the most likely defects. In essence,
the second group argue that since spot defects are not part of any stochastic
process, the inference of any defect property can not be done taking into
account another defect. Talking about defect coverage, the fact that one
defect is detected gives absolutely no clue if another one will be detected or
not.

On the other hand, pro-Likelihood Random Sampling group claims that
in a complex mixed-signal circuit there can be a majority of defects with low
likelihood and fewer defects with large likelihood. The global probability of
occurrence of these two populations may be similar. If there could be a reason
for which the test coverage may be dependent on likelihood, simulating only
the most likely defects would induce a bias.

23

24 CHAPTER 3. STATISTICAL EVALUATION OF TEST METRICS

Such a bias is what they obtain in one of the scenarios they use to
demonstrate the point. By introducing a strong imbalance in the fault
coverage dependent on the likelihood of defect, the simulation of most likely
defects produces a very important bias, what it is not surprising since the
test was designed to produce that bias. What appears to be more interesting
is that the confidence interval of likelihood sampling is almost equal to the
confidence interval of the most likely simulation. This means that, even in
the hypothesis of independence between likelihood and coverage, there is no
significant penalty in terms of computational effort to perform likelihood
random sampling instead of simulating only the most significant.

Likelihood random sampling was firstly proposed in [15] but it was refined
in [2]. The process of defect selection and simulation can be sum up in the
next items.

• Once the Relative Likelihood has been extracted from the circuit netlist,
defects are selected randomly using it, what means that a high probable
defect will be more likely selected, even more than one time.

• There is substitution in sampling, what is, the same defect can be
selected more than one time.

• During the selection, an array, that we have called Output Relative
Likelihood, is filled with a start value of 1 for every selected defect.

• If a defect is selected again, it increments its value by one in the Output
Relative Likelihood, but it is not simulated again.

• The number of defects in the sample it is not defined by the total
number of simulations but for the number of deferent defects selected.

It can be demonstrated that the Output RL array will be the same as
the original RL is the number of simulations tends to infinity, but this is not
necessary. The Output RL can be used to calculate the defects even though
it has not the same values. The effect of the overrated defects is compensated
by the overrated value of the less significant ones.

dc∗ =

∑n
i di ·RLoi∑n
i RLoi

(3.1)

fe∗ =

∑n
i fi ·RLoi∑n
i RLoi

(3.2)

3.2. ESTIMATE OF CONFIDENCE INTERVALS 25

Equations (3.1) and (3.2) shows the estimators of the Defect Coverage and
Fault Escape with the obtained output Relative Likelihood, RLo. The arrays
di and fi are the same as the originals but with the subpopulations, that is
why the sum finish at n instead of N . With this process a faster convergence
of the metrics is reached, what implies a direct reduction on simulation costs,
but something more is necessary. By estimating the measurement value with
a subpopulation of the defects a Confidence Interval of that result must be
given, and this is what we talk in next section.

3.2 Estimate of confidence intervals

In general, a ratio is the division of two magnitudes. In the statistical
bibliography, specifically in [31], the ratio is defined as the proportional
relationship between two means within the same population. What is the
same, if we have a population N and two subpopulations of N called Y and
X we define the ratio R as

R =
Y

X
=
Y

X
(3.3)

A trivial estimator of this ratio can be the showed in equation (3.4).
From now on, we will use uppercase letters when we are talking about a
magnitude referring to the whole population and lowercase letters when we
are talking about an estimate. On this way, the mean ȳ is the mean of the
same magnitude as Ȳ but measured in the subpopulation n instead of N .

r =
y

x
=
ȳ

x̄
(3.4)

The statistical problem comes from determining how much we can rely on
the estimation. For that, we first need to determine the sampling method. A
widely extended sampling method is the Simple Random Sampling. It consist
in the randomly selection of sampling discarding the already selected. On
this way, we can determine the Mean Square Error as equation (3.5).

MSE(R) = σ2
R,1 =

1− FPC
n ·X2

∑N
i (Yi −R ·Xi)

2

N − 1
(3.5)

With FPC = n/N , called the Finite Population Correction Ratio. But
the problem of evaluating the Confidence Interval (CI) of the ratios comes

26 CHAPTER 3. STATISTICAL EVALUATION OF TEST METRICS

since, a priori, we do not know the rue value of the population parameters.
For that reason, the calculus should be treated carefully. For example, since
our metrics can only reach values between 0 and 1 they can be treated as a
binomial distribution. In this specific case, the confidence interval can be as
easy as (3.6), [32].

CIbinomial = zα/2 · sR,binomial +
1

2 · n
(3.6)

s2R,binomial = (1− FPC)
r(1− r)
n− 1

(3.7)

The term s is the estimator of σ. Only on this case, the ratio variance
can be reduced to (3.7). The term 1

2·n is the correction for continuity. The
problem of this approximation is that it is unreliable for the limits values 0
or 1. So that, it is needed a CI that contemplates that problem, even though
generates a bigger interval.

The solution part of considering as correlated numerator and denominator.
On this way, the calculus of the confidence interval is reduced to calculate
the variances and covariances of both terms and determine the ratio CI with
them. For that, it is recommended to obtain the ratio variance from the
means variance. This can be done from (3.5), as showed in [31], resulting in
equation (3.8)

σ2
R,2 =

1− FPC
n ·X

(
σ2
Y

+R2 · σ2
X
− 2 ·R · σY X

)
(3.8)

σ2
R,2 is the variance of the ratio in expresión of the variances of its terms.

σ2
Y

and σ2
X

, and the covariance between them, σY X . But this values are
unreachable with an exhaustive test, so that an estimator of the variance is
used. This results in calculate the variances as follows:

s2y =

∑N
i (yi − y)2

n− 1
(3.9)

s2x =

∑N
i (xi − x)2

n− 1
(3.10)

s2yx =

∑N
i (yi − y) (xi − x)

n− 1
(3.11)

s2r =
1− FPC
n · x

(
s2y + r2 · s2x − 2 · r · syx

)
(3.12)

3.2. ESTIMATE OF CONFIDENCE INTERVALS 27

It is important to differentiate that our intention is not to estimate
E(Y/X) but E(Y)/E(X). In fact, if X and Y are normally distributed, the
first quantity does not even exist [33]. A widely extended CI calculation is by
the Fieller’s theorem [34,35], that obtains the limits of the range expressed
in (3.13).

(αL, αU) =
1

1− g

[
r − g · cyx

s2x
∓ td,α · sr

X

√
Γ

]
(3.13)

Γ = s2y − 2 · r · cyx + r2 · s2x − g
(
s2y −

c2yx
s2x

)
(3.14)

g =
t2d,α · s2y
X

2 (3.15)

The term td,α refers to the α-level deviate from the Student’s t-distribution
based on d degrees of freedom, with d = n − 1. The use of the Student’s
t-distribution approximation instead of the Normal distribution is due to the
possibility of not having enough samples. Anyways, the difference from 50
samples or more is insignificant.

In order to use this expression, it is necessary that both means of the
ratio follow a bivariate normal distribution. The second condition is that Γ,
eq. (3.14), need to be positive so as not to obtain an imaginary value. In
addition to that, the parameter g allows to determine the meaning of the
range. When g is very close to 1, the confidence interval is infinite and if it is
greater than 1, the overall divisor outside the square brackets is negative and
the confidence interval is exclusive.

Even though Fieller’s theorem is the most extended method we will see it
does not work correctly with values close to 0, and the problem of continuity
is not solved with it. In order to decide which equation use to perform the
analysis we have prepared a virtual environment.

3.2.1 Checking confidence intervals

We will perform the analysis of a circuit with 9000 transistors. Each of them
with 10 different possible defects. That makes a total of 90000 different
simulations. The RL is randomly assigned making more weighted some of
them. The histogram of the array through the form showed in Fig. 3.1.

From the full population, we will set a Defect Coverage by randomly
selecting defects till the desired value is reached. This definition will work as
the exhaustive simulation results. Our aim with this experiment is to obtain
the real CI of the Defect Coverage. In order to accomplish this task we will

28 CHAPTER 3. STATISTICAL EVALUATION OF TEST METRICS

Figure 3.1: Virtual example, RL histogram

10
0

10
1

10
2

10
3

Number of Defects

0

0.2

0.4

0.6

0.8

1

E
st

im
at

ed
 D

ef
ec

t
C

o
v

er
ag

e

Real

Sunter

Cochran

Fieller

Figure 3.2: CI narrowing with the number of samples, dc ≈ 0.5

10
0

10
1

10
2

10
3

Number of Defects

0

0.2

0.4

0.6

0.8

1

E
st

im
at

ed
 D

ef
ec

t
C

o
v

er
ag

e

Real

Sunter

Cochran

Fieller

Figure 3.3: CI narrowing with the number of samples, dc ≈ 0.1

3.2. ESTIMATE OF CONFIDENCE INTERVALS 29

perform a virtual sampling 100 times for different amounts of defects. Once
this is done, we will have a histogram of the obtained Defect Coverage for each
number of defects and we will be capable of setting a empirical Confidence
Interval, the measurement error. The theoretical Confidence Interval should
follow this results or, at least, not narrowing too fast.

Fig. 3.2 and 3.3 shows the results for a Defect Coverage of 0.5 and 0.1,
respectively. The Sunter CI is calculated as Eq. (3.6). Cochran is calculated
using the same equation but calculating the typical deviation as a ratio, Eq.
(3.8). Finally, the Fieller range is calculated with Eq. (3.13).

In general, Confidence Interval are not reliable for low number of samples,
at least 7 are necessary. Besides, all three seem a good approximation when
Defect Coverage has an intermediate value since the real value is always
inside the theoretical. Regardless, the Fieller’s Theorem does not give good
results with values close to zero, as expected, so this option is discarded. The
difference between Sunter and Cochran depends on the continuity summand.
In our case, we are going to use Cochran because the bad behavior with low
number of samples is easy to detect, it only requires to compare equality
between the two extremes.

30 CHAPTER 3. STATISTICAL EVALUATION OF TEST METRICS

Chapter 4

Description of the developed
tools

4.1 Defect models

It may not be clear the name of fault models when what we want to perform
is a defect simulation. This name comes from the digital world where fault
models refer to the effect that any defect could have in the circuit, for example,
the stuck at 0 or stuck at 1 faults. If we consider this fault we only have to
put a net, or part of a net, with a fixed value. Here the fault refers to the bad
performance of a gate and the defect could be anything that produce that
badfunction, a short with power or ground, for example. So in reality the
stuck at 0 and stuck at 1 faults can be seen as a functional fault at gate level.

In the analog field this difference is not as clear. In [14] is given a very
good sum up of the types of spot defects we can consider for an IC. These are
classified in 11 groups and they involve the mistakes in any mask used during
the fabrication process [7]. As mentioned in [15], most of the spot defects
produced in a IC can be modeled as open or shorts. Here is the point, we
will insert different open or shorts in the circuit, but the defect can be dust,
bubbles or any mistake produced during the fabrication.

It is widely accepted modeling spot defects as resistances. This model
is close enough in the case of shorts but with opens appears some problems.
A big resistor is settled in the place of the open in order to guarantee los
currents but the simulator convergence is not limited. In addition, for the
transient analysis it could be interesting to add a capacitor in parallel with
the resistance. This approach could be applied for the electrical modeling,
independently of where it happens.

For an post-layout approximation the resistors would have to substitute

31

32 CHAPTER 4. DESCRIPTION OF THE DEVELOPED TOOLS

dOpen

gdShort

gOpen dsShort

bOpen

gsShort

sOpen

Figure 4.1: 6+1 transistor fault model

the suitable parasite. If it is an open on a net only needs to increase the
parasitic resistor value. On the other hand, if it a short between two needs,
the parasitic capacitor has to be replaced by a low valued resistor. However,
when the injection is done directly on the nominal schematic the defects are
usually injected in devices. So that, models are slightly different.

Fig. 4.1 shows the classical 6 resistor fault model. Starting from a nominal
case in which the Open resistors have a ideal value of zero whereas the Shorts
are set to infinity. In the case a short between any terminal is chosen to
simulate the resistor is set to a determined Rshort value, that can be fixed or
variable depending on the simulation. In the case of the opens we follow the
same pattern, but with an Ropen parameter. In order to increase accuracy, we
have added the baseOpen defect, that could happen in the case the transistor
has its own well.

In addition to that, we have considered three more open for the case an
only finger fails of the entire transistor. This is a typical example of defect
that may affect or not the performance, since it could be considered as a
parametric variation of the transistor, and not a complete failure.

The calculation of the Relative Likelihood in this case is done from the
device parameters itself. To sum up, the biggest the transistor the most likely
to be defective since there are more are where the dust particle can fall. But
it is not accurate treating opens as likely as shorts. In fact, opens are more
likely than shorts. In our case we will consider five times more. For the
fingers open, since only affects to one part of the transistor we have change

4.1. DEFECT MODELS 33

dOpen
gdShort

gOpen dsShort
bOpen

gsShort

sfOpen

gfOpen

sOpen

gfOpen

Figure 4.2: 6+1 transistor fault model with one-finger open option

the factor by three. Finally, baseOpen defect is the least likely to happen, so
its value is divided by half. In the end, the Relative Likelihood array will be
the area of the transistor the belong multiplied by the mentioned factors. In
order to make the values relative to the rest, the vector is normalized with
the sum of all elements.

4.1.1 Convergence error with Open-Gate defect

The problem of modeling the open-gate defect by a large resistor is that the
DC analysis converges at the same point with or without input resistance.
For that reason some modifications of the model should be done.

There are several example of Floating Gate Transistor (FGT) models
[16,17,36] but due to how the DC analysis with Spectre works, some of them
are not implementable. Any model for which the gate voltage depends on
resistor ratios will generate wrong results.

For example, in [16], Fig. 4.3a, voltage is induced by two so-called leakage
resistors between the gate and both drain and source. Another resistor, with
the same value, is located at the gate. Every resistor has a capacitor in
parallel which value is the total parasitic capacitance between the nodes they
are located. The ones connected with the drain and source are calculated by
the transistor parameters and the other considers scaling effect caused by the
charge sharing in the polysilicon.

This could work if we had enough information for determining the resistor
values. The gate resistor can be set at the Ropen value, but the other two

34 CHAPTER 4. DESCRIPTION OF THE DEVELOPED TOOLS

gOpen

gOpen

gOpen

C1

C2

C3

G

S

D

(a) From [16]

VG

VD

VS

Vtun

+
- vcvs

(b) From [36]

gOpen

+
+

--Gain

(c) From [17]

Figure 4.3: FGT model examples

not, since is reasonable to think that these values depends on the transistor
itself.

Looking at [36], the gate voltage is decided by a model of the tunneling
and injection current, injected with voltage-controlled current sources. The
initial value, for the DC analysis, is settled by a voltage-controlled voltage
source with a high output resistance, as high as possible. The sources have a
gain dependent on the transistor parasitic capacitors. The calculated voltage
is settled by a buffer at the gate of the transistor in Fig. 4.3b.

Recently, [17] has shown that an open-gate transistor can be modeled
in DC by a transistor having the same electrical properties but operating
but in the sub-threshold region. That sub-threshold region is forced by a
voltage-controlled voltage source which gain depends on, again, parasitic
capacitors. In that paper, the ratio between VGS and VDS is inside the margin
showed in Eq. (4.1). Even though this premise is debatable, we will use this
model as reference for the DC analysis.

Cgdo
WLCox

≤ VGS
VDS

≤ 3Cgdo
2WLCox

(4.1)

On the other hand, for the transient analysis the model should be different.
The gate voltage in the transient analysis is set by the parasitic capacitors
in its leakage current and, reading the BSIM3v3 documentation [37], the
parasitic capacitors are more than modeled for the transient analysis. So
that, we will consider as correct modeling the gate open by a large resistor for
transient defect simulations. This model should be conservative in the sense
that it will account for dynamic effects, the gate voltage is actually low-pass
filtered, but will not disrupt the operating point.

4.2. INJECTION 35

4.2 Injection

The process of injecting defects starts from the netlist obtained from Cadence
Virtuoso®. But to understand why and how it is needed to explain the netlist
itself.

1 s imu la to r lang=s p e c t r e
2 g l o b a l 0
3 parameters . . .
4

5 i n c lude ” . . . ”
6

7 // COMMENT
8 subckt NAME LIST OF TERMINALS
9 paramters . . .

10 INSTANCES
11 ends NAME
12

13 NETLIST TOP LEVEL
14

15 SIM CONFIGURATION

At the beginning of the document we need to add the language used in
the document. For Spectre® is a must. It only gives the possibility of putting
comments (// ...) before of it. The rest of the structure it is more a good
practice to avoid mistakes than a mandatory structure.

The label global determine the global nets. In the case there are not global
nets declared it appears a 0, that will be used as voltage reference during the
simulation. Second line correspond to the parameters. This can be written
any time you want to initialize a new variable and can contain more than
parameter in the same line. The only condition is that before using a variable
it must be previously declared with this label. It is important to point out
that every variable declared in the document will be considered as global,
what is to say, a modification of the parameter will affect all the netlist, even
if the edition is done after the use of the variable.

Next part are the include ”...” sentence. This command only add the
content of the file between commas to the netlist. It does not matter the
format of the document, even no format works, because it will read it as a text
file. The only condition is that the text file has a Spectre® code structure,
that is, starting with simulator lang=spectre and having no syntax errors.
However, there are some conventions in the text file format for as an habit of
order.

• Files that finish with ”.mdl” correspond to models, transistors, technol-
ogy capacitors, resistors or inductances, etc... Some layout extractors,

36 CHAPTER 4. DESCRIPTION OF THE DEVELOPED TOOLS

SUBCKT B

I1

SUBCKT C

I1

SUBCKT C

I1

SUBCKT B

I1

SUBCKT B_I1

I1

SUBCKT C_I1_I1_I1

I1

SUBCKT C_I1_I2

I2

SUBCKT B_I1_I1

I1

Figure 4.4: Flattening process

for example, use this format to add the parasites.

• Files finishing in ”.inc” normally contain parameters. Model variables,
Monte-Carlo variables, etc...

• ”.lib” files correspond to the libraries. Here sections are defined. Starting
from the nominal, and finishing with corners and Monte-Carlo.

After the models we have the subcircuits declaration. This is the part
where we need to work more. By default, subcircuits are only declared one
time, independently of the number of times it has been called. An edition of
one parameter inside the subcircuit will affect to all its calls. That is why we
need to flatten the netlist before working with it.

The netlist top level is where the testbench is defined. In there, the upper
level of the circuit is called and the necessary environment to test the circuit
is set. The only modification that is expected to be done here is editing the
name of the upper subcircuit.

Finally, it is the simulation configuration. Tolerances, analysis, saved
voltages, saved currents and temperature is set among these lines. We will
see later that we can use the same analysis that is declared here using
SpectreMDL® in order to ensure the same result we obtained with ADE L.

The basic process of flattening is showed in Fig. 4.4. With an input netlist,
the program starts by reading all the declared sub-circuits at the beginning
of the document. Afterwards, it reads recursively the document to save the
dependencies of that sub-circuits and extract a tree with every sub-circuit
instance. The name of the sub-circuit is edited depending on how deep is the
sub-circuit instanced. For example, if the call is made at the first level it will
only have its own name with the instance string immediately afterwards. If it
is a second, third and so on level, the complete list of instances need to reach

4.3. SIMULATION 37

the sub-circuit is written at the end of the name. On this way, we achieve a
netlist with non-repeated instances.

That is the only way to guarantee that there will not be double sub-circuit
declaration. Of course, it is more efficient to only flatten the specific sub-
circuit we are going to edit, but we have made tests and for Spectre® it is
transparent or, at least, the simulation time is much more higher. The good
point of doing this way is that the measurements done for the input netlist
are perfectly compatible with the output, since the measurements depends
on the ID and net name inside the sub-circuit, not on its name.

At the end of that process, the netlist is read again in order to obtain the
necessary parameters to elaborate a list of Relative Likelihood. In order to
calculate the area of the transistor we need the width, height and multiplicity
of it but, for the sake of versatility, this requires a more complex process.
First of all, the global parameters are read. It is common that the sizes are
between this list. Then, we start by reading sub-circuits in order, tanking into
account that more parameters would be declared locally. Once a potentially
defective device is reached, the three model parameters are extracted and the
parameters declared on them are substituted by the real value. At this point,
the code is capable of substituting any dependency of parameters, so we have
not had to set any requirements to the designer.

Once the netlist is flattened, we are sure that the defect we inject in the
netlist will only appear at the block we want to, and not any other. On this
part only rest to decide how the defect is gonna be inserted.

On our case, we have edited the transistor models in such a way it only
requires add one entry parameter to the transistor call in the netlist. All
the transistors models have been replaced by our custom models, keeping
functionality with Cadence Virtuoso® simulation environment. By default,
the models does not have the defect parameter in the netlist, so that Spectre®

will use its default value, which correspond with the nominal behavior. Once
a defect is selected, we follow the root of the defective device until we reach
it. The defect injection only requires to add the defective parameter at the
end of the call line.

4.3 Simulation

Simulation part has been prepared to be performed in Matlab®. A set of
functions have been written in order to perform all the IFA process. The
functions are hybrid codified between Matlab® code and PERL®. The use of
the last one has resulted to be really useful because of the regular expressions.
With it use, text edition, the netlist, becomes much more easy to perform.

38 CHAPTER 4. DESCRIPTION OF THE DEVELOPED TOOLS

During the flattening the data for the RL calculation is extracted, that is,
width, length, multiplicity and number of fingers. Furthermore, some extra
information is prepared to be read, as the complete route from the top to the
transistor, the name of the original sub-circuit where it was placed and the
list of possible defects for each transistor.

Relative Likelihood can be calculated after the flattening, using Matlab®,
depending on the case. A first approximation is the mentioned in the first
section. We calculate the area and multiply it by a constant depending on
the defect, that is, 5 for opens, 3 for finger opens, 0.5 for the base open and 1
for shorts. This will make a more realistic approach to Relative Likelihood
once the array is normalized by the sum of all the values.

Defect selection is done attending the the obtained Relative Likelihood.
The highest it is the most probable to be selected, and the defect is not
discarded once it is selected in order to accomplish the Likelihood-sampling
explained before. In addition, the code is capable of discriminating in the
defect selection by sub-circuit. That is, we can simulate the same defect in
different test-benches or even in different circuits. Once the defect is selected,
the injection and simulation process has been reduced to fill the entry data of
a function. That function perform the simulation using SpectreMDL®. The
software use Spectre in background to simulate netlist.

This software, apart from needing a valid initialization of Cadence in
the same environment, requires an extra file that defines the models. The
structure of this files is defined in the documentation [38] so that we will only
mention some functions.

SpectreMDL® is a scripting language that you can use to simulate a
given netlist from Virtuoso®. Between its features, it includes the creation of
measurement aliases that can be easily reused in different circuits, efficiently
run simulations in batch mode and the parameterization of measurement
aliases.

The use of this code allows us to fasten the simulation process. It has
his own protocol to perform measurements and save it in the format you
indicate. Some measurements examples are a periodic sampling during a
transient a analysis, performing a FFT from a specified signal, saving the
DC operating point or calculate the settling time of a determined times of
periods. Anyways, the database generated is perfectly compatible with the
Results Browser of Virtuoso® and with the Matlab® toolbox to read this
kind of files.

In order to clarify concepts we will explain a basic process simulation of a
defect:

• Flatten netlist: With the models information and the netlist itself a

4.3. SIMULATION 39

PERL® reads the netlist a create a new one with an unique declaration
for every sub-circuit. As a result, we obtain the new netlist and the
width, length, multiplicity and number of fingers of each transistor.

• Relative Likelihood: Likelihood computing is done immediately after.
Depending on the case, a matrix with the number of considered defects
as columns and the number of devices as rows is filled with the area of
the devices. The columns which correspond to open defect are multiplied
by 5, the finger opens by 3, the base open by 0.5 and the shorts are
not edited. Finally, the matrix is normalized with the sum of all the
elements.

• Simulation loop: With the list of candidates and its ideal Relative
Likelihood the simulation loop begins.

– Selection: A defect is selected considering its Relative Likelihood
and the sub-circuit it belongs. If the defect has already been
simulated the output Relative Likelihood position which correspond
to it is incremented by one. If not, a new element is pushed at the
end.

– Defective netlist generation: With the defect info, a new folder is
created to perform the simulation. The defective netlist is saved
in that folder and SpectreMDL® is invoked with its configuration
file.

– Results: Depending on the simulation the results to read may
variate. For example, for the DC operating point the results would
be the interesting DC nodes but for a transient simulation it could
be the final value, the sampled wave or the settling time. Either
way, the results can be extracted from the simulation database
by configuring the SepctreMDL® script or using the Matlab®

functions provided by Cadence®. The important thing is that the
results must be read now, since the simulations files are quite big
and a complete simulation could fill the free space on disk.

The most important advantage of the flattening process is its versatility.
The code accept almost every netlist generated by Cadence® so no extra
conditions have been imposed to the designer. This point allows the simulation
on different setups wether it is different setup or complete different circuits.

40 CHAPTER 4. DESCRIPTION OF THE DEVELOPED TOOLS

4.4 Collateral developments and applications

During the code development, other application ideas appeared. Some of
them are already coded and others are planned to be performed in the future.
One example of this is the Monte-Carlo analysis, that seemed to be useful
to run it in Matlab® taking absolute control over it. Another interesting
point is the capability of using the same structure of defect injection to
simulate Single-events in transistors. This highlights the versatility of the
code produced.

4.4.1 Monte-Carlo analysis

Adapt the Monte-Carlo to be performed in Matlab® is not a trivial task,
since every technology, even though they use the same base process, produce
the variations using the Spectre® random numbers generation [39]. But our
intention was to take control of the analysis as much as possible, allowing us
not only to read the variations obtained but to repeat the simulation in a
different setup with the exact same variables.

For this purpose, the custom models have the information of how many
variables needs to be generated to perform an analysis and with what distribu-
tion they need to be generated. During the flattening process this information
is extracted to a Matlab® readable format so as it can generate and save
them.

This extension has certain advantages over the traditional method. On
one hand, we can apply the same process and mismatch variations to a single
block in different setups. In Cadence Virtuoso ADEGXL® this could be
done for process but not for mismatch. On the other han, since the variable
values are assigned in Matlab®, we ca use deterministic values for diagnosis
purposes, or perform any kind of adaptive process. This is of particular
interest to examine the tails of the performance in high-yield applications or
to validate machine-learning indirect test.

4.4.2 Single Event

As a proof of the toolbox versatility single events simulations has been
implemented. Single Event Transients have become a great threat to the
reliability in space applications. They consist on the effects of the localized
charges injection that accompanies the impact of a radiation particle in the
active zone of the semiconductor crystal. The work done with the toolbox
has already been accepted in DCIS 2018, [40].

4.4. COLLATERAL DEVELOPMENTS AND APPLICATIONS 41

In order to perform Single Event Transient simulation for large circuits we
re-used the defect injection platform. The concept is very similar to the defect
simulation: the Relative Likelihood of a Single Event Transient in a given
MOS transistor is proportional to the source or drain area. We thus extract
that information from the netlist and produce 2 Single Event Transient models
for the MOS with a double exponential circuit source connected between the
body and the drain (or source) terminals. This model has 4 entry parameters
(the total charge, rise and fall time and the injection instant) that can be
farther varied during simulations.

42 CHAPTER 4. DESCRIPTION OF THE DEVELOPED TOOLS

Chapter 5

Cases of study

5.1 First case of study: Resistive buffer

The results exposed in this section have been published for the conference
IOLTS 2018 [41]. The purpose of this case of study was do demonstrate the
need for the complete test picture in order to assess test quality.

5.1.1 Circuit description

The circuit under test is an unity gain differential closed-loop amplifier with
resistive feedback (RFB-AMP) that is shown in Fig. 5.1. This buffer was
designed to cope with the demanding requirements imposed by the input
stage of a high-performance switched-capacitor ADC. More concretely, the
design goal was to achieve an effective resolution of 13 bits for a 2Vpp signal
range, withstanding a switched capacitive load of 2pF at 50MHz.

The core of the resistive buffer is a the two-stage op-amp with Miller’s
compensation shown in Fig. 5.2. In addition, three common-mode feedback
(CMFB) circuits are used for stabilizing the voltages at the input, the first
and the second stage outputs of the op-amp. Such an independent control of
the common-modes was deemed necessary to optimize linearity performance.
In the example of Fig. 5.1, continuous-time architectures with active auxiliary
op-amps at the input and output are shown for this purpose but discrete-time
CMFB circuits can be used based on switched-capacitor (SC) implementations
[42].

Despite its apparent simplicity, this resistive buffer is a high-performance
block that operates at the limits of the technology capabilities. Thus, the
design margins are quite limited and the parametric yield is not 100%, as we
will see later.

43

44 CHAPTER 5. CASES OF STUDY

fb

fb

in

Common-mode
sensor (CMS) CMS

Auxiliary op-amps

Figure 5.1: Simplified schematic of the DUT based on an unit-gain differential
closed-loop amplifier with resistive feedback (RFB-AMP).

Table 5.1: Key electrical specifications of the DUT in a 1.8V UMC 180nm
process.

Characteristic Specification

Amplifier DC Gain 79dB
Amplifier GBW 196MHz
Rin 500Ω
Rfb 500Ω
Buffer THD 80dB

Table 5.1 summarizes the main specifications of a transistor-level im-
plementation in a 1.8V UMC 180nm process, herein used as DUT. The
challenges in the design were solved using the methodology in [43] which
splits the process in two steps: 1) generation of a set of candidates based
on an analytically-derived linear model (3-poles and 3-zeros) to assure a
dominant critical damped response, 2) selection of the final solution using
transistor-level simulations with a realistic SC load model to take into account
the actual non-linear transient evolution.

The total number of potential defect sites after flattening process is of
only 304. This is a manageable number to consider an exhaustive defect
simulation if fixed resistors are used.

5.1. FIRST CASE OF STUDY: RESISTIVE BUFFER 45

WP/LP

WCN/LCN

WCNR/LCNR

100uA

WCN/LCN

WN/LN

vcn

vcn

cmi

vbp

100uA

1:1

1:1

100uA

vcp

W1/L1

WP/LP
vbp

Replica branch

vcn

vbn

vbnvfb1 vfb1

vfb2 vfb2

inp inm

1:(2F1)

vbp

F1W1/L1

vcpF1WCP/LCP

F1WCN/LCN

sum = F1WN/LN

vbn

sum = F2WP/LP

F2W2/L2

2F2WN/LN

Cc

cmo =
(outp+outn)/2

outp

Cc

outm

Io1

Io2

VDD = 1.8V

{vfb1,vfb2}: from CMFB circuits

Figure 5.2: Transistor-level implementation of the differential two-stage op-
amp.

5.1.2 Test description

The difficulties found in the design are also found during testing, specially
when process and mismatch variations are considered. Characterizing the
performance of such a buffer requires a dynamic test consisting in applying
an at-speed highly-pure sinusoidal signal at the input of the circuit, and
acquiring and processing its output response in order to compute dynamic
performance figures such as the THD, ENOB, etc. The high performance
of the circuit imposes demanding requirements on the test equipment. And
even if the appropriate equipment is available, the buffer would probably be
integrated within a complex system and its primary inputs and outputs pins
would not be accessible.

In this paper, we will consider as a defect-oriented approach the measure-
ment of the DC voltages of the amplifier internal nodes. Such an approach has
been followed by many proposals in the past and practical solutions have been
proposed to acquire such DC voltages in an embedded circuit, like the IEEE
1149.4 analog test bus, or more recently resorting to local one-bit digitizers
with an external reference [44].

In order to process these DC values and output a pass-fail decision we
decided to perform a Machine Learning Indirect Test. Fig 5.3 shows the
process of training and using a regression model to THD for the DC values ob-
tained during a Monte-Carlo simulation of both process and mismatch. Using
this model directly on the fault simulation results would not be appropriate
as pointed out in [45]. However, we can consider it in combination with a

46 CHAPTER 5. CASES OF STUDY

Functional test

Simple tests

IC under test

Full population

Training set

Low-cost tester

Bench
equipment

Statistical
model

Specifications

Workstation

Defect filter

Figure 5.3: Machine Learning Indirect Test Process

Defect filter. Indeed, in a standard Machine-learning indirect test flow (also
known as Alternate test), the defects that manage to pass the filter would
be submitted to the regression model and they may output a performance
below specification and be diagnosed as defective, increasing the overall test
coverage.

In our case, we are going to implement two different defect filters, with
two options for each of them.

Independent pass-fail limits

Consider independent pass-fail limits on each node. The thresholds are set
by considering the maximum and minimum values obtained during a Monte-
Carlo simulation of both process and mismatch. This can be considered as a
simple and straightforward approach. For such a solution, the inclusion of
embedded window detectors can be envisioned [46].

It is reasonable to think that narrow intervals should make better defect
detectors than large ones. For this reason, we also computed the acceptance
windows considering only the circuits that met the 80dB THD specification
in the Monte-Carlo simulation.

Joint probability density

Evaluate the joint Probability Density Function (PDF) of the DC values
obtained during a Monte-Carlo simulation of both process and mismatch
using kernel methods. Set the threshold on probability as the minimum value

5.1. FIRST CASE OF STUDY: RESISTIVE BUFFER 47

Figure 5.4: Results of the Monte-Carlo process and mismatch simulation.
THD histogram and DC node voltage excursions.

obtained by the circuits that fulfill the specification. This approach is the
one proposed as a defect filter for alternate test approaches in [45].

The probability of occurrence of the DC values obtained by fault simulation
can then be easily computed using the trained PDF and compared to the
threshold. Unlikely sets of DC values are tagged as defects.

This approach is a refinement of the previous one in the sense that it
accounts for the possible correlations between the different DC nodes (i.e. if
an existing correlation is broken it may be the signature of a defect, even if
the individual nodes are in their validity range) and it also account for the
reduced probability of two extreme events at a time.

5.1.3 Results discussion

In order to obtain the necessary data to compare with the defects the nominal
point it is not enough. For that, we have performed a Monte-Carlo analysis
of 2000 points including mismatch and process variations.

Fig. 5.4 shows the obtained results from the Monte-Carlo analysis. The
first graphic represents the THD histogram. According to it, we could set
a 80dB specification for the THD, which would give a parametric yield of
99.5%. On the other hand, the second graphic shows the DC voltage excursion
of each node. At this point, we could consider to display the intervals for

48 CHAPTER 5. CASES OF STUDY

Figure 5.5: Results of the defect signature generated. THD histogram.

circuits with more than 80dB of THD but, as will be shown later, this does
not produce a significant effect on the results.

Once obtained the Monte-Carlo data, the fault simulation can be carried
out. For this purpose, we exhaustively simulated the list of candidate defects.
We thus obtain a null variance, attending to the equation (3.8), hence it will
be assumed for all the results.

As commented above, the most computationally efficient way to estimate
the fault escapes would be to simulate the performance test setup only for the
defects that have passed the test. However, we have not done that because we
want to check different test methods and it is not possible to know beforehand
which defect will fail which test. We have thus simulated the performance
for each defect in the candidate list, since the was affordable for this small
circuit.

As before, Fig. 5.10 shows the data obtained from the defect signature
generated. At first sight, it confirms that not all the defects have to be a
fault. Actually, 49.01% of the circuits meet the specification of 80dB, so any
test (even no test) would obtain at least a modified Fault Escape of 50.99%.

Let us now consider different test methods, that will make use of the
available data.

5.1. FIRST CASE OF STUDY: RESISTIVE BUFFER 49

Independent pass-fail limits results (IPF, IPF80dB)

Using all the Monte-Carlo data without the mentioned restriction of 80dB,
we obtained a defect coverage of 63.16%. The point is that only the 8.04%
of the undetected defects represent an actual fault, that is, have a THD less
than 80dB. It comes that the modified fault coverage reaches 97.04%. So
despite a moderate defect coverage score, such a test could be considered
good enough since it will catch most of the actual faults. In addition, the
severity of the escaped faults is 0.432dB. This test will be referenced as IPF
henceforward.

When stretching the pass-fail margins by setting a minimum THD of
80dB in the Monte-Carlo data the results do not improve. This method will
be called IPF80dB, in order to differentiate it from the previous one.

Joint probability density results (JPD)

With respect to the IPF method, this one implicitly takes into account the
correlations between nodes so it will increase the number of restrictions on the
possible values. In this way, we expected to detect defects that, even though
being inside the individual nodes margins, do not fulfill the correlations.
However, we found no significant difference with the previous method.

The defect coverage reaches the value of 61.18%, with a fault coverage
of 96.71%. It actually slightly worsens the results of IPF, what it is noticed
in the severity of 0.436dB. But a closed look at the results shows that it
corresponds to only one more escape than before, located quite close to the
specification boundary, as can be seen in Fig. 5.6. There are no changes
either when we apply this method considering as an input only the circuits
with more than 80dB THD to compute the joint probability density function.

These slightly worse results are probably due to the kernel estimation
process which by construction somewhat widens the tails of the distribution
while the IPF method consider the extreme cases of the Monte-Carlo simula-
tion as an absolute limit. What is clear is that, at least for our case of study,
the correlations between DC voltages bring no relevant information to defect
detection.

Machine Learning (ML, IPF80dB+ML, JPD+ML)

For this test we train a neural network in order to predict the THD with the
DC test signatures generated on the Monte-Carlo analysis. This is what is
usually done in machine-learning indirect test approaches [3, 47,48].

At first, we tried to directly submit the DC signatures of defective circuits
to the performance predictor. Poor results were expected since the necessity

50 CHAPTER 5. CASES OF STUDY

Figure 5.6: Undetected faults THD histogram.

5.2. SECOND CASE OF STUDY: SOURCE FOLLOWER 51

Table 5.2: Results comparison table.

Test Defect coverage Fault coverage Severity

noTest 0% 50.99% 3.4222dB
IPF 63.16% 97.04% 0.4318dB

IPF80dB 63.16% 97.04% 0.4318dB
JPD 61.18% 96.71% 0.4335dB
ML 21.71% 70.39% 1.752dB

ML+IPF80dB 63.16% 97.04% 0.4318dB
ML+JPD 61.51% 97.04% 0.4318dB

of a defect filter is acknowledged in the literature, as commented above. This
test is not enough to be used as a defect detector by itself. Its performance is
too low: it only detects 21.7% of the defects. The modified fault coverage is
70.4%, which is not so far from the result of performing no test at all. And
the severity is 1.75dB, significantly higher than the previous methods. This
means that the fault escapes are not close to the specification, as can also be
seen in Fig. 5.6.

Considering the complete machine-learning indirect test flow, the circuits
that pass the defect filter would then be submitted to the trained performance
predictor (i.e to the Neural Network model in our case). It may thus occur
that the model detects some additional defects. So we tried to use the trained
model on the defect escapes of IPF80dB and JPD methods.

The results show very marginal improvement. Actually, the additional
machine-learning step does not improve the defect detection statistics of the
stand-alone IPF80dB. If used in conjunction with JPD we reach the IPF80dB
modified fault coverage and severity, but not its defect coverage.

Table 5.2 summarizes the results obtained for the different methods and
Fig. 5.6 shows the histogram of the undetected faults in each case. It
appears quite clearly that the different tests provide similar results, except
the Machine-Learning test which is clearly inadequate.

From these results we can conclude that the proposed complete test picture
is of interest to assess test quality more accurately. In particular, we can see
that the test with a moderate Defect Coverage does nor perform that bad
taking into account the complete information.

5.2 Second case of study: Source follower

This second case of study considers a more complex circuit and it is aimed at
validating the statistical approach.

52 CHAPTER 5. CASES OF STUDY

Lo
ad

St
im

P
5

Lo
ad

St
im

N
6

cm
i

1
8

cm
o

1
9

vd
d

1
8

a
2
3

v
d

d
3
3
a

9

v
d

d
3
3
d

3
1

LOAD_mode<0>2

LOAD_mode<1>1

LOAD_mode<2>32

LOAD_mode<3>30

Ib
ias_

test
2
4

EN
b

ias
2

7

EN
R

e
xt

2
8

CLK 29

VOUTN12

VOUTP13

VIN 20

VIP 21

Ib
ias_

re
fb

u
f<

0
>

1
6

Ib
ias_

re
fb

u
f<

1
>

1
7

Ib
ias_

C
R

G
<

0
>

2
5

Ib
ias_

C
R

G
<

1
>

2
6

CLOCK GENERATOR

BUFFER

SOURCE

FOLLOWER

INTERNAL LOAD

BIAS CURRENT

GENERATOR

LOAD_conf<0>3

LOAD_conf<1>4

LOAD_conf<2>7

LOAD_conf<3>8

Figure 5.7: Block diagram of the chip.

5.2.1 Circuit description

It is a differential buffer differential buffer based on source-followers designed
to be in cascade with the previous circuit in order to reduce the kickback gen-
erated during the sampling of the ADC with a higher load or as a standalone
buffer. Unlike the previous one, the design goal was to achieve an effective
resolution of 14 bits for a 2Vpp differential full-scale signal, withstanding a
switched capacitive load of 10pF at 100MHz over the first Nyquist bandwidth
(up to 50MHz).

In order to achieve this level of accuracy, the source followers have to be
linearized and the biasing scheme ensures a very accurate reference current
as well as a constant source-drain voltage. Design constraints were very
demanding with regards to common mode output and bandwidth so that
that the circuit is polarized at 3.3V in order to achieve saturation in all the
output range with a common mode output of 1V .

In this case we will not simulate only the circuit core, but the whole chip in
its prepared test-bench. The chip is divided in the blocks showed in Fig. 5.7.
It has three different polarization voltages in order to separate biasing, digital

5.2. SECOND CASE OF STUDY: SOURCE FOLLOWER 53

Figure 5.8: Relative Likelihood histogram extracted from the Buffer Source
Folloer chip.

and analog parts. Thinking on the final aim which was to perform a BIST an
internal switched load was included that can vary to total capacitance from
disconnected to 10pF .

This circuit has been integrated and will soon be test un the laboratory.
Despite the developed toolbox allows the defect injection only in the buffer,
in order to have enough samples to validate the statistic approach, we will
consider the injection in the entire chip. Netlist flattening and defect extraction
process output a lis of 4962 candidates with a Relative Likelihood distribution
showed in Fig. 5.8.

5.2.2 Test description

Test-bench needs of a transformer followed by a bandpass filter tuned at the
input frequency to generate the 2Vpp with enough resolution and the output
is read by a ADC, so that the internal load is turned off during the test.

As before, in order to access performance test-bench simulation requires
a long transient of 256 samples for performing a FFT. The input signal is a
full-scale sine-wave close to 50MHz. In this case, instead of the THD, the
SNDR is calculated.

Here again, we will consider as a Defect-Oriented Test the measurement
of internal DC nodes. We will use the Independent pass-fail limits used in
the previous circuit. The test pass-fail will be the maximum and minimum
results obtained during the Monte-Carlo simulation of 1000 points. From the
computational perspective it only requires the simulation of the DC operat-
ing point, so the simulation is accessible from the test-bench performance
simulation.

The total number of possible defects is of 4962. Our intention is to proove

54 CHAPTER 5. CASES OF STUDY

Figure 5.9: Results of the Monte-Carlo process and mismatch simulation.
SNDR histogram and DC node voltage excursions of 2 nodes.

the capability of the proposed non-exhaustive defect simulation but, in order
to compare results, the exhaustive simulation is necessary. For this reason,
using the layout extracted netlist with parasites is not an option. Bear in
mind that the exhaustive simulation at schematic level lasted two weeks with
four parallel cores.

5.2.3 Results discussion

Fig. 5.9 shows the Monte-Carlo histogram results. Due to the fact that
the chip was not intended to be implemented alone the SNDR specification
was reduced to 75dB to obtain a parametric yield of 99%. The exhaustive
simulation of defects led to the histogram showed in Fig. 5.10. As before, the
necessity of considering defects and faults is evident. In this case, only the
20.82% of the simulated defects are a fault.

Exhaustive test reached the value of 74.26% for the Defect Coverage and
a 2.18% of Fault Escape, which corresponds with a Fault Coverage of 97.82%.
The contrast is again important. Severity has not been implemented in this
case of study since we will not compare with any other test.

Thanks to the exhaustive defect simulation, we now know the true value
of the Defect Coverage and the Fault Escape to which the estimates should
converge in a non-exhaustive defect simulation framework. In order to validate

5.2. SECOND CASE OF STUDY: SOURCE FOLLOWER 55

Figure 5.10: Results of the defect signature generated. SNDR histogram and
DC node voltage excursions of 2 nodes.

our approximation on the Confidence Interval we will first perform the same
check we did in chapter 3. That is, perform several virtual sampling of the
same length for obtaining an histogram and be capable of extract a real
Confidence Interval of the metrics. After that, a single defect simulation
estimates of the Confidence Intervals will be compared to the true value.
Results are shown in Fig. 5.11. As before, Fiellers’ theorem does not give
good results for low values, so it cannot be used for this work. Between
Cochran and Sunter we decided to use Cochran, since the invalidity of the
Confidence Interval is easy to discriminate.

First of all, the algorithm needs to set the desired Defect Coverage and
Fault Escape to discard or not the test. The first loop calculates the Defect
Coverage and, if it is valid, the second calculates the Fault Escape. For this
reason it is needed to test the algorithm behavior with different specifications
and compare with a reference. Obviously, the obtained results are compared
with the exhaustive test but, in order to see the improvements in computational
cost, a conventional approach would consist in computing the number of
defects to be simulated in order to reach a given precision on the estimate.

That necessary sample size will be calculated with the binomial approxi-
mation of the variance. The number of samples for a determined width of the
Confidence Interval is in Eq. 5.1. For a 90% Confidence Interval, 1−α = 0.99,
the Z-score, zα/2, is 1.645. We will set the width at the absolute value of

56 CHAPTER 5. CASES OF STUDY

10
0

10
1

10
2

10
3

0

0.5

1
D

ef
ec

t
C

o
v

er
ag

e

Cochran

Sunter

Fieller

10
0

10
1

10
2

10
3

Number of samples, n

0

0.1

0.2

0.3

F
au

lt
 S

ca
p

e

Figure 5.11: 90% Defect Coverage and Fault Scape Confidence Interval
progression with the number of samples.

0.05, so CI = 0.05/2. Substituting the Defect Coverage and the Fault Escape
expected value in r will give us the number of minimum simulation needed to
reach a result with that confidence.

n =
r(1− r) +

(
CI
zα/2

)2
r(1− r)/N +

(
CI
zα/2

)2 (5.1)

The sequential simulation process has been described in Chapter 2. How-
ever, for the sake of validation, we have performed an exhaustive simulation

Table 5.3: Number of samples comparison table for non-exhaustive test.

deDC 80% 74.26% 60%
deFE 1% 2.18% 5%

minSampDC 609 711 861
minSampFE 363 92 199

ds 27 279 18
fs 0 37 3
dc 63.64%± 14.46% 73.45%± 2.5% 85%± 15.95%
fe Not calculated 2.68%± 2.49% 0%± 2.5%

Result Not accepted Accepted Accepted

5.2. SECOND CASE OF STUDY: SOURCE FOLLOWER 57

of the defect candidates, both for the proposed defect-oriented test setup and
for the performance test setup. This allows us to emulate that sequential
simulation as many times as desired and for several conditions in terms of
defect coverage and fault escape objectives.

We thus first estimate the Defect Coverage through likelihood random
sampling and we stop as soon as the test under evaluation can be considered
as valid or invalid. In the case that no clear decision can be taken, we stop
when the estimate of the confidence interval reaches the desired value of 0.05.
With the Fault Escape, we take the list of defects that have been simulated
in the defect-oriented test setup in the same order. If a defect was labeled as
detected, it is not simulated for performance but it is directly assigned a fault
detected label. On the contrary, if it was labeled as undetected for the test
under evaluation (and was thus a escape), it is simulated for performance
and its fault label is updated according to the result of that simulation.
The exit criterion for the fault escape loop are the same as for the defect
coverage: either the metric can be early accepted (or discarded) or the loop is
stopped at an acceptable width of the confidence interval. It may occur that
the list of defects simulated in the defect-oriented setup ends before a valid
conclusion is reached on the fault escape estimate. In such case, additional
defect simulations would have to be carried out.

Table 5.3 shows the results obtained for different situations. The rows are
divided as follows:

• deDC & deFE: They are the desired Defect Coverage target and Fault
Escape respectively.

• minSampDC & minSampFE: The minimal number of simulations
needed to reach that confidence interval of width 0.05. This is thus the
baseline to calculate the gains in computation time.

• ds/fs: Number of defect and fault simulations for our proposal.

• dc/fe: Defect Coverage and Fault Escape obtained at the end of the
simulation.

• Result: Decision taken, if the test has been accepted or not.

We have considered three cases. The first column specified challenging
values for the desired defect coverage and fault escape. In this case, the
algorithm resulted to be much more efficient than the conventional approach
since with barely 30 defect simulations the test was discarded. Here the gains
in term of computation is in the order of a factor 20.

58 CHAPTER 5. CASES OF STUDY

The second column corresponds to the most pessimistic case since we
set the target requirements to the true value of the metrics. We thus know
that early stopping is impossible. Yet again, the estimate of the confidence
interval reaches the desired precision earlier than expected. This is due to the
likelihood random sampling process that increase the convergence rate for
non-uniform likelihoods (it is actually equivalent to importance sampling).

To complete the analysis, the last column shows the case when the desired
value is lower than the true value. In this case we are able to identify as valid
the test very fast but the number of escapes may not be sufficient to have a
trustworthy Fault Escape estimation. So that, we would have to perform more
defect simulations till the second Confidence Interval reaches an acceptable
value.

Looking at the metrics, the early stopping worked with the first and third
case, but when the desired Defect Coverage and Fault Escape are close to the
real values the loop lasts longer.

In order to further validate the proposal, we repeated the second exper-
iment a hundred times. In other words, we repeat the likelihood random
sampling of the defects a hundred times but since we have performed an
exhaustive simulation, this is done ”virtually”.

The results are showed in Fig. 5.12. Most cases required a large number of
simulations, in excess of 200, to reach the desired width of confidence interval,
as expected. However, in a small fraction (5%) of the cases, the test was early
discarded. This rate is coherent with the fact that the early stopping criterion
was computed with the 90% confidence interval. However, the decision to
reject the test cannot be considered as erroneous since the desired coverage
value is exactly the true value.

With this case of study it has been evidenced that statistical test is a
valuable tool to reduce simulation time. In addition, the metric estimation
is carried out in a sound statistical manner so that the obtained confidence
intervals are realistic.

5.2. SECOND CASE OF STUDY: SOURCE FOLLOWER 59

Figure 5.12: Number of simulations histogram.

60 CHAPTER 5. CASES OF STUDY

Chapter 6

Conclusions

In this work, we have shown that Defect Coverage is not necessarily a sufficient
metric for considering test quality. Indeed, a relatively poor defect coverage
value does not mean a poor fault coverage value. As seen in the first case of
study, with an average defect coverage of 63% we have reached almost the
97% of fault coverage. In addition, a close look should also be taken at the
nature of the remaining fault escapes. This information is summarized in a
Figure of Merit called Severity.

A statistically sound development has been carried out to evaluate these
metrics in a non-exhaustive defect simulation. This has resulted in a study of
the different Confidence Intervals used in the literature and the selection of
the most useful to our case.

Finally, a sequential simulation loop has been implemented in order to
perform such a non-exhaustive defect simulations. The loop contemplates an
early stopping criterion for the case the test can be discarded or accepted
without reaching the imposed confidence. This loop has been proved in a
second case of study where the early stopping has work properly in the cases
of a considerable difference between the desired Defect Coverage and Fault
Escape. Thanks to that criterion, test strategies could be evaluated with
significant computation time gains.

During the development of this work, three articles has been written, two
for congress and one for a journal. The already published is [41] presented
for the IOLST 2018. From this paper, we were invited to expand the work
and publish it in ”IEEE Transactions on Device and Materials Reliability
(TDMR)”. Finally, derived from the collateral developments, an article about
Single Event detection will be presented soon, [40].

The main branch of research derived from this work for the future is to
find methodologies for simulating defects more reliable and faster than the
one described above. In particular, an adaptive simulation methodology to

61

62 CHAPTER 6. CONCLUSIONS

concentrate computational effort on either fault or defect is currently under
development. Finally, the developed toolbox will be very useful for validating
some of the research group in the field of machine-learning indirect test and
robust defect filters.

Glossary

analog As mention in [49], “Analog” has a broad meaning in the IC industry.
It includes mixed-signal circuits and usually custom or very-high-speed
digital circuits. 1, 8

electromigration Electromigration is the transport of material caused by
the gradual movement of the ions in a conductor due to the momentum
transfer between conducting electrons and diffusing metal atoms. 5

golden It is used as the reference pattern, whether it’s a transistor, a mea-
surement or a model. 4

Sensitivity Analysis Is the study of how the uncertainty in the output of
a model (numerical or not) can be apportioned to different sources of
uncertainty in the model input [50]. 10

Spectre A circuit simulator based on SPICE. 8, 33, 38

63

64 Glossary

Acronyms

® Registered brand. 8, 19–21, 35–40

BIST Built-In Self-Test. 2, 53

CI Confidence Interval. 16, 18–20, 25–29, 55, 56, 58, 61

DfT Design For Test. 2, 6

DoT Defect-Oriented Test. 2, 5, 13, 14, 18, 19, 53

FFT Fast Fourier Transform. 38, 53

FGT Floating Gate Transistor. 33, 34

FoM Figure of Merit. 14

FPC Finite Population Correction Ratio. 25, 26

HDL Hardware Description Language. 8

IC Integrated Circuit. 3, 7, 14, 31, 63

IFA Inductive Fault Analysis. 5–7, 9, 23, 37

MSE Mean Square Error. 25

PDF Probability Density Function. 46, 47

RL Relative Likelihood. 5, 6, 9, 14–16, 23–25, 27, 28, 32, 33, 37–39, 41, 53

SET Single Event Transient. 40, 41

SNDR Signal to Noise-Distortion Ratio. 53–55

SPICE Simulation Program with Integrated Circuits Emphasis. 7–9, 63

THD Total Harmonic Distortion. 53

65

66 Acronyms

Bibliography

[1] IEEE, 1241-2010 IEEE Standard for Terminology and Test Methods for
Analog-to-Digital Converters. 2011.

[2] G. Leger and A. Gines, “Likelihood-sampling adaptive fault simulation,”
in 2017 International Mixed Signals Testing Workshop (IMSTW), pp. 1–6,
IEEE, jul 2017.

[3] M. J. Barragán, R. Fiorelli, G. Leger, A. Rueda, and J. L. Huertas,
“Alternate Test of LNAs Through Ensemble Learning of On-Chip Digital
Envelope Signatures,” Journal of Electronic Testing, vol. 27, pp. 277–288,
jun 2011.

[4] H.-G. Stratigopoulos and S. Sunter, “Fast Monte Carlo-Based Estimation
of Analog Parametric Test Metrics,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 33, pp. 1977–1990,
dec 2014.

[5] W. R. Daasch, C. G. Shirley, and A. Nahar, “Statistics in Semiconductor
Test: Going beyond Yield,” IEEE Design & Test of Computers, vol. 26,
pp. 64–73, sep 2009.

[6] S. Sunter, K. Jurga, P. Dingenen, and R. Vanhooren, “Practical ran-
dom sampling of potential defects for analog fault simulation,” in 2014
International Test Conference, pp. 1–10, IEEE, oct 2014.

[7] J. Shen, W. Maly, and F. Ferguson, “Inductive Fault Analysis of MOS
Integrated Circuits,” IEEE Design & Test of Computers, vol. 2, no. 6,
pp. 13–26, 1985.

[8] J. Khare, W. Maly, S. Griep, and D. Schmitt-Landsiedel, “Yield-oriented
computer-aided defect diagnosis,” IEEE Transactions on Semiconductor
Manufacturing, vol. 8, pp. 195–206, may 1995.

67

68 BIBLIOGRAPHY

[9] K. Saab, N. Hamida, and B. Kaminska, “Closing the gap between analog
and digital testing,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 20, no. 2, pp. 307–314, 2001.

[10] R. Beurze, Y. Xing, R. van Kleef, R. Tangelder, and N. Engin, “Practical
implementation of defect-oriented testing for a mixed-signal class-D
amplifier,” in European Test Workshop 1999 (Cat. No.PR00390), pp. 28–
33, IEEE Comput. Soc, 1999.

[11] F. M. Goncalves, I. C. Teixeira, and J. P. Teiceira, “Realistic fault
extraction for high-quality design and test of VLSI systems,” Defect
and Fault Tolerance in VLSI Systems, 1997. Proceedings., 1997 IEEE
International Symposium on, pp. 29–37, 1997.

[12] L.-T. Wang, C.-W. Wu, and X. Wen, VLSI test principles and archi-
tectures : design for testability. Elsevier Morgan Kaufmann Publishers,
2006.

[13] F. Fantini and C. Morandi, “Failure modes and mechanisms for VLSI
ICs-a review,” IEE Proceedings G (Electronic Circuits and Systems),
vol. 132, no. 3, pp. 74–81, 1985.

[14] M. Sachdev and J. Pineda de Gyvez, Defect-oriented testing for nano-
metric CMOS VLSI circuits. Springer, 2007.

[15] S. Sunter, K. Jurga, and A. Laidler, “Using Mixed-Signal Defect Simula-
tion to Close the Loop Between Design and Test,” IEEE Transactions
on Circuits and Systems I: Regular Papers, vol. 63, pp. 2313–2322, dec
2016.

[16] W. Y. Chiew and A. K. Bin A’ain, “Characterization and model de-
velopment of CMOS Floating Gate Defect (FGD),” 2007 Asia-Pacific
Conference on Applied Electromagnetics Proceedings, APACE2007, pp. 4–
8, 2007.

[17] B. Esen, A. Coyette, G. Gielen, W. Dobbelaere, and R. Vanhooren,
“Effective DC fault models and testing approach for open defects in
analog circuits,” in 2016 IEEE International Test Conference (ITC),
pp. 1–9, IEEE, nov 2016.

[18] S. Business, “Testing Analog/Mixed-Signal Circuits Tessent DefectSim
Improving AMS Test Quality and Time,” tech. rep., 2017.

BIBLIOGRAPHY 69

[19] L. Fang, Y. Zhong, and H. van de Donk, “Implementation of Defect
Oriented Testing and ICCQ testing for industrial mixed-signal IC,” in
16th Asian Test Symposium (ATS 2007), pp. 404–412, IEEE, oct 2007.

[20] R. Nivesh, B. Kruseman, B. Tasic, C. Hora, J. Dohmen, H. Hashempour,
M. van Beurden, and Y. Xing, Defect Oriented Testing for analog/mixed-
signal devices. PhD thesis, sep 2011.

[21] E. Yilmaz, G. Shofner, L. Winemberg, and S. Ozev, “Fault Analysis and
Simulation of Large Scale Industrial Mixed-Signal Circuits,” in Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2013,
(New Jersey), pp. 565–570, IEEE Conference Publications, 2013.

[22] A. V. Karthik, S. Ray, P. Nuzzo, A. Mishchenko, R. Brayton, and
J. Roychowdhury, “ABCD-NL: Approximating Continuous Non-Linear
Dynamical Systems using Purely Boolean Models for Analog/Mixed-
Signal Verification,” tech. rep., 2014.

[23] V. Devanathan, L. Balasubramanian, and R. Parekhji, “New Meth-
ods for Simulation Speed-up and Test Qualification with Analog Fault
Simulation,” in 2015 28th International Conference on VLSI Design,
pp. 363–368, IEEE, jan 2015.

[24] J. Park, S. Madhavapeddi, A. Paglieri, C. Barr, and J. A. Abraham,
“Defect-based analog fault coverage analysis using mixed-mode fault
simulation,” 2009 IEEE 15th International Mixed-Signals, Sensors, and
Systems Test Workshop, IMS3TW ’09, 2009.

[25] Z. Liu, S. K. Chaganti, and D. Chen, “Improving Time-Efficiency of
Fault-Coverage Simulation for MOS Analog Circuit,” IEEE Transactions
on Circuits and Systems I: Regular Papers, vol. 65, no. 5, pp. 1664–1674,
2017.

[26] J. Hou and A. Chatterjee, “Concurrent transient fault simulation for ana-
log circuits,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 22, no. 10, pp. 1385–1398, 2003.

[27] C. J. Shi, M. W. Tian, and G. Shi, “Efficient DC fault simulation of
nonlinear analog circuits: One-step relaxation and adaptive simulation
continuation,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 25, no. 7, pp. 1392–1400, 2006.

[28] H. Kerkhoff, “Fast fault simulation for nonlinear analog circuits,” IEEE
Design & Test of Computers, vol. 20, no. 2, pp. 40–47, 2003.

70 BIBLIOGRAPHY

[29] A. Milne, D. Taylor, J. Saunders, and A. Talbot, “Generation of optimised
fault lists for simulation of analogue circuits and,” IEE Proceedings -
Circuits, Devices and Systems, vol. 146, no. 6, p. 355, 1999.

[30] Jiun-Lang Huang, Chen-Yang Pan, and Kwang-Ting Cheng, “Speci-
fication back-propagation and its application to DC fault simulation
for analog/mixed-signal circuits,” in Proceedings 17th IEEE VLSI Test
Symposium (Cat. No.PR00146), pp. 220–225, IEEE Comput. Soc, 1999.

[31] W. G. W. G. Cochran, Sampling techniques. Wiley, 1977.

[32] W. C. Navidi, Statistics for engineers and scientists. McGraw-Hill, 2011.

[33] U. Von Luxburg and V. H. Franz, “A geometric approach to confidence
sets for ratios: Fieller’s Theorem, generalizations and bootstrap,” tech.
rep., 2009.

[34] J. P. Buonaccorsi, “Fieller’s Theorem,” in Wiley StatsRef: Statistics
Reference Online, Chichester, UK: John Wiley & Sons, Ltd, sep 2014.

[35] E. C. Fieller, “Some Problems in Interval Estimation,” Tech. Rep. 2,
1954.

[36] S. Rapp, K. McMillan, and D. Graham, “SPICE-compatible modelling
technique for simulating floating-gate transistors,” Electronics Letters,
vol. 47, no. 8, p. 483, 2011.

[37] W. Liu, X. Jin, X. Xi, J. Chen, M.-C. Jeng, Z. Liu, Y. Cheng, K. Chen,
M. Chan, K. Hui, J. Huang, R. Tu, P. K. Ko, and C. Hu, “BSIM3v3.3
MOSFET Model Users’ Manual,” tech. rep., 2005.

[38] C. D. Systems, “Virtuoso ® Simulator Measurement Description Lan-
guage User Guide and Reference,” 2011.

[39] C. D. Systems, “Virtuoso ® Spectre ® Circuit Simulator Reference,”
2004.

[40] V. Guiterrez and G. Leger, “Single Event Transient injection in large
mixed-signal circuits,” in Design of Circuits and Integrated Systems,
pp. 1–6, 2018.

[41] V. Guiterrez, A. Gines, and G. Leger, “AMS-RF test quality : Assessing
defect severity .,” in International Symposium on On-Line Testing and
Robust System Design, pp. 1–6, 2018.

BIBLIOGRAPHY 71

[42] O. Choksi and L. Carley, “Analysis of switched-capacitor common-mode
feedback circuit,” IEEE Transactions on Circuits and Systems II: Analog
and Digital Signal Processing, vol. 50, pp. 906–917, dec 2003.

[43] A. J. Gines, E. Peralias, G. Leger, A. Rueda, G. Renaud, M. J. Barragan,
and S. Mir, “Design trade-offs for on-chip driving of high-speed high-
performance ADCs in static BIST applications,” in 2016 IEEE 21st
International Mixed-Signal Testing Workshop (IMSTW), pp. 1–6, IEEE,
jul 2016.

[44] N. Liu, S. K. Chaganti, Z. Liu, D. Chen, and A. Majumdar, “Concurrent
Sampling with Local Digitization — An Alternative to Analog Test
Bus,” in 2018 IEEE International Symposium on Circuits and Systems
(ISCAS), pp. 1–5, IEEE, may 2018.

[45] H.-G. Stratigopoulos, S. Mir, E. Acar, and S. Ozev, “Defect filter for
alternate RF test,” in 2010 15th IEEE European Test Symposium, pp. 265–
270, IEEE, may 2010.

[46] A. Coyette, B. Esen, R. Vanhooren, W. Dobbelaere, and G. Gielen,
“Automatic generation of autonomous built-in observability structures for
analog circuits,” in 2015 20th IEEE European Test Symposium (ETS),
pp. 1–6, IEEE, may 2015.

[47] P. Variyam, S. Cherubal, and A. Chatterjee, “Prediction of analog
performance parameters using fast transient testing,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 21,
pp. 349–361, mar 2002.

[48] H.-G. Stratigopoulos and Y. Makris, “Nonlinear decision boundaries for
testing analog circuits,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 24, pp. 1760–1773, nov 2005.

[49] S. Sunter, “Part 1 : Analog Fault Simulation Challenges and Solutions,”
2016.

[50] A. A. Saltelli, Sensitivity analysis in practice : a guide to assessing
scientific models. Wiley, 2004.

	Introduction
	The goal: Test validation
	The issue: Reducing the computational cost
	Clarification on vocabulary
	State-of-the-Art
	Defect extraction
	Defect modeling
	Defect simulation

	The proposed Framework
	A complete picture of test quality
	Modified Defect Coverage
	Modified Fault Escape
	Severity

	Sequential defect simulation with early stopping

	Statistical evaluation of test metrics
	Likelihood random sampling
	Estimate of confidence intervals
	Checking confidence intervals

	Description of the developed tools
	Defect models
	Convergence error with Open-Gate defect

	Injection
	Simulation
	Collateral developments and applications
	Monte-Carlo analysis
	Single Event

	Cases of study
	First case of study: Resistive buffer
	Circuit description
	Test description
	Results discussion

	Second case of study: Source follower
	Circuit description
	Test description
	Results discussion

	Conclusions

