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Resumen

Esta tesis se enmarca en el ambito del analisis tedrico y numérico de Ecuaciones en Derivadas
Parciales, con aplicaciones a otras ciencias. Concretamente, aborda el estudio de algunos
problemas diferenciales de quimiotaxis de tipo repulsiva-productiva. Los primeros tres
capitulos estan dedicados al estudio de un modelo de quimiotaxis repulsiva con término
de produccion cuadratico, y los restantes dos capitulos se enfocan en modelos con términos
de produccién lineal y potencial (con potencia superlineal y subcuadrética).

En el Capitulo 1, se presentan dos esquemas numéricos discretos solamente en tiempo,
energéticamente estables, para un modelo de quimiotaxis repulsiva con término de pro-
duccion cuadratico, y se estudian algunas propiedades adicionales de estos esquemas tales
como la conservacion de la cantidad total de masa, positividad, resolubilidad, convergencia
hacia soluciones débiles y estimaciones de error.

En el Capitulo 2, se estudia un esquema numérico completamente discreto con elementos
finitos, energéticamente estable, asociado al modelo estudiado en el Capitulo 1, basado en la
introduccién de una variable auxiliar. Nuevamente, se estudian algunas propiedades como
resolubilidad, conservacion de masa, convergencia hacia soluciones débiles, estimaciones de
error, y estimaciones débiles y fuertes del esquema. Adicionalmente, como el esquema bajo
estudio es no lineal, se proponen dos métodos iterativos para aproximar las soluciones y se
prueba la resolubilidad y la convergencia de ambos esquemas hacia el esquema no lineal.

En el Capitulo 3, se estudia el comportamiento asintotico de las soluciones del modelo
estudiado en los Capitulos 1 and 2. En la primera parte, se analiza el comportamiento
en tiempo infinito de soluciones débiles del problema continuo y se prueba convergencia
exponencial hacia un estado constante. En la segunda parte, se estudia este mismo compor-
tamiento para dos esquemas numéricos completamente discretos asociados a este modelo.

Finalmente, los Capitulos 4 y 5 se centran en el estudio de modelos de quimiotaxis
repulsiva con términos de produccion lineal y potencial, respectivamente. Aqui, usando una
técnica de regularizacion, se proponen algunos esquemas numéricos completamente discretos
con elementos finitos, energéticamente estables, asociados a estos modelos, y se prueban
algunas propiedades adicionales tales como la resolubilidad, conservacién de la cantidad
total de masa, y positividad aproximada de las soluciones.
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Abstract

This PhD thesis falls within the scopes of Theoretical and Numerical analysis of Partial
Differential Equations, with applications to other sciences. Specifically, it addresses the study
of some differential problems of repulsive-productive chemotaxis. The first three chapters are
devoted to study a chemo-repulsion model with quadratic production, and other two chapters
are focused on models with linear and potential (with a superlinear and subquadratic power)
production.

In Chapter 1, we present two unconditionally mass-conservative and energy-stable time-
discrete numerical schemes for a chemo-repulsion model with quadratic production, and
study some additional properties of the schemes such as positivity, solvability, convergence
towards weak solutions and error estimates of these schemes.

In Chapter 2, we study an unconditionally mass-conservative and energy-stable fully
discrete FE scheme associated to the problem studied in Chapter 1, in which an auxiliary
variable is introduced. Again, we study some properties like solvability, convergence towards
weak solutions, error estimates, and weak, strong and more regular a priori estimates of the
scheme. Additionally, as the scheme is nonlinear, we propose two different linear iterative
methods to approach the solutions and we prove solvability and convergence of both methods
to the nonlinear scheme.

In Chapter 3, we focus on the study of the asymptotic behaviour of the solutions of the
model studied in Chapters 1 and 2. In the first part, we analyze the large-time behavior
of the global weak-strong solutions and we prove the exponential convergence to a constant
state as time goes to infinity; and in the second part, we study this same behaviour for two
fully discrete FE numerical schemes associated to this model.

Finally, in Chapters 4 and 5 we focus on the study of chemo-repulsion models with
linear and potential (superlinear and subquadratic) production, respectively. Here, by
using a regularization technique, we propose some unconditionally energy-stable and mass-
conservative fully discrete FE schemes associated to these models, and we prove some addi-
tional properties such as solvability and approximated positivity of the solutions.
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Introduction

Chemotaxis is a biological phenomenon which describes the oriented movement of living
organisms in response to a chemical stimulus. The chemotaxis is called attractive when the
organisms move towards regions with higher chemical concentration, while if the motion is
towards lower concentrations, the chemotaxis is called repulsive. At the same time, the pre-
sence of living organisms can produce or consume chemical substance. This process allows
the bacteria to find food, moving towards the highest concentration of food molecules, or
move away from poisonous substances. The typical example for chemotaxis is the amoebae
Dictyostelium, which is a species of soil-living amoeba belonging to the phylum Mycetozoa.
When they are moving towards the nutrients, they produce a chemical substance, cyclic
Adenosine Monophosphate, attracting other amoebae.

The main purpose of this thesis is the theoretical and numerical study of repulsive-
productive chemotaxis models, given by the following parabolic PDE’s system:

Ou—Au=V-(uVv) in, t>0, (1)
Ov—Av+v=f(u) inQ, t>0,

where Q@ C R", n = 2,3, is a bounded domain with boundary 02, and u(x,t) > 0 and
v(x,t) > 0 denote the cell density and the chemical concentration, respectively. Moreover,
f(u) > 0 is the production term. Model (1) possesses some properties among which we focus
on:

(i) The blow-up phenomenon is not expected to take place here.

(ii) Mass-conservation: This problem is conservative in u, because the total mass [, u(-,)
remains constant in time, that is,

%(/ﬂu(-,t)) =0, ie. /Qu(-,t):/QuO = myg, Vt>0. (2)

(iii) In some cases (for instance, when the production is given by a power of u, that is,
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f(u) = wuP), this problem satisfies an energy inequality in the form:

E(u(tr), v(tr)) = E(ulto), v(to)) + /t 1 D(u(s),v(s))ds <0, (3)

for a.e. tg,t; : t; > to > 0, where &(u,v) and D(u,v) denote, respectively, the free
energy and the physical dissipation terms of the problem. In particular, (3) implies
that this problem has a decreasing in time energy.

The motivation of this work was initially based on the study of Finite Element (FE)
numerical approximations of problem (1), with production term f(u) = wu, conserving at
the discrete level the main properties of the continuous model, such as mass-conservation,
energy-stability and positivity of the variables. Moreover, as part of the numerical analysis
to be developed, we set out the study of the well-posedness, convergence and error estimates
of the schemes, among others. However, we find that this is not an easy task, and the main
difficulty lies in how to approximate at the discrete level the energy inequality (3) for this
case, taking into account that, in the continuous problem, this energy inequality is obtained
by testing the u-equation by the nonlinear function F'(u) = Inu.

Once these difficulties have been pointed out, we decided to focus first in the study of
the problem (1) with quadratic production term, that is, f(u) = u?, mainly for the following
two reasons: (a) the energy inequality in the continuous problem is obtained by testing the
u-equation by u and the v-equation by —Aw, which it is not so difficult to reproduce for
fully discrete FE approximations; and (b) the quadratic production term allows to control
an energy in L*(2)-norm for w, which is very useful for performing numerical analysis. In
this part, we studied some mass-conservative and energy-stable (in the sense that a discrete
energy decreases in time) schemes associated to this problem, for which we also analyzed
well-posedness, positivity, convergence towards weak solutions, error estimates and conver-
gence at infinite time.

Later, with the experience obtained in the case of quadratic production, we focused in the
case of linear production, that is, f(u) = u. In this case, by using a regularization technique
used in previous works, we construct some unconditionally energy-stable fully discrete FE
approximations, for which we proved well-posedness and some additional properties such as
mass-conservation and approximated positivity of the variables (in the sense that the nega-
tive part of the variable tends to 0 as the regularization parameter tends to 0). However,
since we could not obtain uniform estimates independent of the discrete and regularization
parameters that allowed us to take limits on the discrete problem, the convergence towards
weak solutions was not proved.



Finally, in the last part of this work, we have studied the intermediate case, in which
f(u) = uP with p € (1,2). Here, we have adapted the ideas used in the case of linear pro-
duction, in order to obtain mass-conservative and energy-stable fully discrete FE schemes.

This PhD thesis is organized in five chapters, which we expect to correspond to five
different papers:

Chapter 1 focuses on the study of numerical approximations of model (1) in the case of
f(u) = u®. We present two unconditionally mass-conservative and energy-stable first order
time schemes: the (nonlinear) Backward Euler scheme and a linearized coupled version. We
analyze positivity, solvability, convergence towards weak solutions and error estimates of
these schemes. In particular, uniqueness of the nonlinear scheme is proved assuming small
time step with respect to a strong norm of the scheme. This hypothesis is simplified in 2D
domains where a global in time strong estimate is proved. Finally, some numerical simula-
tions are made in order to compare the behavior of the schemes.

Chapter 2 is devoted to study a fully discrete FE scheme associated to problem (1)
in the case of f(u) = u?. By following the ideas presented in Chapter 1, we introduce
o = Vv as an auxiliary variable, and then the corresponding FE backward Euler scheme is
unconditionally mass-conservative and energy-stable. For this nonlinear scheme, we study
some properties like solvability, convergence towards weak solutions, error estimates, and
weak, strong and more regular a priori estimates of the scheme. Additionally, we propose
two different linear iterative methods to approach the nonlinear scheme: an energy-stable
Picard’s method and the Newton’s method. We prove solvability and convergence of both
methods to the nonlinear scheme. Finally, we provide some numerical results in agreement
with our theoretical analysis about the error estimates.

Chapter 3 is focused on the study of the asymptotic behaviour of the problem (1) in
the case of f(u) = u? In the first part, we analyze the large-time behavior of the global
weak-strong solutions and we prove the exponential convergence to a constant state as time
goes to infinity. In the second part, we study this same behaviour for two fully discrete
numerical schemes associated to this model: the FE backward Euler associated to (1) (with
f(u) = u?) and the nonlinear scheme defined in Chapter 2. On the way, in order to analyze
the asymptotic behaviour for the backward Euler scheme, we prove its solvability and un-
conditional energy-stability. Finally, we compare the numerical schemes throughout several
numerical simulations.

Chapter 4 is devoted to study unconditionally energy-stable and mass-conservative
numerical schemes for problem (1) in the case of f(u) = w. By using a regularization



technique (in which, some regularized functions approximating F'(s) = u(Inu—1) and its first
and second derivatives are introduced), we propose three fully discrete FE approximations.
The first one is a nonlinear approximation in the variables (u, v); the second one is another
nonlinear approximation obtained introducing & = Vv as an auxiliary variable; and the third
one is a linear approximation constructed by mixing the regularization procedure with the
so called Energy Quadratization strategy, in which the energy of the system is transformed
into a quadratic form by introducing new auxiliary variables. In addition, we prove the
well-posedness of the numerical schemes. In fact, unconditional existence of solution, but
conditional uniqueness (for the nonlinear schemes) are proved. Finally, we compare the
behavior of the schemes throughout several numerical simulations.

At last, in Chapter 5 we focus on the study of problem (1) in the case of f(u) = u?,
with p € (1,2). In the first part, by using a regularization technique, we prove the existence
of solutions of the model. In the second part, we propose three fully discrete FE nonlinear
approximations, where the first one is defined in the variables (u,v), and the second and
third ones by introducing o = Vv as an auxiliary variable. We prove some unconditional
properties such as mass-conservation, energy-stability and solvability of the schemes. Finally,
we compare the behavior of the schemes throughout several numerical simulations.



Chapter 1

On a chemo-repulsion model with
quadratic production: The continuous
problem and time-discrete numerical
schemes

1.1 Introduction

Chemotaxis is understood as the biological process of the movement of living organisms in
response to a chemical stimulus which can be given towards a higher (attractive) or lower
(repulsive) concentration of a chemical substance. At the same time, the presence of living
organisms can produce or consume chemical substance. A repulsive-productive chemotaxis
model can be given by the following parabolic PDE’s system:

Ou—Au=V-(uVv) in, t>0, (1.1)
Ov—Av+v=f(u) inQ, t>0, '

where 0 C R", n = 2,3, is an open bounded domain with boundary 0). The unknowns
for this model are u(x,t) > 0, the cell density, and v(x,t) > 0, the chemical concentration.
Moreover, f(u) is a function which is nonnegative when w > 0. In this paper, we consider
the particular case in which the production term is quadratic, that is f(u) = u?, and then
we focus on the following initial-boundary problem:

Ou—Au=V-(uVv) inQ, t>0,

ov—Av+v=u? inQ, t>0,

%:@:0 on 092, t >0, (12)
On On

u(x,0) = ug(x) >0, v(x,0) =vo(x) >0 in .



The quadratic production term allows to control an energy in L?*(2)-norm for u (see (1.20)-
(1.21)), which is very useful for performing numerical analysis. Other production terms will
be studied in Chapters 4 and 5.

In the case of linear production term, in [2] the authors proved that model (1.1) with
f(u) = wu is well-posed in the following sense: there exist global in time weak solutions
(based on an energy inequality) and, for 2D domains, there exists a unique global in time
strong solution. However, as far as we know, there are not works studying problem (1.2)
with quadratic production. In addition, some papers on numerical analysis for chemotaxis
models with linear production are [3, 6, 10, 12, 15].

In order to develop our analysis, we reformulate (1.2) introducing the new variable o =
Vu. Then, we rewrite the model (1.2) as follows:

( Ou—V - (Vu) =V -(uo) inQ, t>0,
oo —V(V-0o)+rot(rot 0) + o =V(u?) inQ, t>0,
%y ondn, t>0, (1.3)

on
o-n=0, [rot o xnl,, =0 ondQ t>0,

( u(x,0) =up(x) >0, o(x,0) = Vu(x) in (2,

where (1.3), was obtained applying the gradient to equation (1.2); and adding the term
rot(rot o) using the fact that rot o = rot(Vv) = 0. Once solved (1.3), we can recover v

from u? solving
ov—Av+v=u? inQ, t>0,

@:O on 0f), t > 0, (1.4)
on

v(x,0) =vo(x) >0 in Q.

We will use the variable o in order to simplify the notation throughout the chapter.
Moreover, for fully discrete schemes by using the Finite Elements Method (which will be
analyzed in Chapter 2), it will be very convenient to use the variables (u, o) in order to
obtain an unconditionally energy-stable scheme.

This chapter is organized as follows: In Section 1.2, we give the notation and some pre-
liminary results that will be used along this paper. In Section 1.3, we analyze the continuous
problem (1.2), obtaining global in time weak regularity for both two and three dimensions,
and global in time strong regularity of the model assuming the regularity criteria (1.32),
which is satisfied in 2D domains. In Section 1.4, we analyze the Backward Euler scheme
corresponding to problem (1.3)-(1.4), including mass-conservation, unconditional energy-
stability, solvability, positivity and error estimates of the scheme. In particular, uniqueness
of solution of the scheme is proved under a hypothesis that relates the time step and a strong
norm of the scheme (the discrete version of (1.32)), which can be simplified in the case of 2D
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domains owing to the strong estimates already obtained for the scheme. Moreover, we prove
the existence of weak solutions of model (1.2) throughout the convergence of this scheme
when the time step goes to 0. In Section 1.5, we propose a linearized coupled scheme for
model (1.3)-(1.4), and again we analyze some properties of this linear scheme as in Section
1.4, comparing to the previous nonlinear scheme. Finally, in Section 1.6, we show some
numerical simulations using Finite Elements spatial approximations associated to both time
schemes, in order to verify numerically the theoretical results obtained in terms of positivity
and unconditional energy-stability.

1.2 Notations and preliminary results

We recall some functional spaces which will be used throughout this paper. We will consider
the usual Sobolev spaces H™(2) and Lebesgue spaces LF(Q2), 1 < p < oo, with the usual
notations for norms || - ||, and || - ||z», respectively. In particular, the L?(Q)-norm will be
represented by ||-||o. Corresponding Sobolev spaces of vector valued functions will be denoted
by H'(Q), L*(2), and so on; and we denote by H:(Q) := {o € H'(Q) : ¢ -n = 0 on 9Q}
and H}(Q) := {h € H'(Q) : |, h = 0}. From now on, we will use the following equivalent
norms in H'(Q) and H. (1), respectively (see [11] and [1, Corollary 3.5], respectively):

2
ull? = [Vall2 + ( / ) Ve HY(Q), (15)

lolli = lloll§ + llrot lI5 + |V - &[5, Vo € H(Q). (1.6)
In particular, (1.6) implies that, for all & = Vv € HL(Q),

Vo]l = [Vollg + | Avlls. (1.7)

If Z is a Banach space, then Z’ will denote its topological dual. Moreover, the letters C, K
will denote different positive constants always independent of the time step.

We define the linear elliptic operators

—Av+v=g in

Av=yg % =0 on 01, (1.8)
on

wnd V(V Q
—V(V- t (rot =f i
Bo=f & { (V-o)+rot (rtot )+ 0 =f inQ, 19

o-n=0, [rot o xnl, =0 ond.



The corresponding variational forms are given by A : H'(Q) — H'(Q) and B : HL(Q) —
HL(Q) such that
(Av,v) = (Vv, VD) + (v,0), Yo,0 € HY(Q),

(Bo,o)=(o,0)+ (V-0,V-0)+ (10t 0,10t &), Vo,o € H}I(Q)

We assume the H? and H?3-regularity of problem (1.8) (see for instance [4]). Consequently,
we assume the existence of some constants C' > 0 such that

lvllz < CllAvll Yo € H*(Q); v]ls < CllAvll Vo € H(Q). (1.10)

Then, if the right hand side of problem (1.9) is given by f = Vh with h € H'(2), then
taking o = Vo, we will prove the H?-regularity of problem (1.9) as follows:

Lemma 1.2.1 If f= Vh with h € H'(Q), then the solution o of problem (1.9) belongs to
H?(Q). Moreover,
lella < C VAo (1.11)

Proof. First, we assume that h € H!(Q), hence ||h]; < C||[Vh|lo. Then, from H3-
regularity of problem (1.8) taking g = h, we have that v € H3(Q2) with —Av + v = h and
|vlls < C||hlli < C||Vh|jo. Then, taking & = Vv, we have that o € H?*(2) solves (1 9)
and (1.11) holds. Finally, in the general case of h € H 1(9) we consider g = h — f

h)|

1
Q]

(1.8), deducing again that v € H*(Q) and |jv||z < C'||h— \QI Johllh <C|V(h— %f
C||Vh|o. Then, taking ¢ = Vv, we have that o € H?*(Q) solves (1.9) with f = ( —
ﬁ Joh) = Vh, and (1.11) holds. n

Along this paper, we will use repeatedly the classical interpolations inequalities
lullz2 < Cllullg*lulli? Yu e HY(Q) (in 2D domains), (1.12)

ul[zs < Clulld?|uli? Vu e HY(Q) (in 3D domains). (1.13)

Finally, in order to obtain uniform in time strong estimates for the continuous problem
and the numerical schemes, we will use the following results (see [14] and [13], respectively):

Lemma 1.2.2 (Uniform Gronwall Lemma) Let g = g(t), h = h(t), z = z(t) be three po-
sitive locally integrable functions defined in (0,400) with 2’ also locally integrable in (0, +00),
such that

2'(t) < g(t)z(t) + h(t) ae t>0.
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If for any r > 0 there exist a\(r), az(r) and as(r) such that

t+r t+4r t+r
/t g(s)ds < ay(r), /t h(s)ds < as(r), /1; z(s)ds < as(r), Vt>0

then,
as (7’)

r

z2(t+71) < <a2(r) + ) exp(ai(r)), Vt>0.

Lemma 1.2.3 (Uniform discrete Gronwall lemma) Let k > 0 and d", g",h"™ > 0 such

that
dn+1 —q"
— <g"d"+h", Yn>0. (1.14)
If for any r € N, there exist ai(t,), as(t,) and as(t,) depending on t,. = kr, such that
no+r—1 no+r—1 no+r—1
EDY gt <ait,), kY B <a(t,), kY d'<ast,), Yng>0,
n=ng n=ng n=no

then
as (tr)

t

d" < (ag(tr) + ) exp{ar(t,)}, Vn>r.

As consequence of Lemma 1.2.3 (with an estimate for d" for any n > r) and the classical
Discrete Gronwall Lemma (estimating d" for n = 0,...,7 — 1), we will prove the following
result:

Corollary 1.2.4 Assume hypothesis of Lemma 1.2.3. Let kg > 0 be fized, then the following
estimate holds for all k < ko
d" < O(d’ ko) Vn >0. (1.15)

Proof. We fix T' = 2ky and choose rg € N such that k(ro — 1) < T < kry := t,,. Then,
from Lemma 1.2.3 we have

dar S (CLQ(tm) +

) exp{ai(t,)}

< <a2(tm) + %) exp{ai(t,,)} := Ci(ko), ¥Yn > . (1.16)

On the other hand, applying the Discrete Gronwall Lemma to (1.14), one has
d" S (ag(tro) + do) exp {al(tm)} = Cg(do, ]i]o), Vn < To- (117)
Therefore, from (1.16)-(1.17) we deduce (1.15). 1



1.3 Analysis of the continuous model

In this section, we analyze the weak and strong regularity of problem (1.2). With this aim,
we will start giving the following definition of weak-strong solutions for problem (1.2).

Definition 1.3.1 (Weak-strong solutions of (1.2)) Given (ug,vo) € L*(2) x HY(Q) with
uy >0, vg >0 a.e. ® € Q, a pair (u,v) is called weak-strong solution of problem (1.2) in
(0,+00), ifu>0,v >0 ae (t,x) € (0,+00) x Q,
(u,v) € L*®(0,+o0; L*(Q) x H(Q)) N L*(0,T; H'(2) x H*(Q)), VT >0,
(Oyu, Op) € LY(0,T; HY(Q) x L*(Q)), VT >0,
where ¢ = 2 in the 2-dimensional case (2D) and ¢' = 4/3 in the 3-dimensional case (3D)

(¢ is the conjugate exponent of ¢ = 2 in 2D and q = 4 in 3D); the following variational
formulation holds

T T T
/ (Oyu, ) +/ (Vu, Va) ~|—/ (uVv,Va) =0, VYaec LY0,T;H'(Q)), VT >0, (1.18)
0 0 0

the following equation holds pointwisely
o+ Av=u* a.e. (t,z) € (0,+o0) x Q, (1.19)

the initial conditions (1.2)4 are satisfied and the following energy inequality (in integral ver-
sion) holds for a.e. to,t1 with t; >ty > 0:

E(u(ty),v(t1)) — E(ulto), v(ty)) + /t 1 (HVU(S)H% + %HVU(S)H%) ds <0, (1.20)
where ] o1 )
€(u, v) = Sllully + Vel (1.21)

1
Remark 1.3.2 In 2D domains, we can take uw = w in (1.18), test (1.19) by —§Av, integra-

ting by parts and using (1.7), we arrive at the following equality energy law (in differential
version):

%S(u(t),v(t)) +IVe@2 + %uvv(t)”% —0 aet>0. (1.22)

Moreover, this equality is also true in 3D domains for regular enough solutions.

10



Moreover, we also give the definition of weak solutions for the reformulated problem (1.3):

Definition 1.3.3 (Weak solutions of (1.3)) Given (ug,0¢) € L*(Q2) x L*() with ug > 0
a.e. x € §, a pair (u,o) is called weak solution of problem (1.3) in (0,4o00), if u > 0
a.e. (t,x) € (0,+00) x Q,

(u,0) € L=(0, +o00; L2(Q) x L*(Q)) N L*(0,T; H'(Q) x H'(Q)), VYT >0,
(O, 0yo) € LY (0, T; HY(Q) x H*(Q)), VT >0,

where q is as in Definition 1.5.1; the following variational formulations hold

T T T
/<8tu,a>+/ (W,Vu)+/ (uo,Vu) =0, Yae€ LY0,T; H' (), VT >0, (1.23)
0 0 0

/0T<at0',5'> + /OT(BO',6'> = Q/OT(uVu,é'), Vo € LU0, T; H' (), VT >0, (1.24)

the initial conditions (1.3)5 are satisfied and the following energy inequality (in integral ver-
sion) holds for a.e. to, 11 with t; >ty > 0:

E(u(tr),o(t1)) — E(ulto), o(to)) + /t 1(HW(S)H% + %IIU(S)H?) ds <0, (1.25)
where ] L1 )
&(u, o) = 5l + Zllo (1.26)

Lemma 1.3.4 If oy = Vg, problems (1.2) and (1.3)-(1.4) are equivalents in the following
sense: If (u,v) is a weak-strong solution of (1.2) then (u, o) with o = Vv is a weak solution of
(1.3); and reciprocally, if (u, o) is a weak solution of (1.3) and v = v(u?) is the unique strong
solution of problem (1.4) (i.e. v € LP(0,T; W?2P(Q)) N L>(0,T; WHP(Q)) N L7 (0, T; H*(R))
since u? € LP(0,T; LP(Q)) N LY (0,T; L*(Q)) for p=15/3 in 3D, p = 2 in 2D and ¢ is as in
Definition 1.3.1, see [5, Theorem 10.22]), then o = Vv and (u,v) is a weak-strong solution
of (1.2).

Proof. Suppose that (u,v) is a weak-strong solution of (1.2), then testing (1.19) by
—V -w, for any W € LI(0,T; H'(Q)), and taking into account that rot(Vv) = 0, we obtain

/T<ath,W> + /T(BVU,W> = Q/T(UVU,W), Vw e L0, T; H'(Q)). (1.27)
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Then, defining o = Vv and assuming the hypothesis oy = Vug, from (1.27) we conclude
that (u, o) is a weak solution of (1.3). By other hand, if (u, o) is a weak solution of (1.3) and
v = v(u?) is the unique strong solution of problem (1.4), reasoning as above, we conclude
that Vo satisfies (1.27). Therefore, from (1.24) and (1.27), we obtain

/OT(@(O' —Vu), o) + /0T<B(0' —VWv),T) =0, Vo L0, T; H'(Q)). (1.28)

Then, since & — Vo € L>(0,T; L*(Q)), taking & = B~ (o — Vv) € L>(0,T; W**(Q)) —
L9(0,T; H'(Q)) in (1.28), we deduce

187 (1) = VD) + [ o= Vol = 5157 (0) = Vo) o0

where, in the last equality, the relation o (0) = Vv(0) was used, and therefore we deduce
o = V. Thus, (u,v) is a weak-strong solution of (1.2). &

Remark 1.3.5 Since vy > 0 in ), then the unique strong solution v = v(u?®) of problem
(1.4) satisfies v > 0 in (0,400) x Q.

Later, in Section 1.4 we will prove the existence of solutions of a discrete in time scheme
that approximates problem (1.3)-(1.4) and we will obtain uniform estimates of the discrete
solutions, which will allow us to pass to the limit in the discrete problem in order to obtain
the existence of weak solutions of problem (1.3) (in the sense of Definition 1.3.3) and strong
solution of (1.4). Finally, taking into account Lemma 1.3.4, the existence of weak-strong
solutions of problem (1.2) (in the sense of Definition 1.3.1) will be obtained.

Observe that any weak-strong solution of (1.2) (or weak solution of (1.3)) is conservative
in u, because the total mass [ wu(t) remains constant in time, as we can check taking u = 1

Q
in (1.18),

%(/Qu):[), . /Qu(t):/Quo, Vi > 0.

Moreover, integrating (1.2)s (or (1.4);) in Q we deduce the following behavior of [, v,

%(/Qv):/ﬂzf—/gv. (1.29)

12



1.3.1 Weak-Strong Regularity
Observe that from the energy law (1.20), and using (1.7), we deduce

{ (u, Vv) € L(0,+o0; L*(Q2) x L*(Q)), (1.30)

(Vu, Vo) € L*(0, +00; L*(Q) x H'(Q)).

From (1.30), we have
u € L*(0,T; H'(Q)), VT > 0.

From (1.29), we observe that the function y(t) = /U(il‘:,t) dx = ||v(t)||z1 (where Remark
Q

1.3.5 has been taken into account) satisfies y/'(¢) + y(t) = 2(¢), with z(¢) = / u(zx,t)? de =
Q

t
|u(t)||%2. Therefore, y(t) = y(0) e~ +/ e~ =) 2(s) ds, and using (1.30)1,
0

t
lo@®)llzr < e llvollze +/ ™ u(s) 1§ ds < llvollz + ullZo o socizz)y V>0 (1.31)
0

Then, from (1.31) we conclude that v € L*(0,+o0; L'(€)) which, together with (1.30),
implies that
v € L®(0, +o00; H(Q)) N L*(0,T; H*(Y)), VT > 0.

Remark 1.3.6 In 2D domains, by using the interpolation inequality (1.12) (proceeding for
instance as for the Navier-Stokes equations [8]), one can deduce the uniqueness of weak-
strong solutions of (1.2).

1.3.2 A regularity criterium implying global in time strong regu-
larity

We are going to obtain strong regularity in a formal manner, assuming a regular enough
solution. In fact, a rigorous proof could be made via a regularization argument or a Galerkin
approximation, using the eigenfunctions of the operator A.

We will assume the following regularity criterium:
(u, Vv) € L>®(0, +oo; H(Q) x H'(Q)). (1.32)
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Later, at the end of this Subsection, we will show that (1.32) holds, at least, in 2D domains.

1
First, we make (V(1.2);, Vu) + 5(A(1.2)2, Av), integrating by parts, using the Holder
and Young inequalities and the 3D interpolation inequality (1.13), one has

1d 1 1 1
2t (HWH% + 5||Av||%) + [l aully + S 1 A] + S IV (A0

= (@@-(u@jv), alU) + (al(u@u), 63‘6]‘@) = (ai(é?juﬁjv), @u) + (81’&87,’&, 8]'8]'1))
— (Oudrds, D) + %(@-u@iu, 0,0,0) = (V- V)(V0). Vu) + % (1Vuf?, a0)

< C)|Vull s | Vull s [V20llo < C [ Vully [ Vull Vol < el Vull} + C. ||VU||(2)||VU|(|‘11- |
1.33
Therefore, if we add (1.22) and (1.33), use (1.7) and take € small enough, we have

d 1
pr (IIUH? + §HWH?> +HIVullf + IVoll; < ClIVullg [ Volly (1.34)

Then, integrating in time (1.34), since ||[Vul]2||Vv||{ € L'(0,+o0) (owing to (1.30) and
(1.32)), we deduce

{ (Y, Vo) € 120, +o0; H' () x H(@). (139

(u,v) € L*0,T; H*(Q) x H3(Q)), VT > 0.

On the other hand, making (A(1.2);, Au) and using the Holder and Young inequalities,
we have

d
A} + [V (Au)[§ < IV(V - (V0))3 (1.36)

< C (lulli=IV(A0)IF + V2ul§IVollie + IVl V20l7)
Therefore, summing (1.34) to (1.36) and using (1.7), we have

d 1
pr (Hqu + EHVUH?) +IVul3 + [IVoll; < CIVol3 Jull + CIVullg [Vell; (1.37)
and thus, since |[Vv||3 € L'(0,+00) (owing to (1.35)) and ||Vul|j2||Vv|i € L'(0,+00),
Lemma 1.2.2 implies

u € L>(0,+o00; H*(Q2)). (1.38)
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Moreover, integrating in time (1.37), and using ||Vv||3 ||u|? € L*(0, +o0) (owing to (1.35)
and (1.38)), we deduce

Vu € L*(0, +o00; H*()), hence u e L*(0,T; H*(Q)), VT > 0.
In particular, from (1.32) and (1.38), we deduce
(u,v) € L=(0, +00; L=(£2) x L*>()).

Therefore, one has that any global in time weak-strong solution satisfying (1.32) does not
blow-up, neither at finite time nor infinite one. Finally, from equation (1.2); and taking into
account (1.32) and (1.35), we deduce

O € L*(0, +00; L*(Q)). (1.39)

Moreover, taking the time derivative of (1.2), and testing by d;v, we obtain

1d
5 7 1016 + 10w[ly = 2(u Oy, yv) < 2lfuuf s [ Deuelo | Orv]| s
< el| 00|} + Cellullfl|0ul§ € L1(0, +00),

hence we arrive at
O € L=(0, 4+o00; L*(Q)) N L*(0, +o00; H'(Q)). (1.40)

1.3.3 Higher global in time regularity
Denote by u = dyu and v = dyv. Then, from (1.2) we deduce that (u,v) satisfies

{ o — Au — V- (uVv) — V - (uVD) = 0, (L.41)

00 — AU + v = 2u.
_ I -
Testing by u in (1.41); and —éAv in (1.41),, taking into account that /u = 0 and

Q
using the 3D interpolation inequality (1.13), we deduce

1d
2dt
= @V, Vi) + @V, V) < [@lls (IVell sVl + V7] [ Vo

~ 1, - 1,
(118 + 519513 + I + Sl

1 Lo _ _
< 5(HUH? + §HWIIf) + ClIVollillals + Clvulglialls. (1.42)
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Therefore, since || Vol|{ and ||[Vul|§ € L*(0, +00) (owing to (1.30)2 and (1.32)), Lemma 1.2.2
and (1.40) imply
(Opu, Opv) € L=(0,4+00; L*(Q) x H'(Q)). (1.43)

Moreover, integrating in time (1.42) and using (1.40) and (1.43), we deduce
(Oyu, Ov) € L*(0, +oo; HY(Q) x H*(Q)). (1.44)

Finally, applying time derivative to equations (1.2); and (1.2),, and taking into account
(1.32)-(1.35), (1.38) and (1.43)-(1.44), we can deduce the following regularity for d;u and
Oy v:

(D, Dv) € L0, +00; H(Q) x LX) (1.45)

By following with a bootstrap argument, it is possible to obtain more regularity for (u, v).
However, the regularity obtained so far is sufficient to guarantee the hypothesis required later
to prove error estimates (see Theorem 1.4.21 and Theorem 1.5.6).

1.3.4 Proof of (1.32) in 2D domains

1
In order to prove (1.32) in 2D domains, we make (V(1.2);, Vu)+ §(A(1.2)2, Av), integrating

by parts, and arguing as in (1.33), but in this case using the 2D interpolation inequality
(1.12), one has

1d

1 1 1
st 21 A2 ) + | AulZ + <[ Vo]2 + =V (A2
5 (||VUI|0+2|| vllo)+l| ullo + 51IVollo + 5[V (Av)llo

(1.46)
< ClIVul[allV2vllo < ClIVullo[[Vull1[Volls < el Vull + Ce [[Vul[§ Vol -

Therefore, if we add (1.22) and (1.46), use (1.7) and take £ small enough, we have
d g, 1 2 2 2 2 2
o Ul + IVl )+ [Vully + [Vellz < G Vullg [Voll;

and thus, since [|[Vul|3 € L'(0, +0c), Lemma 1.2.2 implies (1.32).

1.4 Euler time discretization

In this section, we study the Euler time discretization for the problem (1.3)-(1.4), and we
analyze the unconditional stability (in weak norms, see Definition 1.4.5 below) and solvability
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of the scheme, as well as its convergence towards weak solutions. We also study some
additional properties as positivity of the cell and chemical variables, mass-conservation of
cells, and error estimates. Additionally, we prove uniqueness of solution of the scheme under
a hypothesis that relates the time step and strong norms of the scheme, which is simplified
in the case of 2D domains owing to a strong estimate obtained for the scheme (the discrete
version of (1.32)).

Let us consider a fixed partition of the time interval [0, +00) given by ¢, = nk, where
k > 0 denotes the time step (that we take constant for simplicity). First, taking into account
the (u,v)-problem (1.2), we consider the following first order, nonlinear and coupled scheme
(Backward Euler):

o Scheme UV
Initialization: We fix uy = u(0) and vy = v(0).

Time step n: Given (u,_1,v,_1) € H(Q) x H*(Q) with u,_; > 0 and v,_; > 0,
compute (u,,v,) € H(Q) x H?(Q) with u,, > 0 and v, > 0 and solving

(6¢tp, @) + (Vun, Vi) + (u,Vo,, Vi) =0, Yu e H'(Q), (1.47)
Spvn + Av, —u2 =0, ae x € Q, '
where, in general, we denote d;a,, = %

On the other hand, we can consider the following Backward Euler scheme related to
the reformulation in the (u,o)-problem (1.3). Then, one also has the following first order,
nonlinear and coupled scheme:

o Scheme US:
Initialization: We fix vy = v(0) and (uo, 09) = (u(0),o(0)), with ¢ = Vuy.

Time step n: Given (u, 1,0, 1) € HY(Q) x HL(Q) with u, ; > 0, compute
(Un, 0n) € HY(Q) x H(Q) with u,, > 0 and solving

{ (8, @) + (Y, V) + (u,0,, Vi) =0, Vae H'(Q), (148

(6,0,,6) + (Bo,,6) — 2(u,Vu,, &) =0, VYo e H-(Q).

Once the Scheme US is solved , given v, ; € H 2(Q) with v,_1 > 0, we can recover
Vp = v, (u2) € H2(Q) (with v, > 0) solving:

510 + Av, = u2, ae. x € Q. (1.49)
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Remark 1.4.1 (Positivity and regularity of v,) It is not difficult to prove that, given
u, € HY(Q) and v,_, € H?*(Q), there exists a unique v, € H*(Q) solution of (1.49). Even
more, using the H>-reqularity of problem (1.8), we can prove that v, € H>(Q). Moreover,
if vp_1 > 0 then v, > 0. Indeed, testing by (v,)- = min{v,,0} < 0 in (1.49), and taking
into account that (v,)_ =0 if (v,) >0, as well as (v,)— € HY(Q) with V((v,)_) = V(v,) if
(vn) <0, and V((v,)-) =0 if (v,) > 0, we obtain

FIE 1= 7 [ oo+ 19+ 1wl = [ i) <0 (150)

Then, as v,—1 >0, from (1.50) we conclude ||(v,)_||? < 0, which implies that (v,)- =0 a.e.
x € ), and thus, v, > 0 in Q.

Lemma 1.4.2 If o, 1 = Vv,_1, the schemes UV and US are equivalents in the following
sense: If (un,v,) is a solution of scheme UV then (u,,o,) with o, = Vv, solves scheme

US; and reciprocally, if (u,,o,) is a solution of the scheme US and v, = v,(u?) is the

unique solution of (1.49), then o, = Vuv,, and therefore (u,,v,) is a solution of the scheme
Uv.

Proof. Suppose that (u,,v,) is a solution of the scheme UV, then testing (1.47)y by
—V - w, for any w € H.(Q), and taking into account that rot(Vu,) = 0, we obtain

(6:Vv,, W) + (BVv,, W) = 2(u,Vu,, w), YW HL(Q). (1.51)

Then, defining o, = Vv, and assuming the hypothesis o, 1 = Vuv,_1, from (1.51) we
conclude that (u,,o,) is solution of the scheme US. On the other hand, if (u,,o,) is a
solution of the scheme US and v, satisfies (1.49), reasoning as above, we conclude that Vv,
satisfies (1.51). Therefore, from (1.48), and (1.51), we obtain

(6i(on — Vvy,),0) + (B(o,, — Vv,),6) =0, Vo e HL(Q). (1.52)

1 1
Then, taking & = o, — Vv, in (1.52) and using the formula a(a —b) = §(a2 —b*)+ é(a —b)%

we deduce
1 k
5. (3l = Funll) + 518 = Ten)lB + o = T2 =0,

which implies that o, = Vv, using that o,_1 = Vuv,_1. Thus, we conclude that (u,,v,) is
solution of the scheme UV.
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Although, as it was said at the beginning, both time schemes UV and US are equiva-
lent, we will study the scheme US with the variable o, in order to facilitate the notation
throughout the paper. Moreover, both schemes furnish different fully discrete schemes con-
sidering for instance the spatial approximation by Finite Elements, which will be analyzed
in Chapter 2. In fact, it will be necessary to use the variable o, in order to obtain a fully
discrete unconditional energy-stable scheme.

1.4.1 Solvability, Energy-Stability and Convergence

Taking u = 1 in (1.48); we see that the scheme US is conservative, that is:

L= [wa== [ (1.53)

Moreover, integrating (1.49) in €, we deduce the following discrete in time equation for

St (/Qvn) +/Qvn:/Qui. (1.54)

Theorem 1.4.3 (Unconditional existence and conditional uniqueness) There exists
(tn, 0,) € HY(Q) x HL(Q) solution of the scheme US, such that u, > 0. Moreover, if

Un'

E|l(un, o0)|l7 s small enough (1.55)
then the solution of the scheme US is unique.

Proof. Let (un_1,0,-1) € H'(Q) x H:(Q) be given, with u,_; > 0. The proof is divided
into two parts.

Part 1: In order to prove the existence of (u,,o,) € H*(Q) x HL(Q) solution of the
scheme US, such that u, > 0, we consider the following auxiliary problem:

(1.56)

(8¢t @) + (Vun, Vi) + ((u,)10,, V) =0, Yu e H(Q),
(6:0,0) + (Bo,,d) — 2(u,Vu,,ad) =0, Vo c H:(Q),

where (u,)+ = max{u,,0}. In fact, it is the same scheme US but changing u,, by (u,); in
the chemotaxis term.
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A. Positivity of u,: First, we will see that if (u,, o) is a solution of (1.56), then u,, > 0.
Testing by @ = (u,)- = min{u,,0} <0 in (1.56), and using that ((u,)+0,, V((u,)-)) =0,

we obtain
1 1

P13 = £ [ tncatn)+ 19 ) I =0

Then, using the fact that u, ; > 0, one has that ||(u,)_||? < 0, and thus (u,)_ = 0 a.e.
x € ). Therefore, u, > 0 in €.

B. Existence of solution of (1.56): It can be proven by using the Leray-Schauder
fixed-point theorem. (See Appendix A).

Then, from parts A and B, we conclude that there exists (u,, o) solution of (1.56) with
u, > 0. In particular, taking into account that u,, = (u,)y, we conclude that (u,, o) is also
a solution of the scheme US, with wu,, > 0.

Part 2: In order to prove the uniqueness of solution (u,,, o) of the scheme US, we suppose
that there exist (ul, al), (u2,02) € H'(Q) x H.(Q) two possible solutions of (1.48). Then,
defining u,, = v} —u? and o, = o} — a2, we have that (u,,,) € H(Q) x HL(Q) satisfies

n’

%mn, ) + (Vitn, V1) + (o, V1) + (uno?, Vit) = 0, Va € H'(), (157)
%(a’n, &)+ (Bow, &) — 2u- Vi, &) — 2w, Vi, &) = 0, Vo € HA(Q).  (158)

1
Taking @ = u,, 6 = 300 in (1.57)-(1.58) and adding the resulting expressions, the terms

(ulo,, Vu,) cancel, and using the fact that / u, = 0, we obtain
Q

1

1
o i, @)+ S s )

< lunllzsllonllzsIVallo + [lunllzs [ Vg ollowall o

1/2 3/2 1/2 1/2
< Cllunlllo? ]l s lunlly + Cllanllg lunlly 211V 62 o]l
1
< (s o) ? + Cllunl2ll2 (1 + Cllunl 2V,

which implies that

1 k
(s o) 5+ 71, )t < Ck ([ Vugllo + llonllt) [l o)ll5.

Therefore, since k (||Vu2||§ + ||o2]]1) is small enough (from hypothesis (1.55)), we conclude

that ||(un, o,)|l1 = 0, thus u} = u? and o) = o2. ¥
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Remark 1.4.4 In the case of 2D domains, using estimate (1.75) (see Theorem 1.4.20 be-
low), the uniqueness restriction (1.55) can be relaxed to k K& small enough, where Ky is the
constant appearing in (1.75) which depends on data (€, ug, o), but is independent of n.

Definition 1.4.5 A numerical scheme with solution (u,,o,) is called energy-stable with
respect to the energy E(u, o) given in (1.26) if this energy is time decreasing, that is

E(Uup,00) < E(Up_1,0,-1), Vn. (1.59)

In the next Lemma, we obtain unconditional energy-stability for the scheme US.

Lemma 1.4.6 (Unconditional stability) The scheme US is unconditionally energy-stable
with respect to E(u, o). In fact, for any (u,,o,) solution of scheme US, the following dis-
crete energy law holds

1

Sl =0 (1.60)
Proof. Taking @ = u,, in (1.48); and & = %O'n in (1.48), and adding the resulting expre-

ssions, the chemotaxis and production terms cancel, obtaining (1.60). &

k k
04 (tun, &) +55 10t + 1010l + [[VunI§ +

Remark 1.4.7 Comparing the energy law (1.22) of the continuous problem, and the discrete
version (1.60), we can say that the scheme US introduces the following two first order
“numerical dissipation terms”:

k

k
5”515“71”(2) and ZH(StUnH?)

From the (local in time) discrete energy law (1.60), we deduce the following global in
time estimates for any (u,, o) solution of the scheme US:

Theorem 1.4.8 (Uniform Weak estimates) Let (u,,0,) be a solution of the scheme
US. Then, the following estimates hold

(s @) 15+ K21 Bettn, 80§ + kD I[(Vttns o) [F2pr < Coo Vn2 1, (161)

m=1 m=1
no+n
EY D (um, om)lf < Co+ Ci(nk), Yn>1, (1.62)
m=ngo+1

where ng > 0 is any integer and Cy, Cy are positive constants depending on the data (ug, o)
and (2, ug) respectively, but independent of ng, k and n.
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Proof. Observe that from the discrete energy law (1.60), we have

1 1
(s )5 + ZH Ortim, 0,07m ) |[5 + ZH Vi, )12 < 5ll(w0, 00) 5,

which implies (1.61). Moreover, starting again from (1.60), but now summing for m from
no + 1 to n + ng, using (1.61) and the Poincaré inequality for the zero-mean value function

1 1
U — Mg, Where myg |Q|/Qu0 ‘Q‘/Qum, we have
no+n

B3 [ —mo, o)l < Co.

m=ng+1

and thus, we deduce (1.62).

Remark 1.4.9 The proofs of solvability (without positivity) and unconditional energy-stability
of the scheme US (see Theorems 1.4.3 and 1.4.8, and Lemma 1.4.6) can be followed al-
most line by line if we consider a fully discrete scheme corresponding to a Finite Element
approzimation of US, that is, if we take any finite-dimensional subspaces U, C H'(Q2) and
X, C HL(Q) instead of H'(Q) and H () respectively.

Corollary 1.4.10 (Estimates for v,) If v, = v,(u2) is the solution of (1.49), it holds
||U77«HL1 S K07 vn Z 07 (163)

where Ky > 0 depends on the data (ug, 00, v9), but independent of k and n. Moreover, the
following estimates hold

no+n
lvall} < Ko, and k> vl < Ko+ Ki(nk), Vn>1, (1.64)

m=ng+1

with K1 > 0 depending on the data ug, oo, vo, 2, but independent of ng, k and n.
Proof. From (1.54) and (1.61) we have
(L4 E)villzr = il = kllwllg < kCo. (1.65)

Then, multiplying (1.65) by (1 + k)*~! and summing for i = 1, - - -, n, we obtain

n—1

(L4 &) [[vnll e < [Jvollze + K CoY (1 + k)’

1=0
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and taking into account that

(1+ k)",

| =

Zl+k _%:%((1%)"—15

we conclude
vnllzr < (T + k) [lvollr + Co < [Jvollzr + Co,

which implies (1.63). Finally, taking into account the relation o, = Vo, from (1.61)-(1.63),
we can deduce (1.64). 1

Starting from the previous stability estimates, following the ideas of [9] we can prove the
convergence towards weak solutions. For this, let us to introduce the functions:

e (uy, o)) are continuous functions on [0,+00), linear on each interval (¢, 1,t,) and
equal to (un,o,) at t =t,, n > 0;

e (uj,o7},) as the piecewise constant functions taking values (u,,0,) on (t,-1,t,], n > 1.
Theorem 1.4.11 (Convergence) There exists a subsequence (k') of (k), with k' | 0, and a
weak solution (u, o) of (1.3) in (0,400), such that (uy, o) and (u},,ol,) converge to (u, o)
weakly-x in L>®(0, +o00; L*(Q) x L*(Q)), weakly in L*(0,T; H' () x H'(Q)) and strongly in
L2(0,T; L*(Q) x L*(Q)), for any T > 0.

Proof. Observe that (1.48) can be rewritten as:

<duk(t) ) (Vi (1), Vi) + (. (D)o (), Vi) = 0, Vi =a(t), forte [0,+00)\ {ta},

dt
<%&k(t), &) 4 (Bol(t), &) — 2 ()Vul(t), &) = 0, V& =&(t), forte [0, +00)\ {t.).
(1.66)

where u(t)|;, = @, € HY(Q) and &(t)|;, = &, € HL(Q), with I,, := [t,_1,t,]. From
Theorem 1.4.8 we have that (uy, ) and (u}, o}) are bounded in L>(0, +o00; L(Q)x L*(2))N
L2(0,T; HY(Q) x H'(2)). Moreover, using (1.61), it is not difficult to prove that w, — u},
and o — o, converge to 0 in L?(0,T; L*(2)) as k — 0, for any T > 0. More precisely, we
have ||ty — uf, o — o4 || 201220 < (Cok/3)Y/2. Therefore, there exists a subsequence (k')
of (k) and limit functions u and o verifying the following convergence as k' — 0:

L>(0, +o0; L2(Q) x L*(Q))-weak*

ﬂ/,a'/ — u, UTHUT/ —u in
(Urr, o) (ups, o) { L2(0,T; H'(Q) x H'(Q))-weak.
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Moreover, we can deduce 4 (i, o) is bounded in LY3(0,T; H'(Q)' x H'(Q)'). There-
fore, a compactness result of Aubin-Lions type implies that the sequence is compact in
L%(0,T; L*(Q) x L*(R)). This implies the strong convergence of both subsequences (1, o)
and (uj, %) in L2(0,T; L*(Q) x L*(Q)); and passing to the limit in (1.66), we obtain that
(u, o) satisfies (1.23)-(1.24).

Now, in order to obtain that (u, o) satisfies energy inequality (1.25), we test (1.66); by
u = uj(t) and (1.66); by & = $07.(t), and taking into account that x|z, = u, + 27 (un—y —
uy,) (and o is defined in the same way), we obtain

d (1, _ 1, ) 1,
& (G005 + 13O18) + (b0 — 0 Gt i + VO + 1O =
for any t € (t,,_1,t,), which implies that
d. ) 1,
7 S(Uk(t), k(1)) + IV, ()5 + §||0k(t)||f <0, fortel0,+00)\ {tn}. (1.67)

Then, integrating (1.67) in time from t, to t1, with o, ¢; € [0, +00), and taking into account
that

dt

since &(uy(t), ok (t)) is continuous in time, we deduce

/t e (), 5u()) = E(T(), Fa(t1)) — E(TTa(te), F(to) Who < 1

&(@(12). (1)) = Eulto). u(t)) + | (IVUROF+5 o)t 0. Vto < 1. (1.69)

Finally, we will prove that
E(up (1), a1 (t) — E(u(t),o(t)), ae. tel0,+o0). (1.69)

Indeed, for any T > 0,

1€ (1), o1 (1)) — E(u(t), o ()| Lr0,7) :/0 €@ (2), o1 (1)) — E(u(t), o (t))|dt

T
1., 1, -
= / 5 ([law ()15 = Nlu@)5) + 2 ([low @5 = lle@))F)| dt
0
1. -
< §||uk' — ull2(0,102) (Ul 220,73 22) + vl L20,7:22))
1. -
+1H0k/ — | z2022) (|or ] 220,7:02) + |0 [l 220,7:22)) (1.70)

and taking into account that (g, o) — (u, o) strongly in L2(0,T; L*(Q2)) for any T > 0,

from (1.70) we conclude that & (U (t), o (t)) — E(u(t),o(t)) strongly in L'(0,T) for all
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T > 0, which implies (1.69). Then, taking into account that (u},,o},) — (u, o) weakly in
L2(0,T; HY () x H'(Q)), we deduce

TP P 1, h 1
hgggf/ (HVuk/(t)HﬁJrQllak/(t)lﬁ)dtZ/ (||VU(t)||3+5!\0(t)||?)dt Vi =t =0
to

to
and, owing to (1.69),
lip inf €@ (1), G (1)) — &b (to), T (t)) ]| = E(ultr), (1)) = E(ulto), (1),
for a.e. 1, : t1 > to > 0. Thus, taking liminf as " — 0 in the inequality (1.68), we deduce
the energy inequality (1.25) for a.e. to,t1 : 63 >t9 > 0. 1

Analogously, if we introduce the functions:

e 7, are continuous functions on [0, 4+00), linear on each interval (¢,_1,t,) and equal to
Up, at t =1,, n > 0;

e v} as the piecewise constant functions taking values v, on (t,—1,t,], n > 1,

the following result can be proved:

Lemma 1.4.12 There exists a subsequence (k') of (k), with k' | 0, and a strong solution
v of (1.4) in (0,+00), such that vy and v}, converge to v weakly-x in L>(0,+oo; H (1)),
weakly in L*(0,T; H*(Q)) and strongly in L*(0,T; H'(Q)) N C([0,T]; L*(Q2)), for 1 < p < 6
and any T > 0.

Proof. Observe that (1.49) can be rewritten as:

%%(t) + Avp(t) = (uj(t))?, fort € [0,+00) \ {t,}, (1.71)

From estimate (1.64) we have that 0 and v} are bounded in L>(0, +o00; H'(Q))NL*(0,T; H*()).
Moreover, it is not difficult to prove that vy — v} converge to 0 in L*(0,T; H*(Q2)) as k — 0,
for any T > 0. Therefore, there exists a subsequence (k') of (k) and a limit function v
verifying the following convergence as k' — 0:

L>(0, +00; H'(Q))-weak*
L*(0,T; H*(Q2))-weak.

Moreover, we can deduce that %'ﬁk/ is bounded in L*/3(0,T; L?(Q2)). Therefore, a compact-
ness result of Aubin-Lions type implies that the sequence is compact in L%(0,T; H*(2)) N
C([0,T]; LP(R2)), for 1 < p < 6. This implies the strong convergence of both subsequences
Uy, and o}, in L*(0,T; HY(Q)) N C([0,T]; LP(Q)); and passing to the limit in (1.71), we obtain

that v satisfies (1.19). &

Up — v, vy — v in {
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1.4.2 Uniform strong estimates

In this section, we are going to obtain a priori estimates in strong norms for (u,, o) solu-
tion of the scheme US. First, in the following proposition, we shall show H?-regularity for

(Up, 00).

Proposition 1.4.13 Let (uy_1,0,-1) € H (Q) x HL(Q). If (un,0,) € H'(Q) x HL(Q)
is solution of the scheme US, then (u,,o,) € H*(Q) x H*(Q). Moreover, the following
estimate holds

[(tn, an)ll2 < C ([(ettn, Gs0) o + | (s )13 + o) (1.72)
where C' is a constant depending on data (2, ug, 0g), but independent of k and n.

Proof. Recall that we have assumed the H? and H3-regularity of problem (1.8), which
implies the HZ-regularity of problem (1.9) in the case of f = Vh for some h € H'(Q).
Moreover, observe that scheme US can be rewrite in terms of the operators A and B as
follows

Auy = Uy — Sy + V- (uy0y),
Bo,, = -0, + 2u,,Vu,.

Now, since (u,,0,) € H'(Q) x HL(Q), we have that Vu, € L*(Q), V- o, € L*(Q) and,
from Sobolev embeddings, (u,,o,) € L%(Q2) x L5(92). Consequently, we get V - (u,0,) =
o, - Vu, +u,V - o, € L*?(Q) and, using the fact that wu,,du, € L*(Q) — L32(Q),
from classical elliptic regularity we conclude that u, € W?%2(Q). Analogously, since u, €
W23/2(Q), we have Vu,, € W¥2(Q) < L3(Q), and therefore u, Vu, € L*(Q). Thus, using
the fact that 6,0, € L*(Q) and taking into account that —d;0, + 2u, Vu, = V(=6v, +u?),
with —dv, +u2 € H'(Q), we conclude that o, € H?*(Q). Finally, taking into account
that o, € H*(Q) and u, € W»¥2(Q), we deduce that V - (u,o,) € L*(Q), and thus,
since Uy, dpu, € L*(Q), we conclude that u, € H?*(Q). Besides, from (1.10);-(1.11), the
interpolation inequality (1.13), using the Hélder and Young inequalities, we have

[unlle < C([6eunllo + [[unV - anllo + o0 - Vunllo + [[uallo)
1 1
< C(l[ovunllo + [[unllo) + 5 llollz + Cllunllfllonlly + luall2 + Cllunl1llonl(1.73)
and

lonllz < C ([0i0nllo + [lunVunllo) < C (|00 nllo + l[unl| ][Vl s)
1
< Cllowallo + Fllwnlla + Cllunllr- (1.74)
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Then, adding (1.73) and (1.74), we conclude (1.72). &

Now, assuming the estimate
| (tn, o) |3 < Ko, Vn >0, (1.75)

with Ky > 0 independent of £ and n, we will prove uniform strong and more regular estimates
for the scheme US. Later, in the next section, we will prove that condition (1.75) holds, at
least, in 2D domains.

Theorem 1.4.14 (Strong estimates) Let (u,,0,) be a solution of the scheme US satis-
fying the assumption (1.75). Then, the following estimate holds

no+n
EY (1(0ttm, 60 m) I + | (i, o) 13) < Ky + Ka(nk),  ¥n > 1, (1.76)

m=ng+1

for any integer ng > 0, with positive constants Ky, Ky depending on (2, ug, o), but inde-
pendent of ng, k and n.

Proof. Testing (1.48) by u = du,, and & = §;0,, and taking into account that from
(1.53) we have ||u,||? — ||un_1]l3 = [[Vun||z = [[Vtn_1]]3, we can deduce

1 1 k
Gt )3+ 00 (5 s ) I3) + 51 Gt 7)< CUIY ()3 + 120Vt )

(1.77)
Moreover, using (1.13), (1.61), (1.72) and (1.75), we obtain

1070 - Vg |[g + [unV - 001§ 120, V|5 < Cll(tn, 00) [ (tn, 070) 12
1
< Cll©Ovun, 610a)lo + € < ll(0run, dr0a) g + €. (1.78)
where the constant C' is independent of k& and n. Therefore, from (1.77)-(1.78), we deduce
1
8t (1 (wn, @) 17) + Kl (Srwn, 107 ) [T + §||(5tuna 6t0'n)||(2) <C. (1.79)

Then, multiplying (1.79) by k, summing for m from ng 4+ 1 to n + ny and using (1.75), we

have
no+n

kS 1t 610m) |12 < Ko + Ki(nk),

m=ng+1

which, taking into account (1.72), implies (1.76).

From Theorem 1.4.14 and Corollary 1.4.10, we deduce strong estimates for v,.
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Corollary 1.4.15 Let v, be the solution of (1.49). Under the hypothesis of Theorem 1.4.14,
the following estimates hold

no+n
vall3 < Ko and kY lvall3 < Ko+ Ki(nk), V¥n>1, (1.80)

m=ng+1

for any integer ng > 0, with positive constants Ky, K1 depending on (£, ug, 0, vo), but
independent of ng, k and n.

Theorem 1.4.16 (More regular estimates) Assume that (ug,o0) € H?(Q2) x H*(Q).
Under the hypothesis of Theorem 1.4.14, the following estimates hold

| (8¢t S0 |5 < Cs, ¥ > 1, (1.81)
no+n
E Y Gt G10) |7 < Co + Cs(nk), Yn > 1, (1.82)
m=ng+1
[(tn, o) ]2 < C, ¥n >0, (1.83)

for any integer ng > 0, with positive constants Cs,Cy, Cs, Cg depending on data (2, ug, o),
but independent of ng, k and n.

Remark 1.4.17 In particular, from (1.83) one has ||(un, 0n)||e < C7 for all n > 0, with
C7 > 0 a constant independent of k and n.

Proof. Denote by u, = d;u, and o, = §;0,. Then, making the time discrete derivative
of (1.48), and using the equality d;(a,b,) = (01a,)by—1 + an(d:h,), we obtain that (u,,o,)
satisfies

Optln, @) + (Y, V) + (tpo,_1, V) + (u,o,, Vi) = 0,
{(t )+ ( )+ ( 1, Vi) + ( ) (1.84)

(0,0, 0)+ (Boy, o) = 2(u,Vu,_1,0) + 2(u,Vu,, ),
~ 1.
for all (7,6) € H'(Q) x H.(Q). Taking @ = U, and & = 50n in (1.84) and adding the

resulting expressions, the terms (u, 0, Vi,) cancel, and taking into account that / u, =0,

Q
we deduce

2
< unllzsllonllolVanllo + [[anl s l|onll s | Vn - llo

1, _ 1 1, _
< llly + K5Cfnlls + gllwnllt + Flleali + KsClonlls,

1, 1, - k IO 1. -
0 (G113 + 188) + S0 63015 + 511 @)1
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where (1.13) and (1.75) have been used in the first and second inequalities respectively.
Thus, we deduce

1 . 1, k JUR 1, - -~
0 (Gl + 15008 ) + 10T 65)IB + 1@ Gl < K@ FIE (155

In particular,

1 1, 1 1, - - o~
113+ 318l = (31713 + (18l ) < KON @GR (150

Moreover, observe that from (1.48) we have that, for all (u,&) € H'(Q) x H. (),

{ (bur, ) + (V(ur — ug), V) + (Vug, V) = —(ui (o1 — 09), Vi) — (w1079, Vi), (1.87)

(5150-176-) + <B(0’1 — 0'0),6') + <BO’0,6’> = 2(U1V(U1 — Uo),a') + 2(U1VUO,6’).

Then, testing (1.87) by @ = dyuy, & = 36,01 and adding, the terms 1 (u; V(u1 — up), o1 — )
cancel, and using the Holder and Young inequalities and (1.75), we can deduce

10, i) 5 < €| (w0, 00) 3. (1.88)

Therefore, taking into account (1.76) and (1.88), applying Corollary 1.2.4 in (1.86) we con-
clude (1.81). Moreover, multiplying (1.85) by k, adding from m = ng+1 to m = ng+n, and
using (1.81), we deduce (1.82). Finally, from (1.61), (1.75), (1.81) and (1.72), we conclude
(1.83). n

From Theorem 1.4.16 and Corollary 1.4.10, we deduce a more regular estimate for v,,.

Corollary 1.4.18 Let v, be the solution of (1.49). Under hypothesis of Theorem 1.4.16,
the following estimate holds
[onll3 < Ko,  ¥n >0, (1.89)

where Koy > 0 is a constant depending on (2, ug, 09, v0), but independent of k and n.

1.4.3 Proof of (1.75) in 2D domains

In this section, we will prove that estimate (1.75) holds in 2D domains. With this aim, first
we consider a preliminar result.

29



Proposition 1.4.19 Let (u,,0,) be any solution of the scheme US. Then, in 2D domains,
the following estimate holds

1 (un, @) 1T < Kol (1, 0-1)11, (1.90)

where K is a constant depending on data (2, ug, o), but independent of k and n.

1
Proof. We take @ = u,, — u,_1 and & = i(a'n — 0,_1) in (1.48), and recalling that from

(1.53) we have ||u,||? — ||un_1]|3 = [[Vun||z — [[VUn_1]]3, we obtain

1 1 1
(tn = tn1, 05 — on1)|l5 + ZH(Um o)l — 5”(%—1, on1)lli + 1 [ (tn = tn—1, 00 — 1) |7
< |(up Vg, 0, — 05-1) — (U, V(U — ty_1))| (1.91)

|
= |(unvun71a O, — o-nfl) - (uno-nfb V(“n - unfl))|-

Ly
2k

Then, by using the Holder and Young inequalities as well as the 2D interpolation inequality
(1.12) and estimate (1.61), we find

|(unvun71> o, — o-nfl) — (uno-nfly V(un - un71>>|

< [IVunallollunllzsllon = onllzs + [[V(un = wns)llollunllsllon—]l s
1 1
< Sl = s, 00 = o) 11+ Sllualli + Cll(una, o)1 (1.92)
Therefore, from (1.91)-(1.92) we deduce

1

k 1 1
SN0 IR + G @I + 0 = 1, = I < (5 € ) Nmoss o)

hence (1.90) is deduced.

Now, taking into account that from Proposition 1.4.13 we have (u,,o,) € H?*(Q) x
H?(9), we will consider the following pointwise differential formulation of the scheme US:

Sy + Aup —uy — V- (up0,) =0, ae x €Q,
(1.93)

oo, + Bo, = 2u,Vu,, a.e. x €.

Theorem 1.4.20 Let (u,,0,) be a solution of the scheme US. Then, in 2D domains, the
estimate (1.75) holds.

30



Proof. Testing (1.93); by Au, and (1.93), by Beo,, we can deduce

6t<\|(un,an)||§> + (| (Ortin, 8107 |11+ 1 (Awn, Born) g < CUIV - (nen) 15+ 1 Vet [[g+ [0 15).

(1.94)
Moreover, using the 2D inequality (1.12) jointly to (1.61), (1.10);, (1.11) and (1.90), we
obtain

lovn - Ve [[§ +1unV - nllg + 120 Vnlg + lunll < Cll(un, @) 151l (tn, on)ll2 + Co
1
< S I(Aun, Ban)lI§ + Cl (w1, 1)1 + Co. (1.95)

Therefore, from (1.94)-(1.95), we deduce

1
01 (s @) 1) + kllGrttn, G107 + 5| (At Bow) [ < Cl(utn1, 0-1) £+ €
In particular,
[ty )13 = N(ttn-1, G- 1)1F < KC (1, G-+ K. (1.96)

Then, taking into account (1.96) and (1.62), applying the Corollary 1.2.4 we deduce (1.75).
|

1.4.4 Error estimates in weak norms in finite time

Error estimates for the scheme US

We will obtain error estimates for (u,,o,) solution of the scheme US with respect to a
sufficiently regular solution (u, o) of (1.3). For this, we introduce the following notations
for the errors in t = t,,: €' = u(t,) — u, and €2 = o(t,) — o,, and for the discrete in time

n __ on— n _ ,n—1
derivative of these errors: d;el! = 0 % and den = A Then, subtracting (1.3)
at t = t,, and the scheme US, we have that (e, e) satisfies
(6:e, 1) + (Vel', Va) + (elo(t,) + upel, Va) = (£, a), Ya € H' (), (1.97)
(s, ) + (Beh, ) = 2ANVulty) + uaVel ) + (6.0), Vo € HYQ),  (L98)

where &7, £ are the consistency errors associated to the scheme US, that is, £ = §;(u(t,)) —

u(tn) and & = 6,(o(t,)) — o4(tn).
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Theorem 1.4.21 Let (u,,0,) be a solution of the scheme US and assume the following
reqularity for the exact solution (u,o) of (1.3):

(u,o) € L0, T; H(Q) x H'(Q)) and (uy,04) € L*(0,T; HX(Q) x HL(Q)). (1.99)

Assuming that

EN(Vu,V - a‘)l\f‘:oo(Lz) is small enough, (1.100)
then the a priori error estimate
I(ex, €g) i reruzrn < C(T) k (1.101)

holds, where C(T) = Kyexp(K,T), with Ky, Ky > 0 independent of k.
Proof. Since uyg = u(ty), then [,el! = [,e) = 0. Moreover, taking @ = el in (1.97),

1
o= 562. in (1.98), and adding the resulting expressions, the terms (u,el, Ve?) cancel, and

using the Holder and Young inequalities and (1.13), we obtain
1 n 1 n k 1 n n
5 (et + 1eB2) + 5 10t el + Sl IR

1 1
< Slitet et + ClE My amyy + gl (e €Il + ClI(Vultn), V - o () lollez o,

and therefore

1 n 1 n 1 n n
o (Gletli + glesli ) + et eI
< ONE Ty cmy + ClIl(Vultn), V - o (t)lloller[1§1.102)
Now, taking into account that

6.6 =5 [ =t oult)ar

using the Holder inequality, we can deduce

t"L
CIIER, E ey xny < Ck’/ 1 (use (£), () 2y e (111 - (1.103)
tn—1

Therefore, from (1.102) and (1.103) we deduce

1o 1 1
o (et + IesI) + et bl

tn
< Ch / (), oo ) Py araydt + CI(Vulta), ¥ - o (t) 4133 (1.104)
tn—1
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Then, multiplying (1.104) by k and adding from n = 1 to n = r, we obtain (recall that
el =€l =0):

1
[——ckn(w v. a>||w] e, eI + Zn e e

r—1

tr
< Ck2/0 1 Cuse (), @ Otz szt + CIN Ve, V- 0) e g2k Y lI(€L ) 151.105)

n=0

Therefore, if hypothesis (1.100) is satisfied, using the Discrete Gronwall Lemma (see [7],
p. 369) in (1.105), and taking into account (1.99), we conclude (1.101). &

Remark 1.4.22 From (1.101), we deduce ||(un,0,)|1 < C(T), for alln = 1,..,N. In
particular, this implies that in 3D domains, for finite time, the hypothesis (1.55) assuring
the uniqueness of solution (u,,a,) can be relaxed to k C(T)* small enough.

Error estimates for v, solution of (1.49)

We will obtain error estimates for v, solution of (1.49) with respect to a sufficiently regular
solution v of (1.4). For this, we introduce the following notation for the error in t = ¢,:

_ ,n—1
el = v(t,) — v, and for the discrete in time derivative of this error: d,e) = %. Then,
subtracting (1.4) at t = ¢, and (1.49), we obtain that e satisfies
deel + Aey = (ulty) + upey, + &5, ae. x € (1.106)
where &% is the consistency error associated to (1.49), that is,
I
§ = 6(u(t) ~ ult) =~ [ (¢~ ta)ua(t)dr (1.107)
tn—1

Theorem 1.4.23 Under hypothesis of Theorem 1.4.21. Let v, be the solution of (1.49) and
assume the following regqularity for the exact solution v of (1.4):

vy € LY0,T; HY(Q)). (1.108)
Then the a priori error estimate holds

el rrmizere < C(T) k (1.109)
where C(T') = Kyexp(K,T'), with Ky, Ko > 0 independent of k.
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Proof. From the relation e = Ve, taking into account (1.101), we only need to prove
the following estimate
/ e
Q

With this aim, if we integrate (1.106) in €2,

(/ > fyei = [ us [e (1.111)

and therefore, multiplying (1.111) by k& and using (1.107), we have

/eﬁ /eﬁ_l /( (tn) + un)e
Q Q Q tn—1

< K lfutn) + unllollenllo + k1212 / lene(®) |y (1.112)

tn—1

<3

< C(T)k. (1.110)

(1+ k) <k

tn—1)vg(x, t)dedt

Then, adding from n = 1 to n = r in (1.112) and taking into account that wu(t,) + w, is
bounded in {*°L? we obtain (recall that €2 = 0)

er| < Ckllou(®)llany + kCY llenlo. (1.113)

n=1

Thus, using (1.108) and (1.101) in (1.113), we deduce (1.110). 1

1.5 A linear scheme

In this section, we propose the following first order in time, linear coupled scheme for model
(1.3):

o Scheme LC:
Initialization: We fix vy = v(0) and (ug, o) = u(0),5(0)), with ¢ = Vuy.
Time step n: Given (u,_1,0,_1) € H'(Q) x HL(), compute (u,,o,) € H(Q) x
H'(Q) solving
{ (0¢un, u) + (Vu,, V) = —(u,_10,, V), Yu e H(Q),

1.114
(6:0,0) + (Bo,,a) = 2(u,_1Vu,, &), Yo c HL(Q). ( )

Again, once solved the scheme LC, given v, ; € H*(Q)) with v,_; > 0, we can recover
vp = vp(u?) € H*(Q) solving (1.49).
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1.5.1 Unconditional energy-stability and Unique Solvability

Observe that scheme LC is also conservative in u (satisfying (1.53)) and also has the behavior
for [, v, given in (1.54).

Theorem 1.5.1 (Unconditional Unique Solvability) There exists a unique (uy,,o,)
solution of the scheme LC.

Proof. Let (up_1,0,_1) € H := H'(Q) x H.(Q) be given, and consider the following
bilinear form a : H x H — R, and the linear operator [ : H — R given by
2

o 1 _ _ _
a((up,0,), (0,0)) = %(un,u) + E(U"’ o)+ 2(Vu,,Vu) + (Bo,, o)

+2(up 10, V) — 2(uy,_1Vu,, a),

(#,0) = (1, 0) + 0 1,0),

for all (u,,o,),(u,a) € H. Then, using the Holder inequality and Sobolev embeddings, we
can verify that a(-,-) is continuous and coercive on H, and [ € H'. Thus, from Lax-Milgram
theorem, there exists a unique (u,,o,) € H such that

a((un, o), (7, 8)) = (3, &), V(a,&) € H

Finally, taking first & = 0 and then @ = 0, implies that (u,,o,) € H(Q) x HL(Q) is the
unique solution of (1.114). g

Moreover, following the proof of Lemma 1.4.6, we can prove unconditional energy-stability
of the scheme LC.

Lemma 1.5.2 (Unconditional energy-stability) The scheme LC is unconditionally enerqgy-
stable for E(u, o). In fact, the same discrete energy law (1.60) holds.

Remark 1.5.3 If we consider the fully discrete scheme corresponding to LC via a spatial
approzimation by using the Finite Elements method, i.e. taking U, C HY()) and X), C
HL(Q) instead of H(Q) and H.(Q) respectively, then the proofs of solvability and uncondi-
tional energy-stability of this fully discrete scheme can be followed line by line from Theorem
1.5.1 and Lemma 1.5.2.

Remark 1.5.4 We can prove weak estimates for the solution (u,, o) of the scheme LC
analogously to Theorem 1.4.8. Moreover, assuming the H?-reqularity for problem (1.9) in
the case that the right hand side is not the gradient of a function, we can deduce strong and
more reqular estimates for this solution (un,o,) as in Subsection 1.4.2.
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Remark 1.5.5 Unlike the scheme US, in the scheme LC' it is not clear how to prove the
nonnegativity of u,. In fact, in some numerical simulations, very negative cell densities are
obtained when h — 0, where h is the spatial parameter (see Subsection 1.6.1).

1.5.2 Error estimates in weak norms

Theorem 1.5.6 (Error estimates for the scheme LC) Let (u,,o,) be a solution of the
scheme LC, and assume the reqularity (1.99). Then, the a priori error estimate (1.101)
holds.

Proof. The proof follows as in Theorem 1.4.21, but we recall that in this case we do not
need to impose hypothesis of small time step given in (1.100) in order to apply the Discrete
Gronwall Lemma, since we use the form of the terms (u,_10,, Va) and (u,—1Vu,, ) to
bound them in a suitable way. 1

Moreover, although in this linear scheme LC it is not clear if the relation o, = Vv,
holds, it will be possible to obtain error estimates for v,,.

Theorem 1.5.7 (Error estimates for v,) Under hypothesis of Theorem 1.5.6. Let v, be
the solution of (1.49) (corresponding to the scheme LC), and assume the regularity:

vy € L*(0,T; L*(2)). (1.115)
Then, the a priori error estimate (1.109) holds.

Proof. Since in the scheme LC it is not clear the relation o, = Vv,, we will argue in a
different way of Theorem 1.4.23. Indeed, we test (1.106) by Ae!" , and using the Hélder and
Young inequalities, we obtain

50t (llexll?) + §||6tev 17+ §HA€UI|§ < C(lJutn) + unllFllep ]} + 1€5115)- (1.116)
Observe that from (1.101) we have > ||u(t,) — u,||? < C(T)k, which implies that
n=1

[unlly < €+ [lultn)]lr- (1.117)

Then, multiplying (1.116) by k, adding from n = 1 to n = r and using (1.117), we obtain
(recall that €2 = 0)

t
0

lepll? + &Y [l Aez|l§ < (C+CHU!‘H%®H1)k‘ZHGQHf+Ck2/ lva(t)[5dt.  (1.118)
n=1 n=1
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Therefore, taking into account (1.99), (1.115) and (1.101), from (1.118) we conclude (1.109).
|

1.6 Numerical simulations

The aim of this section is to compare the results of several numerical simulations that we
have carried out using the schemes derived through the paper. We are considering a finite
element discretization in space associated to the variational formulation of schemes US,
LC and UV, where the P;-continuous approximation is taken for u,, o and v, (where
h is the spatial parameter). Moreover, we have chosen the 2D domain Q = [0,2]* using a
structured mesh, and all the simulations are carried out using FreeFem++ software. The
linear iterative method used to approach the nonlinear schemes US and UV is the Newton
Method, and in all the cases, the iterative method stops when the relative error in L?-norm
is less than ¢ = 107,

1.6.1 Positivity

In this subsection, we compare the schemes US and LC in terms of positivity. For the
fully discretization of both schemes is not clear the positivity of the variable u,. In fact, for
the time-discrete scheme US the existence of nonnegative solution (u,,v,) was proved (see
Theorem 1.4.3 and Remark 1.4.1), but for the time-discrete scheme LC, although we can
prove that v, is nonnegative, the nonnegativity of u, is not clear. For this reason, in Figures
1.2-1.5, we compare the positivity of the variables u; and vy, in both schemes taking meshes
in space increasingly thinner (h = —, h = &+ and h = -%). In all the cases, we choose

35° 75 150
k =107° and the initial conditions are (see Figure 1.1)

up=—10zy(2 — 2)(2 — y)exp(—10(y — 1)* — 10(x — 1)) 4 10.0001

and
v0=2007y(2 — 2)(2 — y)exp(—30(y — 1)? — 30(z — 1)*) + 0.0001.

In the case of the scheme US, we observe that although wu, is negative for some @ €
in some times ¢, > 0, when h — 0 these values are closer to 0; while in the case of the
scheme LC, when h — 0 very negative cell densities u;, are obtained for some x € €2 in some
times ¢,, > 0 (see Figures 1.2-1.4). On the other hand, the same behavior is observed for the
minimum of vy in both schemes. In fact, independently of h, if vy is positive, then v, also
is positive (we show this behavior in Figure 1.5 for the case h = =, but the same holds for

70’
_ 2 _ 2
the cases h = 175 and h = 555).
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(a) Initial cell density wug (b) Initial chemical concentration vg

Figure 1.1: Initial conditions.

Remark 1.6.1 In Figures 1.3 and 1.4 there are also negative values of minimum of uy, for
the scheme US, but those are of order 1072 and 10~* respectively.

1.6.2 Unconditional Stability

In this subsection, we compare numerically the stability with respect to two energies & (u, o)
and &(u,v). Following line to line the proof of Lemma 1.4.6, we deduce the unconditional
energy-stability for the fully discrete schemes corresponding to schemes US and LC (for the
modified energy £(u,o)). In fact, if (u,,0,) is any solution of the fully discrete schemes
corresponding to schemes US or LC, the following relation holds

1
RE(Up, 0,) = 6:& (U, o) + ||V, |3 + 5”‘-‘%“% <0, Vn. (1.119)

However, considering the “exact” energy (1.21), in the case of fully discrete schemes, it
is not clear how to prove unconditional energy-stability of schemes US, LC and UV with
respect to this energy. Moreover, it is interesting to study the behaviour of the corresponding
residual

1 1
RE(un, vp) = 0,:€(un, va) + [|Vatnllg + 51 Anvnllg + 5 Voulls:

Indeed, taking k = 107, h = 2 and the initial conditions
up=—10zy(2 — ) (2 — y)exp(—10(y — 1)* — 10(x — 1)) + 10.0001

and
v=207y(2 — 2)(2 — y)exp(—30(y — 1)* — 30(x — 1)?) + 0.0001,

we obtain that:
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0.2

Minimum of u

"o 0.002 0.004 0.006 0.008 0.01 0.012 0.014

Figure 1.2: Minimum values of wy, with h = %

(a) The schemes US and LC satisfy the energy decreasing in time property (1.59) for the
modified energy &(u, o), see Figure 1.6.

(b) The schemes US and LC satisfy (1.119), see Figure 1.7.

(¢) The schemes US, LC and UV satisfy the energy decreasing in time property for the
exact energy E(u,v), that is, &(un, v,) < E(up—1,v,-1) for all n, see Figure 1.8.

(d) The schemes US, LC and UV have RE(u,,v,) > 0 for some t,, > 0. However, it is
observed that the residues RE(u,,v,) of the schemes US and LC in those times t,
where each residue is positive, its values are less than the residues of the scheme UV,
see Figure 1.9.

1.7 Appendix A

In order to prove the solvability of (1.56), we will use the Leray-Schauder fixed point theorem.
With this aim, we define the operator R : L*(Q) x L*(Q) — LY(Q) x LY(Q) by R(u,o) =
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Figure 1.3: Minimum values of wy, with h = 7%,)

(u, o), such that (u, o) solves the following linear decoupled problems

1 1 _

E(u, u) + (Vu, Vi) = %(un_l,ﬂ) — (u,o,Va), Yue H' (),

| | (1.120)
E(a,&) +(Bo,d) = E(an,l,&) — (W, V-&), Yo e H-(Q).

1. R is well defined. Let (u,o) E~L4(Q) x L*(Q)) and consider the following bilinear
forms @ : H'(Q) x H'(Q) — R, b: HL(Q) x HL(Q) — R, and the linear operators
L : H(Q) = Rand I, : H:(Q) — R given by

a(u,u) = %(u,u) + (Vu, Va), 5(0'76) =

1 ~ 1 ~
ll(ﬂ)—E/QUn_la—/Qﬂ_,_O"Vﬂ and lQ(O’)—E/QG'n_lo'—/QUQV~G',

for all u,u € H'(Q) and o, € H.(Q). Then, using the Holder inequality and
Sobolev embeddings, we can verify that @ and b are continuous and coercive on H'()
and H () respectively, and [, € H'(Q) and I, € HL(Q)'. Thus, from Lax-Milgram

theorem, there exists a unique (u, o) € H'(Q) x HL(Q) — L*(Q) x L*(Q) solution of
(1.120).
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Figure 1.4: Minimum values of wuy, with h = ﬁ.

2. Let us now prove that all possible fixed points of AR (with A € (0, 1]) are bounded. In
fact, observe that if (u, o) is a fixed point of AR, then (u, o) satisfies

1 1

Xfi(u,ﬂ) = E(un_l’ﬂ) — (uyo, V), Yuae H'(Q),

- | (1.121)
Xb(a,&) = E(O'n,l,&) — (u?,V-&), Yo c HL(Q),

(because AR(u, o) = (u, o) implies R(u, o) = (5u, y0)). Proceeding as in Part A of
the proof of Theorem 1.4.3, we can prove that if (u,o) is a solution of (1.121), then
w > 0, which implies that v = w,. Then, multiplying (1.121); and (1.121)s by A,
testing by © = u and & = %0’ and taking into account that A € (0, 1], we obtain

1 k
) +

SNV, ) [Lexm < CN (1, 001) 6 = Cltnr, 001).

Thus, we deduce that [|(u,o)||z2 < C||(u, o)||1 < C, where the constant C' depends on
data (Q, up_1,0,-1).

3. We prove that R is continuous. Let {(,d")}en € L4(€2) x L*(Q) be a sequence such
that

(@, &) = (u,&) in LY(Q) x LY(Q), asl— +oo. (1.122)
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Therefore, {(@', &) }ien is bounded in L*(Q) x L4(Q), and from item 1 we deduce
that {(u',0") = R(&,&")}ien is bounded in H'(Q) x H'(Q). Then, there exists a
subsequence {R(@"",&" )} en such that
R@",6") = (W', 0') weakly in H'(Q) x H'(Q) and strongly in L*(Q) x L4().
(1.123)
Then, from (1.122)-(1.123), a standard procedure allows us to pass to the limit, as
r goes to 400, in (1.120) (with (@, &" ) and (u'",6") instead of (¥,&) and (u, o)
respectively), and we deduce that R(u,o) = (u/,0’). Therefore, we have proved that
any convergent subsequence of {R(W, &) },en converges to R(1, &) strong in L*(€) x
L4(Q), and from uniqueness of R(%,&), we conclude that R(@,&') — R(U,&) in
LY(Q)) x LY(2). Thus, R is continuous.

. R is compact. In fact, if {(@,&") }ien is a bounded sequence in L*(Q) x L*(€) and we

denote (u!,0') = R(W', &), then we can deduce

1 1 1 1, ~ 1, -

Sl B+ 1Vl o) e < ol (nrs o )+ 1T N Fall6 1+ 517170 < C,
where C'is a constant independent of | € N. Therefore, we conclude that {R(%, ') }ien
is bounded in H'(Q) x H"(Q) which is compactly embedded in L*(Q) x L*(Q), and
thus R is compact.
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Figure 1.6: Energy &(u,, o,) of schemes US and LC.

Therefore, the hypotheses of the Leray-Schauder fixed point theorem are satisfied and we
conclude that the map R(u,o) has a fixed point. This fixed point R(u,o) = (u,o) is a

solution of nonlinear scheme (1.56).
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Figure 1.7: Residue RE(uy,,o0,) of schemes US and LC.
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Figure 1.8: Energy &(uy,,v,) of schemes US, LC and UV.
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Figure 1.9: Residue RE(u,,v,) of schemes US, LC and UV.
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Chapter 2

Energy-stable fully discrete
approximation for a chemo-repulsion
model with quadratic production

2.1 Introduction

The aim of this paper is to study an unconditional energy-stable fully discrete scheme for the
following parabolic-parabolic repulsive-productive chemotaxis model (with quadratic pro-
duction term):

Ou—Au=V-(uVv) inQ, t>0,

ov—Av+v=u?in Q, t>0,

Ou — 9 — () on 9N, t >0,

on on
u(x,0) = ug(x) >0, v(x,0) =vo(x) >0 in Q,

(2.1)

where ) is a n—dimensional open bounded domain, n = 2,3, with boundary 0€2. The
unknowns for this model are u(x,t) > 0, the cell density, and v(x,t) > 0, the chemical
concentration. Problem (2.1) is conservative in u, because the total mass [, u(t) remains
constant in time, as we can check integrating equation (2.1); in €2,

d
—(/u)zO, ie. /u(t):/uo :=myg, Vt>D0.
dt Q Q Q

In Chapter 1 was proved that problem (2.1) is well-posed, because there exists global
in time “weak-strong” solutions in the following sense: u > 0 and v > 0 a.e. (t,x) €
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(0, +00) x €,

(u,v) € L>=(0,+o0; L2(Q) x HY(Q)) N L*(0,T; H () x H*(Y)), VT >0,
(Oyu, ) € LY(0,T; HY(Q)" x L*(Q)), VT >0, (2.2)
(Vu, Vo) € L*(0,4+00; L*(Q) x H'(Q)),
where ¢’ = 2 in the 2-dimensional case (2D) and ¢ = 4/3 in the 3-dimensional case (3D) (¢’
is the conjugate exponent of ¢ = 2 in 2D and ¢ = 4 in 3D), satisfying the u-equation (2.1); in

a variational sense, the v-equation (2.1)s a.e. (t,x) € (0,400) x 2, and the following energy
inequality for a.e. tg,t; : t; >ty > O:

E(u(tr), o(t) — E(ulto). vlte)) + [ (ITul)Ea-+ 51 0(5) o+ 5 IVels)]22) ds < 0, (23)

to

where &(u,v) = 1||ul|2,+1]|Vv||22. Moreover, assuming that the following regularity criteria
is satisfied:
(u, Vv) € L™®(0, +oo; H'(Q) x H'(Q)), (2.4)

(which, at least in 2D domains, is always true), it was proved that there exists a unique
global in time strong solution of (2.1) satisfying
(u,v) € L>(0,+o00; H*(2)?) N L2(0,T; H3(2)?),
(Opu, Ow) € L*>(0,+o00; L2(Q2) x HY(Q2)) N L(0, +oo; H () x H?()), (2.5)
(Oyu, Opv) € L*(0,400; HY(Q) x L*(Q)).

In particular, (2.5); implies

1, V)| 2w (0, 00s 00 x 100y < € (2.6)

Therefore, it is desired to design numerical methods for the model (2.1) conserving at
the discrete level the main properties of the continuous model, such as mass-conservation,
energy-stability, positivity and regularity.

There are only a few works about numerical analysis for chemotaxis models. For instance,
for the Keller-Segel system (i.e. with chemo-attraction and linear production), Filbet studied
n [4] the existence of discrete solutions and the convergence of a finite volume scheme. Saito,
n [8, 9], proved error estimates for a conservative Finite Element (FE) approximation. A
mixed FE approximation is studied in [6]. In [3], some error estimates are proved for a fully
discrete discontinuous FE method. However, as far as we know, there are not works studying
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FE schemes satisfying the property of energy-stability related to the energy inequality (2.3).

In this paper, we propose an unconditional energy-stable fully discrete scheme, which
inherit some properties from the continuous model, such as mass-conservation, and weak
and strong estimates analogues to (2.2) and (2.5)-(2.6). Moreover, with respect to the
nonnegativity of the discrete cell and chemical variables, u} and v}, we can deduce that
vpp > 0 (see Remark 2.3.2), but the cell density nonnegativity uj > 0 can not be assured.

In order to design the scheme, we follow the ideas presented in Chapter 1, and we
reformulate (2.1) introducing a new variable & = Vv instead of v. Then, model (2.1) is
rewritten as:

Ou—V - (Vu)=V - (uo) inQ, t>0,

oo —V(V-0)+0o+rot(rot ) =V(u?)in Q, t >0,

9u =0 ondQ, t>0, (2.7)
o-n=0, [rotaxn]tang:() on 09, t >0,

u(x,0) = up(x) >0, o(x,0) = Vuyy(x) in Q,

where (2.7), has been obtained applying the gradient operator to equation (2.1), and adding
the term rot(rot o) using the fact that rot & = rot(Vv) = 0. Once system (2.7) is solved,
we can recover v from u? by solving

ov—Av+v=u?in Q, t>0,
& =0 on o, t>0, (2.8)
v(x,0) = vo(x) >0 in .

This chapter is organized as follows: In Section 2.2, we give the notation and some pre-
liminary results that will be used along this paper. In Section 2.3, we study the FE Backward
Euler scheme corresponding to formulation (2.7)-(2.8), including mass-conservation, uncon-
ditional energy-stability, solvability, weak and strong estimates, convergence towards weak
solutions, and optimal error estimates of the scheme. In Section 2.4, we propose two diffe-
rent linear iterative methods in order to approach the nonlinear scheme proposed in Section
2.3, which are an energy-stable Picard’s method and the Newton’s method. We prove the
solvability and the convergence of these methods to the nonlinear scheme. Finally, in Section
2.5, we present some numerical results in agreement with the theoretical analysis about the
error estimates.

2.2 Notations and preliminary results

We recall some functional spaces which will be used throughout this paper. We will consider
the usual Sobolev spaces H™(€2) and Lebesgue spaces LP(Q2), 1 < p < oo, with norms || - ||
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and || - ||z», respectively. In particular, the L?(€)-norm will be denoted by || - [|o. We denote
by HL(Q) ;== {uc H'(Q) : u-n =0 on 0} and we will use the following equivalent norms
in H'(Q) and HL (), respectively (see [7] and [1, Corollary 3.5], respectively):

2
lll? = [Vl + ( / u) Ve H'(Q),

lolli = ol + lIrot oI5 + [V - alls, Vo € H(Q).

If Z is a general Banach space, its topological dual will be denoted by Z’. Moreover, the
letters C, K will denote different positive constants (independent of discrete parameters)
which may change from line to line (or even within the same line).

We define the linear elliptic operators

—Aw+w =g in Q,
Aw=yg < 8_w:0 on 052, (2.9)
on

and
—V(V-0o)+rot (rtot )+ =h in (Q,
Bo=h < (2.10)
oc-n=0, [rot o xn],, =0 ondQ,

which, in variational form, are given by A : H'(Q) — H'(Q) and B : H.(Q) — HL(Q)
such that

tang

(Aw, w) = (Vw, Vo) + (w,w), Yw,w € H'(Q),
(Bo,5) = (0,6)+ (V-0,V-&)+ (rot o,10t ), Yo,ac H:(Q).

We assume the H?-regularity of problems (2.9) and (2.10). Consequently, we have the
existence of some constants C' > 0 such that

|wl|ls < Cl|Awllo, Yw € H*(Q), and |o|. < C||Bolly, Yo € H*(Q). (2.11)

Along this paper, we will use repeatedly the classical 3D interpolation inequality

ullzs < Cllulls?ulli? Yu e HY(Q). (2.12)

Finally, we will use the following results (see [5] and [10]):

o1



Lemma 2.2.1 Assume that 0,5,k > 0 and d"* > 0 satisfy
dn+1 _Jn

. +0d"™ < B, Yn>0.

Then, for any ng > 0,
d" < (14 0k)~(mm)gno 4 5718 Wi > ny.

Lemma 2.2.2 (Uniform discrete Gronwall lemma) Let k > 0 and d*, g", h™ > 0 such
that

dn+1 —dr
— <g"d"+h", ¥Yn > 0.
If for any r € N, there exist ay(t,), as(t,) and as(t,) depending on t, = kr, such that
no+r—1 no+r—1 no+r—1
EY g"<ai(t,), kY h"<a(t), kY d"<as(t)
n=ngo n=no n=no

for any integer ng > 0, then

as(tr)
t

r

d" < (az(tr) + ) ezp{ar(t,)}, Vn>r.

As consequence of Lemma 2.2.2 and Discrete Gronwall Lemma, we have the following
result (see Corollary 1.2.4):

Corollary 2.2.3 Under hypothesis of Lemma 2.2.2. Let kg > 0 be fized, then the following
estimate holds for all k < kg
d" < C(d° ky) ¥n>0.

2.3 Fully Discrete Backward Euler Scheme in variables
(u,0)

This section is devoted to design an unconditionally energy-stable scheme for model (2.1) (for
a modified energy in variables (u, o)), using a FE discretization in space and the backward
Euler discretization in time (considered for simplicity on a uniform partition of [0, 7] with
time step k = T/N : (t, = nk)"=Z)). Concerning the space discretization, we consider
{T1}ns0 be a family of shape-regular and quasi-uniform triangulations of Q made up of
simplexes K (triangles in two dimensions and tetrahedra in three dimensions), so that Q =
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Uker, K, where h = maxges, hi, with hx being the diameter of K. Further, let N}, = {a; }ies
denote the set of all the nodes of T,. We choose the following continuous FE spaces for u,
o and v:

(Up, T, Vi) € H x H: x W' generated by Py, P,,, P, with k,m,r > 1.
Now, let Ay, : U, — Uy, By, : ), — Xj, and Zh : Vi, = V4, be the linear operators defined,
respectively, as follows:
(Ahuhu uh) - (VUh, Vﬂh) + (th uh); vah € Uh7
(Bho'h,é'h) = (V : ah,V . 6’h) + (l"Ot O'h,l“Ot 5’h> + (O'h,a'h), Vé’h c Zh, (213)
(ﬁhvh, @h) = (Vvh, V@h) + ("Uh,@h), Yo, € Vj,.

Moreover, we choose the following interpolation operators:
Re:HY Q) = Uy, RE-HLHQ) =X, RV:HYQ) =V,

such that for allu € H*(Q), 0 € H.(Q) and v € HY(Q), Riu € Uy, RS0 € ), and Rv € V,
satisfy
(V(Ryu — u), V) + (Rpu —u,up) =0, Ya, € Uy, (2.14

)
(V- (Rfo—0),V-04)+ (rot(Rfo — o),r0t 64) + (Rfo —0,6,) =0, Vo, € Xy, (2.15)
(V(:RZU — U), VTJ}J + (RZU — v, T)h) =0, Vo, €V, (2.16)

respectively. Observe that, from Lax-Milgram Theorem, the interpolation operators R}, Rf
and R} are well defined. Moreover, the following interpolation errors hold

1
EHRZU — ullo + |Rju — ully < Ch*|Jullpyr Vu € H(S), (2.17)
1
%50 oo + 80 ol < Oh"lo |, Yo € H™(0), (2.18)
1
EHRZU — |0+ [|Rpv — |1 < Ch||v||,41 Vv € HTH(Q). (2.19)

Also, the following stability properties will be used
|(Rew, RS, Ry < C (a7, 0) o (2.20)
which can be obtained from (2.17)-(2.19), using the inverse inequality
| (un, o, o) lwre < Ch™(un, o, o)1 for all (up, o, v,) € Uy X By, x Vi,

and comparing R, with an average interpolation of Clement or Scott-Zhang type (which
is stable in W!5-norm).
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Lemma 2.3.1 Assume the H?-reqularity for problems (2.9)-(2.10) given in (2.11). Then,
the following estimates hold

lunllwrs < CllApunllo Yun € Un,  |Jonllwre < CllAnonllo Yon € Vi, (2.21)
lonllwie < Cl[Bronlo Vor € X (2.22)

_ Proof. First, we consider regular functions associated to the discrete functions Apus,
Apv, and Broy,. We define u(h),v(h) € H?*(Q) and o(h) € H?*(Q) as the solutions of
problems

—AU(h) + U(h) = Ahuh in Q,

ou(h) —0 on 09, (2.23)

on

—Auv(h) +v(h) = Ayv, in €,

2.24
u(h) =0 on 09, ( )

on

and

—V(V -a(h)) +rot (rot o(h)) + o(h) = Byo, in Q, 5 5
o(h) - n=0, [rot o(h)xn],, =0 ondQ. (2.25)

In particular, from (2.11),

lu(A) 2 < CllAnunllo, [lo(h)ll2 < CllAnenlle and [lo(h)]l> < Cl|Broullo-  (2.26)

Now, we decompose the W' 6-norm as:
llun|lwie < JJup — Rpw(h)||wrs + [|Rpu(h) — uw(h)||we + ||u(h)||wie := I + Iy + I3, (2.27)

[vllwrs < un = Rpo(h)|[wre + |Ryv(h) —v(h)|lwre + [[v(h) lwrs == Hi+ Ha + Hj, (2.28)
HO']-LHV[/I,G < HO’h— Za(h>HW176+HR(}:U(h)_U(h)HWLG‘f‘HU(h)HWLG = J1+J2+J3. (2.29)

In order to bound J; (i = 1,2), we test (2.25); by & € ¥, and using (2.13)s we have

(V-o,,V-a,)+(rot o, rot a) + (o, a1)
=(V-o(h),V- &)+ (rot a(h),rot &) + (o(h),a4), Vo, € 3R.30)

By subtracting at both sides of equality (2.30) the terms (V-R o (h), V-64), (rotR o (h), rot a},)
and (R7o(h),o4), testing by 5, = o, — Rfo(h) € ¥, and using the Holder and Young
inequalities, we deduce

lon = Rio(h)ly < CRFo(h) —a(h)[ly < Chllo(h)l2 (2.31)
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where in the last inequality interpolation error (2.18) was used. Then, using in (2.31) the
inverse inequality ||op|lwis < Ch™ oy for all o), € Xy, we conclude that for i = 1,2

Ji < Ch7Y|RTa(h) = o (h)] < Cllo(h)].. (2.32)
Finally,
Js = |lo(h)[lwre < Cllo(h)]]2- (2.33)

Therefore, using (2.32)-(2.33) in (2.29), and taking into account (2.26), we deduce (2.22).
Proceeding analogously for I; and H; (i = 1,2,3), we deduce (2.21).

2.3.1 Definition of the scheme

By taking into account the reformulation (2.7), we consider the following FE Backward
Euler Scheme in variables (u, o) (Scheme US, from now on) which is a first order in time,
nonlinear and coupled scheme:
e Initialization: We fix (u), oY) = (R¥ug, Ry ) € U, x 2y, and v) = RVvy € Vj,. Then,
Joup = [ uo = me.

Time step n: Given (u} ', 07" !) € Uy, x X3, compute (u}l, o) € U, x X, solving

(Sup,ap) + (Vul, Va,) + (upo?, Vi) =0, Ya, € Uy, (2,34
((StO'Z,&h)—Q—(BhO'Z,&h) —2(UZVUZ,6'}L) =0, Vo, € Eh, .
ap —apt
where, in general, we denote d,a} = ? h

Once the scheme US is solved, given v)'"' € V},, we can recover v} = vi((ul)?) € Vj,
solving: B
(&w}f,@h) + (Ahvﬁ, T)h) = ((UZ)Q,@;L), Yo, € V. (235)

Given uj € U, and U,Tf_l € Vj, Lax-Milgram theorem implies that there exists a unique
vp € V, solution of (2.35).

Remark 2.3.2 By using the mass-lumping technique in all terms of (2.35) excepting the
self-diffusion term (Vuj, Vuy), approximating by Py -continuous FE and imposing a condition
based on a geometrical property of the triangulation, related to the fact that the interior angles
of the triangles or tetrahedra must be at most w/2, we can prove that if vZ‘l > 0 then vy > 0.
Howewver, in all numerical simulations that we have made without using mass-lumping, we
have not found any example in which, beginning with v) > 0 we obtain v} (a;) < 0, for some
n >0 and a;.
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2.3.2 Solvability, Energy-Stability and Convergence

Assuming that the functions w, = 1 € U, and v, = 1 € V},, we deduce that the scheme US
conserves in time the total mass fQ uy, that is,

n __ n—1 __ . 0
/uh—/uh —"'—/Uha
Q Q Q

and we have the following behavior for [, v}

()~ for- [

Now, we establish some results concerning to the solvability and energy-stability of
scheme US, but we will omit their proofs because those follow the same ideas given in
Chapter 1 (Theorem 1.4.3, Lemma 1.4.6 and Theorem 1.4.8, respectively).

Theorem 2.3.3 (Unconditional existence and conditional uniqueness) There ezists
(up, o) € Uy x Xy, solution of the scheme US. Moreover, if

E||(uff, )7 is small enough, (2.36)

then the solution is unique.

Remark 2.3.4 In the case of 2D domains, from estimate (2.54) below, the uniqueness res-
triction (2.36) can be relaved to kK? small enough, where Ky is a constant depending on
data (2, ug, ), but independent of (k,h) and n.

Remark 2.3.5 In 3D domains, using the inverse inequality |lup|ly < $llupllo (see Lemma
4.5.831n [2], p. 111) and estimate (2.41) below, we have that

(i, ol < 2k o)l < 57C5

and therefore, the uniqueness restriction (2.36) can be rewrite as

kECH

T small enough, (2.37)

where Cy is a positive constant depending on data (€2, ug, o), but independent of n.
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Definition 2.3.6 A numerical scheme with solution (u,,o,) is called energy-stable with
respect to the energy

1 1
£(u,0) = 5 lull3 + o} (2.39)
if this energy is time decreasing, that is

E(uy,on) < E(up~t o), Vn. (2.39)

Lemma 2.3.7 (Unconditional stability) The scheme US is unconditionally energy-stable
with respect to E(u, o). In fact, if (u}}, o}) is a solution of the scheme US, then the following
discrete energy law holds

0 (uh, o) 5 10eillo + 7 l1diillo + IVeills + S llerillt = 0. (2.40)

Remark 2.3.8 Looking at (2.40), we can say that the scheme US introduces the following
two first order “numerical dissipation terms”:

k n k n
SNowplp and sl

From the (local in time) discrete energy law (2.40), we deduce the following global in
time estimates for (u}, o}) solution of scheme US:

Theorem 2.3.9 (Uniform Weak estimates of scheme US) Let (u}}, o) be a solution
of scheme US. Then, the following estimates hold

(i, o)lls + B> MGy, 60§+ £ I(Vup, o7 7o < Co, Yn>1,  (241)

m=1 m=1
n+no
E Yy om))i < Co+ Ci(nk), ¥n>1, (2.42)
m=ng+1

where the integer ng > 0 is arbitrary, with positive constants Cy, C7 depending on the data
(Q, ug, 00), but independent of (k,h) and (n,ny).
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Weak estimates of vj in 3D domains

In this fully discrete scheme US it is not clear how to quantify the relation o} ~ Vvy, and
therefore, the uniform estimates for v, cannot be obtained directly from estimates for o}.
Thus, in this subsection we will obtain directly uniform weak estimates for vj.

Lemma 2.3.10 (Estimate of | [, v}!|) Let v} be the solution of (2.35). Then, it holds

Q

where Ky is a positive constant depending on the data ug, g, vy, but independent of k, h and
n.

<Koy, VYn>0, (2.43)

Proof. The proof follows as in Corollary 1.4.10. 1«

Lemma 2.3.11 (Discrete duality estimates for v}) Let v} be the solution of (2.35).
Then, the following estimates hold

|A, opl1 < Ko, ¥n >0, (2.44)
no+n
EOY D oplld < Ko+ Ki(nk), Vn>1, (2.45)
m=ng+1

with positive constants Ky, K; depending on the data Q,ug, 09, vo, but independent of (k, h)
and (n,ng).

Proof. Testing (2.35) by v = g}jlvﬁ, and using (2.21)y and (2.41), it is not difficult to
deduce

1 A— n n n A— n A— n n 1 n
5 (IR 4RI ) + Rl < IORIBIAL gllom < CIAG ot hwno < Clel < il + C,
which implies that
o (145 0313) + I3 < €, (2.46)

where C' is a constant independent of (k,h) and n. Then, using that |[v}]|3 > C’H/NX;IUQH%
(owing to (2.21)3) in (2.46), we deduce

(1+ CR)[|A; op |2 — | A, op Y2 < Ck, (2.47)

and therefore, using Lemma 2.2.1 in (2.47), we obtain (2.44). Finally, multiplying (2.46) by
k and adding from m = ng + 1 to m = n + ng, using (2.44), we conclude (2.45). 1§
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Lemma 2.3.12 (Weak estimates for v") Under hypothesis of Lemma 2.3.11, the follo-
wing estimates hold

loplls < Ca, Ym0, (2.48)
n+no

E Y ol < Co+ Cs(nk), Wn>1, (2.49)
m=ng+1

with positive constants Cy, Cy depending on the data Q,ug, o, vy, but independent of (k,h)
and (n,ng).

Proof. Testing (2.35) by v = v} we obtain

1 n 1 n n— n n n n— n n—
0 (IR )+ ok = 18 + ol = (o = o™ + ()P0
1 n n—1|12 n||4 1 n||2 n—11|2 1 n||2
< E””h — v lo + Ckllugllzs + §||Uh||L4HUh o+ §||uh||L47
which implies that
1R llS = lon =" 115 + Ellop 1} < CR [l llza + KllahllZallop = 15 + lluhl| 7. (2.50)
Moreover, taking into account that k|ju}(|2, < kC|lu}||?, from estimate (2.42) we deduce
k|[up||3. < Co+ Cik. (2.51)
Then, from (2.50) and (2.51), we have
lorllg = [lon =115 + Kl [l < (CCo + OOk + Dk|luplZs + kllup | Zsllop 15, (2.52)
which, in particular implies
15 = llon 116 < C EllupllZe + Ellug I Zallop =[5 (2.53)

Therefore, taking into account estimates (2.42) and (2.45), applying Corollary 2.2.3 in (2.53),
we conclude (2.48). Finally, summing for m from ng+1 to n+ng in (2.52), and using (2.42)
and (2.48), we deduce (2.49). &

Convergence

Starting from the previous stability estimates, proceeding as in Theorem 1.4.11 we can
prove the convergence towards weak solutions as (k, h) — 0. Concretely, by introducing the
functions:
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o (Up,0hy) are continuous functions on [0, +00), linear on each interval (¢,_i,t,) and
equal to (up,o}) at t =t,, n > 0;

® (up;, 0} ,) as the piecewise constant functions taking values (uj, o) on (tn-1,1.],
n>1,
then, we have the following result:

Theorem 2.3.13 (Convergence) There exists a subsequence (k',h') of (k,h), with k', h’ |
0, and a weak solution (u,o) of (2.7) in (0,+0c), such that (up y, T pr) and (upy i, T 1)
converge to (u, ) weakly-* in L>(0, +-o00; L?(2) x L*(Y)), weakly in L*(0,T; H(Q) x H*(Q))
and strongly in L*(0,T; L*(Q) x L*(Q)), for any T > 0.

Note that, since the positivity of u} cannot be assured, then the positivity of the limit
function u cannot be proven. Moreover, if we introduce the functions:

e Uy, are continuous functions on [0, +00), linear on each interval (¢,_1,t,) and equal to
vy, at t =t,, n>0;

e v}, as the piecewise constant functions taking values vj; on (t,_1,t,], n > 1,

proceeding as in Lemma 1.4.12, and taking into account the estimates (2.48)-(2.49), the
following result can be proved:

Corollary 2.3.14 There exists a subsequence (k', 1) of (k, h), with k', k' | 0, and a weak so-
lution v of (2.8) in (0,400), such that O p and vy, ., converge to v weakly-*in L>*(0, +-00; L*(Q)),
weakly in L*(0,T; H(Q)) and strongly in L*(0,T; L*(2)), for any T > 0.

Remark 2.3.15 From the equivalence of problems (2.1) and (2.7)-(2.8) stablished in Chap-
ter 1, and taking into account Theorem 2.5.13 and Corollary 2.5.14, we deduce that the limait
pair (u,v) is a weak-strong solution of problem (2.1).

2.3.3 Uniform Strong Estimates

In this subsection, we are going to establish a priori estimates in strong norms for any
solution (u,, o) of the scheme US and v} of (2.35). We will assume the estimate

I(ur, o)IIT < Ko, ¥n >0, (2.54)

with Ky > 0 a constant depending on the initial data, but independent of (k,h) and n.
Note that estimate (2.54) can be proven in 2D domains, following line to line the proof of
Theorem 1.4.20.
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Uniform Strong Estimates of the scheme US

Theorem 2.3.16 (Strong estimates) Let (u}, o)) be a solution of the scheme US satis-
fying the assumption (2.54). Then, the following estimate holds

n+no
B (1@, 6oi)s + 1wt o) fe) < Ki+ Ks(nk), Vo> 1, (2.55)

m=ng+1

for any integer ng > 0, with positive constants K1, Ky depending on (€2, ug, o), but inde-
pendent of (k,h) and (n,ny).

Proof. The proof follows as in Theorem 1.4.14, but in this case it is necessary to use the
estimate
Iz, o) lwrs < C(1Geui, deo)llo + [ (i, R + [luillo), (2.56)

which is deduced from (2.21) and (2.22). 1§

Theorem 2.3.17 (More regular estimates) Assume that (ug,o0) € H?(Q) x H*(Q).
Under the hypothesis of Theorem 2.5.16, the following estimates hold

(e, dray)llo < K3, Vn > 1, (2.57)
n+no
kY G, sioi)F < Ky + Ks(nk), Vn>1, (2.58)
m=ng+1
(uy, o) |[5e < Kg, ¥n >0, (2.59)

for any integer ng > 0, with positive constants K3, Ky, K5, K¢ depending on data (Q,ug, o),
but independent of (k,h) and (n,ng).

Proof. The proof follows as in Theorem 1.4.16, but in this case, in order to obtain (2.59)
it is necessary to use (2.56).

Remark 2.3.18 In particular, from (2.59) one has ||(u},o})|| L~ < K7 for all n > 0, with
K; >0 a constant independent of (k,h) and n.
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Uniform Strong estimates of v}

Theorem 2.3.19 (Strong estimates for v") Assume (2.54) and let v} be the solution of
(2.35). Then, the following estimates hold

Jlopll} < C1, V>0, (2.60)
n+no N
EOY (10wl + I[Awvplls) < Co + Ca(nk),  ¥n > 1, (2.61)
m=ng+1

for any integer ng > 0, with positive constants C1,Cy depending on €2, ug, o¢, v, but inde-
pendent of (k,h) and (n,ny).

Proof. Testing (2.35) by Zhv,? and d,vp, and using the Holder and Young inequalities, we
obtain

0 (Il 112) + S IARvRllG + S 10wi 16 < lluh 7, (2.62)
which, taking into account (2.21), and (2.54), in particular implies
(1+ CR)Jupllt — [l 1T < kAG.
Thus, from Lemma 2.2.1, we deduce
lhll < (1+Ck)™[loplli + CKG < llvplli + CKg, ¥n >0,

which implies (2.60). Moreover, multiplying (2.62) by k£ and adding from m = ng + 1 to
m = n + ng, using (2.54) and (2.60), we deduce (2.61).

Theorem 2.3.20 (More regular estimates for v) Assume that vy € H?*(Q). Under
hypothesis of Theorems 2.3.17 and 2.53.19, the following estimates hold

I5wplls < Cs, Yn > 1, (2.63)
n-+no
EOY D 16wpll; < Cat Cs(nk), ¥n>1, (2.64)
m=no+1
lohllfvie < Cs, ¥n >0, (2.65)

for any integer ng > 0, with positive constants Cs3, Cy, Cs, Cg depending on data §2, ug, o, vg,
but independent of (k,h) and (n,ng).
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Proof. Denote by v} = §;vpt. Then, making the time discrete derivative of (2.35) (using
Se(ul)? = (uft 4+ uj~1)Sul), testing by v and using (2.54) and (2.57), we obtain

1 -~n 1 ~n n n— n
50 (IR11G) + ST 1T < Cllug + up ™ [Zs o 1§ < €. (2.66)

In particular,
(1+ R)IT31l5 — 117315 < &C.

Then, from Lemma 2.2.1, we deduce
IBR15 < @+ k)" VG5 +C, o > 1. (2.67)
Observe that from (2.35) we have
(60}, 0n) + (An(vf — 02),0) + (Apl, o) = ((uh)?,51), You € Vi (2.68)

Then, testing (2.68) by v, = v} and using the Holder and Young inequalities and (2.54),
we can obtain N
18w lle < Cll ARG + Cllup7s. (2.69)

Moreover, considering the linear and continuous operator g‘fl : HY(Q) — V}, defined as
(IZZU,Q_);L) = (Vv, Vl_}h) + (U,Q_}h), Yoy, € Vi,

(which is an extension of A, to H'()), using the inverse inequality ||vy |1 < +lvnllo for all
vy, € V3, and the interpolation error (2.19), we have

[Arvpllo < | A5 (Ryvo — vo)llo + [| A% vollo

1
< CEHV(RZ’UO — o) |lo + C|Ryvo — vollo + [[voll2 < Cvol|2. (2.70)

Thus, using (2.54) and (2.70) in (2.69), we conclude that ||0}]|2 < C, where the constant C
is independent of (k, h). Therefore, using this fact in (2.67), we conclude (2.63). Moreover,
multiplying (2.66) by k& and adding from m = ng+ 1 to m = n + ng, using (2.63), we deduce
(2.64). Finally, taking into account (2.21)y, we have

lopllwrs < I-AwvRllo < N80y lo + lluh 17

which, taking into account that from (2.20) we have [[v)|lw1s = [|Ryvollwre < Cllvgl|2, and
using (2.54) and (2.63), implies (2.65). 1
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2.3.4 FError estimates at finite time

In this subsection, we will obtain error estimates for any solution (u},o}) of the scheme
US and v} of (2.35), with respect to sufficiently regular solutions (u, o) of (2.7) and v of
(2.8) respectively. In our analysis, in order to obtain optimal error estimates we need to
assume that both spaces U, 3, are generated by P,,-continuous FE and V}, is generated by
P,,+1-continuous FE, with m > 1. This is a natural assumption taking into account that
the energy norm for v in the continuous model has one order greater than the energy norms
for u, o.

Error estimates for scheme US

= u(t,) — uj and
en — en—l

= o(t,) — o}, and for the discrete in time derivative of these errors: die) = —= 2 “

n __ en—l

and d,ey = —=——7—. Then, subtracting (2.7) at t = t,, and the scheme US, we have that

(e, e) satisfies

ur o

We start introducing the following notations for the errors at t = ¢,,: €]

n

€o

(0cer, up) + (Vey, Vay) + (eno(t,) + uyen, V) = (€7, ap), Va, € Uy, (2.71)

(0cel, 1) + (Bepy, o) = 2(enVu(t,) +uyVen, o) + (§5,04), Yo, € X, (2.72)

where £}, €8 are the consistency errors associated to the scheme US, that is, £ = 0y (u(t,,)) —
u(t,) and £ = 8(o(t,)) — o(t,). Now, considering the interpolation operators R} and Rf
defined in (2.14)-(2.15), we decompose e’ and e as follows

e = (I —R)u(ty) + Ryu(t,) —uy = it Cuns (2.73)

o = (I =R7)o(tn) + Rio(tn) — o) = e + e, (2.74)

where €], is the interpolation error and e, is the discrete error of u. Then, taking into

account (2.14)—(2.15), from (2.71)-(2.74) we have
(deert . ) +(Vel ,, Vi) + (e o (tn) + upel ,, V) = (&, )
— (6eels i un) — (el o (tn) +upen ., Vay) + (€, Un), VY, € Uy, (2.75)
(0cepps @n)+(Bregp, on) = (&, n) +2(ey , Vults) + up Ve, o1)
+2(eZ7ZVu(tn) + UZV@ZJ-, C_Th) - (5te" &h) s V&h € Eh. (276)

o,

Notice that [, el , = 0 (since uj = Rjug and from (2.14) [, Rju(t,) = [, u(t,) = mo),

hence the following norms are equivalents: [|Vey ,|lo = [le}; , ||1-
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Theorem 2.3.21 We assume that there exists (u,o) an exact solution of (2.7) with the
following reqularity:
(u, o) € L®(0,T; H™(Q)x H™H(Q)), (uy,0,) € L*(0,T; H™(Q)x H™(Q)),
(Utt,att) - .[/2(0,1—'7 Hl(Q)/ X H}T(Q)/)

(2.77)
Let (u}, o)) be a solution of the scheme US. Then, if
k(I (u, )| 1oe (1) + 1t &) 3o (y2y) s small enough, (2.78)
the following a priori error estimate holds
(e n: € )i Lomzrn < C(T)(k +h™") (2.79)

where C(T) = K Texp(K,T), with Ky, Ky > 0 independent of (k,h).

Recall that u, o are approximated by PP,,-continuous FE.
Proof. Taking uy, = ey, , n (2.75), 6, = 5627}1 in (2.76) and adding, the terms (uyVey, ;. ey ;)

cancel, and we obtain

3 (1eall + el ) + HHetan bl = (61 eha) + 5(E8 cha) = (et c)

1
9 (5t€Z,m @Z,h) — (eun, o (tn) - Veu , = Vu(tn) - eg ) — (€4, 0(tn) - Vey , — Vu(tn) - eg)
8
—(up, 62,1‘ : Veﬁ,h - VeZ,i : 6Z,h) + (62,,» eﬁ,h) = me- (2.80)
m=1

Then, using the Holder and Young inequalities, the 3D interpolation inequality (2.12), the
interpolation errors (2.17)-(2.18), the stability property (2.20) and the hypothesis (2.77), we
control the terms on the right hand side of (2.80) as follows

I+ 1y < ell(en gl + Cl(EF, €D Iy iy

tn
< el (el n el + Ck/ (et (£), 04t (D) [Earry e gt (2.81)

tn—1

I < ey pllzs([[Vuta)llolleg nlle + IV - o (tn)llolley all o)
< ell(etn ea )i + Cl(Vultn), V- a(tn) lgllen llo. (2.82)
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Is < legillo(IVeynllollo(tn)ll e + [Vulta)l zslleg allze)
< ell (€l n oI + Cell(Vultn), o (ta) | Zs e llenillo
< ell(eln g n)lIF + CH ™ V() |50 < ell(en pseqn)lF + CRPHY, - (2.83)

I7 < |< uha o X veuh Ven ’ h)| + |<:Rzu(t )7 o'z veuh vez,i'eg,hﬂ
< ell(enps o)1+ Celle nllall(en s eg. ) lfraxp + CellRhulta) [fransel(en: €503

< ell(eln ea W IFHC(ultn), o ) 2llER 15+ CH MV (wltn), @ (t)) 7 llulta) I3
< ell(eln eo ) IIF+ClI(ultn), o (t)l2llel ulI5+CR* Y, (2.84)

Is < letlolletnllo < elleg I + CR*m Y, (2.85)

Iy + Ly < |[(ey s €5 ) llol|((T = Ri)dru(tn), (I = R7)do(tn)) llo
< ell(€ln eqn) I + CR ™D (Geultn), 80 () [

n n 2 Ch2(m+1) n 2
<clehpes )l + S [ o) e (2.56)
tn—1
I
where in the last inequality was used that (d;u(t,),do(t,)) = e / (ug, 04). Therefore,
tn—1
taking e small enough, from (2.80)-(2.86) we obtain
1 n |2 1 n 2 n n 2
Ot §||€u,h”0 + Z”ea,hHO + [[(eq s eqn )1
S Ck/ ||(utt(t)7att(t))H(Hl)’X(H},)’dt+T/ H(ut,a't)Hdet—l—Ch (m+
th—1 tn—1
+C([|(u(ta), ot + I (ultn), o (E))2)llen ullo- (2.87)

Then, multiplying (2.87) by k, adding from n = 1 to n = r, recalling that e , = e, = 0,
taking into account (2.77), we obtain

r—1
[Z‘kC]H( i Cor Ho+kZ|| e )} < CR2 4 ORI 4 Ok e |2
n=1 n=0

Therefore, assuming hypothesis (2.78) and using the Discrete Gronwall Lemma, we conclude
(2.79).
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Remark 2.3.22 Under hypothesis of Theorem 2.53.21, one has in particular

R2(m+1)
It ol < €+ 0 (k4 ).
Therefore, under the hypothesis
h2(m+1)
2 <C, (2.88)
we have the estimate
I(ur o)l < C, (2.89)

hence the hypothesis (2.36) providing uniqueness of the scheme is equivalent to k small
enough. Finally, since for any choice of (k,h) either (2.37) (see Remark 2.3.5) or (2.88)
holds, one has the uniqueness of (u}l, a}) solution of (2.34) only imposing k small enough.

Error estimates for v}’ solution of (2.35)

We introduce the following notation for the errors in t = ¢,: el = v(t,) — v}, and for the

1 v
n n—
ey — e

discrete in time derivative of this error: d;e;, = ? Y—. Then, subtracting (2.8) at t =t,,

and (2.35), we have that e satisfies
(e, 0n) + (Aey, o) = ((ultn) +up)ey, on) + (&5, 0n), Von € Vi, (2.90)

where £} is the consistency error associated to (2.35), that is, £ = &;(v(t,)) — v(t,). Now,
considering the interpolation operator R} defined in (2.16), we decompose e as follows

ey = (I = Rp)v(tn) + Rju(tn) — v = €5, + gy, (2.91)

where e ; is the interpolation error and e, is the discrete error of v. Then, taking into

V%

account (2.16), from (2.90)-(2.91) we have

(81, O) +(Anel s ) = (5 00) + ((ultn) +up) (€l + €n), 0n) = (Gels 0n), Von €292)

Theorem 2.3.23 Under hypothesis of Theorem 2.3.21. Let v}’ be the solution of (2.35),
and assume the following regularity for v exact solution of (2.8):

(ve, v) € L*(0,T; H™2(Q) x H'(Q)). (2.93)
Then, the a priori error estimate holds
e i 2z < C(T)(k +h™*H), (2.94)
where C(T) = K \Texp(K,yT'), with K1, Ko > 0 independent of (k,h).
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Proof. Taking vy, = ey, in (2.92) and using the Holder and Young inequalities, we obtain

1 n k n 1 n n
5 (1e2alB) + S0l + S1eal? < CIE Py
Ol ulta) + gLl + el + OI0 - Fpoat ). (295)

Using (2.17), (2.19) and proceeding as in (2.81) and (2.86), we bound the terms on the right
hand side in (2.95) and we deduce

tn
Se(llennllo) + lleballi < Ck/ lvee () [Eerrydt + Cllultn) + upllsllen ullg
tn—1

. . ChQ(erQ) tn
+Clultn) + w2 h®™ D flulta) |74 + T/ ez 2dt. (2.96)
tn—1

Then, multiplying (2.96) by k, adding from n = 1 to n = 7, we obtain (recall ¢ , = 0):

r tr r
leg g+ £ llexalls < CkQ/O v (O 11yt + Clles 7o 2k Y Ilultn) + uplfs

n=1 n=1

r tr
+ﬂW“W§meHmm$+OW“”/|mmww
0

n=1

Then, using (2.42), (2.77), (2.93) and (2.79), we conclude (2.94).

Theorem 2.3.24 Under hypothesis of Theorem 2.53.23, but assuming the regularity:
vy € L*(0,T; L*(Q)), (2.97)
the a priori error estimate
ey pllie mrmzwre < C(T)(k + any (2.98)
holds, where C(T) = K Texp(K,T), with Ky, K3 > 0 independent of (k,h).

Proof. Taking v, = gheg,h in (2.92) and using the Holder and Young inequalities, we
obtain

1 n k n 1 e n n n n
0 (heal}) + S0l + SUAetul < CIEIR -+ Cllutes) + i sleLalls
O k) + o)L 13+ O~ R ) 5 (2:99)
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Using the Holder inequality, the interpolation error (2.17), the stability property (2.20) and
the hypothesis (2.77), we have
(u(ta) +up)enlls < Cllultn) + Ryulta) 2 ll€sillo + Cliet ullzellen I Zs

< CR™D 4 Ol || 7s- (2.100)
Therefore, from (2.99), proceeding as in (2.81) and (2.86) and using (2.100), we deduce

~ tn
0c (Il ull) +ll Ane alle < Ck/ lvee (£) 15

tn—1

) ) 2mt1) ChZ(m+2) tn .
H(Cllulta) + uplzs + Olleypllze + CAR7" + ——— / [ 4202
tn—1
Now, in order to bound the term ||u(t,) + u}[|2s, we split the argument into two cases:

1. Estimates assuming h << f(k) (h small enough with respect to k): From
(2.79) we have that k) [ler, ||} < C(T)(k* + h*™ ), which implies that
n=1

. hm+1
lezalls < CT)E + —57)- (2.101)
Moreover, using the interpolation inequality (2.12), (2.79), (2.20), (2.77) and (2.101),
we obtain
luta) +uillZs < Clluta)lZs + ClIRRultn)llZs + Cllen ullzs < €+ Clley ullollen ulls
- hm—i—l
<C+C(T)k+h “)(WHW) <C (2.102)
under he hypothesis
h2(m+1)
i <O (2.103)

2. Estimates assuming k& << g(k) (k small enough with respect to h):
Using the inverse inequality [lus|zs < 5z llunllo for all wy, € Uy, (2.20), (2.77) and
(2.79), we have that

lu(tn) + upllZs < Cllulta)lzs + ClIRRulta)lZs + Cllenllzs
C c(T
< EHBZ,}LH(Z) +C < —(h >(l<:2 +p2mHy Lo <O
under the hypothesis
k‘2

& <C. (2.104)
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Therefore, since for any choice of (k, h) either (2.103) or (2.104) holds, we arrive at

tn
5o (llen 12+l Anel 12 < Ck / s (£) |2t
tn—1

2 amery  CRPMHR o 2

+Clleg pll7e + CRP™HY 4 T/ [ e (2.105)
tn—1

Multiplying (2.105) by k, adding from n = 1 to n = r, recalling that ), = 0 and using

(2.77), (2.93), (2.97) and (2.79), we conclude (2.98). &

2.4 Linear iterative methods to approach the Back-
ward Euler scheme

In this section, we propose two different linear iterative methods to approach the Backward
Euler scheme US, which are an energy-stable Picard’s method and the Newton’s method.
We prove the solvability and the convergence of these methods to the nonlinear scheme.

2.4.1 Picard Method

In order to approximate the solution (uj,o}) of the nonlinear scheme US, we consider the
following Picard method: Let (u} ™' o}~') € Uy x X}, be fixed. Given u} ' € U, (assuming
u) = u)~! at the first iteration step), find (ul, o) € U, x X, solving the linear coupled
problem:

1 1
—(uﬁl, up) + (Vu%, Vay) + (uﬁ;lo'il, Vuy,) = —(u’,f_l, up), Yuy € Up,
K g (2.106)

n—1

—(U%,é’h) + (Bhaﬁl,6h) — 2(u§;1VuﬁL,6h) = (G'h ,5‘h), V&h € Eh,

k
e, — v o Jlers, = o lo

ety o

)

until the stopping criteria max{ } < tol (with tol > 0 being a

tolerance parameter).

Theorem 2.4.1 (Unconditional Unique Solvability) There ezists a unique (u}, o)
solution of (2.106).
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Proof. Since (2.106) can be rewritten as a square linear algebraic system, it is sufficient
to prove uniqueness. Suppose that there exist (uj, ;, o7, 1), (4}, 5, 6} 5) € Uy X Ty two possible
solutions of (2.106). Then defining uj, = u},; — uj,, and o}, = 0'5171 — o}, ,, we have that

(u, at) € Uy x Xy, satisfies

(ulh,ﬂh) + (VUlh, Vﬂh) + (uil_l(fé“ Vth) =0, Yuy € Uy, (2.107)

| =

1
E(ah,o'h) + (Bpah, o) — 2(ub 'Vl a4) =0, Vo, € 2. (2.108)

1
Taking 4, = v} and &, = 502 in (2.107)-(2.108) and adding, the terms (ul 'Vu!, o)
cancel, and we obtain

1 1
2]{”(“2,0';1)”0 2”(VU§L’J§1)H%2><H1 <0,

and thus we conclude that ||(u},, o},)[1 = 0, which implies uj, ; = uj,, and o, ; = o7}, ,. W

Theorem 2.4.2 (Local uniqueness of solution of scheme US and Convergence of
Picard’s method) Given (u} ', o} "), there exists r > 0 (large enough) such that if

El(up~ o DT and  kr'  are small enough, (2.109)

then the Scheme US has a unique solution (u},a?) in B,.((u)~',a}™") = {(u,0) € Uy x
=it e — o Y| < r}. Moreover, the sequence of solutions {u!, ol }i>0 of the
ztemtwe algomthm (2.106) (assuming (u),0?) = (u}~', 0}~ at the first iteration step),

converges to (ull, a?) strongly in H'(Q).

Proof. We consider the operator R : U, — Uy, given by R(u) = u, where (u, o) satisfies
(2.106) with vl ' =@ and (u}, o) = (u, o), that is,

1 - 1

E(u,ﬂh) + (Vu, Vay,) + (uo, Vay,) = E(uz_l,ﬁh), Yy € Up, (2.110)
1, _ SO L, 1 _
E(O’,O'h) + (Bro, o) — 2(uVu, o) = E(Uh ,0), Yo, € . (2.111)

Observe that from Theorem 2.4.1, we have that for any u € U, there exists a unique
(u, ) € Up x Xy, solution of (2.110)-(2.111). Thus, R is well defined. Now, before to prove
that R is contractive, we will construct a ball B, (u}™') = {u € Uy : |[u —u} |y < r} C U,
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such that R(F (up™")) € B,(up™"). In order to define r, we consider w = u — u}~' and
T=0-0}" Then from (2 110) (2.111) we have that (w, ) verifies

w,ﬂh + V’LU,V?]}L = —(ﬂ‘r,Vﬂh — (Vu”_l,Vﬁh) — (ﬂa’"‘l,Vﬂh y Vﬁh € Uh, (2112
h h

S e

(’T, &h) + (Bh"l', &h) = Z(ﬂVw, &h) — (BhO'Z_l, &h) + Z(ﬂVuZ_l, &h), V&h S Eh. (2113)

1 ~
Testing by u, = w and &, = 57 in (2.112)-(2.113) and adding, the terms (uVw,T)

cancel, and using the fact that / w = 0 as well as the 3D interpolation inequality (2.12),
Q
we obtain

1 1 1 e
gl DG +5 1w, TIT < g!l(w i+ Cllr ™ o DI
+§W—UZ_1H? —H i+ —H(w,T)H?+CH(UZ*,UZ‘l)HilH(w,T)H?-H‘l)

Therefore, from (2.114) we deduce

1 1 n— n—
o~ I DI | G, m)IE + 1w, T)E < Cllp ™ o DI + —Hu —uy, f[2-115)
. 1
Thus, if k£ < from (2.115) we conclude

20| (up~ o I
n— n— Ie n—

ICw, DT < Clles ™ o I+ Sl = w3 (2.116)

Then, choosing r > 0 large enough such that
Ol o DI < 5% (2.117)
from (2.116) we deduce that R(B,(u} ) (™). Then, we take the restriction of R
to Br(u}f__l), that is, R, : B,(u}') — B,(u}"). Let’s prove that R, is contractive. Let
Uy, Uy € B.(u}™"), and (uy, 1) and (ug, o2) solutions of (2.110)-(2.111) corresponding to i,

and 1y respectively (i.e., R,(u1) = uy and R, (u2) = uz2). Then, from (2.110)-(2.111) we have
that (ug — ug, 01 — 03) € Uy, X Xy, satisfies

O

1 - -~
E(ul —ug, Up) + (V(uy —us), V) + (uy (o1 — 09), Vi) + ((uy — uz) oo, Vi) = 0, Vay, € Uy,
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1 ~ _ ~  ~ _ _
%(0'1—0'2,6'h)+(8h(0'1—0'2),&h)—2<U1V<U1—UQ),O'h)—Q((ul—'U,z)V'LLQ, O'h) = O, Va’h € Eh-

1 -
Testing by @), = uy —usg, ) = 5(0'1 —05) and adding, the terms (u; (o1 —o02), V(u; —u3))
cancel, and using the Hélder and Young inequalities, the 3D interpolation inequality (2.12)
and taking into account that fQ u; — ug = 0, we obtain

1 1
— [[(u1 = ug, 01 — @)[§ + [Jur — ua)} + §||01 — ool

2k

< Clluy — uglli(loall1llur — uallzs + |Juzll1|loyr — o2l zs)

1, - 1 1
< Z“ul — Ual? + §||U1 — ug|? + 1”01 — 3|7+ Ol (w1 — ug, 01 — 9) |3l (12, 02) |11
and thus, we deduce that

1 1
EH(Ul — Uz, 01 — o) |5 + [lur — uall + §Hdl — ool
1. -
< §IIU1 — W] + C|(u1 — uz, 01 — 02) [[5|| (ua, 072) |I1- (2.118)

Therefore, since from (2.116) and (2.117) we have ||(uz, o9)||F < C(r* + ||(up ", oY1), if

1 1
o> Cr* and o > Cll(uy, o 1||1), from (2.118) we have

~ - 1.
IR (1) — R ()|} < §||U1 — W7,

which implies that R, is contractive. Then, as a consequence of the Banach fixed point theo-
rem, we conclude that there exists a unique fixed point of R,., R,(u) = u. Thus, (u, o) is the
unique solution of the scheme US in B, (u}"'). Additionally, we conclude that the sequence
of solutions {ul, o} of the iterative algorithm (2.106), where (u,0%) = (v}~ ', o} ),

converges to the solution (u}, o).

Remark 2.4.3 In the case of 2D Domains, from estimate (2.54), the restriction (2.109),
can be relaxed to k < Ky, where Ky is a constant depending on data (£, ug, o), but inde-

pendent of (k,h) and n.

Remark 2.4.4 We have that the restriction (2.109), is equivalent to (2.36). Therefore,
under hypothesis of Theorem 2.3.21 and arguing as in Remark 2.3.22, the conclusion of
Theorem 2.4.2 remains true only assuming k small enough.
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2.4.2 Newton’s Method

In this subsection, in order to approximate the solution (uj, o)) of the nonlinear scheme Us,
we consider Newton’s algorithm: Let (up=, o) € Uy x =y, be fixed. Given (ul ', ab ") €
Uy x Xy, (assuming (u), %) = (u} ", o7 ") at the first iteration step), find (v}, ') € U, x %,

such that

(1 1
k(uhvuh) + (Vuy, Vag) + (uy 'y, Vi) + (w0, Vi) = () + (u w, oy V),
1 [ B I = 2 l—lvl =
E(Uhaa'h)+( WO, Th) — 2(uy, Vuy,, 04)
1
\ 2Vl o) = (o an) — 2 VL 5,
(2.119)
-1 1—1
for all (ay, ) € Uy x 3p,; until the stopping criteria max { [ Qih HO, o — : HO} <
g, Mo s, ||o

tol.
The following lemma will be necessary to obtain the convergence of Newton’s method.
Lemma 2.4.5 Let X be a Banach space and consider a sequence {e;};>0 C X, such that
ledl3 < O (Hel,lH?X)z, Vi>1 and |eol5% is small enough.

Then, e; converges to 0 as | — +o00 in the X-norm.

In the following theorem, we will use this lemma to prove the convergence (u},a') —

(uf, o)) in the H*(Q)-norm.

Theorem 2.4.6 (Conditional convergence of Newton’s Method) Let (u}, o)) be a
fized solution of the scheme US and let (u, o) be any solution of (2.119). There exists
0o > 0 small enough such that if

1(e2, T < 0o,  K||(u, o)} and k(&)* are small enough, (2.120)
then {ul, ot }i>0 converges to (u},a?) in the H(Q)-norm as | — +oo.
Proof. We can define problem (2.34) in a vectorial way,

(07 0) = <F(uza 02)7 (ﬂfw 6h)> = ((Fl(uzv 02)7 ah>’ <F2(UZ= UZ)? 6-h>) ) (2'121)
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where each F;(uj, o)) corresponds with the equation (2.34); (i = 1,2). Therefore, Newton’s
method (2.119) reads

(F'(u, ' ol Dy, —up o), — o), (U, 0)) = —(F(ul ' o)), (tn, a1)),
which can be rewritten as
(0,0) = (Fy(uy, ' oh "), tn), (Faluy ', o) 7h), an))
+((F (uy, 02 Dy, —uy, o), — o ) an), (Fy(uy, o ) (g, —uy o, — o), 04)(2.122)

Moreover, from a vectorial Taylor’s formula of F(u},o?) with center at (u} ' o} '), and
using (2.121), we have that

(0,0) = (Fy(uf o). i), (Folos, o3, 1)
(R (o), ), (Pl o), o)

(B o =l o = ) ), (B3 ) — o — ), )
S (G — ot = ol E 0 g o o) ),

((up — uﬁz Lol — O'h DEE) (u"re, o) (up — Uiz Lo — 0'5;1)75'h>)7 (2.123)

where u" ¢ = cu} + (1 — e)ul, !, 0" = co? + (1 — )l !, and F! and F/ denote the

Jacobian and the Hessian of F; (i = 1,2), respectively. Therefore, denoting by el = u} — u!,

and €, = o7 — o' from (2.122)-(2.123), we deduce
oF OF:
<55wt%atwem+~Efo%afwewnm>

= —§<(€u DR (e o) (el el @), (2.124)

l
u

= —— (et e E) (u e o) (el el ), o). (2.125)

Thus, from (2.124)-(2.125) and taking into account that F} are constant matrices, we arrive
at

1
E(ez,ﬂh) + (Ve Vay) + (el ol Vay) + (uh e, Va,) = — (e tel ! Vay,), Va, € Uy,
(2.126)
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1
E(eﬁ,,&h) + (Brel,an) +2(ul e,V - a,) = —(|eS 2, Vo), Vo, eX,.  (2.127)

Testing by 1y, = ¢!, and &, = €. in (2.126) and (2.127) respectively, taking into account
that / 6; = 0 and using the Holder and Young inequalities as well as the 3D interpolation

Q
inequality (2.12), we obtain

1 1 _ _ 1
(e eIl + 11(eh )T < Sl (e o)l + Clilen, e 5l (i o DI+ Cll(ey ™ e Ml
(2.128)
In order to use an induction strategy, we can assume the hypothesis
(e es DT < do,
which implies that
1y, o D < MlCuis, i)l + v/ 0o, (2.129)

where dp > 0 is a small enough constant. Therefore, from (2.128)-(2.129) we have
1 n n 1 — _ 2
(E = Cll(up, o)l + (50)2)> (ew ea)llG + 511l )T < C (e e MIT) - (2:130)

1 1
Thus, if o7 > C||(ufr, o] and o C(8)* (which is possible owing to (2.120), and
(2.120)3), from (2.130) we obtain

u) o

_ — 2
(b el < C (e g DIT)™ (2.131)

Therefore, choosing ¢, small enough such that §,C' < 1, the inequality ||(e!, eL)||? < & holds.

u) o
Indeed, if we assume ||(e2, e2)||? < g, we obtain the following recurrence expression

(el eI < e b3 < - < (e, Q)R < (2.132)

u) o u) o

Hence, from (2.131) the hypothesis of Lemma 2.4.5 are satisfied, and we conclude the con-
vergence of (ul,a') to (u}, o) in the H'(Q2)-norm. 1

Remark 2.4.7 If (2.54) is satisfied (recall that this estimate holds, at least, in 2D Domains),
we can determine &y in terms of k. Indeed, from (2.58), we have that

1(ehs el = Il(up —up™" o — o T < k(Ky + Ksk),

u) o

and thus, we consider 0y := k(K4 + Ksk). Then, hypothesis (2.120) in Theorem 2.4.6 are
only imposed on k, and (2.120) is reduced to k < Ky, where Ky is a constant depending on
data (2, ug, o), but independent of (k,h) and n.
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Remark 2.4.8 Since restriction (2.120)y is equivalent to (2.36), analogously as in Remark
2.3.5, under the hypothesis of Theorem 2.3.21, we have that the conclusion of Theorem 2.4.6
remains true assuming k small enough, (2.120); and (2.120)s.

Now, observe that from (2.132), we have the following uniform estimate for (ul,o?)
solution of (2.119):

It bl < ll(ug, o)l + Voo, VI = 0. (2.133)

Then, using the above estimate, we will prove the conditional unique solvability of (2.119).

Theorem 2.4.9 (Conditional Unique Solvability) Assume (2.120). Then there exists
a unique (ul, at) solution of (2.119).

Proof. By linearity, it suffices to prove uniqueness of solution of (2.119). Suppose that

there exist (uj, ;, 07} 1), (U}, ,0%,5) € Up X Xy two solutions of (2.119). Then, denoting uj, =

! ! 1l l :
Uy — Up o and oy = 0y | — 0 5, We arrive at

1
E(uﬁl, up) + (Vub, V) + (ul ol Vi) + (uhal™ Vi) =0, Yay, € Uy, (2.134)

1
E(a‘%, an) + (Brot, an) — 2t 'Vl a4) — 2(ul, Vul Tt 5) =0, Vo, € 3. (2.135)

1
Taking @, = ul, and &), = 50’2 in (2.134)-(2.135), taking into account that /ulh = 0 and

Q
using the Holder and Young inequalities as well as the interpolation inequality (2.12), we
obtain

1 !

1 1 o
o7 b )16 + 511w o)l <l o) + CliCw, s o DI ks oh)IG,

which, using (2.133) (recall that (2.133) holds assuming (2.120)), implies that

1 "o 1

= = Cllug, o)t + (00)*)| I (wh, on)IIG + 5 (b )17 < 0. (2.136)
Therefore, assuming (2.120)5_3, from (2.136) we conclude that ||(u},a?})|l; = 0, and there-
fore, uﬁm = uj, and 0'271 = alhg. Thus, there exists a unique (u, o) solution of (2.119).
1
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2.5 Numerical results

In this section, we consider the nonlinear scheme US with right hand sides f(x,t), g(x,t) and
h(x,t)in (2.34) and (2.35) respectively, where these right hand sides are chosen corresponding
to the exact solutions u = e~*(cos(2mx)cos(2my) +2), v = (1+ sin(t))(cos(2mx)cos(2my) + 2)
and o = Vo = (1 4 sin(t))(—2rsin(2nx)cos(2my), —2wsin(2my)cos(2mx)). In our compu-
tation, we take Q = [0,1] x [0,1], and we use a uniform partition with m + 1 nodes in
each direction. We choose the spaces for u, o and v, generated by Py, Py, Po-continuous FE,
respectively. The linear iterative method used to approach the nonlinear scheme US is the
Newton Method, and in all the cases, the iterative method stops when the relative error in
L2-norm is less than e = 1079,

In order to check numerically the error estimates obtained in our theoretical analysis,
we choose k& = 107° and the numerical results with respect to time 7" = 0.001 are listed
in Tables 2.1-2.3. We can see that when h — 0, ||u(t,) — u}|| 21 is convergent in optimal
rate O(h), and [ — R | p2rrs, () — ez, [l — REGE | oo g, [0(t) — vl eesms and
lop — RYvl|| o1 are convergent in optimal rate O(h?).

mxm | ||u(ty) —u}llperz | Order | |u}f — Rpul||per2 | Order

40 x 40 25 %1073 - 15 x 1073 -

50 x 50 1.6 x 1073 1.9970 9 x 1077 1.9846

60 x 60 1.1 x 1073 1.9980 7 x107% 1.9896

70 x 70 8 x 1077 1.9985 5 x 1077 1.9923

80 x 80 6x 1014 1.9989 4x1071 1.9938
Table 2.1: Error orders for ||u(t,) — u}||p~r2 and ||u} — Ryuj|| L.

mxm | ||u(ty) —u}|pzgr | Order | [|u} — Ryup||p2pgr | Order
40 x 40 1.11 x 1072 - 5.219 x 10~4 -

50 x 50 8.9 x 1073 0.9978 3.348 x 104 1.9896
60 x 60 7.4 %1073 0.9985 2.328 x 1074 1.9937
70 x 70 6.3 x 1073 0.9989 1.711 x 1077 1.9966
80 x 80 5.5 x 1073 0.9992 1.310 x 10~% 1.9988

Table 2.2: Error orders for ||u(t,) — u}||z2g: and ||u] — Riu}|| p2p.
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mxm | ||v(t,) — vpllpenr | Order | ||vp — Rjvp|lpeop: | Order

40 x 40 1.08 x 102 - 9.875 x 1074 -

50 x 50 6.9 x 1073 1.9985 5.526 x 1012 2.6014

60 x 60 4.8 x 1073 1.9990 3.448 x 1071 2.5874

70 x 70 3.5x 1073 1.9993 2.318 x 1071 2.5768

80 x 80 2.7 x 1073 1.9995 1.645 x 1077 2.5684
Table 2.3: Error orders for ||v(t,) — v} ||zemr and ||v)f — Ryvp|| poopr -
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Chapter 3

Asymptotic behaviour for a
chemo-repulsion system with
quadratic production: The continuous
problem and fully discrete numerical
schemes

3.1 Introduction

The directed movement of cells in response to a chemical stimulus is known in biology as
chemotaxis. More specifically, if the cells move towards regions of high chemical concentra-
tion, the motion is called chemoattraction, while if the cells move towards regions of lower
chemical concentration, the motion is called chemorepulsion. Models for chemoattraction
and chemorepulsion motion has been studied in literature (see [4, 9, 7, 10] and references
therein). One of the most important characteristics of chemoattractant models is that the
finite blow up of solutions can happen in space dimension greater or equal to 2; while in
chemorepulsion models this phenomenon is not expected. Many works have been devoted
to study in what cases and how this phenomenon takes place.

In those cases in which blow-up phenomenon does not happen, it is interesting to study
the asymptotic behaviour of the solutions of the model. In fact, in [14], Osaki and Yagi
studied the convergence of the solution of the Keller-Segel model to a stationary solution
in the one-dimensional case. In [8], the convergence of the solution of the Keller-Segel
model with an additional term of cross-diffusion to a steady state was shown. In [4] the
authors proved the convergence to constant state for a chemorepulsion model with linear
production. Therefore, taking into account the results above, the aim of this paper is to
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study the asymptotic behaviour of the following parabolic-parabolic repulsive-productive
chemotaxis model (with quadratic production term):

Ou—Au=V-(uVv) inQ, t>0,
ov—Av+v=u?in Q, t>0,

%:@:0 on 02, t >0,

On On

ulz,0) = uolw) > 0, v(@,0) = vo() > 0 in O,

(3.1)

where () is a n—dimensional open bounded domain, n = 2,3, with boundary 9¢2; and the
unknowns are u(ax,t) > 0, the cell density, and v(x,t) > 0, the chemical concentration. This
model has been studied in Chapter 1, and it was proved that model (3.1) is well-posed: there
exists global in time weak-strong solution in the sense of Definition 3.2.1 (below), and, for
2D domains, there exists a unique global in time strong solution.

On the other hand, another interesting topic is to study the asymptotic behaviour of fully
discrete numerical schemes approximating (3.1). In fact, in [5] Guillén-Gonzélez and Samsidy
studied and proved asymptotic convergence for a fully discrete finite element scheme for a
Ginzburg-Landau model for nematic liquid crystal flow. In [12] Merlet and Pierre studied
the asymptotic behaviour of the Backward Euler scheme applied to gradient flows. It is
important to notice that, in chemotaxis models, there are few works studying large-time
behaviour for fully discrete schemes. We refer to [2], where the authors shown convergence
at infinite time of a finite volume scheme for a Keller-Segel model with an additional term
of cross-diffusion. Meanwhile, the behavior at infinite time of a fully discrete scheme for
model (3.1) seem to be still an open problem. For this reason, in this paper we also study
the large-time behavior for two fully discrete numerical schemes associated to model (3.1).

This chapter is organized as follows: In Section 3.2, we study the asymptotic behavior
of the global weak-strong solutions for the model (3.1), and we prove the exponential con-
vergence as time goes to infinity to a constant state. In Section 3.3, we analyze this same
behavior for two fully discrete numerical schemes associated to system (3.1): the nonlinear
backward Euler in the variables (u,v), and the nonlinear scheme defined in Chapter 2 by
introducing the auxiliary variable & = Vv. Moreover, in order to analyze the asymptotic
behaviour for the backward Euler scheme, we study its solvability and unconditional energy-
stability. Finally, in Section 3.4, we compare the numerical schemes throughout several
numerical simulations.

3.1.1 Notation

We recall some functional spaces which will be used throughout this paper. We will consider
the usual Sobolev spaces H™(£2) and Lebesgue spaces LP(2), 1 < p < oo, with norms || - ||,
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and || - ||z», respectively. In particular, the L?(€)-norm will be denoted by || - [|o. We denote
by HL(Q) ;== {uc H'(Q) : u-n =0 on 0} and we will use the following equivalent norms
in H'(Q) and HL (), respectively (see [13] and [1, Corollary 3.5], respectively):

2
|Mﬁ=mm%+(éﬁ, vu € H(Q), (3.2)

ot = lloll + ot a[§ + IV - o5, Vo € Hy(Q). (3.3)
In particular, (3.3) implies that
[Vollf = [[Vol[§ + |Av]§, Yv: Vo e H (Q).

If Z is a general Banach space, its topological dual will be denoted by Z’. Moreover,
the letters C, K will denote different positive constants (independent of discrete parameters)
which may change from line to line (or even within the same line).

3.2 Continuous problem

First we give the following definition of weak-strong solutions for problem (3.1).

Definition 3.2.1 (Weak-strong solutions) Given (ug, vo) € L*(Q) x H(Q) with ug, vy >
0 ae. © €, a pair (u,v) is called weak-strong solution of problem (3.1) in (0,+00), if

u>0,v>0 ae (t,x)e€ (0,400) x Q,
(u,v) € L=(0,+00; L2(Q) x H'(Q)) N L*(0,T; H(Q) x H*(Q)), VT >0, 5.4
B e LY(0,T; (H'(Q))) and 9w e LY(0,T;L*Q)), VT >0, '

where ¢ = 2 in 2D and ¢’ = 4/3 in 3D (¢’ is the conjugate exponent of ¢ = 2 in 2D and
q =4 1in 3D); the following variational formulation holds

T T T
/ (O, ) + / (Vu, Vi) + / (W0, Vi) =0, Vi e L0, T; H'(Q), ¥T >0, (3.5)
0 0 0

the following equation holds pointwisely
o —Av+v=u? ae (t,z)€ (0,+00) x Q, (3.6)

the initial conditions (3.1)y are satisfied and the following energy inequality (in integral
version) holds for a.e. to,t; 1t > t9 > 0:

Elu(tr) o(t)) ~ Eulto). otw) + [ (IVa(s)lf + 3IVe@IR) ds<0. @7)

to

where E(u(t), v(t)) = zllu®)[§ + FIVv@)IIE.
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Remark 3.2.2 [n particular, the energy inequality (5.7) is valid for to = 0. Moreover, (3.7)
shows the dissipative character of the model with respect to the total energy E(u(t), v(t)).

Remark 3.2.3 (Positivity) u > 0 in 2D domains and v > 0 in any (2D or 3D) dimen-
sion are a consequence of (3.4)-(3.6). Indeed, this follows from the fact that in these cases
we can test (3.5) by u_ := min{u,0} € L*(0,T; H(Q)) and (3.6) by v_ := min{v,0} €
L*(0,T; H*(Q)) < L*(0,T; L*(2)).

Observe that the problem (3.1) conserves in time the total mass [, u, because taking

@=1in (3.5),
i(/u)zO, ie. /u(t):/uo, vt > 0.
dt Q Q Q

Moreover, integrating (3.6) in Q we deduce the following behavior of [, v:

il e

We recall that in Chapter 1 it was proved the existence of weak-strong solutions of
problem (3.1) (satisfying in particular the energy inequality (3.7)), through convergence of
a time-discrete numerical scheme associated to model (3.1).

3.2.1 Convergence at infinite time

In this subsection, we will prove the exponential convergence of any weak-strong solution
(u,v) of problem (3.1) obtained by Galerkin approximations. First, we will prove exponential
bounds for weak-strong norms a.e. ¢t > 0.

Theorem 3.2.4 Let (u,v) be any weak-strong solution of problem (3.1) obtained by Galerkin
approzimations. Then, the following estimates hold

| (u(t) — mo, Vo(t))||z < Coe™,  a.e. t>0. (3.8)
[o(t) — (mo)?[lg < Coe™, Wt >0, (3.9)
1
where mg = @/uo and Cy is a positive constant depending on the data (ug,vo), but
Q

independent of t.
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Proof. For each m > 1, we say that (u™,v™) is a Galerkin solution if u™ : [0, +00) — U,
and v™ : [0, +00) — V,, are € functions and satisfy

(O™, u) + (Vu™, Vau) + (u™Vo™, Vu) =0, YueU,, t>0
(O™, 0) + (Vu™, Vo) + (v™, 0) — (u™)?,0) =0, Yo €V, t >0, (3.10)
u™(0) = u' := Pp(uop), V™ (0) = v == Qum(vo),

where U, and V,, are finite dimensional spaces generated by orthonormal eigenfunctions
of the operator (—A + J), with A and J being the laplacian and identity operators; P, :
L*(Q) — U, denotes the projection from L*(Q) onto U, and Q,, : H'(Q) — V, the
projection from H'(§2) onto V,,. Then, (3.10) can be regarded as a Cauchy problem for a
first order ordinary differential system in time, and the classical existence and uniqueness
theory for ordinary differential systems implies that, for every m > 1, there exist T,, > 0
and unique functions u™ : [0,7,,) — Uy, and V,, : [0,T,,) — V,,, that solve (3.10), with either
T, = +oo or lim sup ,_ . |[(u™(t),v™(t))|lo = +oo. Now, we are going to deduce some
estimates for (u™,v™) showing that only 7, = +o0 can be true.

We define ™ := u™ —myp and taking & = u™ and v = —%Avm in (3.10), we arrive at
| O P | 112 oy 1 o
M(Ilu ®llo + 511V (t)llo) + @@l + S Ivem @)1 = o, (3.11)

from which we deduce that

{ (u™, Vo™) is bounded in L>®(0, +-o00; L3(Q) x L*(Q2)),

(Vu™, Vo™) is bounded in L?(0, +o0; L*(Q) x H*(Q)). (3.12)

2
Moreover, Moreover, we observe that the function y™(t) = ( Jov™(x, t)da:) satisfies (y™)'(t)+
y™(t) < w™(t), with w™(t) = ||[u™(t)||s. In fact, it follows by taking o = 1 in (3.10), multi-

plying the resulting equation by / v™(x,t) dr and using the Young inequality. Therefore,
)

t
y"(t) =y™(0)e " + / e~ =9) ™ (s) ds, which implies that
0

2 2
</vm(m,t) dm) < (/vgn(m) d:z:) ™[4 o oeizeys VE > 0. (3.13)
Q Q
Then, from (3.12) and (3.13), we deduce that
v™ is bounded in L>(0, +-o00; H'(Q)) N L*(0,T; H*(2)), VT > 0. (3.14)
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Taking into account (3.12) and (3.14), we can deduce (J;u™, 9, Vv™) is bounded in
LA3(0,T; HY(Q) x H'(Q)'). Therefore, proceeding as in Theorem 1.4.11, we obtain that
there exists a subsequence m’ of m, and (u,v) weak-strong solution of (3.1), such that
(u™ ™) converges to (u, v) weakly-* in L=(0, 4-00; L2(Q) x H'(Q)), weakly in L(0, T; H'(Q)x
H?(Q)) and strongly in L*(0,T; L*(Q) x H'(Q))NC([0,T]; H(Q)' x LP(Q)), for any T > 0,

1 < p < 6. Therefore, in particular
@™ (1), Vo™ O)lls = @), Ve@)llg, ae. t>0. (3.15)

Moreover, from the equality (3.11), we deduce
~m/! 1 m! m’ m! _
@ (Olg + FIVe™ (0I5 < [I(ug" —mo, Veg™)lge™, ¥t = 0. (3.16)

Thus, from (3.15)-(3.16), we arrive at (3.8). Finally, testing (3.6) by ¥ := v — (mg)?, one can

obtain
1d

57 IPOIE + @)1 = /((U(ﬂﬂﬂf))2 — (mo)*)0(, t)de,
2dt Q
which, using the Holder and Young inequalities, implies that

d, .
TG + IO < [l(t) + moll7s][u(t) —moll. (3.17)

Therefore, from (3.17) and (3.8), we can deduce for all ¢ > 0,
t
BONE < llvo — (mo)*[lge™ + €t/0 lu(s) = mollgllu(s) + mol[zse*ds
t
< Coe '+ C’Oe_t/ |u(s) + mo||3se” *e’ds
0

t t
< Cyet + Chet / Vu(s) | 2e=ds + Coe~ / u(s) + mo||Ze—*ds,
0 0

from which, using (3.12), we conclude (3.9). 1

In next theorem, we will show, for large times, exponential bounds for more regular
norms.

Theorem 3.2.5 Let ¢ > 0. Under hypothesis of Theorem 3.2.4, there exists a constant

C1 > 0 such that if e? < ﬁ it holds

| (u(t) — mo, Vo(t))|]7 < 2ee2(72) g t > to(e), (3.18)

with ty == ta(e) > 0 a large enough time that will be obtained in the proof.
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Proof. We define F,,(t) := [|a™(t)||7 + 3||Vo™(¢)[|7. Then, from (3.8) and (3.11), we have
that

+o0
/ Fon(s)ds < ||(™(8) — mo, Vo™ ()3 < Coe?,
t

which, in particular, implies that for all § > 0, there exists a large enough time ¢ty = t5(5) > 0
such that e
/ Fo(s)ds <. (3.19)
to

Then, taking into account that F,,(t) satisfies (3.19), proceeding as in [3, Lemma 2.1], we
have that for all 0 > 0, t > to(d) and 7 > 0, there exists a time ¢ € [t,t + 7] such that

Fn(t) < —. (3.20)

T

Indeed, the set of points t € [t, ¢ + 7] satisfying (3.20) has measure greater than 7/2. Now,
in order to obtain strong estimates, we take & = —Au™ and v = $A%™ in (3.10), and
proceeding as in (1.33), we arrive at

d/ 1, . . m o m
E(HW (O)llg+5 1140 (t>||3)+HAu Olls+HIAv™ @[T < Clla™ @) +C Vo™ @) (3.21)

Then, adding (3.11) and (3.21), we have

a
dt

3
’

(@I + SIvem @) + @ @)1 + Ve @13 < C (Il 1 + 5 1vv@)]3)
or equivalently, F,(t) satisfies
FL(t) + Gn(t) < C1FE,(t)?, (3.22)

with G,,,(t) = [[a™(#)]|3 + [[Vv™(t)||3. Therefore, taking into account that F,(t) satisfies
(3.22), proceeding as in [3, Lemma 2.2|, we can deduce that for any € > 0 and t; > 0,

Fot))<e/2 =  FE.({t)<e Vte [tl,tl + (3.23)

20152:| .

Thus, as consequence of (3.20) and (3.23), following the proof of [3, Theorem 2.3|, we con-

clude that for any € > 0, taking 7 = 401152, 0= 16é15 and to = to(0) such that F,,(t) satisfies

(3.19), where C) is the constant in the estimate (3.22), it holds

1

Fm(t> S g, Vit Z tg(&) = t0(5) + W

(3.24)
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Therefore, from (3.22) and (3.24), using the fact that G,,(t) > F,,(t) and taking € such that

2 o 1
€° < 550, we deduce

and
Fi(t) < Fo(ty)e 20712) < gema(12) g > ¢, (3.25)

Moreover, from (3.24), (3.22) and (3.19) we have that (u™, Vo™) is bounded in
L>(ty, +oo; HY(Q) x H'(Q)) N L%(ty, +o00; H2(Q) x H?*(Q)). Then, using the fact that
(0u™,0,Vu™) is bounded in L?(ty, +o00; L?(Q2) x L*(2)), a compactness result of Aubin-
Lions type implies that (@™, Vo™) is relatively compact in L?(ty, t3; H*(Q) x H'()) for all
t3 > ty. Therefore, in particular for some subsequence m’ of m, we have

1@ (1), Vo™ (O)IIF — @), Vo)IlF, ae. t>ts,

and using (3.25) we arrive at (3.18). &

3.3 Fully Discrete Schemes associated to system (3.1)

In this section, we study the large-time behavior for two fully discrete schemes associated to
model (3.1): the nonlinear backward Euler for model (3.1), and the nonlinear scheme defined
in Chapter 2 by introducing the auxiliary variable & = Vuv. Along this section we will use
repeatedly the following result (see[6, Lemma 4.1]):

Lemma 3.3.1 Assume that 0,k > 0 and §,d"™ > 0 satisfy
(1+ 6k)d"™™ — d" < Bk, Vn > 0.

Then,
d" < (14 0k)~(mogro 4 5715 W >ng > 0.

3.3.1 Scheme UV

The first scheme that will be studied in this paper is obtained by using FE backward Euler
for the system (3.1) (considered for simplicity a uniform partition of [0,7] with time step
k=T/N : (t, = nk)"=l’). Concerning the space discretization, we consider {T},}s~0 be a
family of shape-regular and quasi-uniform triangulations of {2 made up of simplexes (triangles
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in two dimensions and tetrahedra in three dimensions), so that Q = U ke, I, where h =
maxge, hi, with hg being the diameter of K. Further, let N, = {a;}:es denote the set
of all the nodes of Tj,. We choose finite element spaces for v and v, which we denote by
(Un, Vi) € H' x W0 generated by (P,,, Py, )-continuous FE, with m > 1. Then, we consider
the following first order in time, nonlinear and coupled scheme (Scheme UV, from now on):

Initialization: Let (u),v)) € Uy, x V}, be a suitable approximation of (ug,vo) € L*(Q) x

1
HIQ),aSh%O,With—/UOZ— u
( ] Jo" = 10 s

Time step n: Given (u} ', v}"') € Uy x V3, compute (ul,v}) € Uy, x V}, solving

o = my, and satisfying (3.27) below.

(5tu’;j, ﬂh) + (VUZ, Vﬂh) + (UZVU,TLL, Vﬂh) =0, Yuy, € U, (3 26)
(5,51]2, ’Dh) + (VU,YZL, V@h) + (UZ, T}h) — ((UZ)2, ’Uh) = O, V’Dh S Vh, ‘
a® — anfl
where we denote in general §,a" = — For the initial approximation (u?,v?) € U, xV},
we assume that there exists a positive constant C' independent of (k, h) such that
s vz < Cll (o, vo) ||z xa- (3.27)

Existence, energy-stability and convergence

Assuming that the functions u;, =1 € U, and v, = 1 € V},, we deduce that the scheme UV
conserves the total mass fQ uy, that is,

/uz:/uz1:...:/u?17 (3.28)
Q Q Q

and we have the following behavior for [, v}
0 (/ vﬁ) = /(uZ)2 —/UZ. (3.29)
Q Q Q

Theorem 3.3.2 (Unconditional existence) There exists (uj,v}!) € U, XV}, solution of
the scheme UV.
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Proof. The proof follows the argument of Theorem 1.4.3, by using the Leray-Schauder
fixed point theorem. g

Let Ay : V), — Vj, be the linear operator defined as follows
(Apvn, 0n) = (Vop, VoR) + (vg, 0r), Yo, € V. (3.30)
Then, the discrete chemical equation (3.26)s can be rewritten as
(83, o) + (Apvy, o) — (uf)?,9) =0, Yo, € Vj,. (3.31)
Moreover, the following estimate holds (see for instance, Lemma 2.3.1):

[vnllwie < CllApvnllo, Yon € Vi, . (3.32)

Lemma 3.3.3 (Unconditional stability) The scheme UV is unconditionally energy-
stable. In fact, if (u,,v,) is any solution of UV, then the following discrete energy law

holds

S8 (o103 + 16V 3 + IVl + SI1(Aw — Tl + 5 IV R = 63.33)

L, ., | S
where E(uf, v}) = §||Uh||(2) + ZLHVUhHS'

1
Proof. Taking u), = uj in (3.26)1, v, = §(Ah — I)vy in (3.31) and using (3.30), we obtain

1 1 1
[ s+ IVl + 5 [ Ve 690+ S = DRl + 5IVeRIE =0, (334

To get (3.34), the fact that (u})® € V}, is essential (which holds from the choice (P, Pa,,)
approximation for (U, V},)) in order to cancel the terms (uj Vo}, Vu}') and

1 1
—2((up)?, (Ap, — I)v}). Moreover, using the formula a(a — b) = §(a2 —b%) + é(a —b)? we
deduce that

1 1 1 k k
by [ upa = o (GG + {IVARIR) + 1o+ 51015 535)
Q Q
Thus, from (3.34)-(3.35), we deduce (3.33). &

From the (local in time) discrete energy law (3.33), we deduce the following global in
time estimates for (u}, v}') solution of the scheme UV:
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Lemma 3.3.4 (Uniform Weak estimates) Let (u},v}}) be a solution of the scheme UV.
Then, the following estimates hold

(g, VORI +R2D (G, 6,V o) I3
m=1

k) (Va5 + Vo lla + 1A — Dopt5) < Co,  ¥n =1, (3.36)

m=1
/UZ <Cy, VYn>0, (3.37)
Q
no+n
kY o) 3nawrs < Co+ Ci(nk),  ¥n>1, (3.38)
m=ng+1

where ng > 0 is any integer and Cy, Cy are positive constants depending on the data (ug, vo)
and (§2, ug, vy) respectively, but independent of (k,h) and (n,ng).

Proof. Multiplying (3.33) by k, summing for m = 1,- - -, n and using (3.27), we obtain
(3.36). On the other hand, from (3.29) and using (3.36), we have

(14 k) /v,’j - /UZ < k’/(uZ)Q = kl|lu}||3 < kCp. (3.39)
Q ) Q
Then, using Lemma 3.3.1 in (3.39), we deduce
/v,’j <(1+k)™ /v2 +Cp < /vg +Cp, Vn >0,
Q Q Q

which implies (3.37). Finally, from (3.33), summing for m from ny+1 to n+ng, using (3.32),
(3.36), (3.37) and the Poincaré inequality for the zero-mean value function u}* — mg, where

m — [ u)", we have
" |9|/ |ﬂ|/ﬂh

no+n

k Z _m07vh)’|Hlxwl6 <00+01(nk)

m=ng+1

and thus, we deduce (3.38). 1

Starting from the previous stability estimates, we can prove the convergence towards
weak solutions of (3.1). Concretely, by introducing the functions:
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o (Upp,Upy) are continuous functions on [0, +00), linear on each interval (¢,,t,41) and
equal to (uj,v}) at t =t,, n > 0;

® (uj, v} ) as the piecewise constant functions taking values (uj, vp) on (tn-1,tn], n > 1,
we have the following result:

Theorem 3.3.5 (Convergence) There exist subsequences (k') of (k) and (') of (h), with

E' W 10, and a weak-strong solution (u,v) of (3.1) in (0,400), such that (U g, Op ) and
(Ups 4, Vh ) converge to (u, v) weakly-*in L>(0, +-00; L*(Q)x H'(Q)), weakly in L*(0,T; H(€2) x
W8(Q)) and strongly in L*(0,T; L*(2) x LP())NC([0, T]; HY(Q)' x LY(Q)), for any T > 0,
1<p<+4+o0andl <q<6.

Remark 3.3.6 Note that, since the positivity of uj cannot be assured, then the positivity of
the limit function u cannot be proven in the 3D case (see Remark 3.2.3).

Proof. Proceeding as in Theorem 1.4.11 (whose proof follows the arguments of [11]), we
can prove that there exist subsequences (k') of (k) and (k') of (h), with &', h" | 0, and (u, v)
satisfying (3.5), (3.6) and the initial conditions (3.1)4, such that (@n y, On p) and (wj g, Vi 4r)
converge to (u,v) weakly-* in L°°(0,+oc; L*(Q) x HY(Q)), weakly in L2(0,T; H()) x
W6(Q)) and strongly in L?(0,T; L*(Q2) x LP(Q2)) N C([0,T]; HY(Q) x L4(R2)), for any T > 0,
1<p<+ocand1<qg<6. Moreover, it holds

H((Stum 5tvvn)||(2)

d /1. . (tn — 1)
% (3l + {1730l )+

T 1 T 1 T
Vg (ONG + 51 (A = Do (D115 + 51V v (DG = 0.

In order to obtain that (u,v) satisfies the energy inequality (3.7), we need to prove that

t1 t1
fiminf / 1Ay — Do (B2 > / 1 Av(®) 2. (3.40)

(k’,h")—(0,0 to to

Taking into account that {(A, — I)vj,,,} is bounded in L*(0,T; L*(2)), we have that there
exists w € L*(0, T; L*(Q) such that for some subsequence of (k’, '), still denoted by (K, 1'),

(Ap = Dvpyy — w weakly in L*(0,T; L*(Q). (3.41)
Therefore, on the one hand, since u? € L(0,T; L*/?(Q)) — L*(0,T; H'(Q2)'), we have

O —Av+v=u®> in L*(H"Y, (3.42)
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and, on the other hand, using (3.41), we can deduce
ow+w+v=u® inL*(H". (3.43)

Thus, from (3.42)-(3.43), we deduce that w = —Awv in D'(Q2), which implies —Av €
L*(0,T; L*(Q)) because of w € L*(0,T;L*(Q). Therefore, (u,v) satisfies the regularity
(3.4) and taking into account (3.41), we conclude (3.40). Finally, using (3.40) and arguing
as in the last part of the proof of Theorem 1.4.11, we deduce that (u,v) satisfies the energy
inequality (3.7), and therefore, (u,v) is a weak-strong solution of (3.1).

Large-time behavior of the scheme UV

In this subsection, we will prove exponential bounds for any solution (u}, v}') of the scheme
UV in weak-strong norms. In fact, the next result is the discrete version of Theorem 3.2.4.

Theorem 3.3.7 Let (u},v)) be a solution of the scheme UV associated to an initial data
(uf,v?) € Uy, X Vi, which is a suitable approzimation of (ug,vo) € L*(Q) x H (), as h — 0,

1 1
with @/ngzﬁ/guo:mo. Then,

(Ul — mo, VOI)||2 < Coe™ 74" v > 0, (3.44)
o = (mo)?3 < Coe™ ™", n >0, (3.45)
1 2 4
’fZ(ll I+ || Ay — )vﬁl|8+§IIWZH3) < Coe =™, ¥n >0, (3.46)

m>n

where Cy is a positive constant depending on the data (ug,vg), but independent of (k,h) and
n.

~ 1
Proof. Taking uy, = u) := u} —my in (3.26)1, v, = §(Ah—[)vﬁ in (3.31) and using (3.28)
and (3.30), we obtain

Lo LN ke ke
A R A )RR A R EAEA
1 1
HITRIE + S04~ Dufl + SIVegl3 =0, (347)

Again, to get (3.47), the fact that (u})?> € Vj, is essential (which comes from the choice
(P, Pay,) approximation for (Up, V},)) in order to cancel the terms (u) Vo, Va}) and
—3((up)?, (A, — I)vp). Then, from (3.47) we can obtain

(1+28) (IR 13 + 519018) = (113 + SIven13) <. (3.48)
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Then, applying Lemma 3.3.1 to (3.48), using the inequality 1 —z < e~* for all x > 0 as well
as (3.36), we have for all n > 0,

2
1+ 2k

N 1 ~ 1 n P
T30 + SIVeRlE < (120 (I3 + 519913 < Co(1— k)" < Coe i,

(3.49)
which implies (3.44). Moreover, taking v, = 0} := v} — (myg)? in (3.31), we can deduce

1 n
SOlTR NG + 13117 = /Q((uh)z— (m0)*)7,,
which, using the Holder and Young inequalities, implies that
(L+ BT — 175718 < Elluh + mollZalluiy, — moll5. (3.50)

Then, multiplying (3.50) by (1 + k)"~!, summing from n = 1 to n = m and using (3.36)
and (3.49), we deduce

T3 < (L k)™ [R5 + k(L4 k)™ D (1 k)" gy — mol Il + mol| 7

n=1

< Co(L+ k)™ + Cok(L+ k)™ (14 k)" (1 + 2k) ™" |Jup + mol|7s
n=1

- k 1+ k\nt
n|2 n 2
L3 IValh+ 5275 38) Huh+mouo]

EoGny 14 kynt
1+Cy+C ( )
+lo+ 01+2k; 11 2k

1 1+k\m
< Cpe” TrEFM — >
_C(]e +k |:1+Co+00 <1 (1—|—2k‘) )], Vm_O,

< Co(1+k)™m

1
< Coe T

from which we arrive at (3.45). Finally, from (3.44) and (3.47), we have that for all n > 0,

m 1 n 1 n n n — 2 n
B (11 + 5104 = DoplE + SIVeRlE) < 1k = mo, Vo) < Coe™ w™.

m>n
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3.3.2 Scheme US

The second scheme which will be analyzed has been defined and studied in Chapter 2, where
the auxiliary variable o = Vv is introduced, and the model (3.1) is rewritten as follows:

(( Ou—V - (Vu) =V - (uo) inQ, t>0,
0o —V(V-0)+ 0o +rot(rot ) =V(u?)in Q, t >0,
@ =0 on 09, t>0, (3.51)

on
o-n=0, [rotaxn]tang:() on 09, t >0,

L u(x,0) = up(x) >0, o(x,0) = Vuy(x) in 2.

In fact, (3.51)9 was obtained applying the gradient to equation (3.1); and adding the term
rot(rot o) using the fact that rot o = rot(Vv) = 0. Once solved (3.51), it is possible to
recover v from u? solving

ov—Av+v=u?in Q, t>0,

g_v =0 on o, t >0, (3.52)

n
v(x,0) = vo(x) >0 in Q.

Based on the above decomposition, the scheme is obtained by using FE backward Euler
for the system (3.51)-(3.52) (again considered for simplicity on a uniform partition of [0, 7]
with time step k = T/N : (t, = nk)"=l’). Concerning the space discretization, we consider
the triangulation as in the scheme UV. We choose finite element spaces for u, o and v,
which we denote by (U, X5, V;,) C H' x HL x W6 generated by Py, P,,, P,-continuous FE,
with k,m,r > 1. Then, we consider the following first order in time, nonlinear and coupled
scheme (Scheme US, from now on):

Initialization: Let (u), o%,vY) € Uy, x ), xV}, be a suitable approximation of (ug, o, vg),

1 1
ash—>0,with—/u0—— Uy = My.
QlJe "0l "

Time step n: Given (u} ', o7 !) € Uy, x X}, compute (u}l, o) € U, x X, solving

(0coy,oh) + (o}, 0)+ (V- -0, V-0)+ (rot o}, rot &) —2(upVuy,a,) =0, Vo, € Xy,
(3.53)

{ ((MLZ, l_bh) + (VUZ, Vﬂh> + (uZO'Z, Vl_bh) =0, Yu, € Uy,

Once solved (3.53), given v}~' € V}, we can recover v} = v((u})?) solving:
(807, 0p) + (Yo, Vo) + (v, o) — ((uf)?,0,) =0, Vo, € V. (3.54)
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Known results

The scheme US also conserves the total mass [, uj (satisfying (3.28)), and also has the
behaviour for [, vy given in (3.29). The existence of (u}, o)) € U, x X solution of the
scheme US, v} solution of (3.54), and the unconditional energy-stability of the scheme US
was proved in Chapter 2. In fact, the following discrete energy law holds

5t8(“27°’2)+§”5tuh”3 + Z||5t0'h||(2) + [[Vuplls + 5”‘7}1“% =0, (3.55)

where &(uj, o) = glluplIf + o3
From the (local in time) discrete energy law (3.55), the following global in time weak

estimates for (u}, o}) are deduced (see Theorem 2.3.9):

i, oI5 + B N @Geuit, 8o is + kY _N(Vup, o3 [e s < Co, Vn > 1,

m=1 m=1
no+n
kY lluplli < Co+ Ci(nk), ¥n>1,
m=no+1

where ng > 0 is any integer and Cy, C are positive constants depending on the data
(Q, ug, o), but independent of (k, h) and (n,ng).

Large-time behavior of scheme US

Theorem 3.3.8 Let (u}, o)) be a solution of the scheme US associated to an initial data
(u), 0'21) € Uy x Ehlwhich is a suitable approzimation of (ug, og) € L*(Q) x L*(Q), as h — 0,
with —/uo = —/uo = mg. Then,
o Jo ™" 12l Jo
I = mo, @) < Coe ", vn > 0, (3.50)

~ 1
Y (I + Slloi3) < Coe ™, v > 0, (3.57)
m>n

where Cy is a positive constant depending on the data (ug, o), but independent of (k,h) and
n.

~ 1
Proof. Taking @, = uy := uj —myg in (3.53)1, 6 = 50’2 in (3.54) and using (3.28), we

obtain

Loy 1, T A S
S (SITIR + Z1oI2) + SISTIE + I60hlE + ITIE + okl =0, (3.58)
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Then, from (3.58) we can obtain

~ 1 n ~n— 1 n—
(1 +26) (7313 + 5lilE) = (N 13 + 5l 13) <. (3.59)

Then, applying Lemma 3.3.1 to (3.59), and proceeding as in (3.49), we arrive at (3.56).
Finally, from (3.56) and (3.58), we have that for all n > 0,

__2
RS (IR + Slof ) < 16k — mo, o)l < Coe™ et

m>n

Corollary 3.3.9 Let v = v((u?)?) be a solution of (3.54) associated to an initial data
V) € V, which is a suitable approzimation of vo € H (), as h — 0. Then (3.45) holds.

Proof. The proof follows as in Theorem 3.3.7. 1

Now, in order to obtain more regular estimates, we consider the linear operators Ay
Uy, — Uy, and By, : X5, — X, defined as follows

(ghuh,ﬂh) = (Vuh,Vﬂh) + (Uh,ﬂh), Yy, € Uh,
(Bhah,ﬁh) = (V'O’h,V'é'h) + (I"Ot o, rot 6’h) + (ah,ﬁh), V&h - Eh.

Then, we rewrite (3.53) as

((5tuz,ﬂh) + (Zhuz,ﬂh) — (uZ,ah) + (UZO'Z, Vfbh) =0, Yuy, € Uy, (3 60)
<5t0'2, &h) + (thrz, &h) — Q(UZVUZ, &h) =0, Vo, € X,.
Moreover, the following estimates hold (see for instance, Lemma 2.3.1):
||uh||W1,6 < C’||Ahuh||0 Yuy, € U, ||0'h||W1,6 < C||Bh0'h||0 Vo, € Xy,.
Theorem 3.3.10 Under hypothesis of Theorem 3.3.8, the following estimate holds
. 1
ST, Bro )l € (e et (et )eosiet) v,
(3.61)

where C'is a positive constant independent of (k,h) and n.

97



Proof. We define F,, := [|w}||? + 3/lo7[|3. Then, from (3.57) we have that

1
ZFm < ECQG_H%IWL, vn > O,

m>n
which, taking into account that F,,, > 0 for all m € N, implies that

1
Fy < +-Coe” TRk gy > 1, (3.62)

Now, taking @, = A,u} and &), = B,o”! in (3.60), we have

k n ~n e -~n n
_5t<||(uh7 op)ly ) + S 18, dap)|1T + I(Anag, Buo )5 < IR ]13 + il (Ant, Buop)II
+C Vil Lsllonlize + CoARIL IV - ohllis + CoI VR Ls [ @h11Ls + Cr(mo)* (Vi V - o3)I5
< gl + 7l (Awiag, Baoi)lis + 71 (Vag, ¥ - ap)lize + CollaglFllohlli + Crlfaplly
+Cr|lan il 17 + Cr(mo)? || (@, op)IIT- (3.63)

Therefore, taking into account that || (us, o4) |56 < C||(Apup, Bpoy)||3 for all (uy, o) €

Up x X, (see Lemma 2.3.1), from (3.63) (choosing 7 small enough) we deduce

~ 3
o (I oiI3) + 1 (At Brol < G (@, o))+ Coll @ oz (3.64)

Then, from (3.64), taking into account (3.62) and (3.57), we deduce for all n > 1,

k’ZH(AhUtha'h)Ho < |I(@h, op)Ii + (kQCQCle Rk (n1) + Cs) kZH (', o3

m>n m>n

< %C’ e~ TraRk(=1) (C3%6_1+42kk(n_1) + C4> B_ﬁlma

from which we conclude (3.61).

Remark 3.3.11 In the case of the scheme UV it is not clear how to obtain one more regular
estimate equivalent to the obtained in Theorem 3.3.10 for the scheme US. In fact, a key step
in the proof of Theorem 3.3.10, is to integrate by parts in the term (ujo}, V(ZhﬂZ)) arriving
at (Vull - o, Ail) + (upV - o, Ayiy), which it is not possible for the scheme UV in the
term (upVop, V(A,D)), because u Vo does not have a derivative in L*(2).
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3.4 Numerical Simulations

In this section we will compare the results of several numerical simulations that we have
carried out using the schemes studied in the paper. We are considering P;-continuous appro-
ximation for uj, o} and Ps-continuous approximation for vy. Moreover, we have chosen the
2D domain = [0, 2]? using a structured mesh, and all the simulations are carried out using
FreeFem-++ software. The linear iterative method used to approach the nonlinear schemes
US and UV is the Newton Method, and in all the cases, the iterative method stops when
the relative error in L2%-norm is less than ¢ = 107°.

3.4.1 Positivity

The aim of this subsection is to compare the fully discrete schemes UV and US in terms of
positivity. Theoretically, for both schemes, is not clear the positivity of the variables uj and
vy. In fact, in some simulations, we obtain numerical results in which uj is negative. For
example, choosing k = 1075, the initial conditions (see Figure 3.1):

up=—102y(2 — 2)(2 — y)exp(—10(y — 1)* — 10(x — 1)*) + 10.0001

and
v0=2002y(2 — 2)(2 — y)exp(—30(y — 1)? — 30(x — 1)?) + 0.0001,
and taking meshes in space increasingly thinner (h = %, = %, h = % and h = %), we

Chemical
-1.956e+02
Cell E

-1.000e+01 146.69

£7.5199 97.793

5.0397

48.896

~1.000e-04

25596

27.9396-02

(a) Initial cell density wug (b) Initial chemical concentration v
Figure 3.1: Initial conditions.

obtain that in both schemes, the discrete cell density u} takes negative values for some x € 2
in some times ¢, > 0 (see Figures 3.2-3.5). Moreover, as h tends to 0, (a) the behaviour
of both schemes is increasingly similar, and (b) the negative values taken for uj in both
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schemes are closer to 0. This is in accordance with the results obtained in Chapter 1, where
it was proved that the only time-discrete schemes corresponding to the schemes UV and
US are equivalents and have nonnegative solution (u,, vy,).

n
h

Min u

0 0.005 0.01 0.015
Time

Figure 3.2: Minimum values of u}, with h = 1i0'

Remark 3.4.1 In the computations, the execution time for the scheme UV is smaller than
the execution time for the scheme US. In fact, the scheme UV 1is twice faster than the
scheme US.

On the other hand, with respect to the discrete chemical concentration v}, we observe that
the same behavior is obtained for the minimum of v}’ in both schemes. In fact, independently
of h, if vy is positive, then v, also is positive (we show this behavior in Figure 3.6 for the

_ 1 _ 1 o 1 _ 1
case h = 5z, but the same holds for the cases h = §5, h = 55 and h = =).

3.4.2 Energy-Stability

In Lemma 3.3.3, the unconditional energy-stability for the scheme UV with respect to the
energy €(u,v) was proved. In fact, if (u}, v)') is any solution of the scheme UV, the following
relation holds

0:& (up, vi) + | Vbl + (A = Hwgllo + §||VUh||3 <0, vn.
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. n
Min u,
P
T

0 0.005 0.01 0.015
Time

Figure 3.3: Minimum values of uj, with h = 2%.

On the other hand, in Chapter 2 it was proved the unconditional energy-stability for
the scheme US with respect to the modified energy €(u, o). Even more, if (u}l, o)) is any
solution of the scheme US; it holds

n _n n 1 n
0 (uh, o3) + [Vuills + 5ol <0, vn.

Then, the aim of this subsection is to compare numerically the energy-stability of the schemes
UV and US with respect to the energy &(u,v). Indeed, if we take k = 1076, h = 2—15 and the
initial conditions

uo=—10zy(2 — 2)(2 — y)exp(—10(y — 1)* — 10(x — 1)) 4 10.0001

and
v5=202y(2 — 2)(2 — y)exp(—30(y — 1)* — 30(x — 1)?) + 0.0001,

we obtain that:

(a) The schemes UV and US satisfy the energy decreasing in time property for the energy
&(u,v), that is, E(ull,v}) < E(u) ", vp™1) for all n, see Figure 3.7.

(b) The schemes UV and US satisfy (see Figure 3.8)

RE(uy, vp) = i€ (ugi, vp) + [ Vupllg + 51 (An = DRIl + 51 VeRll; <0, Vn.
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0 0.005 0.01 0.015
Time
Figure 3.4: Minimum values of u}, with h = 2.
0.01
0 M _{
-0.01 =
<= —us
-0.02 - -
= - - v
0.03 - -
0.04 - -
-0.05 1 1 1 1 1 1 1 1 1
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
Time
Figure 3.5: Minimum values of uj, with h = %
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Figure 3.6: Minimum value
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0.01

of v, with h = 2.

0.015
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0.01

Time
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Figure 3.7: Energy E(uj},v}}) of schemes UV and US.
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Figure 3.8: Residue RE(uj, vy) of schemes UV and US.
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Chapter 4

Energy stable fully discrete schemes
for a chemo-repulsion model with
linear production

4.1 Introduction

Chemotaxis is a biological phenomenon in which the movement of living organisms is in-
duced by a chemical stimulus. The chemotaxis is called attractive when the organisms move
towards regions with higher chemical concentration, while if the motion is towards lower
concentrations, the chemotaxis is called repulsive. In this paper, we study unconditionally
energy stable fully discrete schemes for the following parabolic-parabolic repulsive-productive
chemotaxis model (with linear production term):

Ou—Au=V-(uVv) in Q, t >0,
ov—Av+v=uin Q, t >0,

4.1
%:@:0 on 02, t >0, (4.1)
On On
u(x,0) = ug(x) >0, v(x,0) =vo(x) >0 in Q,

in a bounded domain Q C R? d = 2,3, with boundary 9. The unknowns for this model
are u(x,t) > 0, the cell density, and v(«,t) > 0, the chemical concentration. Problem (4.1)
is conservative in u, because the total mass fﬂu(, t) remains constant in time, as we can
check integrating equation (4.1); in €,

%(/ﬂu(-,t)) =0, ie. /Qu(-,t) :/Quo = mg, Vt>0. (4.2)

Problem (4.1) is well-posed [7]: In 3D domains, there exist global in time nonnegative
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weak solutions of model (4.1) in the following sense:

u € Cyu([0,T]; LY(Q)) N L¥4(0, T; W'S/4(Q)), VT >0,
v e L0, T; H'(Q)) N L2(0,T; H*(Q)) N C([0,T]; L*(Q)), VT >0,
O € LA3(0,T; Wh=(Q)), dw € L¥3(0,T; L>3(Q)), VT >0,

satisfying the following variational formulation of the u-equation
T T T
/ (Opu, ) + / (Vu, V) + / (uVv,Va) =0, Yae LY0,T;WH>(Q)), VT >0,
0 0 0

and the v-equation pointwisely
ov—Av+v=u ae (t,z)€ (0,400) x Q.

Moreover, for 2D domains, there exists a unique classical and bounded in time solution.
A key step of the existence proof in [7] is to establish an energy equality, which in a formal
manner, is obtained as follows: if we consider

F(s):==s(lns—1)+1>0 = F'(s)=Ilns = F'(s)=s"", Vs>0,

then multiplying (4.1); by F’(u), (4.1)2 by —Awv, integrating over €2, using (4.1)3 and adding,
the chemotactic and production terms cancel, and we obtain

d

il (F(u) + %|VU|2>dw +/Q <4|V(\/E)|2 AU+ |Vv|2>da: — 0. (4.3)

The aim of this work is to design numerical methods for model (4.1) conserving, at
the discrete level, the mass-conservation and energy-stability properties of the continuous
model (see (4.2)-(4.3), respectively). There are only a few works about numerical analysis for
chemotaxis models. For instance, for the Keller-Segel system (i.e. with chemo-attraction and
linear production), Filbet studied in [9] the existence of discrete solutions and the convergence
of a finite volume scheme. Saito, in [14, 15], proved error estimates for a conservative Finite
Element (FE) approximation. A mixed FE approximation is studied in [12]. In [8], some
error estimates are proved for a fully discrete discontinuous FE method. In the case where
the chemotaxis occurs in heterogeneous medium, in [6] the convergence of a combined finite
volume-nonconforming finite element scheme is studied, and some discrete properties are
proved.

Some previous energy stable numerical schemes have also been studied in the chemotaxis
framework. A finite volume scheme for a Keller-Segel model with an additional cross-diffusion
term satisfying the energy-stablity property (that means, a discrete energy decreases in time)
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has been studied in [5]. Unconditionally energy stable time-discrete numerical schemes and
fully discrete FE schemes for a chemo-repulsion model with quadratic production has been
analyzed in Chapters 1 and 2 of this PhD thesis, respectively. However, as far as we know,
for the chemo-repulsion model with linear production (4.1) there are not works studying
energy-stable schemes. We emphasize that the numerical analysis of energy stability in
the chemo-repulsion model with linear production has greater difficulties than the case of
quadratic production (see Chapters 1 and 2). In fact, in the continuous case of quadratic
production, in order to obtain an energy equality, it is necessary to test the u-equation by u,
and the v-equation by —Awv, which, if we want to move to the fully discrete approximation,
is much easier than the case of linear production in which, as it was said before, the energy
equality is obtained multiplying the u-equation by the nonlinear function F’(u) = in u.

In this paper, we propose three unconditional energy stable fully discrete schemes, in
which, in order to obtain rigorously a discrete version of the energy law (4.3), we argue
through a regularization technique. This regularization procedure has been used in previous
works to deal with the test function F’'(u) = Inw in fully discrete approximations, as for
example, for a cross-diffusion competitive population model [3] or a cross-diffusion segre-
gation problem arising from a model of interacting particles [10]. The model that will be
analyzed in this paper differs primarily from these previous works in the fact that, in our
case, the term of self-diffusion in (4.1); is V - (Vu) and it is not in the form V - (uVu) as
in [3, 10], which makes the analysis a bit more difficult. In fact, in the continuous problem,
if we multiply equation (4.1); by F’(u) = Inu, in our case we obtain the dissipative term
Jo, =|Vu|? (which does not provide an estimate for Vu), while in the cases of [3, 10], it is
obtained [, |Vu|*> which gives directly an estimate for Vu in L*(Q).

This chapter is organized as follows: In Section 4.2, we give the notation and define the
regularized functions that will be used in the fully discrete approximations. In Section 4.3, we
study a nonlinear fully discrete FE approximation of (4.1) in the original variables (u, v). We
prove the well-posedness of the numerical approximation, and show the mass-conservation
and energy-stability properties of this scheme by imposing the orthogonality condition on
the mesh (see (H) below). In Section 4.4, we analyze another nonlinear FE approximation
obtained by introducing o = Vv as an auxiliary variable, and again, we prove the well-
posedness of the scheme, as well as its mass-conservation and energy-stability properties,
but without imposing the orthogonality condition (H). In Section 4.5, we study a linear
fully discrete FE approximation constructed by mixing the regularization procedure with
the Energy Quadratization (EQ) strategy, in which the energy of the system is transformed
into a quadratic form by introducing new auxiliary variables. This EQ technique has been
applied to different fields such as liquid crystals [2, 19], phase fields [18] (and references
therein) and molecular beam epitaxial growth [16] models, among others. Finally, in Section
4.6, we compare the behavior of the schemes throughout several numerical simulations, and
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provide some conclusions in Section 4.7.

4.2 Notation and preliminary results

First, we recall some functional spaces which will be used throughout this paper. We will
consider the usual Sobolev spaces H™(2) and Lebesgue spaces LP(2), 1 < p < oo, with
norms || - ||, and || - ||z», respectively. In particular, the L?(£2)-norm will be denoted by
| - lo- Throughout (-,-) denotes the standard L*inner product over 2. We denote by
HL(Q) ={oc € H(Q):0-n=0o0ndN} and we will use the following equivalent norms

[

in H'(Q) and HL (), respectively (see [13] and [1, Corollary 3.5], respectively):

2
ll? = [Vull2 + ( / u) Ve H'(Q),

lollf = lloll§ + llrot oI5 + |V - &[5, Vo € H ().

where rot o denotes the well-known rotational operator (also called curl) which is scalar
for 2D domains and vectorial for 3D ones. If Z is a general Banach space, its topological
dual space will be denoted by Z’. Moreover, the letters C, K will denote different positive
constants which may change from line to line (or even within the same line).

In order to construct energy-stable fully discrete schemes for problem (4.1), we are going
to follow a regularization procedure. We will use the approach introduced by Barrett and
Blowey [3]. Let £ € (0,1) and consider the truncated function A, : R — [g,£7!] given by

3 if s<e¢,
Ae(s) == < s if e<s<el, (4.4)
e~ if s> L
If we define ]

" -

3 (S) ° )\6(8) ?
then, we can integrate twice in (4.5), imposing the conditions F/(1) = F.(1) = 0, and we
obtain a convex function F. : R — [0, +00), such that F. € C*!(R) (see Figure 4.1). Even
more, for ¢ € (0,e?), it holds [3]

(4.5)

2
F.(s)>-s*—2 Vs>0 and F.(s)> 7y <0. (4.6)

DO ™

2¢e

Finally, we will use the following result to get large time estimates [11]:
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(b) F/(s) vs F"(s) :=

VA
® |

1
(a) Ae(s) vs i) =

—F9)
== F(s)=s(Ins-1)+1

(c) Fl(s) vs F'(s):=lIns (d) Fo(s) vs F(s) :==s(lns—1)+1

Figure 4.1: Functions . and F. and its derivatives.

Lemma 4.2.1 Assume that 0,5,k > 0 and d"* > 0 satisfy
(14 6k)d™™ < d" + kB, ¥n>0.
Then, for any ng > 0,
d" < (14 6k)~(=m)gno 1 5718 ¥n > ny.

4.3 Scheme UV

In this section, we propose an energy-stable nonlinear fully discrete scheme (in the variables
(u,v)) associated to model (4.1). With this aim, taking into account the functions A. and
F. and its derivatives, we consider the following regularized version of problem (4.1): Find
Ue, Ve : 2 x [0,T] — R such that

Opue — Aue. — V- (Ae(ue)Vo) =0 in Q, t >0,

O — Av, +v. =u. in Q, t >0,

Qus _ O _ om0, t> 0, (4.7)

us(x,0) = ug(x) > 0, v(x,0) =vo(x) >0 in Q.
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Remark 4.3.1 The idea is to define a fully discrete scheme associated to (4.7), taking in
general € = e(k, h), such that e(k,h) — 0 as (k,h) — 0, where k is the time step and h the
mesh size.

Observe that multiplying (4.7); by F!(u.), (4.7)2 by —Awv,, integrating over 2 and adding,
again the chemotactic and production terms cancel, and we obtain the following energy law

d

1 2 " 2 2 2 _
= Q(Fa(ua)—l—2|VUE| >dm+/Q<FE (u) Vel + [Av. ? + [Veef?) da = 0.

In particular, the modified energy

8€(u,v):/Q(Fg(u)—l—%WvP)dw

is decreasing in time. Then, we consider a fully discrete approximation using FE in space
and backward Euler in time (considered for simplicity on a uniform partition of [0,7"] with
time step k = T/N : (t, = nk)"=)). Let Q be a polygonal domain. We consider a shape-
regular and quasi-uniform family of triangulations of 2, denoted by {7} }x~0, with simplices
K, hi = diam(K) and h := maxgeg, h, so that Q = Ugeg, K. Moreover, in this case we
will assume the following hypothesis:

(H) The triangulation is structured in the sense that all simplices have a right angle.

We choose the following continuous FE spaces for v and v:

(Un, Vi) € HY(Q)?,  generated by Py, P, with m > 1.

Remark 4.3.2 The right angled requirement and the choice of Py-continuous FE for Uy, are
necessary in order to obtain the relation (4.10) below, which is essential in order to prove
the energy-stability of the scheme UV (see Theorem 4.3.7 below).

Let J be the set of vertices of Tj, and {a;} ;e the coordinates of these vertices. We denote
the Lagrange interpolation operator by I1" : C(Q) — Uy, and we introduce the discrete semi-

inner product on C(£2) (which is an inner product in Uj) and its induced discrete seminorm

(norm in Uy):
(ur, ) ::/QHh(ulu2), ul = /()" (4.8)
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Remark 4.3.3 In Uy, the norms |- |, and || - ||o are equivalents uniformly with respect to h

(see [4]).

We consider also the L%-projection Q" : L?(Q2) — U, given by
(Q"u,u)" = (u,u), Va € Uy, (4.9)

and the standard H'-projection R" : H'(Q2) — Vj,. Moreover, for each ¢ € (0, 1) we consider
the construction of the operator A, : U, — L>(Q)%*4 given in [3], satisfying that A.u" is a
symmetric and positive definite matrix for all «" € U, and a.e. = in Q, and the following
relation holds

(Acu)VIT'(FL(u")) = Vu"  in Q. (4.10)

Basically, A.u" is a constant by elements matrix such that (4.10) holds by elements. We
highlight that (4.10) is satisfied due to the right angled constraint (H) and the choice of
IP;-continuous FE for Uy,. Moreover, the following stability estimate holds [3, 10]

IA-(u™)|5. < CA 4+ ||u")|?), Yu" € Uy (for r =2(d+1)/d), (4.11)
where the constant C' > 0 is independent of € and h.

We recall the result below concerning to A.(-) (see [3, Lemma 2.1]).

Lemma 4.3.4 Let ||-|| denote the spectral norm on R¥?. Then for any given € € (0,1) the
function A, : Uy, — [L*°(Q)]%*? is continuous and satisfies

e€Te < ETA (uM)E < e7¢Te, Ve e RY, YU € U (4.12)
In particular, for all ul',uk € U, and K € T, with vertices {al },, it holds
(A (uy) = Ac(u)) x|l < &7 max {Jui(ar’) —uy(ar’))] + ui(ay) —us(ag))[},  (4.13)

e

where al’ is the right-angled vertex.

Let Ay : V), — V), be the linear operator defined as follows
(Apo", 0) = (V" Vo) + (v, 0), Vo € V.
Then, the following estimate holds (see for instance, Lemma 2.3.1):

[0"lwis < C||Apo"llo, V" € V. (4.14)

Taking into account the regularized problem (4.7), we consider the following first order
in time, nonlinear and coupled scheme:
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e Scheme UV:

Initialization: Let (u}),v)) = (Q"ug, R"vy) € Uy, x V.

n—1

Time step n: Given (u?~ 1 v 1) € Uy, x V3, compute (u”,v") € Uy, X V}, solving

(Seu, @) + (Vu?, Va) + (A (u®)Vor, Vi) = 0, Va € Uy, (4.15)
(6,07, 0) + (Apv?, D) — (u?,0) = 0, Yo € Vj, '
n __ an—l
where, in general, we denote §;a" := ?

4.3.1 Mass conservation and Energy-stability

Since v =1 € U and v =1 € V},, we deduce that the scheme UV is conservative in u”, that
is,

(u?’ 1) = (u?’ l)h = (u?_lw 1)h == (ug, 1)h = (u?w 1) = (Qhu07 1) = (uO’ 1) = Mo, (416)

and we have the following behavior for [, v/

¢ (/ U:f) —|—/v? = / uy = my. (4.17)
Q Q Q
Lemma 4.3.5 (Estimate of UQ v?!) The following estimate holds

n
Q Q

Proof. From (4.17) we have (1+ k) | [, v — | [, v2™!| < k mo, and therefore, applying
Lemma 4.2.1 (for 6 = 1 and = my), we arrive at
/ Rhl)()
Q

n 0
Q Q

which implies (4.18).

<(1+kK)"

+mg, Vn>0. (4.18)

<(I+4+k)™ +mo=(1+k)" + my,

Definition 4.3.6 A numerical scheme with solution (ul,v?) is called energy-stable with
respect to the energy

1(u,0) = (Fu(u), 1)" + 2 |[Vu? (119)

if this energy is time decreasing, that is, EM(u,v™) < EM(ur~1 0™ 1) for alln > 1.
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Theorem 4.3.7 (Unconditional stability) The scheme UV is unconditional energy sta-
ble with respect to € (u,v). In fact, if (u™,v") is a solution of UV, then the following discrete
enerqy law holds

02 (ur, g)+€—!|5tun\|o H5tW?H3+€HVUZH§+H(Ah—f)v?HSHIVv?H%SO. (4.20)

Proof. Testing (4.15); by a4 = I"(F/(u?)) and (4.15) by © = (A4, — I)v", adding

and taking into account that A.(ul) is symmetric as well as (4.10) (which implies that

VIT"(F(u?)) = AZH(u?)Vul), the terms —(As(u?)Vv VIT"(F!(u?))) =
—(Vor, Ac(u) VIT'(FL(u?))) = —(Vo?, Vu?) and (u? (Ah— ) = (Vu?, Vo) cancel, and

we obtain
(Seu™, F! (um))" /(Vu VA (u) - Vulde
k
46 (SIV213) + SN8T0 2 4+ 1A — Dzl + 1907 = 0. (4:21)
Moreover, observe that from the Taylor formula we have
1
Fo(ui™) = Feul) + FU(ul) (2™ =) + SF/(Oul + (1= 0)ul™") (ul™ —ul)”,

and therefore,

F )t = (Pt + ];Fgwu (1= 0y ()2, (4.22)

Then, using (4.22) and taking into account that I1" is linear and F”(s) > ¢ for all s € R, we
have

QSO R )
—a( [ mE)) + 5 [ IE O + 0= 0y
> 5y (Fo(u™), 1) + e§|5tug|i. (4.23)

Thus, from (4.12), (4.21), (4.23) and Remark 4.3.3, we arrive at (4.20).

Corollary 4.3.8 (Uniform estimates) Assume that (ug,vy) € L*(2) x HY(Q). Let
(uZ,v2) be a solution of scheme UV. Then, it holds

£

1 n
(Fe(ug), 1)"+§Hv?|!?+k2 (ElVuZ[I§ + 1(An = D [lg + [VoI'][5) < Co, V> 1, (4.24)
m=1
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n+no
E Y ol e < Ci(1+kn), V> 1, (4.25)

m=ng+1

where the integer ng > 0 s arbitrary, with the constants Cy,Cy > 0 depending on the data
(Q, ug, vo), but independent of k, h,n and e. Moreover, ife € (0,e2), the following estimates
hold

/(Hh(u?_))2 < Coe, and / [u?| < mg+ Cve, Vn>1, (4.26)
Q 0

where u?_ := min{u?,0} < 0 and the constant C' > 0 depends on the data (£, ug,vo), but is
independent of k,h,n and €.

Proof. First, using the inequality s(In s — 1) < s? for all s > 0 (which implies F.(s) <
C(s* + 1) for all s > 0) and taking into account that (ul,v?) = (Q"ug, R"vy), ug > 0 (and
therefore, u) > 0), as well as the definition of F., we have

1
ex(ufof) = [ IH(E) + IVl < O [ () + 1)+ 31Vl
< CIIB + Vo3 + 1) < Clluall + ol + D < Co. (420)

with the constant Cy > 0 depending on the data (2, ug,vg), but independent of k, h,n and
e. Therefore, from the discrete energy law (4.20) and (4.27), we have

el (ul, ) + kY (ellVallli + 1 (An — Dol [I§ + [ Ve2[IF) < EX(uf, o) < Co. (4.28)

m=1

Thus, from (4.18) and (4.28) we conclude (4.24). Moreover, adding (4.20) from m = ng+1 to
m = n+ng, and using (4.14) and (4.24), we deduce (4.25). By other hand, if ¢ € (0, e7?), from
(4.6), and taking into account that F.(s) > 0 for all s € R, we have 5-(u?_(x))* < F.(u?(x))
for all u® € Uy,; and therefore, using that (II"(u))? < I1"(u?) for all u € C(f2), we have

1<W<>f<1/W« WSLWWMWS%,

2e - 2¢

where in the last inequality (4.24) was used. Thus, we obtain (4.26),. Finally, considering
u?, = max{u?,0} > 0, taking into account that u? = u?, + u?_ and |ul| = ul, —ul =
ul — 2u?_, using the Holder and Young inequalities as well as (4.16) and (4.26);, we have

/|u”| </Hh|u”| —/u —2/Hh <m0+0</9(nh(ug))2>1/2 < mg + Cv/e,

which implies (4.26)2. 1
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Remark 4.3.9 The [°°(L')-norm is the only norm in which u” is bounded independently of
(k,h) and € (see (4.26)y). However, we can also obtain -dependent bounds for ul. In fact,

from (4.6) and taking into account that € € (0,e72), we can deduce that %32 < F.(s)+ 2 for
all s € R, which together with (4.24), implies that (/c u?) is bounded in 1°(L?) N I*(H").

Remark 4.3.10 (Approximated positivity)
1. From (4.26),, the following estimate holds
maxc [T () [§ < Coe.

2. Assuming Vy, furnished by Pi-continuous FE and considering the following approrima-
tion for the v-equation:

(0w, )" + (Ao, D) — (u2,5)" =0, Vo € V), (4.29)

where Ay, : Vi, — Vi, is the operator defined by (Zhvh, )" = (Vuy, V) + (v, 0)" for all
v € Vj,, then the unconditional energy-stability also holds and the following estimates
are satisfied

g}ggunh( N2 <Ce and k;zlunh "N|? < Ce(kn), (4.30)

where the constant C' is independent of k, h,n and . In fact, testing by v = 11" (v ) €
Vi in (4.29), taking into account that (VHh( o), VII"(v2)) > 0 (owing to the interior
angles of the triangles or tetrahedra are less than or equal to w/2), and using again

that (IT"(v))? < M (v?) for all v € C(Q), we have
(5 + DI B VI QIR < [ 1| (a2 4 for)or
_/QHh {(u +]1€vf_1>vg_}

1/1
<5 (1) IR + G I + e el
from which, using (4.26),, we arrive at

1/1

5 (5 + )T QLB + VIR < 5Coe + o T 023 (4.31)

Therefore, if v9 > 0 (which holds for instance by considering v = Ehvo, where R"
is an average interpolator of Clement or Scott-Zhang type, and using that vy > 0),
using Lemma 4.2.1 in (4.31), we conclude (4.30);. Fmally, multiplying (4.51) by k
and adding from m =1 to m = n, and using again that v} > 0, we arrive at (4.50),.
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4.3.2 Well-posedness

In this subsection, we will prove the well-posedness of the scheme UV. We recall that, taking
into account that we remain in finite dimension, all norms are equivalents.

Theorem 4.3.11 (Unconditional existence) There exists at least one solution (u®,vr)
of the scheme UV.

Proof. We will use the Leray-Schauder fixed point theorem. With this aim, given
(w1 Y € Uy, x V4, we define the operator R : U, x Vj, = Uy, x V3, by R(u,v) = (u,v),
such that (u,v) € U, x V}, solves the following linear decoupled problem

1 1
ue U, st. E(u, a)" + (Vu, V) = E(u?_l,ﬂ)h — (A (W)VE,Va), YaeU,  (4.32)
1, _ _ 1, .1 _ - _ _
veV, st. E(U,U) + (Apv,0) = E(UE ,0) + (u,v), Yo € V. (4.33)

1. R is well defined. Applying the Lax-Milgram theorem to (4.32) and (4.33), we can
deduce that, for each (u,v) € Uy, x V, there exists a unique (u,v) € Uy, x V}, solution
of (4.32)-(4.33).

2. Let us now prove that all possible fixed points of AR (with A € (0, 1]) are bounded. In
fact, observe that if (u,v) is a fixed point of AR, then R(u,v) = (;u, 3v), and therefore
(u,v) satisfies the coupled system

1 A

E(u,ﬂ)h + (Vu, Va) + MA(u)Vo, Vi) = E(u?_l,ﬂ)h, Vi € Uy,

(4.34)
1
E(v,@) + (Apv,9) — Mu, v) = %(vg_l,v), Vo € V.

Then, testing (4.34); and (4.34)y by @ = II"(F/(u)) and © = (A, — I)v respectively,
proceeding as in Theorem 4.3.7 and taking into account that A € (0, 1], we obtain

1
(Fe(w), )" + S IV0llg +k (sl Vullg + [(An = Dolls + [1Vo]5)
)\2
< (P ), D"+ [ Ver G < Cluz ™ v ), (4.35)
where the last estimate is A-independent (arguing as in (4.27)). Moreover, procee-
ding as in Lemma 4.3.5 and Corollary 4.3.8 (taking into account (4.35)), we deduce
| (w,v)|| L1 < C, where the constant C' depends on data (€, u”"',v""! ¢), but it is

independent of A and h.
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3. We prove that R is continuous. Let {(u',0")}ien C Up X Vi, — WH(Q)?2 be a sequence
such that
@, v") — (w,v) inU, xV, asl— 4oo. (4.36)

In particular, since we remain in finite dimension, { (%', v') };ey is bounded in W1°°()2.,

Then, if we denote (u!,v') = R(u',?"), we can deduce

1

1 1
S DB 513 + S )3

1 n— n— ~ T ~ ~
< @IS + (A @I IVl + ClIEIE < C,
where in the first inequality (4.11) was used and C'is a constant independent of [ € N.
Therefore, {(u!,v!) = R(u', ") }1en is bounded in Uy, x Vj, = Wh*(Q)2. Then, there
exists a subsequence of {R(W, &) }ien, still denoted by{R(u, &)}y, such that

R(@ @) — (u/,v) in W(Q)%,  asl— +oo. (4.37)

Then, from (4.36)-(4.37) and using Lemma 4.3.4, a standard procedure allows us to
pass to the limit, as [ goes to +oo, in (4.32)-(4.33) (with (@',2') and (u!,v') instead
of (u,v) and (u,v) respectively), and we deduce that R(u,v) = (u/,v’). Therefore, we
have proved that any convergent subsequence of {R(u!,?')}eny converges to R(w,v)
in Uy x V3, and from uniqueness of R(u,v), we conclude that the whole sequence
R(u',?") — R(w,v) in Uy, x V},. Thus, R is continuous.

Therefore, the hypotheses of the Leray-Schauder fixed point theorem (in finite dimension)
are satisfied and we conclude that the map R has a fixed point (u, v), that is R(u,v) = (u,v),
which is a solution of the scheme UV. j

Lemma 4.3.12 (Conditional uniqueness) If kg(h,e) < 1 (where g(h,e) T +o00 as h | 0
ore ] 0), then the solution (uZ,v") of the scheme UV is unique.

Proof. Suppose that there exist (u™', v™!), (u™? v?) € Uy, x Vj, two possible solutions
of the scheme UV. Then, defining v = u™' — u™? and v = v™! — v™? we have that

(u,v) € Uy x Vj, satisfies, for all (u,v) € Up, X Vj,

%(u, W)+ (Va, Vi) + (A (1)) Vo, V) + (A () — A (u2) Vo2, Vi) = 0,  (4.38)
L0,2) + (40, 7) = (0,7). (4.3
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Taking @ = u, v = Apv in (4.38)-(4.39), adding the resulting expressions and using the fact
that / u = 0 and the equivalence of the norms || - ||o and | - |, in U}, given in Remark 4.3.3,
Q

we obtain

1
= 100, V) I3+ 1, A0 e < Nl Anelo
Al [ 90| Vallo + 1A (w2?) = Acu®)]| o [ T2l [Vl
1 1 1 .
< ZllAwlo + lulld + 719l + 714wl + CIA ) LIVl

1 n n n
+71Vull + 1A (w2) = Ac(uZ?) [z Vo225

Then, taking into account (4.11), (4.13), (4.24), (4.26), and using the inverse inequalities:
[u"lZe < CrM[[u® 17, [u"l} < Co(R)[[u" (|70 and [[u*|[Z< < Cs(R)|lu[[§ for all u" € Up, we
have

k . B
I, Vo) + S0, An) sz < B (14 ClA(u) ) l(w, Vo) I3 + KCoCe 2 ul3-~
< k(14 G (R (1 + Colh)¥" + kCoCh(h)e™?) [[(u, Vo) [3 = K g(h, )| (u, Vo).

Therefore, if k g(h,c) < 1, we conclude that u = 0, and therefore (from (4.39)) v =0. 1«

4.4 Scheme US

In this section, we propose another energy-stable nonlinear fully discrete scheme associated
to model (4.1), which is obtained by introducing the auxiliary variable & = Vuv. In fact,
taking into account the functions A. and F. and its derivatives (given in (4.4)-(4.5)), another
regularized version of problem (4.1) reads: Find u. : Q x [0,7] = Rand o. : Q x[0,T] — R?
such that

( Oyue — V- (Ae(ue)V(FL(ue))) = V- (u.0:) =0 in Q, t >0,
0o +rot(rot o.) — V(V-0.)+ 0. =uV(F.(u:)) inQ, t>0,
e _ ) on o, t >0, (4.40)

on
o.-n=0, [rotasxn]m”gzo on 09, t >0,

 ue(x,0) = up(x) >0, o.(x,0) = Vug(x), in Q.

This kind of formulation considering o = Vv as auxiliary variable has been used in the
construction of numerical schemes for other chemotaxis models (see for instance [17] and
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Chapter 2 of this PhD thesis). Once problem (4.40) is solved, we can recover v, from u,
solving
v — Av, +v. =u. in €, t >0,

W 0 on o, t>0, (4.41)
n
ve(x,0) = vo(x) >0 in Q.

Observe that multiplying (4.40); by F!(u.), (4.40)2 by o., and integrating over 2, we
obtain the following energy law

d

1 /
G (Pl + 5o P)de+ [ A V()i + o1 =0
Q Q

In particular, the modified energy

E(u,o) = /Q (Fg(u) + %]al2>dm

is decreasing in time. Then, we consider a fully discrete approximation of the regularized
problem (4.40) using a FE discretization in space and the backward Euler discretization
in time (again considered for simplicity on a uniform partition of [0,7] with time step
k=T/N : (t, = nk)"=). Concerning the space discretization, we consider the triangulation
as in the scheme UV, but in this case without imposing the constraint (H) related with the
right-angles simplices. We choose the following continuous FE spaces for u., o, and v.:

(Un, X, Vi) € HY(Q)?,  generated by Py, P,,, P, with m,r > 1.

Then, we consider the following first order in time, nonlinear and coupled scheme:

e Scheme US:
Initialization: Let (u?,09) = (Q"u, Q"(Vvy)) € Uy X .

Time step n: Given (u?', ') € U, x 3, compute (u?, o) € U, x X, solving

{ (eul’, w)" + (Ao (u2) VII'(F/(ul)), Vi) = =(A(ul)ol, Vi), Vi € Uy, (4.42)

(6,67,5) + (Bpo™, &) = (\(u?)VIT(F!(u?)), &), V& € Ty,

where Q" is the L2-projection on Uj, defined in (4.9), @h is the standard L?-projection on
3, and the operator By, is defined as

(Bpol,o) = (rot o ot &) + (V-02,V-0)+ (ol

7).
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We recall that IT* : C(Q) — Uy, is the Lagrange interpolation operator, and the discrete semi-

inner product (-, )" was defined in (4.8). Once the scheme US is solved, given v"~! € V},
we can recover v = v(u?) € V}, solving:

(002, 0) + (Vul, Vo) + (v, 0) = (ul,v), Yo € V. (4.43)

Given u” € Uy, and v~ ! € V},, Lax-Milgram theorem implies that there exists a unique

vl € Vj, solution of (4.43). The solvability of (4.42) will be proved in Subsection 4.4.2.

4.4.1 Mass conservation and Energy-stability

Observe that the scheme US is also conservative in u (satisfying (4.16)) and also has the
behavior for [, v, given in (4.17).

Definition 4.4.1 A numerical scheme with solution (ul,o”) is called energy-stable with
respect to the enerqgy

1w 0) = (F.(u), )" + g o3 (1.44)

if this energy is time decreasing, that is, EM(ul,o™) < EM(ur™1, o™ 1) for alln > 1.

Theorem 4.4.2 (Unconditional stability) The scheme US is unconditional energy sta-
ble with respect to EMu,o). In fact, if (uZ, om) is a solution of US, then the following
discrete energy law holds

k k
5t€?(ug7d?)+€§ll5tUZ||3+§||5t0?||3+/Ae(ug)IVH"(Fé(ug))IQdWrIIUQII? < 0. (4.45)
Q

Proof. Testing (4.42); by @ = I"(F!(u")), (4.42); by & = " and adding, the terms
(A (ur)VIT"(F!(u.)), o) cancel, and we obtain

1 k
(G RGN + [ MIVIPE ) Pdo -+ 6(5l10217) + Sl + 2] =
Q
which, proceeding as in (4.22)-(4.23) and using Remark 4.3.3, implies (4.45). 1

Corollary 4.4.3 (Uniform estimates) Assume that (ug,vy) € L*(2) x HY(Q). Let
(ul, o) be a solution of scheme US. Then, it holds

(F(u), " + o2 IF+ k) (IVIEL )G+ lo]F) < Co, Yn= 1,

m=1

with the constant Cy > 0 depending on the data (Q,ug,vy), but independent of k,h,n and €.
Moreover, if € € (0,e72), estimates (4.26) hold.
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Proof. Proceeding as in (4.27) (using the fact that (u, %) = (Q"ug, Q"(Vuy))), we can
deduce that
(F(up), )" + [lopll§ < Co, (4.46)
where Cyy > 0 is a constant depending on the data (2, ug, vg), but independent of k, h, n and
e. Therefore, from the discrete energy law (4.45) and estimate (4.46), we have

(F-(u2), V)" + o5 + &) (IVIP(E ()G + lol1F) < (Fe(up), )" + lohll < Co-

m=1

Finally, the estimates given in (4.26) are proved as in Corollary 4.3.8. §

Remark 4.4.4 The conclusions obtained in Remark 4.53.9 and the approximated positivity
results established in Remark 4.3.10 remain true for the scheme US.

4.4.2 Well-posedness

Theorem 4.4.5 (Unconditional existence) There exists at least one solution (uZ, o) of
scheme US.

Proof. We will use the Leray-Schauder fixed point theorem. With this aim, given
(w1t g™ 1) € Uy, x Xy, we define the operator R : Uy x ), — Uy x Xp, by R(u, o) = (u, o),

such that (u, o) € Uy x X}, solves the following linear decoupled problem

u €U, st %(u,u)h = %(u?_l,u)h — (A (@)VI"(F!()), Va) — (\(w)a, Vi), Va e Uy,
(4.47)
o€, st %(0',6') +(Bpo,0) = %(a’?l,&) + (A\e()VII"(F/(70)), &), V& € ;. (4.48)

1. R is well defined. Applying the Lax-Milgram theorem to (4.47) and (4.48), we can
deduce that, for each (u, o) € Uy, x Xy, there exists a unique (u, o) € Uy, x 3, solution
of (4.47)-(4.48).

2. Let us now prove that all possible fixed points of AR (with A € (0, 1]) are bounded.
In fact, observe that if (u,o) is a fixed point of AR, then (u, o) satisfies the coupled

system
1
E(u,ﬂ)h + A (w) VIT(FL (1)), Va) + M\ (v)o, Vi) = %(u?_l, a)", Vu € Uy,
1
E(U’&) + (Byo,6) — A\ (uw)VII"(F!(u)), &) = %(a’?_l, o), Vo e X

(4.49)
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Then, testing (4.49); and (4.49), by @ = I[I"(F!/(u)) € Uy, and & = o € I}, respectively,
proceeding as in Theorem 4.4.2 and taking into account that A € (0, 1], we obtain

(Fu(w), 1"+ Sl +k (AIVIT (EL ) + o)

)\2
< (EOu), 1"+ ot 7 < Ot 077, (450)
which implies ||o||; < C (with the constant C' > 0 independent of A). Moreover,
proceeding as in the proof of (4.26) (using (4.50)) we deduce ||u||z: < C, where the

constant C' depends on data (Q,u?"!, o”! ¢).

3. We prove that R is continuous. Let {(@, &) }ien C Up x j = Whe(Q) x Whe(Q)
be a sequence such that

W, &) = (W,6) inU, xE), asl— +oo. (4.51)

In particular, {(@, &)} ey is bounded in WH(Q) x WH(Q). Observe that from
(4.51), we have that for h fixed, ' — @ in C(Q); and thus, F/(u') — F!(u) in C(Q)
since F! is a Lipschitz continuous function. Then, the linearity and continuity of IT"
with respect to C°(Q)-norm imply that II"(F’(u')) — II*(F/(7)) in C(Q) . Moreover,
if we denote (u!, ') = R(@,&"), we can deduce (recall that ¢ < A\.(s) < ! for all
s € R)

1

1 n— n— 2| =
@ S et R+ O R

+Ce | VIT(EL@))§ + C(h, k)e || VI (FL(@)) 5 < C,

1
(', D5 +5llollF <

where C' is a constant independent of [ € N. Therefore, {(v!,0!) = R(W, &)} ien
is bounded in Uj, x 3, < W' (Q) x W'*(Q). Then, since we remain in finite
dimension, there exists a subsequence of { R(u', 51)}161\1, still denoted by{R(u', E'I)}ZGN,
such that

R@ &) — (u,0') in Whe(Q) x Whe(Q). (4.52)

Then, from (4.51)-(4.52), a standard procedure allows us to pass to the limit, as I
goes to 400, in (4.47)-(4.48) (with (@, &) and (u!,o!) instead of (%,&) and (u, o)
respectively), and we deduce that R(u,o) = (u’, ¢”). Therefore, we have proved that
any convergent subsequence of {R(W,&")}en converges to R(%, &) in U, x Xy, and
from uniqueness of R(%, &), we conclude that the whole sequence R(',&') — R(%, &)
in U, x Xj,. Thus, R is continuous.

Therefore, the hypotheses of the Leray-Schauder fixed point theorem (in finite dimension)
are satisfied and we conclude that the map R has a fixed point (u, o), that is R(u, o) = (u, o),
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which is a solution of nonlinear scheme US.

Lemma 4.4.6 (Conditional uniqueness) If k f(h,e) < 1 (where f(h,e) T +oo when
h 10 orel0) then the solution (ul, o) of the scheme US is unique.

Proof. Suppose that there exist (u™! ™), (u™? a™?) € U}, x X}, two possible solutions
of the scheme US. Then, defining u = u™' — v™? and ¢ = ™' — ™%, we have that
(u, o) € Uy x Xy, satisfies

(u, @)" +(A(u ) VIP(FL(uh) = FL(u2?), Va) + (A (u2) = Ae(ul?)) VITF(u?), Vi)

+ (AN, Va) + (A (u™h) — A (u™?))a™* Vi) = 0, Y € Uy, (4.53)

1
k

%(0, )+ (Bho,6) = (A(up ) VIT(FL(ul!) = Fl(u??)), )

F((Ac(u) = Ae(u2?)VII"FL(ul?), ), Vo € By (4.54)
Taking © = u, & = o in (4.53)-(4.54), adding the resulting expressions and using the fact that

/ u = 0 as well as Remark 4.3.3, estimates in Corollary 4.4.3 and some inverse inequalities,
Q

we obtain

1 n n n
= a)g + ot < [A(ul Do [ VI (FL () = FL ()| Vully

HA () = Ac(ul?) [ [ VI FL (ul?) o | Vaello + |4 (uZ) | < [l ol Vullo
HA(uE) = A(uZ?) [ o2 [l Vullo + [ A (") l[zoe [ VI (FL () = FL(uz®)) [ollerllo
HA(uEh) = Ac(uZ?) |22 [ VI FL () oo s

_ _ 1 _
< e CM)lulls + e CM)lulls + llollo + e *CRllully + CoC(R)ully
1 _ 1 _
tillolot+e O ullg + glolli+e 2C(M)[lullg,
and therefore,
2 K 2 2
1w o)llo + Sllolly < & £(h, ) lulp,

where f(h,e) T +oo when h | 0 or ¢ | 0. Thus, if k f(h,e) < 1, we conclude that
(u,o) =(0,0). &
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4.5 Scheme UZSW

In this section, we propose an energy-stable linear fully discrete scheme associated to model
(4.1). With this aim, we introduce the new variables

ze = Fl(u.), . = Vu. and w. = /F.(u.) + A, with (4 > 0).

Then, a regularized version of problem (4.1) in the variables (u, z., o, w,.) is the following:

( Oue — V- (Ae(ue)Vz) =V (u.o.) =0in Q, t >0,
oo +rot(rot .) = V(V-0o.)+ 0. =uVz. in t>0,
w, = Fl(ue) Qpue in Q, t >0,
2/ F.(u:)+ A
1
ze = ————F/(u)w. inQ, t>0, (4.55)
F.(u)+ A
Oz =0 onodf, t>0,
on
o.-n=0, [roto.xn,, =0 ondQ, t>0
L u:(x,0) = up(x) >0, o.(x,0) = Vyy(x), we( = /F.(up(xz)) + A inQ,

for all constant A > 0.

Remark 4.5.1 Notice that problems (4.40) and (4.55) are equivalents for all A > 0. In
fact, if (ue,o.) is a solution of the scheme US, then defining z. = F.(u.) and w. =
VF:(u:) + A, we deduce that (ue, z.,0.,w.) is a solution of the scheme UZSW. Recip-
rocally, if (ue, ze, e, w.) is a solution of the scheme UZSW, then from

(ue) Opute,
2/ F. Y e wo=Fo(u) + A

w€|t:0 - Fs(uo) + A,

atwe -

and (4.55)s, we deduce that z. = F!(u.), and therefore, (u.,0.) is a solution of (4.40).
As in the previous section, once solved (4.55), we can recover v, from wu. solving (4.41).
Observe that multiplying (4.55); by z., (4.55)y by o., (4.55)3 by 2w, (4.55)4 by Oyue,

integrating over €2 and using the boundary conditions of (4.55), we obtain the following
energy law

G [ (e JloP)dz + [ Aw)|Vafd + o] =0,
Q Q
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In particular, the modified energy

&(w, o) = /Q (|w|2 n %|a|2>daz

is decreasing in time. Then, we consider a fully discrete approximation of the regularized
problem (4.55) using a FE discretization in space and a first order semi-implicit discretization
in time (again considered for simplicity on a uniform partition of [0,7] with time step
k=T/N : (t, = nk)"ZL). Concerning the space discretization, we consider the triangulation
as in the scheme US (hence, the constraint (H) related with the right-angles simplices is
not imposed), and we choose the following continuous FE spaces for u., z., ., w. and v.:

(Un, Zp, B, Wi, Vi) € HY(Q)®,  generated by Py, Py, P,,, P, P, with k,l,m,r,s > 1and k <.

Remark 4.5.2 The constraint k < [ implies U, C Z), which will be used to prove the well-
posedness of the scheme UZSW (see Theorem 4.5.6 below).

Then, we consider the following first order in time, linear and coupled scheme:

o Scheme UZSW :

Initialization: Let (up, o), w) ) = Q" ug, Q" (Vy), Qh( F.(uw) + A)) € U, x ¥, X
Wh.

Time step n: Given (u? !, o1 wr™!) € U, x ), x Wy, compute (u?, 20, o™, w?) €
Uh X Ay X Eh x W SOlVlIlg

(6u”, 2) + (A (ur1)V2D, VZ2) = —(u'o?, V2), Vz € Z,

(60", 7) + (Bpo?, o) = (u"'Vzl a), Vo e Xy,

(5twn QD) = (%FI(Unil) 515“?7@)’ Vw S Wha (456)
(

Fe(ul™h4a ©4°°
n &\ — 1 F/ n—1 n —) V— U, .
Zs?“) ( Fo(ul D)t A s(us )ws7u ; Vu € Uy
Recall that (Bpo?, o) := (rot ol,rot &) + (V -0,V -0)+ (0f,0) for all ¢ € %y, Q" is
the L2-projection on Uy, defined in (4.9), and Qh and Qh are the standard L?-projections on

3, and W), respectively. As in the scheme US, once the scheme UZSW is solved, given
V"1 € Vj,, we can recover v = v”(u”) € V}, solving (4.43).
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4.5.1 Mass conservation and Energy-stability

Observe that the scheme UZSW is also conservative in u (satisfying (4.16)) and also has
the behavior for [, v, given in (4.17).

nZn

nol ol wl) is called energy-stable

Definition 4.5.3 A numerical scheme with solution (u
with respect to the energy

1
E(w,a) = [[wlls+ ol (4.57)

if this energy is time decreasing, that is, E(w®, o) < (w2, o™ 1) for alln > 1.

Theorem 4.5.4 (Unconditional stability) The scheme UZSW is unconditional energy
stable with respect to E(w, o). In fact, if (uZ, 20, o, w?) is a solution of UZSW, then the
following discrete energy law holds

k
O (wl, o) + Kl 5 + S0 25 + / Ae(uf V22 + [|lo|ff = 0. (4.58)
Q

Proof. The proof follows taking (z,6,w,u) = (22, o, 2w?, 6;u’) in (4.56). 1

From the (local in time) discrete energy law (4.58), we deduce the following global in

time estimates for (uZ, 27, o, w?) solution of the scheme UZSW:

Corollary 4.5.5 (Uniform Weak estimates) Assume that (ug,vy) € L*(Q2) x HY(Q).
Let (ul, 20, o, w?) be a solution of scheme UZSW. Then, the following estimate holds

w25+ o215 + &> ( / A£<u;"—1>|w?|2+||a?||%> <Cy, Vn>1, (4.59)
m=1

with the constant Cy > 0 depending on the data (Q,ug,vy), but independent of k,h,n and €.

Proof. Proceeding as in (4.27) and taking into account that ug > 0 and (uj, o7, wj ) =
(Q" 9, Q"(Vvo), Q"(1/F.(ug(w)) + A)), we have that

1 ~ 1~ 1
k18 + 51 = 1@/ Feua) + A+ F1Q(Ven)l < [ (Fuluo) + 4) + 5 Vunl}

1
< C/((Uo)2 +1)+ §||Vvo||3 < C(Jfuoll§ + lvollf +1) < Co,  (4.60)
Q
with the constant Cy > 0 depending on the data (2, ug,vy), but independent of k, h,n and

e. Therefore, multiplying the discrete energy law (4.58) by k, adding from m =1 to m =n
and using (4.60), we arrive at (4.59). 1
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4.5.2 Well-posedness

Theorem 4.5.6 (Unconditional unique solvability) There ezists a unique (u?, 22, o, w
solution of scheme UZSW.

Proof. By linearity of the scheme UZSW, it suffices to prove uniqueness. Suppose
that there exist (ul;, 20"y, 00, Wl ), (Uly, 20y, 0L o, wLy) € Uy X Zyy X B, x W), two possible
solutions of UZSW. Then defining u = ul; — uly, 2 = 20y — 2l'y, 0 = 01 — 0y and

w = wl') — wly, we have that (u, z,0,w) € Uy x Z), x ), x W), satisfies

H(u, 2) + (Ae(ut)V2,Vz) = —(ul'o, Vz), Vze Z,
%(Ua5)+(3h0 o) = (ut"'Vz,0), Vo€,
%(w,w) = ﬁ W Fl(u 1) u, > Yw € Wy, (4.61)

SR — T ’) Yu € Uy,
< F.(u? Y+A € [u)w,a), VueU,

—~
VN
N
S~—
I

Taking (z,6,w,u) = (z, 0, 2w, %u) in (4.61) and adding, we obtain

2 1 ne
Pl + ol + [ Az HIVa + ol =0,
Q

Taking into account that A (u?"') > &, we deduce that (Vz,o,w) = (0,0,0), hence
z = C := cte. Moreover, using the fact that w = 0 and z = C, from (4.61), we con-
clude that z = 0. Finally, taking Z = u in (4.61); (which is possible thanks to the choice
Un C Zy), since (Vz,0) = (0,0) we conclude u = 0. 1§

4.6 Numerical simulations

The aim of this section is to compare the results of several numerical simulations using the
schemes derived throughout the paper. We choose the spaces for (u, z, o, w) generated by
P;-continuous FE. Moreover, we have chosen the 2D domain [0, 2]* with a structured mesh
(then (H) holds and the scheme UV can be defined), and all the simulations are carried
out using FreeFem-++ software. In the comparison, we will also consider the classical
Backward Euler scheme for model (4.1), which is given for the following first order in time,
nonlinear and coupled scheme:

o Scheme BEUV :
Initialization: Let (u°,v°) = (Q"ug, R"vy) € Uy, x V.
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Time step n: Given (v~ v 1) € Uy, x V3, compute (u”,v") € Uy, x V;, solving
(opu™, u) + (Vu",Vu) = —(u"Vo", Vu), Yu € Uy,
(0™, 0) + (Apo™,0) = (u",v), Yo € V.

Remark 4.6.1 The scheme BEUYV has not been analyzed in the previous sections because
it is not clear how to prove its energy-stability. In fact, observe that the scheme UV (which
is the “closest” approzimation to the scheme BEUYV considered in this paper) differs from
the scheme BEUYV in the use of the regularized functions F., F. and F! (see (4.5) and
Figure /.1) and in the approzimation of cross-diffusion term (uNVv,Vu), which are crucial
for the proof of the energy-stability of the scheme UV.

The linear iterative methods used to approach the solutions of the nonlinear schemes
UV, US and BEUYV are the following Picard methods, in which, we denote (uZ,v”, o?) :=

(u™, 0" o). o
(i) Picard method to approach a solution (u",v™) of the scheme UV
Initialization (I = 0): Set (u%,0%) = (u"~ 10" 1) € Uy X V.
Algorithm: Given (u!,v') € Uy x V3, compute (u!™!,v"*1) € Uy, x Vj, such that
Wt a) + (Vultt va) = f(u a)h — (A (uh) Vot Va), Va e Uy,
{ (O 0) 4+ (Aputth o) = £ (0" o) + (Wl 0), Vo eV,

I+1 _ I+1 _ )l
until the stopping criteria max { [l . HO, v . Y HO} < tol.
[ 4[] 100

(ii) Picard method to approach a solution (u", ™) of the scheme US
Initialization (I = 0): Set (v°,0°) = (u"" !, 0" ') € U, x Xy
Algorithm: Given (u!, ') € Uy x X3, compute (u'*! o) € U, x X}, such that

Ly ) 4 (V (b, Vi) — (Vad, Vi)

= ;@) — () VII'(F(u')), Va) — (A:(u)o™*!, V), Vu € Uy,
H0',0) + (Bt o) = {(o" o) + (\(u) VIN(EL(u), ), Yo €3,
+1 _ )1 +1 -l
until the stopping criteria max { [ Tl 4 HO, lo HO'ZHG ”0} < tol. Note that a resi-
0 0

dual term (V(u!™' — '), V) is considered.
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(iii) Picard method to approach a solution (u™,v"™) of the scheme BEUV
Initialization (I = 0): Set (u°,v°) = (u"~ 1, 0" ') € Up, x V},.
Algorithm: Given (u!,v') € Uy x V3, compute (u!*!,v"*1) € Uy, x Vj, such that
Tt a) + (Vultt, Va) = (vt a) — (W' Vot Va), Va e Uy,
(D) + (At o) = £ (0" 0) + (W, D), VO E Vg,

I+1 I+1

—Ul||0 ||U

Y

[utlo [v*]]o

)
until the stopping criteria max { Il o } < tol.

Remark 4.6.2 In all cases, first we compute v'*1 (resp. o'*1) solving the v-equation (resp.
o-system) and then, inserting vt (resp. o'*t) in u-equation, we compute utt.

4.6.1 Positivity of u"

In this subsection, we compare the positivity of the variable u™ € U, in the four schemes.
Here, we choose the space V}, generated by Py-continuous FE. We recall that for the three
schemes studied in this paper, namely schemes UV, UZSW and US, it is not clear the
positivity of the variable u™. Moreover, for the schemes UV and US, it was proved that
1" (u™ ) — 0in L*(Q) as ¢ — 0 (see Remarks 4.3.10 and 4.4.4); while for the scheme UZSW
this fact is not clear. For this reason, in Figures 4.3-4.5 we compare the positivity of the
variable u” in the schemes, taking e = 1073, ¢ = 107 and ¢ = 107%. In the scheme UZSW
we fix A =1 (and thus, F.(s) + A > 1 for all s € R). We consider the time step k = 1072,
the tolerance parameter for the linear iterative methods tol = 10~* and the initial conditions

(see Figure 4.2)
up=—102y(2 — 2)(2 — y)exp(—10(y — 1)* — 10(x — 1)?) + 10.0001,

vo=1002y(2 — 7)(2 — y)exp(—=30(y — 1)* — 30(z — 1)*) + 0.0001.

Note that wp,vp > 0 in €, min(ug) = wue(l,1) = 0.0001 and max(vg) = ve(1,1) =
100.0001. Moreover, for the schemes UV and UZSW we take the mesh size h = 4—10, while
for the scheme US it was necessary to take h = 8—10, because for thicker meshes we had
convergence problems of the iterative method.

In the case of the schemes UV and US, we observe that although [ is negative for some
x € ) in some times ¢, > 0, when € — 0 these values are closer to 0; while in the case of
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Figure 4.2: Initial conditions.

the scheme UZSW, this same behavior is not observed (see Figures 4.3-4.5). Finally, in the
case of the scheme BEUYV (see Figure 4.6), we have also observed negative values for the
minimum of «" in some times ¢, > 0, with more negative values than in the schemes UV

and US.

Remark 4.6.3 In Figures 4.5 and 4.5 there are also negative values of minimum of u for
e = 1075 and ¢ = 1078, but those are of order 10=* and 107 respectively in both figures.

4.6.2 Energy stability

In this subsection, we compare numerically the stability of the schemes UV, UZSW, US
and BEUYV with respect to the “exact” energy

£.(u,0) /Q Fo(u())dz + %uwug, (4.62)

where
1, ifu<0,

Fo(u) ;:F(u+)={ uln(u) —u+1, ifu>0.

It was proved that the schemes UV, UZSW and US are unconditionally energy-stables
with respect to modified energies obtained in terms of the variables of each scheme. Even
more, some energy inequalities are satisfied (see Theorems 4.3.7, 4.4.2 and 4.5.4). However,
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Figure 4.3: Minimum values of u! computed using the scheme UV.

it is not clear how to prove the energy-stability of these schemes with respect to the “exact”
energy E.(u,v) given in (4.62), which comes from the continuous problem (4.1) (see (4.3)).
Therefore, it is interesting to compare numerically the schemes with respect to this energy

Ee(u™,v™), and to study the behaviour of the corresponding discrete residual of the energy
law (4.3):

RE (u",v") := 6 € (u™,0") + 4/ IV /ul|Pde + || (A — D™ |3 + || Vo™ 5. (4.63)
0

1. First test: We consider k = 1073, h = %, tol = 10~* and the initial conditions (see
Figure 4.7)
up = Tw + 7.0001 and vy = —Tw + 7.0001,

where w = cos(2mx)cos(2my). We choose V}, generated by Py-continuous FE. Then, we
obtain that:

(i) The scheme BEUV satisfies the energy decreasing in time property for the exact
energy &.(u,v), that is,

E(u™v™) < E(u" v n. (4.64)

Its behaviour can be observed in Figure 4.8. The same behaviour is obtained for the
schemes UV and US independently of the choice of €. In the case of the scheme
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Figure 4.4: Minimum values of u! computed using the scheme UZSW.

UZSW, this property (4.64) is not satisfied for any value of €. Indeed, increasing
energies are obtained for different values of ¢ (see Figure 4.9).

(ii) The scheme BEUYV satisfies the discrete energy inequality RE,(u",v") < 0 for RE,(u™, v™)
defined in (4.63) (see Figure 4.10). The same is observed for the schemes UV and US
independently of the choice of €. In the case of the scheme UZSW, it is observed that
this discrete energy inequality is not satisfied for any value of €. Indeed, the residual
RE.(ul,v!) obtained for each e reaches very large positive values (see Figure 4.11).

2. Second test: We consider k =107, h = 5, tol = 10~* and the initial conditions

up = 14w + 14.0001 and vy = —14w + 14.0001,

with the function w as before. Now, we choose the space V}, generated by P;-continuous FE.
Then, we obtain that:

(i) The schemes BEUV, UV and US satisfy the energy decreasing in time property
(4.64), independently of the choice of ¢.

(ii)) The schemes UV and US satisfy the discrete energy inequality RE,(ul,v
independently of the choice of €; while the scheme BEUV have RE(u™,v") >
some n > 0 (see Figure 4.12).
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Figure 4.5: Minimum values of u! computed using the scheme US.

4.7 Conclusions

In this paper we have developed three new mass-conservative and unconditionally energy-
stable fully discrete FE schemes for the chemorepulsion production model (4.1), namely UV,
US and UZSW. From the theoretical point of view we have obtained:

(i)

(iv)

The well-posedness of the numerical schemes (with conditional uniqueness for the non-
linear schemes UV and US).

The nonlinear scheme UV is unconditional energy-stable with respect to the energy
EM(u,v) given in (4.19), under the constraint (H) on the space triangulation related
with the right-angles and assuming that U}, is approximated by P;-continuous FE.

The nonlinear scheme US and the linear scheme UZSW are unconditional energy-
stables with respect to the modified energies €"(u, o) (given in (4.44)) and &(w, o)
(given in (4.57)) respectively, without the constraint on the triangulation related with
the right-angles simplices and assuming that U, can be approximated by P;-continuous
and Pg-continuous FE respectively, for any k > 1.

It is not clear how to prove the energy-stability of the nonlinear scheme BEUV with
respect to the energy E.(u,v) (given in (4.62)) or some modified energy (see Remark
4.6.1).
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(v) In the schemes UV and US there is a control for [T"(u”_) in L?-norm, which tends to
0 as ¢ — 0. This allows to conclude the nonnegativity of the solution u! in the limit

when ¢ — 0. This property is not clear for the linear scheme UZSW.

On the other hand, from the numerical simulations, we can conclude:

(i) There are initial conditions for which the scheme UZSW is not energy stable with
respect to the energy &.(u,v), that is, the decreasing in time property (4.64) is not
satisfied for any value of €. Indeed, time increasing energies are obtained for different
values of €.

(ii) For the three compared nonlinear schemes (UV, US and BEUV), only the scheme
US has convergence problems for the linear iterative method. However, these problems
are overcomed considering thinner meshes.

(iii) The schemes UV and US have decreasing in time energy &.(u,v), independently of
the choice of €. In fact, the discrete energy inequality RE.(u?,v?) < 0 is satisfied in
all cases, for RE,(u,v!) defined in (4.63).

(iv) The scheme BEUV has decreasing in time energy &.(u,v), but the discrete energy
inequality RE,(u™,v") < 0 is not satisfied for some n > 0.
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Figure 4.7: Initial conditions.

(v) Finally, it was observed numerically that, for the schemes UV and US, u? — 0 as
¢ — 0; while for the scheme UZSW this behavior was not observed.
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Figure 4.8: Energy E.(u",v") of the scheme BEUV.
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Figure 4.9: Energy E.(u?, v) of the scheme UZSW for different values of ¢.
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Figure 4.10: RE.(u",v") of the scheme BEUV (with approximation Py-continuous for V},).
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Figure 4.11: RE,(uZ,v") of the scheme UZSW for different values of ¢.
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Figure 4.12: RE.(u™,v") of the schemes BEUV, UV, and US (with approximation P;-
continuous for V},)

In the previous figure: on the bottom, scheme US (for ¢ = 1073,107°,107%); in the middle,
scheme UV (for ¢ = 1072,107°,1078); and on the top, scheme BEUV.
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Chapter 5

On a chemo-repulsion model with
nonlinear production: The continuous
problem and unconditionally energy
stable fully discrete schemes

5.1 Introduction

Chemotaxis is the biological process of the movement of living organisms in response to a
chemical stimulus, which can be given towards a higher (chemo-attraction) or lower (chemo-
repulsion) concentration of a chemical substance. At the same time, the presence of living
organisms can produce or consume chemical substance. A repulsive-productive chemotaxis
model can be given by the following parabolic PDE’s system:

Ou—Au=V-(uVv) in, t>0,
v —Av+v=f(u) inQ, t>0,

where Q C R? d = 2,3, is a bounded domain with boundary 9Q. The unknowns for
this model are u(x,t) > 0, the cell density, and v(x,t) > 0, the chemical concentration.
Moreover, f(u) > 0 (if w > 0) is the production term. In this paper, we consider the
particular case in which f(u) = w?, with 1 < p < 2, and then we focus on the following
initial-boundary problem:

Ou—Au=V-(uVv) inQ, t>0,
ov—Av+v=uP in Q, t >0,

%2@20 on 092, t >0, (5.1)
on On
u(x,0) = ug(x) >0, v(x,0) =vo(x) >0 in Q.
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In the case of linear (p = 1) and quadratic (p = 2) production terms, the problem
(5.1) is well-posed (see [7] and Chapter 1 of this PhD thesis, respectively) in the following
sense: there exist global in time weak solutions (based on an energy inequality) and, for 2D
domains, there exists a unique global in time strong solution. However, as far as we know,
there are not works studying problem (5.1) with production v?, with 1 < p < 2.

Problem (5.1) is conservative in u, because the total mass [, u(-,t) remains constant in
time, as we can check integrating equation (5.1); in €,

%(/ﬂu(-,t)) =0, ie. /Qu(-,t) :/Quo i=my, Vt>0. (5.2)

The first aim of this work is to study the existence of weak-strong solutions for problem
(5.1) (in the sense of Definition 5.3.1 below), satisfying in particular the energy inequality
(5.8) below. The second aim of this work is to design numerical methods for model (5.1)
conserving, at the discrete level, the mass-conservation and energy-stability properties of the
continuous model (see (5.2) and (5.8), respectively).

There are only a few works about numerical analysis for chemotaxis models. For ins-
tance, for the Keller-Segel system (i.e. with chemo-attraction and linear production), in
[9] Filbet proved the existence of discrete solutions and the convergence of a finite volume
scheme. Saito, in [16, 17], studied error estimates for a conservative Finite Element (FE)
approximation. In [8], some error estimates are proved for a fully discrete discontinuous FE
method, and a mixed FE approximation is studied in [14].

Energy stable numerical schemes have been also studied in the chemotaxis framework. An
energy-stable finite volume scheme for a Keller-Segel model with an additional cross-diffusion
term has been studied in [6]. In Chapters 1 and 2 of this PhD thesis, unconditionally energy
stable time-discrete numerical schemes and fully discrete FE schemes for a chemo-repulsion
model with quadratic production have been analyzed. Unconditionally energy stable fully
discrete FE schemes for a chemo-repulsion model with linear production has been studied
in Chapter 4. However, as far as we know, for the chemo-repulsion model with production
term u? (5.1) there are not works studying energy-stable numerical schemes.

This chapter is organized as follows: In Section 5.2, we give the notation and some
preliminary results that will be used throughout the paper. In Section 5.3, we prove the
existence of weak-strong solutions of model (5.1) (in the sense of Definition 5.3.1 below)
by using a regularization technique. In Section 5.4, we propose three fully discrete FE
nonlinear approximations of problem (5.1), where the first one is defined in the variables
(u,v), and the second and third ones introduce o = Vv as an auxiliary variable. We prove
some unconditional properties such as mass-conservation, energy-stability and solvability of
the schemes. In Section 5.5, we compare the behavior of the schemes throughout several
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numerical simulations; and in Section 5.6, the main conclusions obtained in this paper are
sumarized.

5.2 Notation and preliminary results

We recall some functional spaces which will be used throughout this paper. We will consider
the usual Lebesgue spaces L(), 1 < ¢ < oo, with norm || - ||z¢. In particular, the L*(Q)-
norm will be denoted by || - ||o. From now on, (-, -) will denote the standard L?-inner product
over 2. We also consider the usual Sobolev spaces W™P(Q) = {u € LP(Q) : ||0%u||r <

+00, V]a| < m}, for a multi-index o and m € N, with norm denoted by || - ||[wmr. In the
case when p = 2, we denote H™(Q) := W™?(Q2), with respective norm || - ||,,. Moreover, we
denote by
H.(Q):={c € H(Q):0-n=0o0n 0N},
ou
WHP(Q) = {u e WmP(Q) : n 0 on 89},

and we will use the following equivalent norms in H'(Q) and H.(Q), respectively (see [15]

and [2, Corollary 3.5], respectively):

2
ll? = [ Vull? + ( / u) Ve H'(Q),

lolli = ol + lIrot oI5 + [V - alls, Vo € H,(Q), (5-3)

where rot o denotes the well-known rotational operator (also called curl) which is scalar for
2D domains and vectorial for 3D ones. In particular, (5.3) implies that, for all & = Vv €
H, (),

Vo]l = [Vollg + | Avlls. (5.4)

If Z is a general Banach space, its topological dual space will be denoted by Z’. Moreover,
the letters C, K will denote different positive constants which may change from line to line.

We will use the following results:

Theorem 5.2.1 ([10]) Let 1 < q < +oo and suppose that f € L(0,T;LY(Q)), uy €
W2_%’q(Q), where

W2 ai(Q) if 1-2-1L<o,

W2—§7q(9) = 2 T
Wa Q) if 1-2-1>0.
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Then, the problem
ou—Au=f inQ, t>0,

g—u:O on 09, t >0,

n
u(x,0) = ug(x) in Q,

admits a unique solution u in the class
w e LU0, T; W4(Q)) 0 C([0, T); W>4(Q)), 8 € LU0, T; LU)).
Moreover, there exists a positive constant C'= C(q,,T) such that

ull g 220 ) T O a0 zizacey Hlwll oo ey < CUIS Lo riza@) +l1uollga-z.40 o )-

Proposition 5.2.2 ([1]) Let X be a Banach space, Q@ C X an open subset, U C Q a
nonempty convex subset and J : 2 — R a functional. Suppose that J is G—differentiable in
Q. Then, J is convex over U if and only if the following relation holds

J(x1) = J(29) < 8J (21,71 — T9), V1,79 €U, 71 # 2. (5.5)

Finally, we will use the following result to get large time estimates [13]:
Lemma 5.2.3 Assume that 0, 5,k > 0 and d"™ > 0 satisfy
(14 6k)d™™ < d" + kB, ¥n>0.
Then, for any ng > 0,

d" < (14 6k)~(=m)gno 15715 Vn > ny.

5.3 Analysis of the continuous model

In this section, we will prove the existence of weak-strong solutions of problem (5.1) in the
sense of the following definition.
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Definition 5.3.1 (Weak-strong solutions of (5.1)) Let 1 < p < 2. Given (ug,vy) €
LP(Q) x HY(Q) with ug >0, vg > 0 a.e. in Q, a pair (u,v) is called weak-strong solution of
problem (5.1) in (0,400), if u >0, v > 0 a.e. in (0,+00) X €,
u € L=(0, +00; LP(Q)) N Lits (0, T; Wh#3(Q)), VT > 0,
v € L>(0,+00; HY(Q2)) N L3(0,T; H*(Y)), VT >0,
dpu € Lt (0, T, Whm=s(Q)), dw € L5(0,T;L(Q)), VT >0,

the following variational formulation for the u-equation holds

T T T 10p 10p
/ (O, ) + / (Vu, Vi) + / (W, Vi) = 0, Vi € La%(0,T: Whs%(Q)), vT > 0,
0 0 0
(5.6)

the v-equation holds pointwisely

ov—Av+v=1u" ae (t,z)€ (0,400) x Q, (5.7)

0
the boundary condition v _ 0 and the initial conditions (5.1)4 are satisfied and the following

n
energy inequality (in integral version) holds for a.e. to,t; with t; >t > 0:

E(ut). olt) - Eutiolow) + [ (SRR +ITe@IR) ds<0. 69

to

where
1

() = =

1
el + SIVoIIG. (5.9)

Observe that any weak-strong solution of (5.1) is conservative in u (see (5.2)). In addition,
integrating (5.1)2 in Q, we deduce

) oL

5.3.1 Regularized problem

In order to prove the existence of weak-strong solution of problem (5.1) in the sense of
Definition 5.3.1, we introduce the following regularized problem associated to model (5.1):
Let € € (0,1), find (uf, 27), with u® > 0 a.e. in (0, +00) x €, such that, for all " > 0,

W, € X = {we L0, T; W3 (Q) N L3 (0, T; W>3(Q)) : w € L3(0,T; L3 (Q))},
(5.11)
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and
Ot — Au® =V - (u*Voe(z°)) in Q, t >0,
Oz —Azf+ 22 =(u)Pin Q, t >0,
= _ 0=\ on o, t>0,

On On
u(x,0) = ui(x) > 0, 26(x,0) = v5(x) — cAvi(x) in Q,

where v® = v°(2°) is the unique solution of the elliptic-Newman problem

{ v —eAv® = 2° in

(21;1 =0 on 01,

4
5

and (ug, z5) € W53 (Q)2 with

(ug, 25) — (uo, z0) in L*(Q) x L*(Q), ase — 0.

(5.12)

(5.13)

(5.14)

From now on in this section, we will denote v*(2°) solution of (5.13) only by v* . Observe
that if (u®, 27) is any solution of (5.12), then (5.2) and (5.10) are satisfied for (u,v) = (u®, v°).

Theorem 5.3.2 Let € € (0,1). Then, there exists at least one solution of problem (5.11)-

(5.12).

Proof. We will use the Leray-Schauder fixed point theorem. With this aim, we denote

X = L®(0, T; L2(Q)) N L2(0, T; H'(Q)),

and we define the operator R : X x X — X x X <= X x X by R(@, %) = (uf, 2), such that

(uf, 2°) solves the following linear decoupled problem
O — Auf =V - (ui. V7)) in Q, t >0,
Opzf — Azf = (WP —ZFin Q, t >0,
= = Q, t
I 7 0 on 09, t >0,
u®(x,0) = uf(x) >0, 26(x,0) = v§(x) — cAv§(x) in 2,

where v° = v®(2zF) and, in general, we denote a, := max{a,0}.
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1. R is well defined. Observe that if z. € X, from the H? and H3-regularity of pro-
blem (5.13) (see [11, Theorems 2.4.2.7 and 2.5.1.1] respectively), we have that v° €
L>(0,T; H*(2)) N L*(0,T; H3(2)). Thus, we deduce that Vo© € L>(0,T; H(Q)) N
L*(0,T; H*(Q)) — L'°(0,T; L'°(Q)). Then, using this fact and taking into account
that (i, 2%) € X x X, we obtain that V - (a5 Vo*) € L3(0,T; L3 (Q)) and (@) + 3 €
L3(0,T; L3(5)) for any p € (1,2). Thus, applying Theorem 5.2.1 to (5.15), we deduce
that there exists a unique (uf, 2°) € X x X solution of (5.15).

2. Let us now prove that all possible fixed points of AR (with A € (0, 1]) are bounded in
X x X and u® > 0. In fact, observe that if (u°, 2°) is a fixed point of AR, then (u®, 27)
satisfies

Ot — Au® = AV - (v Vo) in Q, ¢t >0,
Ozt — Azf = Auf)P — Azfin Q, t >0,

15 S .1
O 0= ) on 00, t>0, (5.16)
On

n
u(x,0) = ui(x) >0, 26(x,0) = v5(x) — cAvi(x) in Q,

Then, multiplying (5.16); by u° := min{u®,0} and integrating in 2, we have

2dtHu 6+ IV [I5 = Aui Vs, Vul ) =

which, taking into account that u§(x) > 0, implies that u® > 0 a.e. in (0,400) X
Q. Thus, v = w°. Now, testing (5.16); and (5.16), by P 1(u€)7”1 and —Av®
p_

respectively, and adding both equations, the terms —

b 1(uEVv€,V(u€)p_1) and
AV (u®)P, VoF) cancel, and taking into account (5.13), we obtain

d
- p/2
i & [ 9

+el [ V(Av)[[5 + |Av°][§ = = AV |5 — Ael]Av®|l§ <0, (5.17)
where

€ ,E 1 € 1 € € €
Ee(us,v%) = EHU 17 + SIVOlG + S 1 Av5.

2

Moreover, we observe that the function y*(t) = (/ v (x, t) da:) satisfies (y°)'(t) +
Q

ye(t) < we(t), with we(t) = |Jus(t)||?,. In fact, it follows by multiplying (5.10) (for

(u,v) = (u®,v%)) by / v°(x,t) dr and using the Young inequality. Therefore, y°(t) =
Q
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t
ye(0) et + / e~ =) v°(s) ds, which implies that
0

2 2
( /Q v (2, 1) d:c) < ( /Q Vi () da:) 1 2 gz V> 0. (5.18)

Then, from (5.17)-(5.18) and using (5.4), we deduce the following estimates with res-
pect to A:

(uf,v%) is bounded in L>(0, +oo; LP(Q) x H?(1)),
u® is bounded in LP(0,T; L*(Q)) and v is bounded in L2(0,T; H*(Q)).
(5.19)
Then, from (5.19) we conclude that z¢ is bounded in X. Moreover, testing (5.16); by
u®, we have
1d
2dt
from which, taking into account (5.19) and using the Gronwall Lemma, we deduce that
u® is bounded in X.

1
13 + 11 = =Mo", V) + [ < 51+ C (1901 + 1) e,

. R is compact. Let {(u%,z%)}en be a bounded sequence in X x X. Then (u,2%) =

R(ut, Zt) solves (5.15) (with (ug,2%) and (uS, 22) instead of (u, z%) and (u®, z°) respec-

n’»~n n»~n n»n

tively). Therefore, analogously as in item 1, we obtain that V- ((u5,, )V©;) is bounded
L3(0,T; L3(2)) and (75)? + 3 is bounded L3 (0,T; L3(R)); and therefore, from The-
orem 5.2.1 we conclude that {R(%, 2% ) }nen is bounded in X x X which is compactly
embedded in X x X, and thus R is compact.

. We prove that R is continuous. Let {(u;,, Z;) }neny C X x X be a sequence such that

n»=n

(g, z;) — (u%,2°) in X xX, asn— +oo. (5.20)

n»n

Therefore, {(u5, z5) }nen is bounded in X xX, and from item 3 we deduce that {(u5, 25) =
R(ut, z%) }nen is bounded in X x X. Then, there exist (u°, 2°) and a subsequence of

n»n

{R(uZ, z5) }nen still denoted by {R(uS, Z5) }nen such that

R(u;,z;) — (45, 2°) weakly in X x X and strongly in X x X. (5.21)

n»Tn

Then, from (5.20)-(5.21), a standard procedure allows us to pass to the limit, as n goes
to 400, in (5.15) (with (u5, 28) and (u3), 25) instead of (u®, 2°) and (u®, %) respectively),
and we deduce that R(u®,z%) = (a7, 2°). Therefore, we have proved that any conver-
gent subsequence of {R(uS, Z5) }hen converges to R(u®, z°) strong in X x X, and from
uniqueness of R(u®,z%), we conclude that the whole sequence R(u5, 25) — R(u°, z°) in
X x X. Thus, R is continuous.

150



Therefore, the hypotheses of the Leray-Schauder fixed point theorem are satisfied and
we conclude that the map R(u®,z°) has a fixed point (uf, z9), that is, R(u®,2°) = (uf, 2°),
which is a solution of problem (5.11)-(5.12). &

5.3.2 Existence of weak-strong solutions of (5.1)
Theorem 5.3.3 There exists at least one (u,v) weak-strong solution of problem (5.1).
Proof. Observe that a variational problem associated to (5.12) is:

10p

T T T 10p
/ (Ot 1) + / (Vos, V) + / (Y, Vi) = 0, Vi e L% (0, T; W% (0))
0 0 Q

/OT(atzE,ZH/OT(vZe,W)+/OT<Z575):/OT((UE)%)’ vse LHO.T @),
(5.22)

Recall that v® = v°(2°) is the unique solution of problem (5.13). From (5.17) we have
that (u®,v®) satisfies the following energy equality:

g g 4 g g g
—&e(ut,v%) + gllv((u PRI + ellAve || + [[Vo71F = 0. (5.23)

Then, from (5.23) and using (5.18) we deduce that

5

{vf} is bounded in L0, 4+o00; LP(Q2)) N LP(0, T; L3 () — L% (0, T; LF (),
{v°} is bounded in L>(0,+o0; H(Q)) N L*(0,T; H*(Q)),
VEAV® is bounded in  L*(0,+o0; L?(2)) N L2(0,T; H' (),

(5.24)

and therefore,

2¢ is bounded in L*(0, 4+o00; L*(Q)) N L*(0,T; H'(Q)),
10p

{0} is bounded in L?};T%(O,T; Wh=s(Q)), (5.25)
{8,2°} is bounded in L3 (0,T; HY(Q)).

Moreover, taking into account that from (5.23) and (5.24); we have that V((u®)?/?) is
D . . _10p_ _10p_
bounded in L*(0,T; L*(Q2)) and u'~2 is bounded in L3 (0,T; L557(12)), we conclude that
2 p 2P 2P
Vus = “u'"2V((uf)?/?) is bounded in Lits (0,7 Lots (Q)). Therefore, we deduce that
p

{u°} is bounded in L%(O,T; Wlﬁ(ﬁ)) (5.26)
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Notice that from (5.13) and (5.24), we can deduce that ||z° — v%||g < g]|Av®]jp — 0 as
e — 0. Moreover, taking into account (5.25)s and (5.26), the Aubin-Lions Lemma implies

that {u°} is relatively compact in L%(O,T; L*(Q)). Then, using these facts as well as
(5.24)-(5.26), we deduce that there exists (u,v), with u > 0 a.e. in (0, 400) x €2, with

w € L0, +00; LP(Q)) N LF(0,T; L¥ (Q)) N Lt (0, T; W3 (Q)),
v e L>(0,+o00; HY(Q)) N L3(0,T; H*(Q)),

such that for some subsequence of {uf, 2 v°} still denoted by {u®, 2% v°}, the following

convergences hold when ¢ — 0,

w —u weakly in L¥(0,T; L% (Q)) N Lits (0, T; Whits (),

v® — v weakly in L%*(0,T; H*(Q)),

y{ 2° — v weakly in L*(0,T; HY(Q)), (5.27)

Ju® — Oy weakly in L?};)T%(O,T; Wl’%(ﬁ)’),

L 9,25 = v weakly in L3(0,T; HY(Q)).

Taking into account that the embedding L>(0,T; L*(Q))NL*(0,T; H'(Q)) — L3(0,T; L3(Q))
is compact, from (5.24), we deduce that

Vuv® — Vu strongly in L*(0,T; L*(Q)). (5.28)
Thus, from (5.27); and (5.28) we deduce
u*Vov® = uVo weakly in L%(O,T; L%(Q)),
and therefore, using that u*Vv* is bounded in L;P%(O, T; L%), we deduce that
u*Vo© — uVv weakly in L?*IP%(O,T; L%) (5.29)

Thus, taking to the limit when ¢ — 0 in (5.22), and using (5.27) and (5.29), we obtain that
(u,v) satisfies

T T T 10p 10p
/ (Oyu, ) + / (Vu, V@) + / (uVo, Vi) = 0, Va e L7 (0, T; Whass(Q)),  (5.30)
0 0 0

/OT(@U,2> +/0T(vv,Vz) T /OT<U’Z) _ /0T<up7z), vz e L:(0,T; H'(Q)), (5.31)
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and therefore, integrating by parts in (5.31) and taking into account that u? € L3 (0,7, L3 (Q))
and v € L*(0,T; H*()), we arrive at

0w —Av+v=ul in L%(O, T; Lg(Q)), (5.32)

0
with 22 = 0 on 9. Notice that the limit function v is nonnegative. In fact, it follows by

n
testing (5.32) by v_ and taking into account that vy > 0. Finally, we will prove that (u,v)
satisfies the energy inequality (5.8). Indeed, integrating (5.23) in time from ¢y to ¢, with
t; > tp > 0, and taking into account that

/t 1 ;’;E (u v ) Eg(ua(tl),yf(tl)) _ 5a(u£(to),va(t0)) ———

since E.(uf(t),v°(t)) is continuous in time, we deduce
Ee(u(tr), v*(t1)) — €c(u”(to), v" (to))
t1 4
[ CIV(e P + el A O + [T OI)de <0, Vo <t (533)

to

Now, we will prove that
Ec(us(t),v°(t)) = E(u(t),v(t)), a.e. te[0,+00). (5.34)
From (5.24); we can deduce that u® is relatively compact in LP(0,T; LP(£2)). Therefore,
u® — w strongly in LP(0,T; LP(Q))). (5.35)

Moreover, for any 7' > 0,

[€c(w(t), v*(1)) — E(u(t), v(t))L207) :/0 |Ec(us(t), v°(t) — E(u(t), v(t))|dt

T
1 1 €

< / p— (=17 = lu®IL:) + 5 IV @G = IVo@)lg) | dt + 51140 g

0

p=1
< C ||U - U”LP(OTLP ([u® ||Lp orizey T ||u||LP ()TLp)) P
g

+§||VU8 — VU||L2(O7T;L2)(||VUE||L2(O7T;L2) + ”vv||L2(O,T;L2)) + §||A’Ua||(2) (536)

Then, taking into account that u® — w strongly in LP(0,T; L*(Q2)), Vv® — Vv strongly
in L*(0,7T; L*(Q)) for any T" > 0, and Av® is bounded in L*(0,T; L*(Q2)), from (5.36) we
conclude that &.(uf(t),v°(t)) — &(u(t),v(t)) strongly in L'(0,T) for all T > 0, which implies

153



in particular (5.34). Finally, observe that from (5.35) we have that (u®)?/? — u?/? strongly
in L2(0,T; L*(Q2)); and since V((uf)P/? is bounded in L?*(0,T; L*(2)) we deduce that

V((uf)P?) — V(uP/?) weakly in L*(0,T; L*(Q)).

Then, on the one hand

it [ (S92 +ell v (@)1 + 190 0

e—0

t1 4
> / (5’|V(U(t)p/2>”§ + ||Vv(t)\|f>dt Vi, >ty > 0,
to
and on the other hand, owing to (5.34),

liminf €. (5 (t1), v () — eg(uf(to),vf(to))} = E(u(ty), v(t)) — Eulto), v(ty)),

e—0

for a.e. t1,ty : t; > to > 0. Thus, taking liminf as € — 0 in the inequality (5.33), we deduce
the energy inequality (5.8) for a.e. tg, ¢y : t1 > tg > 0.
|

5.4 Fully discrete numerical schemes

In this section we will propose three fully discrete numerical schemes associated to model
(5.1). We prove some unconditional properties such as mass-conservation, energy-stability
and solvability of the schemes.

5.4.1 Scheme UVe

In this section, in order to construct an energy-stable fully discrete scheme of model (5.1),
we are going to make a regularization procedure, in which we will adapt the ideas of [3]
(see also [12]). With this aim, given € € (0,1) we consider a function F. : R — [0, +00),
approximation of f(s) = s, such that F. € C*(R) and

P2 if s<e,
Fl'(s) = P72 if e <s<e !, (5.37)

g2 P if s>l

154



Then, F. is obtained integrating in (5.37) and imposing the conditions F/(1) = - and

p—1
3_An2 .
F.(1) = p(p1_1) + 2 2;5;13)2*26? (see Figure 5.1); and

(p—1)s+(2—p)e if s<e,
a:(s) = (p—1)= =< s if e<s<el (5.38)
(p—1)s+(2-pe?t if s>eh

—F(s)

~ “F(s)=s""/p-1

(a) F.(s) vs F(s) := p(pl_l)sp + (b) Fl(s) vs F'(s) := —LysP~!
P’ —4p’+3p+2 p
2p(p—1)?

(c) F'(s) vs F''(s) := sP—2

Figure 5.1: The function F. and its derivatives.

Lemma 5.4.1 The function F, satisfies
p—2 .2
Fu(s) > 5 : S

where the constant C' > 0 is independent of ¢.

Vs <e and F.(s)>Cs? Vs > ¢, (5.39)

Proof. Since F. € C*(R), using the Taylor formula as well as the definition of F. and F,
we have that, for some sy € R between 0 and s,

/ 1 " 2 2_p2p 2_pp—1 1 " 2
Fi(s) = FL(0) + FL(0)s + 5 FL (s0)s* = <F) s G ) (5.40)
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Then, taking into account that F”(s) = =2 for all s < ¢, from (5.40) we have that: (a) if
s € [0,¢], Fu(s) > 3¢ %s% and (b) if s < 0, by using the Young inequality,

2 — 2 1 92 — 2 1 1
F.(s) > (ﬁ) ob ng—282 _ <F117) &P 4 §€p—282 _ ng_252’
from which we deduce (5.39);. Finally, (5.39), follows directly from the definition of F. for
s>e. 1

Remark 5.4.2 Notice that estimates in (5.39) imply that |s|P < K 1F.(s)+ Ky for all s € R,
where the constants K1, Ky > 0 are independent of €.

Then, taking into account the functions F., its derivatives and a., a regularized version
of problem (5.1) reads: Find u. : Q x [0,7] — R and v. : Q x [0,T7] — R, with u.,v. > 0,
such that
Oue — Aue. — V- (ae(us)Voe) =0 in Q, ¢t >0,
Owe — Ave +v. = p(p— 1) Fo(u:) in Q, t >0,

Oue :81)5 =0 on 0f, t >0,
On On
us(x,0) = ug(x) > 0, v(x,0) = vo(x) >0 in Q.

(5.41)

Remark 5.4.3 The idea is to define a fully discrete scheme associated to (5.41), taking in
general € = e(k, h), such that e(k,h) — 0 as (k,h) — 0, where k is the time step and h the
mesh size.

Observe that (formally) multiplying (5.41); by pF!(u.), (5.41)y by —Aw,, integrating
over §2 and adding, the chemotaxis and production terms cancel and we obtain the following
energy law

d 1
a (pFE(uE) n —|Vv€|2)daz+/pF€"(uE)|Vue\2dac+ VoL ||? = 0.
dt /g 2 o

In particular, the modified energy

Sg(u,v):/Q<pFE(u)+%|VU|2>da:

is decreasing in time. Thus, we consider a fully discrete approximation of the regularized
problem (5.41) using a FE discretization in space and the backward Euler discretization in
time (considered for simplicity on a uniform partition of [0,7] with time step k& = T/N :
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(t, = nk)"=). Let Q be a polygonal domain. We consider a shape-regular and quasi-uniform
family of triangulations of Q, denoted by {T}}n>0, with simplices K, hyx = diam(K) and
h = maxgeq, hi, so that Q = Ugeq, K. Further, let Nj, = {a;}ies denote the set of all the
vertices of 7T}, and in this case we will assume the following hypothesis:

(H) The triangulation is structured in the sense that all simplices have a right angle.

We choose the following continuous FE spaces for u. and wv,:

(Un, Vi) € HY(Q)?,  generated by Py, P, with r > 1.

Remark 5.4.4 The right-angled constraint (H) and the approzimation of Uy by Py -continuous
FE are necessary to obtain the relations (5.44)-(5.45) below, which are essential in order to
obtain the energy-stability of the scheme UVe (see Theorem 5.4.9 below).

We denote the Lagrange interpolation operator by II* : C(Q) — Uy, and we introduce

the discrete semi-inner product on C'(2) (which is an inner product in Uy) and its induced
discrete seminorm (norm in Up):

(ur, )" ::/QHh(ulu2), ful = /()P (5.42)

Remark 5.4.5 In Uy, the norms |- |, and || - ||o are equivalents uniformly with respect to h

(see [5]).
We consider also the L%-projection Q" : L?(Q2) — U, given by
(Q"u,u)" = (u,u), Vu €U, (5.43)

and the standard H!-projection R" : H'(Q) — V). Moreover, owing to the right angled
constraint (H) and the choice of P;-continuous FE for Uy, following the ideas of [3] (see also
[12]), for each € € (0, 1), we can construct two operators Al : Uy, — L>(Q)%*4 (i = 1,2) such
that Alu” are symmetric matrices and Alu” is positive definite, for all u" € Uj, and a.e. in
), and satisfy

(Alu™)VIT"(F/(u)) = Vul  in Q, (5.44)

(A2u")VIT"(F! (")) = (p — D)VIT"(F.(u))  in Q. (5.45)
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Basically, Alu” (i = 1,2) are constant by elements matrices such that (5.44) and (5.45)
holds by elements. In the 1-dimensional case, AL are constructed as follows: For all u” € U,
and K € T), with vertices af and af, we set

h( K)_uh( K)

u(a a, _ 1 : h(aK h(oaK
A ) P Ry © e L w (@) #e(ar) 16
e =4 oo (5.46)
F7(uh (k) if wu'(ag)=u"(ar’),
for some ¢ € K, and
Fe(ul(af))—F. (ul (aff F!(ul :
o= DGR R =0~ Dty 1 u(al) # u'(ad),
A2()] = | (5.47)

(p—1) Fl(uh(aff

F!'(uh(a if uh(aé() = uh(a{(')v

X
<
==

for some &,& € K. Following [3] (see also [12]), these constructions can be extended to
dimensions 2 and 3, and from (5.46) the following estimate holds:

e PeTe < TAN (M) e < P27, VE e RY, Wl € U (5.48)

Now, we prove the following result which will be used to proof the well-posedness of the
scheme UVe.

Lemma 5.4.6 Let || - || denote the spectral norm on R¥™?. Then for any given ¢ € (0,1)
the function A2 : U, — [L>®(Q)]¥? satisfies, for all u?,ut € U, and K € T}, with vertices
{alK};i:m

(A0 = A2(u) ]
< 302 max{1, (p — )P 2} max {Jul(af) — uh(af))] + fu (@) — (@ )(3.,49)

-----

where al’ is the right-angled vertex.

Proof. The proof follows the ideas of [4, Lemma 2.1], with some modifications. For
simplicity in the notation, we will prove (5.49) in the 1-dimensional case, but this proof can
be extended to dimensions 2 and 3 as in [4, Lemma 2.1]. Observe that, from (5.47)

(A2 (ul) = A2(ub)) k|| < [(AZ(uf) — A2(ul o)) k| + [(A2(uf o) — AZ(ub))| k]
Fl(pn)  Fl(&) FU(&)  Fi(pa)

~ B T ) FI(&)  Fr(um)|

+(—1)

(5.50)
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where uf, € ]P’l(K) with uf,(al’) = u}(al’) and uf,(af*) = uf(af*), p; (i = 1,2) lie between
uh(al) and (a1 ), fizi (i = 1,2) lie between u!t(ak) and u2(al*), and & (i = 1,2) lie between
ul(al’) and uf(al’). Then, first we will show that

o= o = EO < gt ey, (p - 1) af) — @)l (551

for uf(ak) # uh(all), because the case uf(ak) = uh(alf) is trivially true. With this aim, we
consider v; (i = 1,2) lying between u’(af’) and u%(alf) such that

Fal(’h) =

( 1
and  F/(y2) = — ,
ub(af) — ul(ag’) ’ ub(af’) — ui(af)

F(u(af)) — Fe(ui(af)) Fl(u(af)) — Fi(u}(af))

and therefore, from (5.50) and (5.52), we deduce
(uz(ag ) — ui(ag)) Fl(m) = (uz(ag’) — ui(ar)) FL(&) + (ui(ay’) — i (ag)) Fl(pm), (5.53)

(uz (g ) — uy(ag ) F (72) = (u3(ag) —ui(ay ) FY (&) + (ui(ay) — ui(ag ) FY (p2). (5.54)

Then, for u2 halh), up(ak) and ul(alf), there are only 3 options: (1) uf(al) lies between

u%(a(l){) and uf'(al"); (ii) ub(al’) lies between u'(alf) and u (af’); and (iii) u (ak) lies between
u(af) and uj(af).

Notice that from (5.37)-(5.38), we have that F/ and (p — 1)55/, are globally Lipschitz

functions with constants =2 and 1 respectively, and < P72, Then, in case (i), taking

\F 4
into account that all intermediate values i35, 7:, & (i = 1,2) lie between uf(af’) and u?(alf),
we have

Fl(pan) — Fl(p)
F/(m2)
FU(&) — FU(&2)

B FZ(p1) B Fl(&)
®-1) ‘Fa"(#lz) F!(&)

S(p—l)‘

Fl(pe)  Fl&)
Fp—1) | e
#-1) F(p2)  F/ (&) =1 FI(&)
< (p— 1P|y — o] + [z — &l + (p — 1)EXP7V|& — &
< 3max{L, (p — )" P}uf (ag ) — uz(ag)|. (5.55)
In case (ii), all intermediate values jy;,7;,& (i = 1,2) lie between u?(al) and u’(af),

and from (5.53)-(5.54) by eliminating the term (u%(a ) ul(alf)), we have the equality

Fi(&)  Ep) ] _ oheaky _heaiyy Fe () [F&)  Fi(n)
Fi6)  F(im) = (uz(ay ) — uyi(ag))

U (25 — i (aK
(uj(ar’) 1(ag)) F'"(p2) | F' (&) F'(7ye)
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F(&) _ Fim)

File) ~ Tl | &5 10 (5.55), we obtain

(p—1) |u}f(a{{) — uy (aO )] ‘gf/((/;l;)) B ]i%//(él;

2
< 2P 3max{1, (p— )P 2}l (aff) — ul(afd)||ul (@) — ul(af))],

from which, bounding the term

and therefore, dividing by |u(alf)

Fl(pn)  Fi(&)
F/(p2)  FY(&2)

In case (iii), by arguing analogously to case (ii), from (5.53)-(5.54) we have

—ul(al"))| we arrive at

< 3¢ max{1, (p — 1)** I}l (af) — uh(al)].  (5.56)

(p—1)

haK) — yh(ak Fl(&) _ Fl(p1) — (uM(aK) — y(aK F' () [ Fl(n) _ FL(p1)
(Ul( 1 ) 2( )) |:F€”(62) Fé/(M12):| ( 2( 0 ) 1( 0 )) Fa (5 ) FE//(,.YZ) FEH(,UlZ) )

which implies (5.56). Therefore, we have proved (5.51).

Analogously, we can prove that

Fl&)  Fllum)
=150~ Fm)

Thus, from (5.50), (5.51) and (5.57) we conclude (5.49). 1

< 322 max{1, (p — 1)*P D}l (af) — ub(al)].  (5.57)

Let Ay, : V;, — V}, be the linear operator defined as follows
(Apo", 0) = (V" Vo) + (v",0), Vo € V.
Then, the following estimate holds (see for instance, Lemma 2.3.1):

[0"lwrs < Cl[Apv" o, Yo" € V. (5.58)

Thus, we consider the following first order in time, nonlinear and coupled scheme:
o Scheme UVe:
Initialization: Let (u°,v°) = (Q"uy, R"vo) € Uy, x V.

Time step n: Given (v~ v 1) € Uy, x V3, compute (u”,v") € Uy, X V, solving

{ (6,u, )" + (Vu?, V) = —(A2(u?)Vo?, Vi), Ya € Uy, (5.5)

(602, 0) + (Ap?,0) = p(p — DI (FL(ul)),v), Vo €V,
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where, in general, we denote 6;a" :=

Remark 5.4.7 (Positivity of v") By using the mass-lumping technique in all terms of
(5.59)y excepting the self-diffusion term (Vvl, Vv), and approzimating Vi, by Py-continuous
FE, we can prove that if v"‘l > 0 then v? > 0. In fact, it follows testing (5.59)y by
v =11"(v" ) € V}, where v := min{v",0} (see Remark 4.5.10).

Mass-conservation, Energy-stability and Solvability

Since © = 1 € Uy and v = 1 € V},, we deduce that the scheme UVe is conservative in ul,
that is,

(u?a 1) = (u?a 1)h = (u?—l’ 1)h == (UO, 1)h = (UO, 1) = (Qhu07 1) = (UO’ 1) = Mo, (560>

and we have the following behavior for [, v

(o) s [ mm) - [ o (5.61)

Definition 5.4.8 A numerical scheme with solution (ul,v") is called energy-stable with
respect to the energy

&4, v) = p(Fo(u), )" + 5[Vl (5.62)

if this energy is time decreasing, that is EM(u,v1) < EM(ur=t, 0"t for alln > 1.

g 7e

Theorem 5.4.9 (Unconditional stability) The scheme U Ve is unconditional energy sta-
ble with respect to EM(u,v). In fact, if (u™,v") is a solution of UVe, then the following
discrete energy law holds

k827p k — n n n
02 (u vl + p!l5tu?\|§+§H5tVU?H§+p€2 PIVuZ 5 + 1l (An = DVZIG + [IVZ]ls < 0.
(5.63)
Proof. Testing (5.59); b v?, adding and

u = plI"(F/(u")) and (5.59)3 by v = (A, — I)v"
") are symmetric as well as (5.44 ) (5.45), the terms

y
taking into account that A’(u
))=—p(Vol', A2(u2) VII"(F/(u?))) = —p(p—1)(Vol, VII*(F-(ul)))

—p(A2(u2)Vol, VII* (F/(ul)))
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and p(p — 1)(IT"(F.(u?)), (A, — Dv?) = p(p — 1)(VIIM(F.(u?)), Vo) cancel, and using that
VIT"(F!(u?)) = AL(u?)"1Vu? we obtain

p(b, F(u))" +p / (V)T Al (u?) -Vl dr

1 " k . . :
+5t<§HVUa H%) + 510,V 12+ (A — D2 + Vo | = 0. (5.64)
Moreover, observe that from the Taylor formula we have

1
Fe(ul™) = Fe(ul) + Fl(ul)(l™" =) + SF/(0ul + (1= 0)ul™")(ul ™" —ul)?,

)

and therefore,

st Fl(u) = 6, (F(u2)) + S EIOu2 + (1~ 0pu ) (G (5.65)

Then, using (5.65) and taking into account that II" is linear and F'(s) > £27P for all s € R,
we have

Gz, o)) = 6 [ WRG)) + 5 [ IO 60+ (1= 0y )5

> (R 1) + 0

Thus, from (5.64), (5.48), (5.66) and Remark 5.4.5, we arrive at (5.63). 1

[z [ (5.66)

Corollary 5.4.10 (Uniform estimates) Assume that (ug,vo) € L*(2) x H'(Q). Let
(ul, o) be a solution of scheme UVe. Then, it holds

n 1 n - — m m m C
p(FL(ul), 1)"+5 |0 B+EY (0 IVul 5+ 1(An = D5 + [Vl 3) < —=5, Vn>1,
m=1

(p—1)%
(5.67)
n+no
kY ol e < o ) ~(L+kn), Yn>1, (5.68)
m=ng+1

where the integer ny > 0 is arbitrary, with the constants Cy, Cy > 0 depending on the data
(Q, ug, vo), but independent of k,h,n and . Moreover,

v €01)2€2p and [Jul]|}, < W + K, Vn>1, (5.69)

where u? = min{u?,0} < 0 and the constant K > 0 is independent of k,h,n and .

n CoK
" (uZ)l§ <
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Remark 5.4.11 (Approximated positivity of u”) From (5.69),, the following estimate
holds
Co

(p—1)

Proof. First, taking into account that (u®,v°) = (Q"ug, R"vy), up > 0 (and therefore,
u® > 0), as well as the definition of F., we have that

g2 P

h(, n 2
ma [T (a2 )3 <

1 C 1 1
h(, 0 ,,0) _ h 0 - 02< h 0\2 - 012
mw>%mm»wwm;MﬁWH;ﬁwmm
1 C Co

C 1
< 012 vl |2 >< < 2 2 ><
< (103 + 190 + =) < == (ol + ol + =) < ot

where the constant Cy > 0 depends on the data (2, ug, vg), but is independent of k, h, n and
e. Therefore, from the discrete energy law (5.63) and estimate (5.70), we have

5.70)

& C
Ll ) + kY (e IVl 4+ 1(An = D I+ IV ) < €L o) < o=
m=1
(5.71)
Moreover, from (5.61), the definition of F;, Remark 5.4.2 and (5.71), we have
(14 k) / | - / | < kp(p — 1) / M) <k—-S—)  (5.72)
Q Q Q p—1

where the constant C' > 0 is independent of &, h,n and €. Then, applying Lemma 5.2.3 in

(5.72) (for =1 and 8 = ;%)’ we arrive at
C
/vfj /vg+—:(1+k)_”/tho
Q Q p—1 Q
which, together with (5.71), imply (5.67). Moreover, adding (5.63) from m = ng + 1 to
m = n + ng, and using (5.58) and (5.67), we deduce (5.68).

On the other hand, from (5.39);, we have 1e#~?(u_(x))* < F.(uZ(x)) for all u? € Uy;

£—

and therefore, using that (IT"u)? < II*(u?) for all u € C(Q), we have

1 1 Co

—€p2/ " Uz 2 Zep2 / " (i < / 1" (F. ur)) < ,

1 [ < g [ ) < [ e < 2
where in the last inequality (5.67) was used. Thus, we obtain (5.69);. Finally, taking into
account that |[[T*ulP < TTI"(|u/P) for all u € C(9), as well as Remark 5.4.2 and (5.67), we have

CoK

e 12 =/ IHhuQIPS/H’%Iu’;I”) s/Hh(Klqu?HKQ) <~ + K,
& Q 0 (r=1)

<(1+kKk™" +

p—1
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arriving at (5.69)s. 8

Theorem 5.4.12 (Unconditional existence) There exists at least one solution (ul,vl)
of scheme UVe.

Proof. The proof follows as in Theorem 4.3.11, by using the Leray-Schauder fixed point
theorem. g

5.4.2 Scheme USe

In this section, in order to construct another energy-stable fully discrete scheme of (5.1), we
are going to use the regularized functions F., F! and F! defined in Section 5.4.1 and we will
consider the auxiliary variable o = Vv. Then, another regularized version of problem (5.1)
reads: Find u. : Q x [0,7] = R and o, : Q x [0,T] — R?, with u. > 0, such that

O — Au, — V- (ueo.) =0 in Q, t >0,

0o, +rot(rot o.) = V(V-0.)+ 0. =pu.V(F(u:)) inQ, t>0,
ou,

on tang = 0 ol o, t>0,
us(x,0) = up(x) > 0, o.(x,0) = Vug(x), in Q.

(5.73)

=0, o.-n=0, [roto. X n]

This kind of formulation considering o = Vv as auxiliary variable has been used in the
construction of numerical schemes for other chemotaxis models (see for instance [18] and
Chapters 2 and 4 of this PhD thesis). Once problem (5.73) is solved, we can recover v, from
U solving

O, — Av. +v. =uwl in Q, t >0,

aﬁ —0 ondQ, t>0,
ve(x,0) = vo(x) >0 in Q.

Observe that (formally) multiplying (5.73); by pF.(u.), (5.73)2 by o, integrating over €2
and adding both equations, the terms p(u.V (F.(u.)), o) cancel, and we obtain the following
energy law

d

1
G | (pPw) + Glo ) e+ [ pF2 )|Vl + o] =0,

In particular, the modified energy

E(u,o) = /Q <pF5(u) + %|o‘|2>dw
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is decreasing in time. Then, we consider a fully discrete approximation of the regularized
problem (5.73) using a FE discretization in space and the backward Euler discretization in
time (considered for simplicity on a uniform partition of [0,7] with time step k& = T/N :
(t, = nk)"=)"). Concerning the space discretization, we consider the triangulation as in the
scheme UVe, imposing again the constraint (H) related with the right angled simplices. We
choose the following continuous FE spaces for u., o., and v.:

(Un, 2, Vi) € HY(Q)?,  generated by Py, P,,, P, with m,r > 1.

Remark 5.4.13 The right-angled constraint (H) and the approzimation of Uy, by Py -continuous
FE are necessary again to obtain the relation (5.44) and the estimate (5.48) for AL, which

e’
are essential in order to obtain the energy-stability of the scheme USe (see Theorem 5.4.17

below).

Then, we consider the following first order in time, nonlinear and coupled scheme:

e Scheme USke:
Initialization: Let (u°,0°) = (Q"u, Q"(Vuy)) € Uy X .

Time step n: Given (u?!, o ') € U, x ), compute (u?, o) € U, x X, solving

(5.74)

(Su”, 0)" + (Vu?, Va) = —(ute™, Vi), Vi€ Uy,
(6;07, ) + (Bro?, o) = p(utVII"(F.(u?)),d), Vo € 3,

where Q" is the L%-projection on U, defined in (5.43), Q" is the standard L2-projection on
31, and the operator By, is defined as

(Bpol,o) = (rot o, rot &) + (V- -0,V -0)+ (0l,0), VoeX,.

We recall that II" : C(Q) — U, is the Lagrange interpolation operator, and the discrete
semi-inner product (-, )" was defined in (5.42).

Remark 5.4.14 Notice that the right-angled constraint (H) is necessary in the implemen-
tation of the scheme UVe (in order to construct the matricial function A%(u)); while, for
the implementation of the scheme USe, this hypothesis (H) is not necessary.
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Remark 5.4.15 Following the ideas of Chapter j (see Section 4.4), we can construct another
unconditional energy-stable nonlinear scheme in the variables (ul, o) without imposing the

right-angled constraint replacing the self-diffusion term (Vu®™, Vi) by V-(=—VII"(EF' (u™))).
ght-ang (H), replacing - diff (Vuz, V) by V( 2 (uf

FL(uz)
Howewver, this scheme has convergence problems for the linear iterative method as p — 1 and

e — 0.

Once the scheme USe is solved, given v~ ! € Vj, we can recover v = v*(u?) € V,
solving:

(0,07, 0) + (Vol, Vo) + (v, 0) = p(p — 1)(F.(ul),v), Yo € V. (5.75)

Given u? € Uy, and v~ ' € V},, Lax-Milgram theorem implies that there exists a unique
vl € Vj, solution of (5.75). Moreover, notice that the result concerning to the positivity of
v? solution of scheme UVe established in Remark 5.4.7 remains true for v7 in the scheme

USe.

Mass-conservation and Energy-stability

Observe that the scheme USe is also conservative in u (satisfying (5.60)), and we have the
following behavior for fQ v

() =sto- [ - [

Definition 5.4.16 A numerical scheme with solution (uZ, o) is called energy-stable with
respect to the energy

1w, 0) = p(F.(u), 1)" + oo (5.76)

if this energy is time decreasing, that is EM(u, om) < EMur~t, o™ 1Y) for allm > 1.

Theorem 5.4.17 (Unconditional stability) The scheme USe is unconditional energy
stable with respect to EM(u, o). In fact, if (u?, ™) is a solution of USe, then the following
discrete energy law holds

ke?Pp
2

k
02 (uz, o) + 16wz l§ + S 102 llg + p” PV Uzl + lloZ ]l < 0. (5.77)
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Proof. Testing (5.74); by @ = pII"(F/(u?)), (5.74); by & = o” and adding, the terms
p(urVITM(F!(u.)), o) cancel, and using that VII"(F/(u?)) = Al(u?)"1Vu?, we arrive at

1 k
ploact, FX) +p [ ()AL ) Vuide +5 (S0t ) + 16l + o217 =0
0
which, proceeding as in (5.65)-(5.66) and using Remark 5.4.5 and estimate (5.48), implies

(5.77).

Corollary 5.4.18 (Uniform estimates) Assume that (ug,vo) € L*(2) x H'(Q). Let
(ul, o) be a solution of scheme USe. Then, it holds

Co
(p—1)%

n 1 n - — m m
p(F.(u), )" + Sllo? 5+ 5> (e PIIVul|§ + le]}) < Vn>1, (5.78)

m=1

with the constant Cy > 0 depending on the data (€2, ug, vg), but independent of k,h,n and ¢;
and the estimates given in (5.69) also hold.

Proof. Proceeding as in (5.70) (using the fact that (u°, o) = (Q"ug, Q"(V1y))), we can
deduce that o
0

p [ TG0 + 510 < =

where the constant Cy > 0 depends on the data (€2, ug, vg), but is independent of k, h, n and
e. Therefore, from the discrete energy law (5.77) and estimate (5.79), we have

(5.79)

Co
(p—1)%

el(ul, o) + kY (pe* PVl + llo?|) < e’ 0?) <

m=1

which implies (5.78). Finally, the estimates given in (5.69) are proved as in Corollary 5.4.10.
|

Remark 5.4.19 (Approximated positivity of u”) The approzimated positivity result for
u established in Remark 5.4.11 remains true for the scheme USke.
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Well-posedness

The following two results are concerning to the well-posedness of the scheme USe.

Theorem 5.4.20 (Unconditional existence) There ezists at least one solution (u”, o)
of scheme USe.

Proof. The proof follows as in Theorem 4.4.5, by using the Leray-Schauder fixed point
theorem. 1§

Lemma 5.4.21 (Conditional uniqueness) If k f(h,e) < 1 (where f(h,e) 1 400 when
hl0orel0) then the solution (ul, o) of the scheme USe is unique.

Proof. The proof follows as in Lemma 4.4.6. 1

5.4.3 Scheme USO

In this section, we are going to study another unconditional energy-stable fully discrete
scheme associated to model (5.1). With this aim, we consider the following reformulation of
problem (5.1): Find v : Q x [0,7] = R and o : Q x [0, 7] — R?, with u > 0, such that

Ou—Au—V-(uo)=0 in Q, t >0,

Oyo +rot(rot o) = V(V-0)+0o=V(wP)in Q, t>0,
ou

o™ tang = 0 on 092, t >0,
u(x,0) = up(x) >0, o(x,0) = Vyg(x), in .

5.80
=0, o-n=0, [rot o xn] (5.80)

Once system (5.80) is solved, we can recover v from u by solving

ov—Av+v=uPin Q, t >0,
& =0 on o, t>0, (5.81)
v(x,0) = vo(x) >0 in .

Observe that (formally) multiplying (5.80); by [%upfl, (5.80), by o, integrating over )

and adding both equations, the terms Z%(ua’,V(up_l)) and (V(uP), o) vanish, we obtain
the following energy law

d 1 1 4
il (p —[ul? + 5lo*)dz + /Q V@) Pda + ot =0
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In particular, the modified energy

1 1
— Py g2
&(u, o) /Q<p— 1|u| + 2|a'| )dm

is decreasing in time. Then, taking into account the reformulation (5.80)-(5.81), we consider
a fully discrete approximation using a FE discretization in space and the backward Euler
discretization in time (considered for simplicity on a uniform partition of [0, T'] with time step
k=T/N : (t, = nk)"=L). Concerning the space discretization, we consider the triangulation
as in the scheme UVe, but in this case without imposing the constraint (H) related with
the right-angles simplices. We choose the following continuous FE spaces for u, o and v:

(Un, Xn, Vi) € HY(Q)?,  generated by Py, P,,, P, with m,r > 1.

Then, we consider the following first order in time, nonlinear and coupled scheme:
e Scheme USQO:
Initialization: Let (u°,0°) = (Q"u, Q"(Vuy)) € Uy X .
Time step n: Given (v~ " 1) € U, x 3, compute (u”,6™) € Up, x X, solving
(deu™, u)" + ﬁ((ui)Q_pV(Hh((u’}r)p_l)), Via) = —(u"o™,Vau), Yu € Uy,
{ (00", 0) + (Bro", o) = ﬁ(u”V(Hh((uﬁ)p*)),&), Vo € Xy,

(5.82)

where v := max{u",0} > 0. Recall that Q" is the L*-projection on U, defined in (5.43),
@h is the standard L2-projection on X, II" : C(Q) — U, is the Lagrange interpolation
operator, (Bpo™, o) = (rot o™, rot 6)+ (V-0",V-&)+ (0", ) and the discrete semi-inner
product (-, )" was defined in (5.42).

Once the scheme USO is solved, given v"~! € V},, we can recover v" = v"(u") € V,
solving:

(00", 0) + (VU", Vo) + (v",0) = ((u})P,0), Yo € V. (5.83)

Given u™ € U, and v" ! € V},, Lax-Milgram theorem implies that there exists a unique
V"™ € Vj, solution of (5.83).

Remark 5.4.22 (Positivity of v™) Imposing the geometrical property of the triangulation
where the interior angles of the triangles or tetrahedra must be at most m/2, the result
concerning to the positivity of v™ stablished in Remark 5.4.7 remains true for the scheme

Uso.
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Mass-conservation, Energy-stability and Solvability

Since u =1 € Uy, and v = 1 € V}, we deduce that the scheme USO is conservative in u”,
that is,
(1) = (", )" = (@ D= = (W 1)" = (ug, 1) = my, (5.84)

and we have the following behavior for [, v":

Definition 5.4.23 A numerical scheme with solution (u™, ™) is called energy-stable with
respect to the energy

£"(u,0) = —— (), 1)" + S o[ (5.85)

p—1

if this energy is time decreasing, that is EM(u™, o™) < EM(u™~t, 0™ 1), for allmn > 1.

Theorem 5.4.24 (Unconditional stability) The scheme USO is unconditional energy
stable with respect to E"(u, ). In fact, if (u,0™) is a solution of USO, then the following
discrete energy law holds

k
20" + 150"+ L [ POy e+ 07 < 0. (550
- Q
Proof. Testing (5.82); by u = p%ll_lh((ui)p_l), (5.82)y by & = o™ and adding, the terms
p%l(u"V(Hh((uﬁ)p_l)), o) cancel, and we obtain
p

1 k
o1/ (0™ - (u})")da +0,|o™ |5 + 5|0 15

p n\2—p hunp_l 2&’,‘ 0'"2:. .
HOESE /Q(“” VA ()P ) Pde + [T = 0. (5.87)

1
Denoting by F(u™) = —(u';)?, we have that F'is differentiable and convex, and then, from
p

(5.5) we have that

S - () = P () (" — ) >



and therefore,

/Q (G - (a7 = 6, ( /Q HhF(u”)) _ ]19@ ( /Q Hh((u’}r)p)>. (5.88)

Therefore, from (5.87) and (5.88) we deduce (5.86).

Corollary 5.4.25 (Uniform estimates) Let (u",0") be a solution of scheme USO. Then,
it holds for allm > 1,

1
p—1

nA\p hlo_n2 . b U 2P R™P 1)) 2 da o™|12 Co
(1o B3 (o2 vy pae + o) < .

(5.89)
/ [u"| < Ch, (5.90)

with the constants Cy,Cy > 0 depending on the data (2, ug,vo), but independent of (k,h)
and n.

Proof. In order to obtain (5.89), by multiplying (5.86) by k& and adding from m = 1
to m = n, it suffices to bound the initial energy &"(u’, ). Taking into account that
(u®, %) = (Q"ug, Q"(Vy)) and ug > 0 (and therefore, u® > 0), we have

C 1 C
e"u’,0?) < —— [ T((W’)* + 1) + S llwollt < —=(lluoll§ + [lvollF + 1)
-1/, 2 1
On the other hand, by considering u” = min{u",0} > 0, taking into account that |u"| =
2u’y — ", using the Holder and Young inequalities as well as (5.84), we have

/Q|u”|§/ﬂﬂh|u"| ZQ/QHh(uz)—/Qu"
< c(/ﬂ(nh(ui))P + 1) < C(/th((uz)l’) v 1). (5.91)
Therefore, from (5.89) and (5.91), we deduce (5.90).

Theorem 5.4.26 (Unconditional existence) There ezists at least one solution (u",o™)
of scheme USO.

Proof. The proof follows as in Theorem 4.4.5, by using the Leray-Schauder fixed point
theorem. |
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5.5 Numerical simulations

In this section, we will compare the results of several numerical simulations using the schemes
derived through the paper. We have chosen the 2D domain [0, 2] using a structured mesh
(then the right-angled constraint (H) holds and the scheme UVe can be defined), the spaces
for u and o generated by Pi-continuous FE, and all the simulations are carried out using
FreeFem-++ software. We will also compare with the usual Backward Euler scheme for
problem (5.1), which is given for the following first order in time, nonlinear and coupled
scheme:

e Scheme UV
Initialization: Let (u’,v°) € U}, x Vj, an approximation of (ug, vg) as h — 0.

Time step n: Given (v~ v 1) € Uy, x V},, compute (u”,v") € Uy, x V}, solving

(0pu™, u) + (Vu",Vau) = —(u"Vo", Vau), Yu € U,
(0™, 0) + (Vo, Vo) + (v, 0) = ((u})P,0), Yo € V.

Remark 5.5.1 The scheme UV has not been analyzed in the previous sections because it
is not clear how to prove its energy-stability. In fact, observe that the scheme UVe (which
is the “closest” approximation to the scheme UV considered in this paper) differs from the
scheme UV in the use of the regularized functions F. and its derivatives (see Figure 5.1)
and in the approximation of cross-diffusion and production terms, (uVv,Va) and (u?,v)
respectively, which are crucial for the proof of the energy-stability of the scheme U Ve.

The linear iterative methods used to approach the solutions of the nonlinear schemes UVe,
USe, USO and UV are the following Picard methods:

(i) Picard method to approach a solution (u?,v?) of the scheme UVe:
Initialization (I = 0): Set (u?,0?) = (v~ 027 Y) € Uy, x Vj,.
Algorithm: Given (u!,v!) € Uy, x Vj,, compute (ul™, v*1) € U, x V;, such that

Tt a) + (Vult, Va) = $ (w2 a)h — (A2(ul)Vol, Va), Va e Uy,
L, 0) + (At ) = 2, 0) + plp — DTE. ), 0), Vo € Vi,

k! — éM|W“—¢M}SwL

until the stopping criteria max { ; , ;
[[utllo [[0L]]o
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(ii) Picard method to approach a solution (uZ, o) of the scheme USe:
Initialization (I = 0): Set (u?,0?) = (u2~1 o) € Uy X Xy

£

Algorithm: Given (u!,ol) € U, x 3, compute (ult!, ottl) € U, x ), such that
Lt ) 4 (V! V) 4 (uft
plolh o)+ (Buol!, o) = p(or! ) + plul ' VII'(FL(ul)), 0), Vo € Xy,

H1 _ 1L 41
il Jo — o) o
[l Tt

utlal Vi) = %(u”fl,ﬂ)h, Vu € Uy,

£

until the stopping criteria max {

(iii) Picard method to approach a solution (u", ™) the scheme USO:
Initialization (I = 0): Set (u°,0°) = (v, 0" ) € Uy x Xy

Algorithm: Given (u', o) € Uy, x Xy, compute (u!!, o) € Uy, x 3y, such that
(W )l + (Vultt, Va) — (Vul, Va) + (uel, Va)
= (Tl a) — ()P (I (Wl )P, Va), Va e Uy,
(6"1,6) + (Bro'™,6) = H(o" 7!, &) + L (u V(T (W )P7Y), 6), Vo e T,

1
k

[u™" = u'flo [le™! = a'llo

until the stopping criteria max

9

} < tol. Observe that the

[ llo lello

residual term (V(u!t! — u!), V@) is considered.

(iv) Picard method to approach a solution (u",v™) of the scheme UV:
Initialization (I = 0): Set (u%,0%) = (w1, 0" 1) € Uy, x Vj,.
Algorithm: Given (u!,v') € Uy x V},, compute (u!™1, v!*1) € Uy, x V}, such that

(Wt a) + (Vultt, va) + (W V, Va) = £ (u" 1 a), Va e Uy,
(W 0) + (VoltL, Vo) + (v, 0) = L(v" 1, 0) + (WP, 0), Vo €V,

[u*t =l [l = 0"l
until the stopping criteria max{ ; , ; } < tol.
[[u]]o [o*lo

Remark 5.5.2 In all cases, first we compute u'*! solving the u-equation, and then, inserting
ul™! in the v-equation (resp. o-system), we compute v'*1 (resp. o't1).
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5.5.1 Positivity of u"

In this subsection, we compare the positivity of the variable ™ in the four schemes. Here, we
choose the space for v generated by Py-continuous FE. We recall that for the three schemes
studied in this paper, namely schemes UVe, USe and USO, it is not clear the positivity of
the variable u". Moreover, for the schemes UVe and USe, it was proved that IT"(u" ) — 0
as ¢ — 0 (see Remarks 5.4.11 and 5.4.19). For this reason, in Figures 5.3-5.9 we compare
the positivity of the variable « in the schemes, for different values of 1 < p < 2 and taking
e =103 ¢ =107% and € = 1078 in the schemes UVe and USe. We consider k = 1075,

h = %, the tolerance parameter tol = 1073 and the initial conditions (see Figure 5.2)

up=—102y(2 — 2)(2 — y)exp(—10(y — 1)* — 10(x — 1)?) + 10.0001,
vo=1002y(2 — 2)(2 — y)exp(—30(y — 1)* — 30(z — 1)?) + 0.0001.

— 99%e+0]

— 1.0e+01

o)
9o
i}
L
(9]

— 1.0e-04

(a) Initial cell density ug (b) Initial chemical concentration v

Figure 5.2: Initial conditions.

Note that wp,vp > 0 in €, min(ug) = wue(l,1) = 0.0001 and max(vg) = vo(1,1) =
100.0001. We obtain that:

(i) All the schemes take negative values for the minimum of «™ in different times ¢,, > 0,
for the different values taken for p and €. However, in the case of the schemes UVe
and USe, it is observed that these values are closer to 0 as ¢ — 0 (see Figures 5.3-5.9).

(ii) In all cases, the scheme UVe “preserves” better the positivity than the schemes UV,
USe and USO (see Figures 5.3-5.9).
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Figure 5.3: Minimum values of u! for p = 1.1, computed using the scheme UVe.

Remark 5.5.3 In Figures 5.5 and 5.6 there are also negative values of minimum of u for
e = 1078, but those are of order 1078 and 1073, respectively.

5.5.2 Energy stability

In this subsection, we compare numerically the stability of the schemes UVe, USe, USO
and UV with respect to the “exact” energy

1 1
eue) = [ s yde+ 5Vl (5.92)
b

It was proved that the schemes UVe, USe and USO are unconditionally energy-stables
with respect to modified energies defined in terms of the variables of each scheme, and some
energy inequalities are satisfied (see Theorems 5.4.9, 5.4.17 and 5.4.24). However, it is not
clear how to prove the energy-stability of these schemes with respect to the “exact” energy
Ee(u,v) given in (5.92), which comes from the continuous problem (5.1) (see (5.8)-(5.9)).
Therefore, it is interesting to compare numerically the schemes with respect to this energy
Ee(u,v), and to study the behaviour of the corresponding discrete energy law residual

RE(w, 1) = 8.0 0") + - [ V(@) Pde + 80"+ V01 (598)
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Figure 5.4: Minimum values of u! for p = 1.1, computed using the scheme USe.

We consider k = 107°, h = %, p = 1.4, tol = 1073 and the initial conditions (see Figure
5.10)

up = ldcos(2mx)cos(2my) + 14.0001 and vy = —14cos(2mx)cos(2my) + 14.0001.

We choose the space for v generated by Pi-continuous FE. Then, we obtain that:

(i) All the schemes UVe, USe, UV and USO satisfy the energy decreasing in time pro-
perty for the exact energy €.(u,v) (see Figure 5.11), that is,

E(u™v™) < E(u"H v n.
(ii)) The schemes USO and USe satisfy the discrete energy inequality RE,(u™,v") < 0,
for RE.(u™,v") defined in (5.93), independently of the choice of €; while the schemes
UV and UVe have RE(u™,v") > 0 for some t,, > 0. However, it is observed that

the scheme UVe introduces lower numerical source than the scheme UV, and lower
numerical dissipation than the schemes USO and USe (see Figure 5.12).

5.6 Conclusions

In this paper we have developed three new mass-conservative and unconditionally energy-
stable fully discrete FE schemes for the chemorepulsion production model (5.1), namely

176



0.05

—UuVv
===US0

Min u"

-0.25 L L
0 0.005 0.01 0.015

Time

Figure 5.5: Minimum values of u for p = 1.1, computed using the schemes UV and USO.

UVe, USe and USO. From the theoretical point of view we have obtained:

(i)
(i)

The solvability of the numerical schemes.

The schemes UVe and USe are unconditionally energy-stables with respect to the
modified energies & (u,v) (given in (5.62)) and &”(u, o) (given in (5.76)) respectively,
under the right-angles constraint (H); while the scheme USO0 is unconditionally energy-
stable with respect to the modified energy €"(u, o) given in (5.85), without this res-
triction (H) on the mesh.

It is not clear how to prove the energy-stability of the nonlinear scheme UV (see
Remark 5.5.1).

In the schemes UVe and USe there is a control for II"(u” ) in L*-norm, which tends

to 0 as ¢ — 0. This allows to conclude the nonnegativity of the solution u in the limit
as ¢ — 0.

On the other hand, from the numerical simulations, we can conclude:

(i)

The four schemes have decreasing in time energy €.(u,v), independently of the choice
of e.
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Figure 5.6: Minimum values of u! for p = 1.5, computed using the scheme UVe.

(ii)) The schemes USO and USe satisfy the discrete energy inequality RE,(u™,v"™) < 0,
for RE.(u™,v™) defined in (5.93), independently of the choice of €; while the schemes
UV and UVe have RE(u™,v"™) > 0 for some ¢, > 0. However, it was observed that
the scheme UVe introduces lower numerical source than the scheme UV, and lower
numerical dissipation than the schemes USO and USe.

(iii) Finally, it was observed numerically that for the schemes UVe and USe, min u? — 0
Qx[0,T]
as € — 0.
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Figure 5.7: Minimum values of u™ for p = 1.5, computed using the schemes UV, USe and
USo.
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Figure 5.8: Minimum values of u! for p = 1.9, computed using the scheme UVe.
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Figure 5.9: Minimum values of u™ for p = 1.9, computed using the schemes UV, USe and
USo.
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(a) Initial cell density ug (b) Initial chemical concentration vy

Figure 5.10: Initial conditions.
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Figure 5.11: €.(u™,v") of the schemes UV, USO, UVe and USe (for e = 1074,1077).
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Figure 5.12: RE.(u",v"™) of the schemes UV, US0, UVe and USe (for e = 1074,1077).
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