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Resumen

Esta tesis se enmarca en el ámbito del análisis teórico y numérico de Ecuaciones en Derivadas
Parciales, con aplicaciones a otras ciencias. Concretamente, aborda el estudio de algunos
problemas diferenciales de quimiotaxis de tipo repulsiva-productiva. Los primeros tres
caṕıtulos están dedicados al estudio de un modelo de quimiotaxis repulsiva con término
de producción cuadrático, y los restantes dos caṕıtulos se enfocan en modelos con términos
de producción lineal y potencial (con potencia superlineal y subcuadrática).

En el Caṕıtulo 1, se presentan dos esquemas numéricos discretos solamente en tiempo,
energéticamente estables, para un modelo de quimiotaxis repulsiva con término de pro-
ducción cuadrático, y se estudian algunas propiedades adicionales de estos esquemas tales
como la conservación de la cantidad total de masa, positividad, resolubilidad, convergencia
hacia soluciones débiles y estimaciones de error.

En el Caṕıtulo 2, se estudia un esquema numérico completamente discreto con elementos
finitos, energéticamente estable, asociado al modelo estudiado en el Caṕıtulo 1, basado en la
introducción de una variable auxiliar. Nuevamente, se estudian algunas propiedades como
resolubilidad, conservación de masa, convergencia hacia soluciones débiles, estimaciones de
error, y estimaciones débiles y fuertes del esquema. Adicionalmente, como el esquema bajo
estudio es no lineal, se proponen dos métodos iterativos para aproximar las soluciones y se
prueba la resolubilidad y la convergencia de ambos esquemas hacia el esquema no lineal.

En el Caṕıtulo 3, se estudia el comportamiento asintótico de las soluciones del modelo
estudiado en los Caṕıtulos 1 and 2. En la primera parte, se analiza el comportamiento
en tiempo infinito de soluciones débiles del problema continuo y se prueba convergencia
exponencial hacia un estado constante. En la segunda parte, se estudia este mismo compor-
tamiento para dos esquemas numéricos completamente discretos asociados a este modelo.

Finalmente, los Caṕıtulos 4 y 5 se centran en el estudio de modelos de quimiotaxis
repulsiva con términos de producción lineal y potencial, respectivamente. Aqúı, usando una
técnica de regularización, se proponen algunos esquemas numéricos completamente discretos
con elementos finitos, energéticamente estables, asociados a estos modelos, y se prueban
algunas propiedades adicionales tales como la resolubilidad, conservación de la cantidad
total de masa, y positividad aproximada de las soluciones.
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Abstract

This PhD thesis falls within the scopes of Theoretical and Numerical analysis of Partial
Differential Equations, with applications to other sciences. Specifically, it addresses the study
of some differential problems of repulsive-productive chemotaxis. The first three chapters are
devoted to study a chemo-repulsion model with quadratic production, and other two chapters
are focused on models with linear and potential (with a superlinear and subquadratic power)
production.

In Chapter 1, we present two unconditionally mass-conservative and energy-stable time-
discrete numerical schemes for a chemo-repulsion model with quadratic production, and
study some additional properties of the schemes such as positivity, solvability, convergence
towards weak solutions and error estimates of these schemes.

In Chapter 2, we study an unconditionally mass-conservative and energy-stable fully
discrete FE scheme associated to the problem studied in Chapter 1, in which an auxiliary
variable is introduced. Again, we study some properties like solvability, convergence towards
weak solutions, error estimates, and weak, strong and more regular a priori estimates of the
scheme. Additionally, as the scheme is nonlinear, we propose two different linear iterative
methods to approach the solutions and we prove solvability and convergence of both methods
to the nonlinear scheme.

In Chapter 3, we focus on the study of the asymptotic behaviour of the solutions of the
model studied in Chapters 1 and 2. In the first part, we analyze the large-time behavior
of the global weak-strong solutions and we prove the exponential convergence to a constant
state as time goes to infinity; and in the second part, we study this same behaviour for two
fully discrete FE numerical schemes associated to this model.

Finally, in Chapters 4 and 5 we focus on the study of chemo-repulsion models with
linear and potential (superlinear and subquadratic) production, respectively. Here, by
using a regularization technique, we propose some unconditionally energy-stable and mass-
conservative fully discrete FE schemes associated to these models, and we prove some addi-
tional properties such as solvability and approximated positivity of the solutions.
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Introduction

Chemotaxis is a biological phenomenon which describes the oriented movement of living
organisms in response to a chemical stimulus. The chemotaxis is called attractive when the
organisms move towards regions with higher chemical concentration, while if the motion is
towards lower concentrations, the chemotaxis is called repulsive. At the same time, the pre-
sence of living organisms can produce or consume chemical substance. This process allows
the bacteria to find food, moving towards the highest concentration of food molecules, or
move away from poisonous substances. The typical example for chemotaxis is the amoebae
Dictyostelium, which is a species of soil-living amoeba belonging to the phylum Mycetozoa.
When they are moving towards the nutrients, they produce a chemical substance, cyclic
Adenosine Monophosphate, attracting other amoebae.

The main purpose of this thesis is the theoretical and numerical study of repulsive-
productive chemotaxis models, given by the following parabolic PDE’s system:{

∂tu−∆u = ∇ · (u∇v) in Ω, t > 0,
∂tv −∆v + v = f(u) in Ω, t > 0,

(1)

where Ω ⊂ Rn, n = 2, 3, is a bounded domain with boundary ∂Ω, and u(x, t) ≥ 0 and
v(x, t) ≥ 0 denote the cell density and the chemical concentration, respectively. Moreover,
f(u) ≥ 0 is the production term. Model (1) possesses some properties among which we focus
on:

(i) The blow-up phenomenon is not expected to take place here.

(ii) Mass-conservation: This problem is conservative in u, because the total mass
∫

Ω
u(·, t)

remains constant in time, that is,

d

dt

(∫
Ω

u(·, t)
)

= 0, i.e.

∫
Ω

u(·, t) =

∫
Ω

u0 := m0, ∀t > 0. (2)

(iii) In some cases (for instance, when the production is given by a power of u, that is,
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f(u) = up), this problem satisfies an energy inequality in the form:

E(u(t1), v(t1))− E(u(t0), v(t0)) +

∫ t1

t0

D(u(s), v(s)) ds ≤ 0, (3)

for a.e. t0, t1 : t1 ≥ t0 ≥ 0, where E(u, v) and D(u, v) denote, respectively, the free
energy and the physical dissipation terms of the problem. In particular, (3) implies
that this problem has a decreasing in time energy.

The motivation of this work was initially based on the study of Finite Element (FE)
numerical approximations of problem (1), with production term f(u) = u, conserving at
the discrete level the main properties of the continuous model, such as mass-conservation,
energy-stability and positivity of the variables. Moreover, as part of the numerical analysis
to be developed, we set out the study of the well-posedness, convergence and error estimates
of the schemes, among others. However, we find that this is not an easy task, and the main
difficulty lies in how to approximate at the discrete level the energy inequality (3) for this
case, taking into account that, in the continuous problem, this energy inequality is obtained
by testing the u-equation by the nonlinear function F (u) = ln u.

Once these difficulties have been pointed out, we decided to focus first in the study of
the problem (1) with quadratic production term, that is, f(u) = u2, mainly for the following
two reasons: (a) the energy inequality in the continuous problem is obtained by testing the
u-equation by u and the v-equation by −∆v, which it is not so difficult to reproduce for
fully discrete FE approximations; and (b) the quadratic production term allows to control
an energy in L2(Ω)-norm for u, which is very useful for performing numerical analysis. In
this part, we studied some mass-conservative and energy-stable (in the sense that a discrete
energy decreases in time) schemes associated to this problem, for which we also analyzed
well-posedness, positivity, convergence towards weak solutions, error estimates and conver-
gence at infinite time.

Later, with the experience obtained in the case of quadratic production, we focused in the
case of linear production, that is, f(u) = u. In this case, by using a regularization technique
used in previous works, we construct some unconditionally energy-stable fully discrete FE
approximations, for which we proved well-posedness and some additional properties such as
mass-conservation and approximated positivity of the variables (in the sense that the nega-
tive part of the variable tends to 0 as the regularization parameter tends to 0). However,
since we could not obtain uniform estimates independent of the discrete and regularization
parameters that allowed us to take limits on the discrete problem, the convergence towards
weak solutions was not proved.
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Finally, in the last part of this work, we have studied the intermediate case, in which
f(u) = up with p ∈ (1, 2). Here, we have adapted the ideas used in the case of linear pro-
duction, in order to obtain mass-conservative and energy-stable fully discrete FE schemes.

This PhD thesis is organized in five chapters, which we expect to correspond to five
different papers:

Chapter 1 focuses on the study of numerical approximations of model (1) in the case of
f(u) = u2. We present two unconditionally mass-conservative and energy-stable first order
time schemes: the (nonlinear) Backward Euler scheme and a linearized coupled version. We
analyze positivity, solvability, convergence towards weak solutions and error estimates of
these schemes. In particular, uniqueness of the nonlinear scheme is proved assuming small
time step with respect to a strong norm of the scheme. This hypothesis is simplified in 2D
domains where a global in time strong estimate is proved. Finally, some numerical simula-
tions are made in order to compare the behavior of the schemes.

Chapter 2 is devoted to study a fully discrete FE scheme associated to problem (1)
in the case of f(u) = u2. By following the ideas presented in Chapter 1, we introduce
σ = ∇v as an auxiliary variable, and then the corresponding FE backward Euler scheme is
unconditionally mass-conservative and energy-stable. For this nonlinear scheme, we study
some properties like solvability, convergence towards weak solutions, error estimates, and
weak, strong and more regular a priori estimates of the scheme. Additionally, we propose
two different linear iterative methods to approach the nonlinear scheme: an energy-stable
Picard’s method and the Newton’s method. We prove solvability and convergence of both
methods to the nonlinear scheme. Finally, we provide some numerical results in agreement
with our theoretical analysis about the error estimates.

Chapter 3 is focused on the study of the asymptotic behaviour of the problem (1) in
the case of f(u) = u2. In the first part, we analyze the large-time behavior of the global
weak-strong solutions and we prove the exponential convergence to a constant state as time
goes to infinity. In the second part, we study this same behaviour for two fully discrete
numerical schemes associated to this model: the FE backward Euler associated to (1) (with
f(u) = u2) and the nonlinear scheme defined in Chapter 2. On the way, in order to analyze
the asymptotic behaviour for the backward Euler scheme, we prove its solvability and un-
conditional energy-stability. Finally, we compare the numerical schemes throughout several
numerical simulations.

Chapter 4 is devoted to study unconditionally energy-stable and mass-conservative
numerical schemes for problem (1) in the case of f(u) = u. By using a regularization
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technique (in which, some regularized functions approximating F (s) = u(ln u−1) and its first
and second derivatives are introduced), we propose three fully discrete FE approximations.
The first one is a nonlinear approximation in the variables (u, v); the second one is another
nonlinear approximation obtained introducing σ = ∇v as an auxiliary variable; and the third
one is a linear approximation constructed by mixing the regularization procedure with the
so called Energy Quadratization strategy, in which the energy of the system is transformed
into a quadratic form by introducing new auxiliary variables. In addition, we prove the
well-posedness of the numerical schemes. In fact, unconditional existence of solution, but
conditional uniqueness (for the nonlinear schemes) are proved. Finally, we compare the
behavior of the schemes throughout several numerical simulations.

At last, in Chapter 5 we focus on the study of problem (1) in the case of f(u) = up,
with p ∈ (1, 2). In the first part, by using a regularization technique, we prove the existence
of solutions of the model. In the second part, we propose three fully discrete FE nonlinear
approximations, where the first one is defined in the variables (u, v), and the second and
third ones by introducing σ = ∇v as an auxiliary variable. We prove some unconditional
properties such as mass-conservation, energy-stability and solvability of the schemes. Finally,
we compare the behavior of the schemes throughout several numerical simulations.
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Chapter 1

On a chemo-repulsion model with
quadratic production: The continuous
problem and time-discrete numerical

schemes

1.1 Introduction

Chemotaxis is understood as the biological process of the movement of living organisms in
response to a chemical stimulus which can be given towards a higher (attractive) or lower
(repulsive) concentration of a chemical substance. At the same time, the presence of living
organisms can produce or consume chemical substance. A repulsive-productive chemotaxis
model can be given by the following parabolic PDE’s system:{

∂tu−∆u = ∇ · (u∇v) in Ω, t > 0,
∂tv −∆v + v = f(u) in Ω, t > 0,

(1.1)

where Ω ⊂ Rn, n = 2, 3, is an open bounded domain with boundary ∂Ω. The unknowns
for this model are u(x, t) ≥ 0, the cell density, and v(x, t) ≥ 0, the chemical concentration.
Moreover, f(u) is a function which is nonnegative when u ≥ 0. In this paper, we consider
the particular case in which the production term is quadratic, that is f(u) = u2, and then
we focus on the following initial-boundary problem:

∂tu−∆u = ∇ · (u∇v) in Ω, t > 0,
∂tv −∆v + v = u2 in Ω, t > 0,
∂u

∂n
=
∂v

∂n
= 0 on ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0 in Ω.

(1.2)
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The quadratic production term allows to control an energy in L2(Ω)-norm for u (see (1.20)-
(1.21)), which is very useful for performing numerical analysis. Other production terms will
be studied in Chapters 4 and 5.

In the case of linear production term, in [2] the authors proved that model (1.1) with
f(u) = u is well-posed in the following sense: there exist global in time weak solutions
(based on an energy inequality) and, for 2D domains, there exists a unique global in time
strong solution. However, as far as we know, there are not works studying problem (1.2)
with quadratic production. In addition, some papers on numerical analysis for chemotaxis
models with linear production are [3, 6, 10, 12, 15].

In order to develop our analysis, we reformulate (1.2) introducing the new variable σ =
∇v. Then, we rewrite the model (1.2) as follows:

∂tu−∇ · (∇u) = ∇ · (uσ) in Ω, t > 0,
∂tσ −∇(∇ · σ) + rot(rot σ) + σ = ∇(u2) in Ω, t > 0,
∂u

∂n
= 0 on ∂Ω, t > 0,

σ · n = 0, [rot σ × n]tang = 0 on ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, σ(x, 0) = ∇v0(x) in Ω,

(1.3)

where (1.3)2 was obtained applying the gradient to equation (1.2)2 and adding the term
rot(rot σ) using the fact that rot σ = rot(∇v) = 0. Once solved (1.3), we can recover v
from u2 solving 

∂tv −∆v + v = u2 in Ω, t > 0,
∂v

∂n
= 0 on ∂Ω, t > 0,

v(x, 0) = v0(x) ≥ 0 in Ω.

(1.4)

We will use the variable σ in order to simplify the notation throughout the chapter.
Moreover, for fully discrete schemes by using the Finite Elements Method (which will be
analyzed in Chapter 2), it will be very convenient to use the variables (u,σ) in order to
obtain an unconditionally energy-stable scheme.

This chapter is organized as follows: In Section 1.2, we give the notation and some pre-
liminary results that will be used along this paper. In Section 1.3, we analyze the continuous
problem (1.2), obtaining global in time weak regularity for both two and three dimensions,
and global in time strong regularity of the model assuming the regularity criteria (1.32),
which is satisfied in 2D domains. In Section 1.4, we analyze the Backward Euler scheme
corresponding to problem (1.3)-(1.4), including mass-conservation, unconditional energy-
stability, solvability, positivity and error estimates of the scheme. In particular, uniqueness
of solution of the scheme is proved under a hypothesis that relates the time step and a strong
norm of the scheme (the discrete version of (1.32)), which can be simplified in the case of 2D
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domains owing to the strong estimates already obtained for the scheme. Moreover, we prove
the existence of weak solutions of model (1.2) throughout the convergence of this scheme
when the time step goes to 0. In Section 1.5, we propose a linearized coupled scheme for
model (1.3)-(1.4), and again we analyze some properties of this linear scheme as in Section
1.4, comparing to the previous nonlinear scheme. Finally, in Section 1.6, we show some
numerical simulations using Finite Elements spatial approximations associated to both time
schemes, in order to verify numerically the theoretical results obtained in terms of positivity
and unconditional energy-stability.

1.2 Notations and preliminary results

We recall some functional spaces which will be used throughout this paper. We will consider
the usual Sobolev spaces Hm(Ω) and Lebesgue spaces Lp(Ω), 1 ≤ p ≤ ∞, with the usual
notations for norms ‖ · ‖m and ‖ · ‖Lp , respectively. In particular, the L2(Ω)-norm will be
represented by ‖·‖0. Corresponding Sobolev spaces of vector valued functions will be denoted
by H1(Ω), L2(Ω), and so on; and we denote by H1

σ(Ω) := {σ ∈ H1(Ω) : σ · n = 0 on ∂Ω}
and H1

∗ (Ω) := {h ∈ H1(Ω) :
∫

Ω
h = 0}. From now on, we will use the following equivalent

norms in H1(Ω) and H1
σ(Ω), respectively (see [11] and [1, Corollary 3.5], respectively):

‖u‖2
1 = ‖∇u‖2

0 +

(∫
Ω

u

)2

, ∀u ∈ H1(Ω), (1.5)

‖σ‖2
1 = ‖σ‖2

0 + ‖rot σ‖2
0 + ‖∇ · σ‖2

0, ∀σ ∈H1
σ(Ω). (1.6)

In particular, (1.6) implies that, for all σ = ∇v ∈H1
σ(Ω),

‖∇v‖2
1 = ‖∇v‖2

0 + ‖∆v‖2
0. (1.7)

If Z is a Banach space, then Z ′ will denote its topological dual. Moreover, the letters C,K
will denote different positive constants always independent of the time step.

We define the linear elliptic operators

Av = g ⇔


−∆v + v = g in Ω,
∂v

∂n
= 0 on ∂Ω, (1.8)

and

Bσ = f ⇔

{
−∇(∇ · σ) + rot (rot σ) + σ = f in Ω,

σ · n = 0, [rot σ × n]tang = 0 on ∂Ω.
(1.9)
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The corresponding variational forms are given by A : H1(Ω) → H1(Ω)′ and B : H1
σ(Ω) →

H1
σ(Ω)′ such that

〈Av, v̄〉 = (∇v,∇v̄) + (v, v̄), ∀v, v̄ ∈ H1(Ω),

〈Bσ, σ̄〉 = (σ, σ̄) + (∇ · σ,∇ · σ̄) + (rot σ, rot σ̄), ∀σ, σ̄ ∈H1
σ(Ω).

We assume theH2 andH3-regularity of problem (1.8) (see for instance [4]). Consequently,
we assume the existence of some constants C > 0 such that

‖v‖2 ≤ C‖Av‖0 ∀v ∈ H2(Ω); ‖v‖3 ≤ C‖Av‖1 ∀v ∈ H3(Ω). (1.10)

Then, if the right hand side of problem (1.9) is given by f = ∇h with h ∈ H1(Ω), then
taking σ = ∇v, we will prove the H2-regularity of problem (1.9) as follows:

Lemma 1.2.1 If f = ∇h with h ∈ H1(Ω), then the solution σ of problem (1.9) belongs to
H2(Ω). Moreover,

‖σ‖2 ≤ C ‖∇h‖0. (1.11)

Proof. First, we assume that h ∈ H1
∗ (Ω), hence ‖h‖1 ≤ C ‖∇h‖0. Then, from H3-

regularity of problem (1.8) taking g = h, we have that v ∈ H3(Ω) with −∆v + v = h and
‖v‖3 ≤ C ‖h‖1 ≤ C ‖∇h‖0. Then, taking σ = ∇v, we have that σ ∈ H2(Ω) solves (1.9),
and (1.11) holds. Finally, in the general case of h ∈ H1(Ω), we consider g = h− 1

|Ω|

∫
Ω
h in

(1.8), deducing again that v ∈ H3(Ω) and ‖v‖3 ≤ C ‖h− 1
|Ω|

∫
Ω
h‖1 ≤ C ‖∇(h− 1

|Ω|

∫
Ω
h)‖0 =

C‖∇h‖0. Then, taking σ = ∇v, we have that σ ∈ H2(Ω) solves (1.9) with f = ∇(h −
1
|Ω|

∫
Ω
h) = ∇h, and (1.11) holds.

Along this paper, we will use repeatedly the classical interpolations inequalities

‖u‖L4 ≤ C‖u‖1/2
0 ‖u‖

1/2
1 ∀u ∈ H1(Ω) (in 2D domains), (1.12)

‖u‖L3 ≤ C‖u‖1/2
0 ‖u‖

1/2
1 ∀u ∈ H1(Ω) (in 3D domains). (1.13)

Finally, in order to obtain uniform in time strong estimates for the continuous problem
and the numerical schemes, we will use the following results (see [14] and [13], respectively):

Lemma 1.2.2 (Uniform Gronwall Lemma) Let g = g(t), h = h(t), z = z(t) be three po-
sitive locally integrable functions defined in (0,+∞) with z′ also locally integrable in (0,+∞),
such that

z′(t) ≤ g(t)z(t) + h(t) a.e. t ≥ 0.
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If for any r > 0 there exist a1(r), a2(r) and a3(r) such that∫ t+r

t

g(s)ds ≤ a1(r),

∫ t+r

t

h(s)ds ≤ a2(r),

∫ t+r

t

z(s)ds ≤ a3(r) , ∀ t ≥ 0

then,

z(t+ r) ≤
(
a2(r) +

a3(r)

r

)
exp(a1(r)), ∀t ≥ 0.

Lemma 1.2.3 (Uniform discrete Gronwall lemma) Let k > 0 and dn, gn, hn ≥ 0 such
that

dn+1 − dn

k
≤ gndn + hn, ∀n ≥ 0. (1.14)

If for any r ∈ N, there exist a1(tr), a2(tr) and a3(tr) depending on tr = kr, such that

k

n0+r−1∑
n=n0

gn ≤ a1(tr), k

n0+r−1∑
n=n0

hn ≤ a2(tr), k

n0+r−1∑
n=n0

dn ≤ a3(tr), ∀n0 ≥ 0,

then

dn ≤
(
a2(tr) +

a3(tr)

tr

)
exp {a1(tr)} , ∀n ≥ r.

As consequence of Lemma 1.2.3 (with an estimate for dn for any n ≥ r) and the classical
Discrete Gronwall Lemma (estimating dn for n = 0, . . . , r − 1), we will prove the following
result:

Corollary 1.2.4 Assume hypothesis of Lemma 1.2.3. Let k0 > 0 be fixed, then the following
estimate holds for all k ≤ k0

dn ≤ C(d0, k0) ∀n ≥ 0. (1.15)

Proof. We fix T = 2k0 and choose r0 ∈ N such that k(r0 − 1) < T ≤ kr0 := tr0 . Then,
from Lemma 1.2.3 we have

dn ≤
(
a2(tr0) +

a3(tr0)

tr0

)
exp {a1(tr0)}

≤
(
a2(tr0) +

a3(tr0)

T

)
exp {a1(tr0)} := C1(k0), ∀n ≥ r0. (1.16)

On the other hand, applying the Discrete Gronwall Lemma to (1.14), one has

dn ≤
(
a2(tr0) + d0

)
exp {a1(tr0)} := C2(d0, k0), ∀n < r0. (1.17)

Therefore, from (1.16)-(1.17) we deduce (1.15).
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1.3 Analysis of the continuous model

In this section, we analyze the weak and strong regularity of problem (1.2). With this aim,
we will start giving the following definition of weak-strong solutions for problem (1.2).

Definition 1.3.1 (Weak-strong solutions of (1.2)) Given (u0, v0) ∈ L2(Ω)×H1(Ω) with
u0 ≥ 0, v0 ≥ 0 a.e. x ∈ Ω, a pair (u, v) is called weak-strong solution of problem (1.2) in
(0,+∞), if u ≥ 0, v ≥ 0 a.e. (t,x) ∈ (0,+∞)× Ω,

(u, v) ∈ L∞(0,+∞;L2(Ω)×H1(Ω)) ∩ L2(0, T ;H1(Ω)×H2(Ω)), ∀T > 0,

(∂tu, ∂tv) ∈ Lq′(0, T ;H1(Ω)′ × L2(Ω)), ∀T > 0,

where q′ = 2 in the 2-dimensional case (2D) and q′ = 4/3 in the 3-dimensional case (3D)
(q′ is the conjugate exponent of q = 2 in 2D and q = 4 in 3D); the following variational
formulation holds∫ T

0

〈∂tu, ū〉+

∫ T

0

(∇u,∇ū) +

∫ T

0

(u∇v,∇ū) = 0, ∀ū ∈ Lq(0, T ;H1(Ω)), ∀T > 0, (1.18)

the following equation holds pointwisely

∂tv + Av = u2 a.e. (t,x) ∈ (0,+∞)× Ω, (1.19)

the initial conditions (1.2)4 are satisfied and the following energy inequality (in integral ver-
sion) holds for a.e. t0, t1 with t1 ≥ t0 ≥ 0:

E(u(t1), v(t1))− E(u(t0), v(t0)) +

∫ t1

t0

(
‖∇u(s)‖2

0 +
1

2
‖∇v(s)‖2

1

)
ds ≤ 0, (1.20)

where

E(u, v) =
1

2
‖u‖2

0 +
1

4
‖∇v‖2

0. (1.21)

Remark 1.3.2 In 2D domains, we can take ū = u in (1.18), test (1.19) by −1

2
∆v, integra-

ting by parts and using (1.7), we arrive at the following equality energy law (in differential
version):

d

dt
E(u(t), v(t)) + ‖∇u(t)‖2

0 +
1

2
‖∇v(t)‖2

1 = 0 a.e. t > 0. (1.22)

Moreover, this equality is also true in 3D domains for regular enough solutions.
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Moreover, we also give the definition of weak solutions for the reformulated problem (1.3):

Definition 1.3.3 (Weak solutions of (1.3)) Given (u0,σ0) ∈ L2(Ω)×L2(Ω) with u0 ≥ 0
a.e. x ∈ Ω, a pair (u,σ) is called weak solution of problem (1.3) in (0,+∞), if u ≥ 0
a.e. (t,x) ∈ (0,+∞)× Ω,

(u,σ) ∈ L∞(0,+∞;L2(Ω)×L2(Ω)) ∩ L2(0, T ;H1(Ω)×H1(Ω)), ∀T > 0,

(∂tu, ∂tσ) ∈ Lq′(0, T ;H1(Ω)′ ×H1(Ω)′), ∀T > 0,

where q is as in Definition 1.3.1; the following variational formulations hold∫ T

0

〈∂tu, ū〉+

∫ T

0

(∇u,∇ū) +

∫ T

0

(uσ,∇ū) = 0, ∀ū ∈ Lq(0, T ;H1(Ω)), ∀T > 0, (1.23)

∫ T

0

〈∂tσ, σ̄〉+

∫ T

0

〈Bσ, σ̄〉 = 2

∫ T

0

(u∇u, σ̄), ∀σ̄ ∈ Lq(0, T ;H1(Ω)), ∀T > 0, (1.24)

the initial conditions (1.3)5 are satisfied and the following energy inequality (in integral ver-
sion) holds for a.e. t0, t1 with t1 ≥ t0 ≥ 0:

E(u(t1),σ(t1))− E(u(t0),σ(t0)) +

∫ t1

t0

(‖∇u(s)‖2
0 +

1

2
‖σ(s)‖2

1) ds ≤ 0, (1.25)

where

E(u,σ) =
1

2
‖u‖2

0 +
1

4
‖σ‖2

0. (1.26)

Lemma 1.3.4 If σ0 = ∇v0, problems (1.2) and (1.3)-(1.4) are equivalents in the following
sense: If (u, v) is a weak-strong solution of (1.2) then (u,σ) with σ = ∇v is a weak solution of
(1.3); and reciprocally, if (u,σ) is a weak solution of (1.3) and v = v(u2) is the unique strong
solution of problem (1.4) (i.e. v ∈ Lp(0, T ;W 2,p(Ω)) ∩ L∞(0, T ;W 1,p(Ω)) ∩ Lq′(0, T ;H2(Ω))
since u2 ∈ Lp(0, T ;Lp(Ω)) ∩ Lq′(0, T ;L2(Ω)) for p = 5/3 in 3D, p = 2 in 2D and q′ is as in
Definition 1.3.1, see [5, Theorem 10.22]), then σ = ∇v and (u, v) is a weak-strong solution
of (1.2).

Proof. Suppose that (u, v) is a weak-strong solution of (1.2), then testing (1.19) by
−∇ ·w, for any w ∈ Lq(0, T ;H1(Ω)), and taking into account that rot(∇v) = 0, we obtain∫ T

0

〈∂t∇v,w〉+

∫ T

0

〈B∇v,w〉 = 2

∫ T

0

(u∇u,w), ∀w ∈ Lq(0, T ;H1(Ω)). (1.27)
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Then, defining σ = ∇v and assuming the hypothesis σ0 = ∇v0, from (1.27) we conclude
that (u,σ) is a weak solution of (1.3). By other hand, if (u,σ) is a weak solution of (1.3) and
v = v(u2) is the unique strong solution of problem (1.4), reasoning as above, we conclude
that ∇v satisfies (1.27). Therefore, from (1.24) and (1.27), we obtain∫ T

0

〈∂t(σ −∇v),σ〉+

∫ T

0

〈B(σ −∇v),σ〉 = 0, ∀σ ∈ Lq(0, T ;H1(Ω)). (1.28)

Then, since σ −∇v ∈ L∞(0, T ;Lp(Ω)), taking σ = B−1(σ −∇v) ∈ L∞(0, T ;W 2,p(Ω)) ↪→
Lq(0, T ;H1(Ω)) in (1.28), we deduce

1

2
‖B−1(σ(T )−∇v(T ))‖2

1 +

∫ T

0

‖σ −∇v‖2
0 =

1

2
‖B−1(σ(0)−∇v(0))‖2

1 = 0,

where, in the last equality, the relation σ(0) = ∇v(0) was used, and therefore we deduce
σ = ∇v. Thus, (u, v) is a weak-strong solution of (1.2).

Remark 1.3.5 Since v0 ≥ 0 in Ω, then the unique strong solution v = v(u2) of problem
(1.4) satisfies v ≥ 0 in (0,+∞)× Ω.

Later, in Section 1.4 we will prove the existence of solutions of a discrete in time scheme
that approximates problem (1.3)-(1.4) and we will obtain uniform estimates of the discrete
solutions, which will allow us to pass to the limit in the discrete problem in order to obtain
the existence of weak solutions of problem (1.3) (in the sense of Definition 1.3.3) and strong
solution of (1.4). Finally, taking into account Lemma 1.3.4, the existence of weak-strong
solutions of problem (1.2) (in the sense of Definition 1.3.1) will be obtained.

Observe that any weak-strong solution of (1.2) (or weak solution of (1.3)) is conservative

in u, because the total mass

∫
Ω

u(t) remains constant in time, as we can check taking ū = 1

in (1.18),
d

dt

(∫
Ω

u

)
= 0, i.e.

∫
Ω

u(t) =

∫
Ω

u0, ∀t > 0.

Moreover, integrating (1.2)2 (or (1.4)1) in Ω we deduce the following behavior of
∫

Ω
v,

d

dt

(∫
Ω

v

)
=

∫
Ω

u2 −
∫

Ω

v. (1.29)
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1.3.1 Weak-Strong Regularity

Observe that from the energy law (1.20), and using (1.7), we deduce{
(u,∇v) ∈ L∞(0,+∞;L2(Ω)×L2(Ω)),

(∇u,∇v) ∈ L2(0,+∞;L2(Ω)×H1(Ω)).
(1.30)

From (1.30), we have
u ∈ L2(0, T ;H1(Ω)), ∀T > 0.

From (1.29), we observe that the function y(t) =

∫
Ω

v(x, t) dx = ‖v(t)‖L1 (where Remark

1.3.5 has been taken into account) satisfies y′(t) + y(t) = z(t), with z(t) =

∫
Ω

u(x, t)2 dx =

‖u(t)‖2
L2 . Therefore, y(t) = y(0) e−t +

∫ t

0

e−(t−s) z(s) ds, and using (1.30)1,

‖v(t)‖L1 ≤ e−t‖v0‖L1 +

∫ t

0

e−(t−s)‖u(s)‖2
0 ds ≤ ‖v0‖L1 + ‖u‖2

L∞(0,+∞;L2), ∀t ≥ 0. (1.31)

Then, from (1.31) we conclude that v ∈ L∞(0,+∞;L1(Ω)) which, together with (1.30),
implies that

v ∈ L∞(0,+∞;H1(Ω)) ∩ L2(0, T ;H2(Ω)), ∀T > 0.

Remark 1.3.6 In 2D domains, by using the interpolation inequality (1.12) (proceeding for
instance as for the Navier-Stokes equations [8]), one can deduce the uniqueness of weak-
strong solutions of (1.2).

1.3.2 A regularity criterium implying global in time strong regu-
larity

We are going to obtain strong regularity in a formal manner, assuming a regular enough
solution. In fact, a rigorous proof could be made via a regularization argument or a Galerkin
approximation, using the eigenfunctions of the operator A.

We will assume the following regularity criterium:

(u,∇v) ∈ L∞(0,+∞;H1(Ω)×H1(Ω)). (1.32)
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Later, at the end of this Subsection, we will show that (1.32) holds, at least, in 2D domains.

First, we make (∇(1.2)1,∇u) +
1

2
(∆(1.2)2,∆v), integrating by parts, using the Hölder

and Young inequalities and the 3D interpolation inequality (1.13), one has

1

2

d

dt

(
‖∇u‖2

0 +
1

2
‖∆v‖2

0

)
+ ‖∆u‖2

0 +
1

2
‖∆v‖2

0 +
1

2
‖∇(∆v)‖2

0

= (∂i∂j(u∂jv), ∂iu) + (∂i(u∂iu), ∂j∂jv) = (∂i(∂ju∂jv), ∂iu) + (∂iu∂iu, ∂j∂jv)

= (∂ju∂i∂jv, ∂iu) +
1

2
(∂iu∂iu, ∂j∂jv) =

(
(∇u · ∇)(∇v),∇u

)
+

1

2

(
|∇u|2,∆v

)
≤ C‖∇u‖L3‖∇u‖L6‖∇2v‖0 ≤ C ‖∇u‖1/2

0 ‖∇u‖
3/2
1 ‖∇v‖1 ≤ ε‖∇u‖2

1 + Cε ‖∇u‖2
0‖∇v‖4

1.
(1.33)

Therefore, if we add (1.22) and (1.33), use (1.7) and take ε small enough, we have

d

dt

(
‖u‖2

1 +
1

2
‖∇v‖2

1

)
+ ‖∇u‖2

1 + ‖∇v‖2
2 ≤ C‖∇u‖2

0 ‖∇v‖4
1 (1.34)

Then, integrating in time (1.34), since ‖∇u‖2
0 ‖∇v‖4

1 ∈ L1(0,+∞) (owing to (1.30) and
(1.32)), we deduce {

(∇u,∇v) ∈ L2(0,+∞;H1(Ω)×H2(Ω)),

(u, v) ∈ L2(0, T ;H2(Ω)×H3(Ω)), ∀T > 0.
(1.35)

On the other hand, making (∆(1.2)1,∆u) and using the Hölder and Young inequalities,
we have

d

dt
‖∆u‖2

0 + ‖∇(∆u)‖2
0 ≤ ‖∇(∇ · (u∇v))‖2

0

≤ C
(
‖u‖2

L∞‖∇(∆v)‖2
0 + ‖∇2u‖2

0‖∇v‖2
L∞ + ‖∇u‖2

L4‖∇2v‖2
L4

)
.

(1.36)

Therefore, summing (1.34) to (1.36) and using (1.7), we have

d

dt

(
‖u‖2

2 +
1

2
‖∇v‖2

1

)
+ ‖∇u‖2

2 + ‖∇v‖2
2 ≤ C ‖∇v‖2

2 ‖u‖2
2 + C‖∇u‖2

0 ‖∇v‖4
1 (1.37)

and thus, since ‖∇v‖2
2 ∈ L1(0,+∞) (owing to (1.35)) and ‖∇u‖2

0 ‖∇v‖4
1 ∈ L1(0,+∞),

Lemma 1.2.2 implies
u ∈ L∞(0,+∞;H2(Ω)). (1.38)
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Moreover, integrating in time (1.37), and using ‖∇v‖2
2 ‖u‖2

2 ∈ L1(0,+∞) (owing to (1.35)
and (1.38)), we deduce

∇u ∈ L2(0,+∞;H2(Ω)), hence u ∈ L2(0, T ;H3(Ω)), ∀T > 0.

In particular, from (1.32) and (1.38), we deduce

(u, v) ∈ L∞(0,+∞;L∞(Ω)× L∞(Ω)).

Therefore, one has that any global in time weak-strong solution satisfying (1.32) does not
blow-up, neither at finite time nor infinite one. Finally, from equation (1.2)1 and taking into
account (1.32) and (1.35), we deduce

∂tu ∈ L2(0,+∞;L2(Ω)). (1.39)

Moreover, taking the time derivative of (1.2)2 and testing by ∂tv, we obtain

1

2

d

dt
‖∂tv‖2

0 + ‖∂tv‖2
1 = 2(u ∂tu, ∂tv) ≤ 2‖u‖L6‖∂tu‖0‖∂tv‖L3

≤ ε‖∂tv‖2
1 + Cε‖u‖2

1‖∂tu‖2
0 ∈ L1(0,+∞),

hence we arrive at
∂tv ∈ L∞(0,+∞;L2(Ω)) ∩ L2(0,+∞;H1(Ω)). (1.40)

1.3.3 Higher global in time regularity

Denote by ũ = ∂tu and ṽ = ∂tv. Then, from (1.2) we deduce that (ũ, ṽ) satisfies{
∂tũ−∆ũ−∇ · (ũ∇v)−∇ · (u∇ṽ) = 0,

∂tṽ −∆ṽ + ṽ = 2uũ.
(1.41)

Testing by ũ in (1.41)1 and −1

2
∆ṽ in (1.41)2, taking into account that

∫
Ω

ũ = 0 and

using the 3D interpolation inequality (1.13), we deduce

1

2

d

dt

(
‖ũ‖2

0 +
1

2
‖∇ṽ‖2

0

)
+ ‖ũ‖2

1 +
1

2
‖∇ṽ‖2

1

= −(ũ∇v,∇ũ) + (ũ∇u,∇ṽ) ≤ ‖ũ‖L3

(
‖∇v‖L6‖∇ũ‖0 + ‖∇ṽ‖L6‖∇u‖0

)
≤ 1

2

(
‖ũ‖2

1 +
1

2
‖∇ṽ‖2

1

)
+ C‖∇v‖4

1‖ũ‖2
0 + C‖∇u‖4

0‖ũ‖2
0. (1.42)
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Therefore, since ‖∇v‖4
1 and ‖∇u‖4

0 ∈ L1(0,+∞) (owing to (1.30)2 and (1.32)), Lemma 1.2.2
and (1.40) imply

(∂tu, ∂tv) ∈ L∞(0,+∞;L2(Ω)×H1(Ω)). (1.43)

Moreover, integrating in time (1.42) and using (1.40) and (1.43), we deduce

(∂tu, ∂tv) ∈ L2(0,+∞;H1(Ω)×H2(Ω)). (1.44)

Finally, applying time derivative to equations (1.2)1 and (1.2)2, and taking into account
(1.32)-(1.35), (1.38) and (1.43)-(1.44), we can deduce the following regularity for ∂ttu and
∂ttv:

(∂ttu, ∂ttv) ∈ L2(0,+∞;H1(Ω)′ × L2(Ω)). (1.45)

By following with a bootstrap argument, it is possible to obtain more regularity for (u, v).
However, the regularity obtained so far is sufficient to guarantee the hypothesis required later
to prove error estimates (see Theorem 1.4.21 and Theorem 1.5.6).

1.3.4 Proof of (1.32) in 2D domains

In order to prove (1.32) in 2D domains, we make (∇(1.2)1,∇u)+
1

2
(∆(1.2)2,∆v), integrating

by parts, and arguing as in (1.33), but in this case using the 2D interpolation inequality
(1.12), one has

1

2

d

dt

(
‖∇u‖2

0 +
1

2
‖∆v‖2

0

)
+ ‖∆u‖2

0 +
1

2
‖∇v‖2

0 +
1

2
‖∇(∆v)‖2

0

≤ C‖∇u‖2
L4‖∇2v‖0 ≤ C ‖∇u‖0‖∇u‖1‖∇v‖1 ≤ ε‖∇u‖2

1 + Cε ‖∇u‖2
0‖∇v‖2

1.

(1.46)

Therefore, if we add (1.22) and (1.46), use (1.7) and take ε small enough, we have

d

dt

(
‖u‖2

1 +
1

2
‖∇v‖2

1

)
+ ‖∇u‖2

1 + ‖∇v‖2
2 ≤ C‖∇u‖2

0 ‖∇v‖2
1

and thus, since ‖∇u‖2
0 ∈ L1(0,+∞), Lemma 1.2.2 implies (1.32).

1.4 Euler time discretization

In this section, we study the Euler time discretization for the problem (1.3)-(1.4), and we
analyze the unconditional stability (in weak norms, see Definition 1.4.5 below) and solvability
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of the scheme, as well as its convergence towards weak solutions. We also study some
additional properties as positivity of the cell and chemical variables, mass-conservation of
cells, and error estimates. Additionally, we prove uniqueness of solution of the scheme under
a hypothesis that relates the time step and strong norms of the scheme, which is simplified
in the case of 2D domains owing to a strong estimate obtained for the scheme (the discrete
version of (1.32)).

Let us consider a fixed partition of the time interval [0,+∞) given by tn = nk, where
k > 0 denotes the time step (that we take constant for simplicity). First, taking into account
the (u, v)-problem (1.2), we consider the following first order, nonlinear and coupled scheme
(Backward Euler):

• Scheme UV :

Initialization: We fix u0 = u(0) and v0 = v(0).

Time step n: Given (un−1, vn−1) ∈ H1(Ω) × H2(Ω) with un−1 ≥ 0 and vn−1 ≥ 0,
compute (un, vn) ∈ H1(Ω)×H2(Ω) with un ≥ 0 and vn ≥ 0 and solving{

(δtun, ū) + (∇un,∇ū) + (un∇vn,∇ū) = 0, ∀ū ∈ H1(Ω),

δtvn + Avn − u2
n = 0, a.e. x ∈ Ω,

(1.47)

where, in general, we denote δtan =
an − an−1

k
.

On the other hand, we can consider the following Backward Euler scheme related to
the reformulation in the (u,σ)-problem (1.3). Then, one also has the following first order,
nonlinear and coupled scheme:

• Scheme US :

Initialization: We fix v0 = v(0) and (u0,σ0) = (u(0),σ(0)), with σ0 = ∇v0.

Time step n: Given (un−1,σn−1) ∈ H1(Ω) × H1
σ(Ω) with un−1 ≥ 0, compute

(un,σn) ∈ H1(Ω)×H1
σ(Ω) with un ≥ 0 and solving{

(δtun, ū) + (∇un,∇ū) + (unσn,∇ū) = 0, ∀ū ∈ H1(Ω),

(δtσn, σ̄) + 〈Bσn, σ̄〉 − 2(un∇un, σ̄) = 0, ∀σ̄ ∈H1
σ(Ω).

(1.48)

Once the Scheme US is solved , given vn−1 ∈ H2(Ω) with vn−1 ≥ 0, we can recover
vn = vn(u2

n) ∈ H2(Ω) (with vn ≥ 0) solving:

δtvn + Avn = u2
n, a.e. x ∈ Ω. (1.49)
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Remark 1.4.1 (Positivity and regularity of vn) It is not difficult to prove that, given
un ∈ H1(Ω) and vn−1 ∈ H2(Ω), there exists a unique vn ∈ H2(Ω) solution of (1.49). Even
more, using the H3-regularity of problem (1.8), we can prove that vn ∈ H3(Ω). Moreover,
if vn−1 ≥ 0 then vn ≥ 0. Indeed, testing by (vn)− = min{vn, 0} ≤ 0 in (1.49), and taking
into account that (vn)− = 0 if (vn) ≥ 0, as well as (vn)− ∈ H1(Ω) with ∇((vn)−) = ∇(vn) if
(vn) ≤ 0, and ∇((vn)−) = 0 if (vn) > 0, we obtain

1

k
‖(vn)−‖2

0 −
1

k

∫
Ω

vn−1(vn)− + ‖∇((vn)−)‖2
0 + ‖((vn)−)‖2

0 =

∫
Ω

u2
n((vn)−) ≤ 0. (1.50)

Then, as vn−1 ≥ 0, from (1.50) we conclude ‖(vn)−‖2
1 ≤ 0, which implies that (vn)− ≡ 0 a.e.

x ∈ Ω, and thus, vn ≥ 0 in Ω.

Lemma 1.4.2 If σn−1 = ∇vn−1, the schemes UV and US are equivalents in the following
sense: If (un, vn) is a solution of scheme UV then (un,σn) with σn = ∇vn solves scheme
US; and reciprocally, if (un,σn) is a solution of the scheme US and vn = vn(u2

n) is the
unique solution of (1.49), then σn = ∇vn, and therefore (un, vn) is a solution of the scheme
UV.

Proof. Suppose that (un, vn) is a solution of the scheme UV, then testing (1.47)2 by
−∇ · w̄, for any w̄ ∈H1

σ(Ω), and taking into account that rot(∇vn) = 0, we obtain

(δt∇vn, w̄) + 〈B∇vn, w̄〉 = 2(un∇un, w̄), ∀ w̄ ∈H1
σ(Ω). (1.51)

Then, defining σn = ∇vn and assuming the hypothesis σn−1 = ∇vn−1, from (1.51) we
conclude that (un,σn) is solution of the scheme US. On the other hand, if (un,σn) is a
solution of the scheme US and vn satisfies (1.49), reasoning as above, we conclude that ∇vn
satisfies (1.51). Therefore, from (1.48)2 and (1.51), we obtain

(δt(σn −∇vn), σ̄) + 〈B(σn −∇vn), σ̄〉 = 0, ∀ σ̄ ∈H1
σ(Ω). (1.52)

Then, taking σ̄ = σn−∇vn in (1.52) and using the formula a(a−b) =
1

2
(a2−b2)+

1

2
(a−b)2,

we deduce

δt

(
1

2
‖σn −∇vn‖2

0

)
+
k

2
‖δt(σn −∇vn)‖2

0 + ‖σn −∇vn‖2
1 = 0,

which implies that σn = ∇vn using that σn−1 = ∇vn−1. Thus, we conclude that (un, vn) is
solution of the scheme UV.
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Although, as it was said at the beginning, both time schemes UV and US are equiva-
lent, we will study the scheme US with the variable σn in order to facilitate the notation
throughout the paper. Moreover, both schemes furnish different fully discrete schemes con-
sidering for instance the spatial approximation by Finite Elements, which will be analyzed
in Chapter 2. In fact, it will be necessary to use the variable σn in order to obtain a fully
discrete unconditional energy-stable scheme.

1.4.1 Solvability, Energy-Stability and Convergence

Taking ū = 1 in (1.48)1 we see that the scheme US is conservative, that is:∫
Ω

un =

∫
Ω

un−1 = · · · =
∫

Ω

u0. (1.53)

Moreover, integrating (1.49) in Ω, we deduce the following discrete in time equation for∫
Ω

vn:

δt

(∫
Ω

vn

)
+

∫
Ω

vn =

∫
Ω

u2
n. (1.54)

Theorem 1.4.3 (Unconditional existence and conditional uniqueness) There exists
(un,σn) ∈ H1(Ω)×H1

σ(Ω) solution of the scheme US, such that un ≥ 0. Moreover, if

k ‖(un,σn)‖4
1 is small enough (1.55)

then the solution of the scheme US is unique.

Proof. Let (un−1,σn−1) ∈ H1(Ω)×H1
σ(Ω) be given, with un−1 ≥ 0. The proof is divided

into two parts.

Part 1: In order to prove the existence of (un,σn) ∈ H1(Ω) ×H1
σ(Ω) solution of the

scheme US, such that un ≥ 0, we consider the following auxiliary problem:{
(δtun, ū) + (∇un,∇ū) + ((un)+σn,∇ū) = 0, ∀ū ∈ H1(Ω),

(δtσn, σ̄) + 〈Bσn, σ̄〉 − 2(un∇un, σ̄) = 0, ∀σ̄ ∈H1
σ(Ω),

(1.56)

where (un)+ = max{un, 0}. In fact, it is the same scheme US but changing un by (un)+ in
the chemotaxis term.
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A. Positivity of un: First, we will see that if (un,σn) is a solution of (1.56), then un ≥ 0.
Testing by ū = (un)− = min{un, 0} ≤ 0 in (1.56), and using that ((un)+σn,∇((un)−)) = 0,
we obtain

1

k
‖(un)−‖2

0 −
1

k

∫
Ω

un−1(un)− + ‖∇((un)−)‖2
0 = 0.

Then, using the fact that un−1 ≥ 0, one has that ‖(un)−‖2
1 ≤ 0, and thus (un)− ≡ 0 a.e.

x ∈ Ω. Therefore, un ≥ 0 in Ω.

B. Existence of solution of (1.56): It can be proven by using the Leray-Schauder
fixed-point theorem. (See Appendix A).

Then, from parts A and B, we conclude that there exists (un,σn) solution of (1.56) with
un ≥ 0. In particular, taking into account that un = (un)+, we conclude that (un,σn) is also
a solution of the scheme US, with un ≥ 0.

Part 2: In order to prove the uniqueness of solution (un,σn) of the scheme US, we suppose
that there exist (u1

n,σ
1
n), (u2

n,σ
2
n) ∈ H1(Ω)×H1

σ(Ω) two possible solutions of (1.48). Then,
defining un = u1

n − u2
n and σn = σ1

n −σ2
n, we have that (un,σn) ∈ H1(Ω)×H1

σ(Ω) satisfies

1

k
(un, ū) + (∇un,∇ū) + (u1

nσn,∇ū) + (unσ
2
n,∇ū) = 0, ∀ū ∈ H1(Ω), (1.57)

1

k
(σn, σ̄) + 〈Bσn, σ̄〉 − 2(u1

n∇un, σ̄)− 2(un∇u2
n, σ̄) = 0, ∀σ̄ ∈H1

σ(Ω). (1.58)

Taking ū = un, σ̄ =
1

2
σn in (1.57)-(1.58) and adding the resulting expressions, the terms

(u1
nσn,∇un) cancel, and using the fact that

∫
Ω

un = 0, we obtain

1

2k
‖(un,σn)‖2

0 +
1

2
‖(un,σn)‖2

1

≤ ‖un‖L3‖σ2
n‖L6‖∇un‖0 + ‖un‖L3‖∇u2

n‖0‖σn‖L6

≤ C‖un‖1/2
0 ‖σ2

n‖L6‖un‖3/2
1 + C‖un‖1/2

0 ‖un‖
1/2
1 ‖∇u2

n‖0‖σn‖1

≤ 1

4
‖(un,σn)‖2

1 + C‖un‖2
0‖σ2

n‖4
1 + C‖un‖2

0‖∇u2
n‖4

0,

which implies that

1

2
‖(un,σn)‖2

0 +
k

4
‖(un,σn)‖2

1 ≤ C k
(
‖∇u2

n‖4
0 + ‖σ2

n‖4
1

)
‖(un,σn)‖2

0.

Therefore, since k (‖∇u2
n‖4

0 + ‖σ2
n‖4

1) is small enough (from hypothesis (1.55)), we conclude
that ‖(un,σn)‖1 = 0, thus u1

n = u2
n and σ1

n = σ2
n.
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Remark 1.4.4 In the case of 2D domains, using estimate (1.75) (see Theorem 1.4.20 be-
low), the uniqueness restriction (1.55) can be relaxed to kK2

0 small enough, where K0 is the
constant appearing in (1.75) which depends on data (Ω, u0,σ0), but is independent of n.

Definition 1.4.5 A numerical scheme with solution (un,σn) is called energy-stable with
respect to the energy E(u,σ) given in (1.26) if this energy is time decreasing, that is

E(un,σn) ≤ E(un−1,σn−1), ∀n. (1.59)

In the next Lemma, we obtain unconditional energy-stability for the scheme US.

Lemma 1.4.6 (Unconditional stability) The scheme US is unconditionally energy-stable
with respect to E(u,σ). In fact, for any (un,σn) solution of scheme US, the following dis-
crete energy law holds

δtE(un,σn)+
k

2
‖δtun‖2

0 +
k

4
‖δtσn‖2

0 + ‖∇un‖2
0 +

1

2
‖σn‖2

1 = 0. (1.60)

Proof. Taking ū = un in (1.48)1 and σ̄ = 1
2
σn in (1.48)2 and adding the resulting expre-

ssions, the chemotaxis and production terms cancel, obtaining (1.60).

Remark 1.4.7 Comparing the energy law (1.22) of the continuous problem, and the discrete
version (1.60), we can say that the scheme US introduces the following two first order
“numerical dissipation terms”:

k

2
‖δtun‖2

0 and
k

4
‖δtσn‖2

0.

From the (local in time) discrete energy law (1.60), we deduce the following global in
time estimates for any (un,σn) solution of the scheme US:

Theorem 1.4.8 (Uniform Weak estimates) Let (un,σn) be a solution of the scheme
US. Then, the following estimates hold

‖(un,σn)‖2
0 + k2

n∑
m=1

‖(δtum, δtσm)‖2
0 + k

n∑
m=1

‖(∇um,σm)‖2
L2×H1 ≤ C0, ∀n ≥ 1, (1.61)

k

n0+n∑
m=n0+1

‖(um,σm)‖2
1 ≤ C0 + C1(nk), ∀n ≥ 1, (1.62)

where n0 ≥ 0 is any integer and C0, C1 are positive constants depending on the data (u0,σ0)
and (Ω, u0) respectively, but independent of n0, k and n.
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Proof. Observe that from the discrete energy law (1.60), we have

1

4
‖(un,σn)‖2

0 +
k2

4

n∑
m=1

‖(δtum, δtσm)‖2
0 +

k

2

n∑
m=1

‖(∇um,σm)‖2
L2×H1 ≤

1

2
‖(u0,σ0)‖2

0,

which implies (1.61). Moreover, starting again from (1.60), but now summing for m from
n0 + 1 to n + n0, using (1.61) and the Poincaré inequality for the zero-mean value function

um −m0, where m0 =
1

|Ω|

∫
Ω

u0 =
1

|Ω|

∫
Ω

um, we have

k

n0+n∑
m=n0+1

‖(um −m0,σm)‖2
1 ≤ C0,

and thus, we deduce (1.62).

Remark 1.4.9 The proofs of solvability (without positivity) and unconditional energy-stability
of the scheme US (see Theorems 1.4.3 and 1.4.8, and Lemma 1.4.6) can be followed al-
most line by line if we consider a fully discrete scheme corresponding to a Finite Element
approximation of US, that is, if we take any finite-dimensional subspaces Uh ⊂ H1(Ω) and
Σh ⊂H1

σ(Ω) instead of H1(Ω) and H1
σ(Ω) respectively.

Corollary 1.4.10 (Estimates for vn) If vn = vn(u2
n) is the solution of (1.49), it holds

‖vn‖L1 ≤ K0, ∀n ≥ 0, (1.63)

where K0 > 0 depends on the data (u0,σ0, v0), but independent of k and n. Moreover, the
following estimates hold

‖vn‖2
1 ≤ K0, and k

n0+n∑
m=n0+1

‖vm‖2
2 ≤ K0 +K1(nk), ∀n ≥ 1, (1.64)

with K1 > 0 depending on the data u0,σ0, v0,Ω, but independent of n0, k and n.

Proof. From (1.54) and (1.61) we have

(1 + k)‖vi‖L1 − ‖vi−1‖L1 = k‖ui‖2
0 ≤ kC0. (1.65)

Then, multiplying (1.65) by (1 + k)i−1 and summing for i = 1, · · ·, n, we obtain

(1 + k)n‖vn‖L1 ≤ ‖v0‖L1 + k C0

n−1∑
i=0

(1 + k)i
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and taking into account that

n−1∑
i=0

(1 + k)i =
1− (1 + k)n

1− (1 + k)
=

1

k
((1 + k)n − 1) ≤ 1

k
(1 + k)n,

we conclude
‖vn‖L1 ≤ (1 + k)−n‖v0‖L1 + C0 ≤ ‖v0‖L1 + C0,

which implies (1.63). Finally, taking into account the relation σn = ∇vn, from (1.61)-(1.63),
we can deduce (1.64).

Starting from the previous stability estimates, following the ideas of [9] we can prove the
convergence towards weak solutions. For this, let us to introduce the functions:

• (ũk, σ̃k) are continuous functions on [0,+∞), linear on each interval (tn−1, tn) and
equal to (un,σn) at t = tn, n ≥ 0;

• (urk,σ
r
k) as the piecewise constant functions taking values (un,σn) on (tn−1, tn], n ≥ 1.

Theorem 1.4.11 (Convergence) There exists a subsequence (k′) of (k), with k′ ↓ 0, and a
weak solution (u,σ) of (1.3) in (0,+∞), such that (ũk′ , σ̃k′) and (urk′ ,σ

r
k′) converge to (u,σ)

weakly-? in L∞(0,+∞;L2(Ω)×L2(Ω)), weakly in L2(0, T ;H1(Ω)×H1(Ω)) and strongly in
L2(0, T ;L2(Ω)×L2(Ω)), for any T > 0.

Proof. Observe that (1.48) can be rewritten as:
( d
dt
ũk(t), ū

)
+ (∇urk(t),∇ū) + (urk(t)σ

r
k(t),∇ū) = 0, ∀ū = ū(t), for t ∈ [0,+∞) \ {tn},( d

dt
σ̃k(t), σ̄

)
+ 〈Bσrk(t), σ̄〉 − 2(urk(t)∇urk(t), σ̄) = 0, ∀σ̄ = σ̄(t), for t ∈ [0,+∞) \ {tn}.

(1.66)
where ū(t)|In = ūn ∈ H1(Ω) and σ̄(t)|In = σ̄n ∈ H1

σ(Ω), with In := [tn−1, tn]. From
Theorem 1.4.8 we have that (ũk, σ̃k) and (urk,σ

r
k) are bounded in L∞(0,+∞;L2(Ω)×L2(Ω))∩

L2(0, T ;H1(Ω) ×H1(Ω)). Moreover, using (1.61), it is not difficult to prove that ũk − urk
and σ̃k − σrk converge to 0 in L2(0, T ;L2(Ω)) as k → 0, for any T > 0. More precisely, we
have ‖ũk − urk, σ̃k −σrk‖L2(0,T ;L2(Ω)) ≤ (C0k/3)1/2. Therefore, there exists a subsequence (k′)
of (k) and limit functions u and σ verifying the following convergence as k′ → 0:

(ũk′ , σ̃k′)→ u, (urk′ ,σ
r
k′)→ u in

{
L∞(0,+∞;L2(Ω)×L2(Ω))-weak*

L2(0, T ;H1(Ω)×H1(Ω))-weak.
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Moreover, we can deduce d
dt

(ũk′ , σ̃k′) is bounded in L4/3(0, T ;H1(Ω)′ × H1(Ω)′). There-
fore, a compactness result of Aubin-Lions type implies that the sequence is compact in
L2(0, T ;L2(Ω)×L2(Ω)). This implies the strong convergence of both subsequences (ũk, σ̃k)
and (urk,σ

r
k) in L2(0, T ;L2(Ω) × L2(Ω)); and passing to the limit in (1.66), we obtain that

(u,σ) satisfies (1.23)-(1.24).
Now, in order to obtain that (u,σ) satisfies energy inequality (1.25), we test (1.66)1 by

ū = urk(t) and (1.66)2 by σ̄ = 1
2
σrk(t), and taking into account that ũk|In = un + tn−t

k
(un−1−

un) (and σ̃k is defined in the same way), we obtain

d

dt

(
1

2
‖ũk(t)‖2

0 +
1

4
‖σ̃k(t)‖2

0

)
+ (tn − t)‖(δtun, δtσn)‖2

0 + ‖∇urk(t)‖2
0 +

1

2
‖σrk(t)‖2

1 = 0,

for any t ∈ (tn−1, tn), which implies that

d

dt
E(ũk(t), σ̃k(t)) + ‖∇urk(t)‖2

0 +
1

2
‖σrk(t)‖2

1 ≤ 0, for t ∈ [0,+∞) \ {tn}. (1.67)

Then, integrating (1.67) in time from t0 to t1, with t0, t1 ∈ [0,+∞), and taking into account
that ∫ t1

t0

d

dt
E(ũk(t), σ̃k(t)) = E(ũk(t1), σ̃k(t1))− E(ũk(t0), σ̃k(t0)) ∀t0 < t1

since E(ũk(t), σ̃k(t)) is continuous in time, we deduce

E(ũk(t1), σ̃k(t1))−E(ũk(t0), σ̃k(t0))+

∫ t1

t0

(‖∇urk(t)‖2
0 +

1

2
‖σrk(t)‖2

1)dt ≤ 0, ∀t0 < t1. (1.68)

Finally, we will prove that

E(ũk′(t), σ̃k′(t))→ E(u(t),σ(t)), a.e. t ∈ [0,+∞). (1.69)

Indeed, for any T > 0,

‖E(ũk′(t), σ̃k′(t))− E(u(t),σ(t))‖L1(0,T ) =

∫ T

0

|E(ũk′(t), σ̃k′(t))− E(u(t),σ(t))|dt

=

∫ T

0

∣∣∣∣12 (‖ũk′(t)‖2
0 − ‖u(t)‖2

0

)
+

1

4

(
‖σ̃k′(t)‖2

0 − ‖σ(t)‖2
0

)∣∣∣∣ dt
≤ 1

2
‖ũk′ − u‖L2(0,T ;L2)(‖ũk′‖L2(0,T ;L2) + ‖u‖L2(0,T ;L2))

+
1

4
‖σ̃k′ − σ‖L2(0,T ;L2)(‖σ̃k′‖L2(0,T ;L2) + ‖σ‖L2(0,T ;L2)), (1.70)

and taking into account that (ũk′ , σ̃k′) → (u,σ) strongly in L2(0, T ;L2(Ω)) for any T > 0,
from (1.70) we conclude that E(ũk′(t), σ̃k′(t)) → E(u(t),σ(t)) strongly in L1(0, T ) for all
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T > 0, which implies (1.69). Then, taking into account that (urk′ ,σ
r
k′) → (u,σ) weakly in

L2(0, T ;H1(Ω)×H1(Ω)), we deduce

lim inf
k′→0

∫ t1

t0

(‖∇urk′(t)‖2
0 +

1

2
‖σrk′(t)‖2

1)dt ≥
∫ t1

t0

(‖∇u(t)‖2
0 +

1

2
‖σ(t)‖2

1)dt ∀t1 ≥ t0 ≥ 0

and, owing to (1.69),

lim inf
k′→0

[
E(ũk′(t1), σ̃k′(t1))− E(ũk′(t0), σ̃k′(t0))

]
= E(u(t1),σ(t1))− E(u(t0),σ(t0)),

for a.e. t1, t0 : t1 ≥ t0 ≥ 0. Thus, taking lim inf as k′ → 0 in the inequality (1.68), we deduce
the energy inequality (1.25) for a.e. t0, t1 : t1 ≥ t0 ≥ 0.

Analogously, if we introduce the functions:

• ṽk are continuous functions on [0,+∞), linear on each interval (tn−1, tn) and equal to
vn, at t = tn, n ≥ 0;

• vrk as the piecewise constant functions taking values vn on (tn−1, tn], n ≥ 1,

the following result can be proved:

Lemma 1.4.12 There exists a subsequence (k′) of (k), with k′ ↓ 0, and a strong solution
v of (1.4) in (0,+∞), such that ṽk′ and vrk′ converge to v weakly-? in L∞(0,+∞;H1(Ω)),
weakly in L2(0, T ;H2(Ω)) and strongly in L2(0, T ;H1(Ω)) ∩ C([0, T ];Lp(Ω)), for 1 ≤ p < 6
and any T > 0.

Proof. Observe that (1.49) can be rewritten as:

d

dt
ṽk(t) + Avrk(t) = (urk(t))

2, for t ∈ [0,+∞) \ {tn}, (1.71)

From estimate (1.64) we have that ṽk and vrk are bounded in L∞(0,+∞;H1(Ω))∩L2(0, T ;H2(Ω)).
Moreover, it is not difficult to prove that ṽk − vrk converge to 0 in L2(0, T ;H1(Ω)) as k → 0,
for any T > 0. Therefore, there exists a subsequence (k′) of (k) and a limit function v
verifying the following convergence as k′ → 0:

ṽk′ → v, vrk′ → v in

{
L∞(0,+∞;H1(Ω))-weak*

L2(0, T ;H2(Ω))-weak.

Moreover, we can deduce that d
dt
ṽk′ is bounded in L4/3(0, T ;L2(Ω)). Therefore, a compact-

ness result of Aubin-Lions type implies that the sequence is compact in L2(0, T ;H1(Ω)) ∩
C([0, T ];Lp(Ω)), for 1 ≤ p < 6. This implies the strong convergence of both subsequences
ṽk and vrk in L2(0, T ;H1(Ω))∩C([0, T ];Lp(Ω)); and passing to the limit in (1.71), we obtain
that v satisfies (1.19).
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1.4.2 Uniform strong estimates

In this section, we are going to obtain a priori estimates in strong norms for (un,σn) solu-
tion of the scheme US. First, in the following proposition, we shall show H2-regularity for
(un,σn).

Proposition 1.4.13 Let (un−1,σn−1) ∈ H1(Ω) ×H1
σ(Ω). If (un,σn) ∈ H1(Ω) ×H1

σ(Ω)
is solution of the scheme US, then (un,σn) ∈ H2(Ω) ×H2(Ω). Moreover, the following
estimate holds

‖(un,σn)‖2 ≤ C
(
‖(δtun, δtσn)‖0 + ‖(un,σn)‖3

1 + ‖un‖0

)
, (1.72)

where C is a constant depending on data (Ω, u0,σ0), but independent of k and n.

Proof. Recall that we have assumed the H2 and H3-regularity of problem (1.8), which
implies the H2-regularity of problem (1.9) in the case of f = ∇h for some h ∈ H1(Ω).
Moreover, observe that scheme US can be rewrite in terms of the operators A and B as
follows {

Aun = un − δtun +∇ · (unσn),

Bσn = −δtσn + 2un∇un.

Now, since (un,σn) ∈ H1(Ω) ×H1
σ(Ω), we have that ∇un ∈ L2(Ω), ∇ · σn ∈ L2(Ω) and,

from Sobolev embeddings, (un,σn) ∈ L6(Ω) × L6(Ω). Consequently, we get ∇ · (unσn) =
σn · ∇un + un∇ · σn ∈ L3/2(Ω) and, using the fact that un, δtun ∈ L2(Ω) ↪→ L3/2(Ω),
from classical elliptic regularity we conclude that un ∈ W 2,3/2(Ω). Analogously, since un ∈
W 2,3/2(Ω), we have ∇un ∈W 1,3/2(Ω) ↪→ L3(Ω), and therefore un∇un ∈ L2(Ω). Thus, using
the fact that δtσn ∈ L2(Ω) and taking into account that −δtσn + 2un∇un = ∇(−δtvn + u2

n),
with −δtvn + u2

n ∈ H1(Ω), we conclude that σn ∈ H2(Ω). Finally, taking into account
that σn ∈ H2(Ω) and un ∈ W 2,3/2(Ω), we deduce that ∇ · (unσn) ∈ L2(Ω), and thus,
since un, δtun ∈ L2(Ω), we conclude that un ∈ H2(Ω). Besides, from (1.10)1-(1.11), the
interpolation inequality (1.13), using the Hölder and Young inequalities, we have

‖un‖2≤ C (‖δtun‖0 + ‖un∇ · σn‖0 + ‖σn · ∇un‖0 + ‖un‖0)

≤ C(‖δtun‖0 + ‖un‖0) +
1

2
‖σn‖2 + C‖un‖2

1‖σn‖1 +
1

4
‖un‖2 + C‖un‖1‖σn‖2

1(1.73)

and

‖σn‖2≤ C (‖δtσn‖0 + ‖un∇un‖0) ≤ C (‖δtσn‖0 + ‖un‖L6‖∇un‖L3)

≤ C‖δtσn‖0 +
1

4
‖un‖2 + C‖un‖3

1. (1.74)
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Then, adding (1.73) and (1.74), we conclude (1.72).

Now, assuming the estimate

‖(un,σn)‖2
1 ≤ K0, ∀n ≥ 0, (1.75)

with K0 > 0 independent of k and n, we will prove uniform strong and more regular estimates
for the scheme US. Later, in the next section, we will prove that condition (1.75) holds, at
least, in 2D domains.

Theorem 1.4.14 (Strong estimates) Let (un,σn) be a solution of the scheme US satis-
fying the assumption (1.75). Then, the following estimate holds

k

n0+n∑
m=n0+1

(‖(δtum, δtσm)‖2
0 + ‖(um,σm)‖2

2) ≤ K1 +K2(nk), ∀n ≥ 1, (1.76)

for any integer n0 ≥ 0, with positive constants K1, K2 depending on (Ω, u0,σ0), but inde-
pendent of n0, k and n.

Proof. Testing (1.48) by ū = δtun and σ̄ = δtσn, and taking into account that from
(1.53) we have ‖un‖2

1 − ‖un−1‖2
1 = ‖∇un‖2

0 − ‖∇un−1‖2
0, we can deduce

1

2
‖(δtun, δtσn)‖2

0 + δt

(1

2
‖(un,σn)‖2

1

)
+
k

2
‖(δtun, δtσn)‖2

1 ≤ C(‖∇ · (unσn)‖2
0 + ‖2un∇un‖2

0).

(1.77)
Moreover, using (1.13), (1.61), (1.72) and (1.75), we obtain

‖σn · ∇un‖2
0 + ‖un∇ · σn‖2

0 +‖2un∇un‖2
0 ≤ C‖(un,σn)‖3

1‖(un,σn)‖2

≤ C‖(δtun, δtσn)‖0 + C ≤ 1

4
‖(δtun, δtσn)‖2

0 + C, (1.78)

where the constant C is independent of k and n. Therefore, from (1.77)-(1.78), we deduce

δt(‖(un,σn)‖2
1) + k‖(δtun, δtσn)‖2

1 +
1

2
‖(δtun, δtσn)‖2

0 ≤ C. (1.79)

Then, multiplying (1.79) by k, summing for m from n0 + 1 to n + n0 and using (1.75), we
have

k

n0+n∑
m=n0+1

‖(δtum, δtσm)‖2
0 ≤ K0 +K1(nk),

which, taking into account (1.72), implies (1.76).

From Theorem 1.4.14 and Corollary 1.4.10, we deduce strong estimates for vn.
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Corollary 1.4.15 Let vn be the solution of (1.49). Under the hypothesis of Theorem 1.4.14,
the following estimates hold

‖vn‖2
2 ≤ K0 and k

n0+n∑
m=n0+1

‖vn‖2
3 ≤ K0 +K1(nk), ∀n ≥ 1, (1.80)

for any integer n0 ≥ 0, with positive constants K0, K1 depending on (Ω, u0,σ0, v0), but
independent of n0, k and n.

Theorem 1.4.16 (More regular estimates) Assume that (u0,σ0) ∈ H2(Ω) ×H2(Ω).
Under the hypothesis of Theorem 1.4.14, the following estimates hold

‖(δtun, δtσn)‖2
0 ≤ C3, ∀n ≥ 1, (1.81)

k

n0+n∑
m=n0+1

‖(δtum, δtσm)‖2
1 ≤ C4 + C5(nk), ∀n ≥ 1, (1.82)

‖(un,σn)‖2 ≤ C6, ∀n ≥ 0, (1.83)

for any integer n0 ≥ 0, with positive constants C3, C4, C5, C6 depending on data (Ω, u0,σ0),
but independent of n0, k and n.

Remark 1.4.17 In particular, from (1.83) one has ‖(un,σn)‖L∞ ≤ C7 for all n ≥ 0, with
C7 > 0 a constant independent of k and n.

Proof. Denote by ũn = δtun and σ̃n = δtσn. Then, making the time discrete derivative
of (1.48), and using the equality δt(anbn) = (δtan)bn−1 + an(δtbn), we obtain that (ũn, σ̃n)
satisfies {

(δtũn, ū) + (∇ũn,∇ū) + (ũnσn−1,∇ū) + (unσ̃n,∇ū) = 0,

(δtσ̃n, σ̄) + 〈Bσ̃n, σ̄〉 = 2(ũn∇un−1, σ̄) + 2(un∇ũn, σ̄),
(1.84)

for all (ū, σ̄) ∈ H1(Ω) ×H1
σ(Ω). Taking ū = ũn and σ̄ =

1

2
σ̃n in (1.84) and adding the

resulting expressions, the terms (unσ̃n,∇ũn) cancel, and taking into account that

∫
Ω

ũn = 0,

we deduce

δt

(
1

2
‖ũn‖2

0 +
1

4
‖σ̃n‖2

0

)
+
k

4
‖(δtũn, δtσ̃n)‖2

0 +
1

2
‖(ũn, σ̃n)‖2

1

≤ ‖ũn‖L3‖σn−1‖L6‖∇ũn‖0 + ‖ũn‖L6‖σ̃n‖L3‖∇un−1‖0

≤ 1

8
‖ũn‖2

1 +K2
0C‖ũn‖2

0 +
1

8
‖ũn‖2

1 +
1

4
‖σ̃n‖2

1 +K2
0C‖σ̃n‖2

0,
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where (1.13) and (1.75) have been used in the first and second inequalities respectively.
Thus, we deduce

δt

(
1

2
‖ũn‖2

0 +
1

4
‖σ̃n‖2

0

)
+
k

4
‖(δtũn, δtσ̃n)‖2

0 +
1

4
‖(ũn, σ̃n)‖2

1 ≤ K2
0C‖(ũn, σ̃n)‖2

0. (1.85)

In particular,

1

2
‖ũn‖2

0 +
1

4
‖σ̃n‖2

0 −
(

1

2
‖ũn−1‖2

0 +
1

4
‖σ̃n−1‖2

0

)
≤ kC‖(ũn, σ̃n)‖2

0. (1.86)

Moreover, observe that from (1.48) we have that, for all (ū, σ̄) ∈ H1(Ω)×H1
σ(Ω),{

(δtu1, ū) + (∇(u1 − u0),∇ū) + (∇u0,∇ū) = −(u1(σ1 − σ0),∇ū)− (u1σ0,∇ū),

(δtσ1, σ̄) + 〈B(σ1 − σ0), σ̄〉+ 〈Bσ0, σ̄〉 = 2(u1∇(u1 − u0), σ̄) + 2(u1∇u0, σ̄).
(1.87)

Then, testing (1.87) by ū = δtu1, σ̄ = 1
2
δtσ1 and adding, the terms 1

k
(u1∇(u1−u0),σ1−σ0)

cancel, and using the Hölder and Young inequalities and (1.75), we can deduce

‖(δtu1, δtσ1)‖2
0 ≤ C ‖(u0,σ0)‖2

2. (1.88)

Therefore, taking into account (1.76) and (1.88), applying Corollary 1.2.4 in (1.86) we con-
clude (1.81). Moreover, multiplying (1.85) by k, adding from m = n0 + 1 to m = n0 +n, and
using (1.81), we deduce (1.82). Finally, from (1.61), (1.75), (1.81) and (1.72), we conclude
(1.83).

From Theorem 1.4.16 and Corollary 1.4.10, we deduce a more regular estimate for vn.

Corollary 1.4.18 Let vn be the solution of (1.49). Under hypothesis of Theorem 1.4.16,
the following estimate holds

‖vn‖2
3 ≤ K0, ∀n ≥ 0, (1.89)

where K0 > 0 is a constant depending on (Ω, u0,σ0, v0), but independent of k and n.

1.4.3 Proof of (1.75) in 2D domains

In this section, we will prove that estimate (1.75) holds in 2D domains. With this aim, first
we consider a preliminar result.
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Proposition 1.4.19 Let (un,σn) be any solution of the scheme US. Then, in 2D domains,
the following estimate holds

‖(un,σn)‖2
1 ≤ K1‖(un−1,σn−1)‖2

1, (1.90)

where K1 is a constant depending on data (Ω, u0,σ0), but independent of k and n.

Proof. We take ū = un − un−1 and σ̄ =
1

2
(σn − σn−1) in (1.48), and recalling that from

(1.53) we have ‖un‖2
1 − ‖un−1‖2

1 = ‖∇un‖2
0 − ‖∇un−1‖2

0, we obtain

1

2k
‖(un − un−1,σn − σn−1)‖2

0 +
1

4
‖(un,σn)‖2

1 −
1

2
‖(un−1,σn−1)‖2

1 +
1

4
‖(un − un−1, σn − σn−1)‖2

1

≤ |(un∇un,σn − σn−1)− (unσn,∇(un − un−1))| (1.91)

= |(un∇un−1,σn − σn−1)− (unσn−1,∇(un − un−1))|.

Then, by using the Hölder and Young inequalities as well as the 2D interpolation inequality
(1.12) and estimate (1.61), we find

|(un∇un−1,σn − σn−1)− (unσn−1,∇(un − un−1))|
≤ ‖∇un−1‖0‖un‖L4‖σn − σn−1‖L4 + ‖∇(un − un−1)‖0‖un‖L4‖σn−1‖L4

≤ 1

8
‖(un − un−1,σn − σn−1)‖2

1 +
1

8
‖un‖2

1 + C‖(un−1,σn−1)‖2
1. (1.92)

Therefore, from (1.91)-(1.92) we deduce

k

2
‖(δtun, δtσn)‖2

0 +
1

8
‖(un,σn)‖2

1 +
1

8
‖(un− un−1,σn−σn−1)‖2

1 ≤
(

1

2
+ C

)
‖(un−1,σn−1)‖2

1,

hence (1.90) is deduced.

Now, taking into account that from Proposition 1.4.13 we have (un,σn) ∈ H2(Ω) ×
H2(Ω), we will consider the following pointwise differential formulation of the scheme US:{

δtun + Aun − un −∇ · (unσn) = 0, a.e. x ∈ Ω,

δtσn +Bσn = 2un∇un, a.e. x ∈ Ω.
(1.93)

Theorem 1.4.20 Let (un,σn) be a solution of the scheme US. Then, in 2D domains, the
estimate (1.75) holds.
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Proof. Testing (1.93)1 by Aun and (1.93)2 by Bσn, we can deduce

δt

(
‖(un,σn)‖2

1

)
+k‖(δtun, δtσn)‖2

1 +‖(Aun, Bσn)‖2
0 ≤ C(‖∇·(unσn)‖2

0 +‖un∇un‖2
0 +‖un‖2

0).

(1.94)
Moreover, using the 2D inequality (1.12) jointly to (1.61), (1.10)1, (1.11) and (1.90), we
obtain

‖σn · ∇un‖2
0 +‖un∇ · σn‖2

0 + ‖2un∇un‖2
0 + ‖un‖2

0 ≤ C‖(un,σn)‖2
1‖(un,σn)‖2 + C0

≤ 1

2
‖(Aun, Bσn)‖2

0 + C‖(un−1,σn−1)‖4
1 + C0. (1.95)

Therefore, from (1.94)-(1.95), we deduce

δt

(
‖(un,σn)‖2

1

)
+ k‖(δtun, δtσn)‖2

1 +
1

2
‖(Aun, Bσn)‖2

0 ≤ C‖(un−1,σn−1)‖4
1 + C.

In particular,

‖(un,σn)‖2
1 − ‖(un−1,σn−1)‖2

1 ≤ kC‖(un−1,σn−1)‖4
1 + kC. (1.96)

Then, taking into account (1.96) and (1.62), applying the Corollary 1.2.4 we deduce (1.75).

1.4.4 Error estimates in weak norms in finite time

Error estimates for the scheme US

We will obtain error estimates for (un,σn) solution of the scheme US with respect to a
sufficiently regular solution (u,σ) of (1.3). For this, we introduce the following notations
for the errors in t = tn: enu = u(tn) − un and enσ = σ(tn) − σn, and for the discrete in time

derivative of these errors: δte
n
u =

enu − en−1
u

k
and δte

n
σ =

enσ − en−1
σ

k
. Then, subtracting (1.3)

at t = tn and the scheme US, we have that (enu, e
n
σ) satisfies

(δte
n
u, ū) + (∇enu,∇ū) + (enuσ(tn) + une

n
σ,∇ū) = (ξn1 , ū), ∀ū ∈ H1(Ω), (1.97)

(δte
n
σ, σ̄) + 〈Benσ, σ̄〉 = 2(enu∇u(tn) + un∇enu, σ̄) + (ξn2 , σ̄), ∀σ̄ ∈H1

σ(Ω), (1.98)

where ξn1 , ξ
n
2 are the consistency errors associated to the scheme US, that is, ξn1 = δt(u(tn))−

ut(tn) and ξn2 = δt(σ(tn))− σt(tn).
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Theorem 1.4.21 Let (un,σn) be a solution of the scheme US and assume the following
regularity for the exact solution (u,σ) of (1.3):

(u,σ) ∈ L∞(0, T ;H1(Ω)×H1(Ω)) and (utt,σtt) ∈ L2(0, T ;H1
∗ (Ω)′ ×H1

σ(Ω)′). (1.99)

Assuming that
k ‖(∇u,∇ · σ)‖4

L∞(L2) is small enough, (1.100)

then the a priori error estimate

‖(enu, enσ)‖l∞L2∩l2H1 ≤ C(T ) k (1.101)

holds, where C(T ) = K1exp(K2T ), with K1, K2 > 0 independent of k.

Proof. Since u0 = u(t0), then
∫

Ω
enu =

∫
Ω
e0
u = 0. Moreover, taking ū = enu in (1.97),

σ̄ =
1

2
enσ in (1.98), and adding the resulting expressions, the terms (une

n
σ,∇enu) cancel, and

using the Hölder and Young inequalities and (1.13), we obtain

δt

(
1

2
‖enu‖2

0 +
1

4
‖enσ‖2

0

)
+
k

4
‖(δtenu, δtenσ)‖2

0 +
1

2
‖(enu, enσ)‖2

1

≤ 1

8
‖(enu, enσ)‖2

1 + C‖(ξn1 , ξn2 )‖2
(H1
∗)
′×(H1

σ)′ +
1

8
‖(enu, enσ)‖2

1 + C‖(∇u(tn),∇ · σ(tn))‖4
0‖enu‖2

0,

and therefore

δt

(
1

2
‖enu‖2

0 +
1

4
‖enσ‖2

0

)
+

1

4
‖(enu, enσ)‖2

1

≤ C‖(ξn1 , ξn2 )‖2
(H1
∗)
′×(H1

σ)′ + C‖(∇u(tn),∇ · σ(tn))‖4
0‖enu‖2

0.(1.102)

Now, taking into account that

(ξn1 , ξ
n
2 ) = −1

k

∫ tn

tn−1

(t− tn−1)(utt(t),σtt(t))dt,

using the Hölder inequality, we can deduce

C‖(ξn1 , ξn2 )‖2
(H1
∗)
′×(H1

σ)′ ≤ Ck

∫ tn

tn−1

‖(utt(t),σtt(t))‖2
(H1
∗)
′×(H1

σ)′dt. (1.103)

Therefore, from (1.102) and (1.103) we deduce

δt

(
1

2
‖enu‖2

0 +
1

4
‖enσ‖2

0

)
+

1

4
‖(enu, enσ)‖2

1

≤ Ck

∫ tn

tn−1

‖(utt(t),σtt(t))‖2
(H1
∗)
′×(H1

σ)′dt+ C‖(∇u(tn),∇ · σ(tn))‖4
0‖enu‖2

0. (1.104)
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Then, multiplying (1.104) by k and adding from n = 1 to n = r, we obtain (recall that
e0
u = e0

σ = 0):[
1

4
− Ck‖(∇u,∇ · σ)‖4

L∞L2

]
‖(eru, erσ)‖2

0 +
k

4

r∑
n=1

‖(enu, enσ)‖2
1

≤ Ck2

∫ tr

0

‖(utt(t),σtt(t))‖2
(H1
∗)
′×(H1

σ)′dt+ C‖(∇u,∇ · σ)‖4
L∞L2k

r−1∑
n=0

‖(enu, enσ)‖2
0.(1.105)

Therefore, if hypothesis (1.100) is satisfied, using the Discrete Gronwall Lemma (see [7],
p. 369) in (1.105), and taking into account (1.99), we conclude (1.101).

Remark 1.4.22 From (1.101), we deduce ‖(un,σn)‖1 ≤ C(T ), for all n = 1, ..., N . In
particular, this implies that in 3D domains, for finite time, the hypothesis (1.55) assuring
the uniqueness of solution (un,σn) can be relaxed to k C(T )4 small enough.

Error estimates for vn solution of (1.49)

We will obtain error estimates for vn solution of (1.49) with respect to a sufficiently regular
solution v of (1.4). For this, we introduce the following notation for the error in t = tn:

env = v(tn)− vn and for the discrete in time derivative of this error: δte
n
v =

env − en−1
v

k
. Then,

subtracting (1.4) at t = tn and (1.49), we obtain that env satisfies

δte
n
v + Aenv = (u(tn) + un)enu + ξn3 , a.e. x ∈ Ω, (1.106)

where ξn3 is the consistency error associated to (1.49), that is,

ξn3 = δt(v(tn))− vt(tn) = −1

k

∫ tn

tn−1

(t− tn−1)vtt(t)dt. (1.107)

Theorem 1.4.23 Under hypothesis of Theorem 1.4.21. Let vn be the solution of (1.49) and
assume the following regularity for the exact solution v of (1.4):

vtt ∈ L1(0, T ;H1(Ω)′). (1.108)

Then the a priori error estimate holds

‖env‖l∞H1∩l2H2 ≤ C(T ) k (1.109)

where C(T ) = K1exp(K2T ), with K1, K2 > 0 independent of k.
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Proof. From the relation enσ = ∇env , taking into account (1.101), we only need to prove
the following estimate ∣∣∣∣∫

Ω

env

∣∣∣∣ ≤ C(T ) k. (1.110)

With this aim, if we integrate (1.106) in Ω,

δt

(∫
Ω

env

)
+

∫
Ω

env =

∫
Ω

(u(tn) + un)enu +

∫
Ω

ξn3 , (1.111)

and therefore, multiplying (1.111) by k and using (1.107), we have

(1 + k)

∣∣∣∣∫
Ω

env

∣∣∣∣− ∣∣∣∣∫
Ω

en−1
v

∣∣∣∣ ≤ k

∣∣∣∣∫
Ω

(u(tn) + un)enu

∣∣∣∣+

∣∣∣∣∫ tn

tn−1

∫
Ω

(t− tn−1)vtt(x, t)dxdt

∣∣∣∣
≤ k ‖u(tn) + un‖0‖enu‖0 + k |Ω|1/2

∫ tn

tn−1

‖vtt(t)‖(H1)′ . (1.112)

Then, adding from n = 1 to n = r in (1.112) and taking into account that u(tn) + un is
bounded in l∞L2, we obtain (recall that e0

v = 0)∣∣∣∣∫
Ω

erv

∣∣∣∣+ k
r∑

n=1

∣∣∣∣∫
Ω

env

∣∣∣∣ ≤ Ck‖vtt(t)‖L1(H1)′ + kC
r∑

n=1

‖enu‖0. (1.113)

Thus, using (1.108) and (1.101) in (1.113), we deduce (1.110).

1.5 A linear scheme

In this section, we propose the following first order in time, linear coupled scheme for model
(1.3):

• Scheme LC :

Initialization: We fix v0 = v(0) and (u0,σ0) = u(0),σ(0)), with σ0 = ∇v0.

Time step n: Given (un−1,σn−1) ∈ H1(Ω) ×H1
σ(Ω), compute (un,σn) ∈ H1(Ω) ×

H1
σ(Ω) solving{

(δtun, ū) + (∇un,∇ū) = −(un−1σn,∇ū), ∀ū ∈ H1(Ω),

(δtσn, σ̄) + 〈Bσn, σ̄〉 = 2(un−1∇un, σ̄), ∀σ̄ ∈H1
σ(Ω).

(1.114)

Again, once solved the scheme LC, given vn−1 ∈ H2(Ω) with vn−1 ≥ 0, we can recover
vn = vn(u2

n) ∈ H2(Ω) solving (1.49).
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1.5.1 Unconditional energy-stability and Unique Solvability

Observe that scheme LC is also conservative in u (satisfying (1.53)) and also has the behavior
for
∫

Ω
vn given in (1.54).

Theorem 1.5.1 (Unconditional Unique Solvability) There exists a unique (un,σn)
solution of the scheme LC.

Proof. Let (un−1,σn−1) ∈ H := H1(Ω) ×H1
σ(Ω) be given, and consider the following

bilinear form a : H×H→ R, and the linear operator l : H→ R given by

a((un,σn), (ū, σ̄)) =
2

k
(un, ū) +

1

k
(σn, σ̄) + 2(∇un,∇ū) + 〈Bσn, σ̄〉

+2(un−1σn,∇ū)− 2(un−1∇un, σ̄),

l((ū, σ̄)) =
2

k
(un−1, ū) +

1

k
(σn−1, σ̄),

for all (un,σn), (ū, σ̄) ∈ H. Then, using the Hölder inequality and Sobolev embeddings, we
can verify that a(·, ·) is continuous and coercive on H, and l ∈ H′. Thus, from Lax-Milgram
theorem, there exists a unique (un,σn) ∈ H such that

a((un,σn), (ū, σ̄)) = l((ū, σ̄)), ∀(ū, σ̄) ∈ H.

Finally, taking first σ̄ = 0 and then ū = 0, implies that (un,σn) ∈ H1(Ω) ×H1
σ(Ω) is the

unique solution of (1.114).

Moreover, following the proof of Lemma 1.4.6, we can prove unconditional energy-stability
of the scheme LC.

Lemma 1.5.2 (Unconditional energy-stability) The scheme LC is unconditionally energy-
stable for E(u,σ). In fact, the same discrete energy law (1.60) holds.

Remark 1.5.3 If we consider the fully discrete scheme corresponding to LC via a spatial
approximation by using the Finite Elements method, i.e. taking Uh ⊂ H1(Ω) and Σh ⊂
H1

σ(Ω) instead of H1(Ω) and H1
σ(Ω) respectively, then the proofs of solvability and uncondi-

tional energy-stability of this fully discrete scheme can be followed line by line from Theorem
1.5.1 and Lemma 1.5.2.

Remark 1.5.4 We can prove weak estimates for the solution (un,σn) of the scheme LC
analogously to Theorem 1.4.8. Moreover, assuming the H2-regularity for problem (1.9) in
the case that the right hand side is not the gradient of a function, we can deduce strong and
more regular estimates for this solution (un,σn) as in Subsection 1.4.2.
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Remark 1.5.5 Unlike the scheme US, in the scheme LC it is not clear how to prove the
nonnegativity of un. In fact, in some numerical simulations, very negative cell densities are
obtained when h→ 0, where h is the spatial parameter (see Subsection 1.6.1).

1.5.2 Error estimates in weak norms

Theorem 1.5.6 (Error estimates for the scheme LC) Let (un,σn) be a solution of the
scheme LC, and assume the regularity (1.99). Then, the a priori error estimate (1.101)
holds.

Proof. The proof follows as in Theorem 1.4.21, but we recall that in this case we do not
need to impose hypothesis of small time step given in (1.100) in order to apply the Discrete
Gronwall Lemma, since we use the form of the terms (un−1σn,∇ū) and (un−1∇un, σ̄) to
bound them in a suitable way.

Moreover, although in this linear scheme LC it is not clear if the relation σn = ∇vn
holds, it will be possible to obtain error estimates for vn.

Theorem 1.5.7 (Error estimates for vn) Under hypothesis of Theorem 1.5.6. Let vn be
the solution of (1.49) (corresponding to the scheme LC), and assume the regularity:

vtt ∈ L2(0, T ;L2(Ω)). (1.115)

Then, the a priori error estimate (1.109) holds.

Proof. Since in the scheme LC it is not clear the relation σn = ∇vn, we will argue in a
different way of Theorem 1.4.23. Indeed, we test (1.106) by Aenv , and using the Hölder and
Young inequalities, we obtain

1

2
δt
(
‖env‖2

1

)
+
k

2
‖δtenv‖2

1 +
1

2
‖Aenv‖2

0 ≤ C(‖u(tn) + un‖2
1‖enu‖2

1 + ‖ξn3 ‖2
0). (1.116)

Observe that from (1.101) we have
r∑

n=1

‖u(tn)− un‖2
1 ≤ C(T )k, which implies that

‖un‖1 ≤ C + ‖u(tn)‖1. (1.117)

Then, multiplying (1.116) by k, adding from n = 1 to n = r and using (1.117), we obtain
(recall that e0

v = 0)

‖erv‖2
1 + k

r∑
n=1

‖Aenv‖2
0 ≤

(
C + C‖u!‘‖2

L∞H1

)
k

r∑
n=1

‖enu‖2
1 + Ck2

∫ tr

0

‖vtt(t)‖2
0dt. (1.118)
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Therefore, taking into account (1.99), (1.115) and (1.101), from (1.118) we conclude (1.109).

1.6 Numerical simulations

The aim of this section is to compare the results of several numerical simulations that we
have carried out using the schemes derived through the paper. We are considering a finite
element discretization in space associated to the variational formulation of schemes US,
LC and UV, where the P1-continuous approximation is taken for uh, σh and vh (where
h is the spatial parameter). Moreover, we have chosen the 2D domain Ω = [0, 2]2 using a
structured mesh, and all the simulations are carried out using FreeFem++ software. The
linear iterative method used to approach the nonlinear schemes US and UV is the Newton
Method, and in all the cases, the iterative method stops when the relative error in L2-norm
is less than ε = 10−6.

1.6.1 Positivity

In this subsection, we compare the schemes US and LC in terms of positivity. For the
fully discretization of both schemes is not clear the positivity of the variable uh. In fact, for
the time-discrete scheme US the existence of nonnegative solution (un, vn) was proved (see
Theorem 1.4.3 and Remark 1.4.1), but for the time-discrete scheme LC, although we can
prove that vn is nonnegative, the nonnegativity of un is not clear. For this reason, in Figures
1.2-1.5, we compare the positivity of the variables uh and vh in both schemes taking meshes
in space increasingly thinner (h = 1

35
, h = 1

75
and h = 1

150
). In all the cases, we choose

k = 10−5 and the initial conditions are (see Figure 1.1)

u0=−10xy(2− x)(2− y)exp(−10(y − 1)2 − 10(x− 1)2) + 10.0001

and
v0=200xy(2− x)(2− y)exp(−30(y − 1)2 − 30(x− 1)2) + 0.0001.

In the case of the scheme US, we observe that although uh is negative for some x ∈ Ω
in some times tn > 0, when h → 0 these values are closer to 0; while in the case of the
scheme LC, when h→ 0 very negative cell densities uh are obtained for some x ∈ Ω in some
times tn > 0 (see Figures 1.2-1.4). On the other hand, the same behavior is observed for the
minimum of vh in both schemes. In fact, independently of h, if v0 is positive, then vh also
is positive (we show this behavior in Figure 1.5 for the case h = 2

70
, but the same holds for

the cases h = 2
150

and h = 2
300

).
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(a) Initial cell density u0 (b) Initial chemical concentration v0

Figure 1.1: Initial conditions.

Remark 1.6.1 In Figures 1.3 and 1.4 there are also negative values of minimum of uh for
the scheme US, but those are of order 10−2 and 10−4 respectively.

1.6.2 Unconditional Stability

In this subsection, we compare numerically the stability with respect to two energies E(u,σ)
and E(u, v). Following line to line the proof of Lemma 1.4.6, we deduce the unconditional
energy-stability for the fully discrete schemes corresponding to schemes US and LC (for the
modified energy E(u,σ)). In fact, if (un,σn) is any solution of the fully discrete schemes
corresponding to schemes US or LC, the following relation holds

RE(un,σn) := δtE(un,σn) + ‖∇un‖2
0 +

1

2
‖σn‖2

1 ≤ 0, ∀n. (1.119)

However, considering the “exact” energy (1.21), in the case of fully discrete schemes, it
is not clear how to prove unconditional energy-stability of schemes US, LC and UV with
respect to this energy. Moreover, it is interesting to study the behaviour of the corresponding
residual

RE(un, vn) := δtE(un, vn) + ‖∇un‖2
0 +

1

2
‖∆hvn‖2

0 +
1

2
‖∇vn‖2

0.

Indeed, taking k = 10−6, h = 2
50

and the initial conditions

u0=−10xy(2− x)(2− y)exp(−10(y − 1)2 − 10(x− 1)2) + 10.0001

and
v0=20xy(2− x)(2− y)exp(−30(y − 1)2 − 30(x− 1)2) + 0.0001,

we obtain that:
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Figure 1.2: Minimum values of uh, with h = 1
35

.

(a) The schemes US and LC satisfy the energy decreasing in time property (1.59) for the
modified energy E(u,σ), see Figure 1.6.

(b) The schemes US and LC satisfy (1.119), see Figure 1.7.

(c) The schemes US, LC and UV satisfy the energy decreasing in time property for the
exact energy E(u, v), that is, E(un, vn) ≤ E(un−1, vn−1) for all n, see Figure 1.8.

(d) The schemes US, LC and UV have RE(un, vn) > 0 for some tn ≥ 0. However, it is
observed that the residues RE(un, vn) of the schemes US and LC in those times tn
where each residue is positive, its values are less than the residues of the scheme UV,
see Figure 1.9.

1.7 Appendix A

In order to prove the solvability of (1.56), we will use the Leray-Schauder fixed point theorem.
With this aim, we define the operator R : L4(Ω) × L4(Ω) → L4(Ω) × L4(Ω) by R(ũ, σ̃) =
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Figure 1.3: Minimum values of uh, with h = 1
75

.

(u,σ), such that (u,σ) solves the following linear decoupled problems
1

k
(u, ū) + (∇u,∇ū) =

1

k
(un−1, ū)− (ũ+σ̃,∇ū), ∀ū ∈ H1(Ω),

1

k
(σ, σ̄) + 〈Bσ, σ̄〉 =

1

k
(σn−1, σ̄)− (ũ2,∇ · σ̄), ∀σ̄ ∈H1

σ(Ω).

(1.120)

1. R is well defined. Let (ũ, σ̃) ∈ L4(Ω) × L4(Ω) and consider the following bilinear

forms ã : H1(Ω) × H1(Ω) → R, b̃ : H1
σ(Ω) ×H1

σ(Ω) → R, and the linear operators
l1 : H1(Ω)→ R and l2 : H1

σ(Ω)→ R given by

ã(u, ū) =
1

k
(u, ū) + (∇u,∇ū), b̃(σ, σ̄) =

1

k
(σ, σ̄) + 〈Bσ, σ̄〉,

l1(ū) =
1

k

∫
Ω

un−1ū−
∫

Ω

ũ+σ̃ · ∇ū and l2(σ̄) =
1

k

∫
Ω

σn−1σ̄ −
∫

Ω

ũ2∇ · σ̄,

for all u, ū ∈ H1(Ω) and σ, σ̄ ∈ H1
σ(Ω). Then, using the Hölder inequality and

Sobolev embeddings, we can verify that ã and b̃ are continuous and coercive on H1(Ω)
and H1

σ(Ω) respectively, and l1 ∈ H1(Ω)′ and l2 ∈ H1
σ(Ω)′. Thus, from Lax-Milgram

theorem, there exists a unique (u,σ) ∈ H1(Ω)×H1
σ(Ω) ↪→ L4(Ω)× L4(Ω) solution of

(1.120).
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2. Let us now prove that all possible fixed points of λR (with λ ∈ (0, 1]) are bounded. In
fact, observe that if (u,σ) is a fixed point of λR, then (u,σ) satisfies

1

λ
ã(u, ū) =

1

k
(un−1, ū)− (u+σ,∇ū), ∀ū ∈ H1(Ω),

1

λ
b̃(σ, σ̄) =

1

k
(σn−1, σ̄)− (u2,∇ · σ̄), ∀σ̄ ∈H1

σ(Ω),

(1.121)

(because λR(u,σ) = (u,σ) implies R(u,σ) = ( 1
λ
u, 1

λ
σ)). Proceeding as in Part A of

the proof of Theorem 1.4.3, we can prove that if (u,σ) is a solution of (1.121), then
u ≥ 0, which implies that u = u+. Then, multiplying (1.121)1 and (1.121)2 by λ,
testing by ū = u and σ̄ = 1

2
σ and taking into account that λ ∈ (0, 1], we obtain

1

4
‖(u,σ)‖2

0 +
k

2
‖(∇u,σ)‖2

L2×H1 ≤ Cλ2‖(un−1,σn−1)‖2
0 ≡ C(un−1,σn−1).

Thus, we deduce that ‖(u,σ)‖L4 ≤ C‖(u,σ)‖1 ≤ C, where the constant C depends on
data (Ω, un−1,σn−1).

3. We prove that R is continuous. Let {(ũl, σ̃l)}l∈N ⊂ L4(Ω)× L4(Ω) be a sequence such
that

(ũl, σ̃l)→ (ũ, σ̃) in L4(Ω)× L4(Ω), as l→ +∞. (1.122)

41



0 0.002 0.004 0.006 0.008 0.01 0.012 0.014

Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

M
in

im
u

m
 o

f 
v

h

US

LC
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.

Therefore, {(ũl, σ̃l)}l∈N is bounded in L4(Ω) × L4(Ω), and from item 1 we deduce
that {(ul,σl) = R(ũl, σ̃l)}l∈N is bounded in H1(Ω) ×H1(Ω). Then, there exists a
subsequence {R(ũl

r
, σ̃l

r

)}r∈N such that

R(ũl
r

, σ̃l
r

)→ (u′,σ′) weakly in H1(Ω)×H1(Ω) and strongly in L4(Ω)× L4(Ω).
(1.123)

Then, from (1.122)-(1.123), a standard procedure allows us to pass to the limit, as
r goes to +∞, in (1.120) (with (ũl

r
, σ̃l

r

) and (ul
r
,σl

r
) instead of (ũ, σ̃) and (u,σ)

respectively), and we deduce that R(ũ, σ̃) = (u′,σ′). Therefore, we have proved that
any convergent subsequence of {R(ũl, σ̃l)}l∈N converges to R(ũ, σ̃) strong in L4(Ω)×
L4(Ω), and from uniqueness of R(ũ, σ̃), we conclude that R(ũl, σ̃l) → R(ũ, σ̃) in
L4(Ω)× L4(Ω). Thus, R is continuous.

4. R is compact. In fact, if {(ũl, σ̃l)}l∈N is a bounded sequence in L4(Ω)×L4(Ω) and we
denote (ul,σl) = R(ũl, σ̃l), then we can deduce

1

2k
‖(ul,σl)‖2

0+
1

2
‖(∇ul,σl)‖2

L2×H1 ≤
1

2k
‖(un−1,σn−1)‖2

0+
1

2
‖ũl‖2

L4‖σ̃l‖2
L4+

1

2
‖ũl‖4

L4 ≤ C,

where C is a constant independent of l ∈ N. Therefore, we conclude that {R(ũl, σ̃l)}l∈N
is bounded in H1(Ω) ×H1(Ω) which is compactly embedded in L4(Ω) × L4(Ω), and
thus R is compact.
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Figure 1.6: Energy E(un,σn) of schemes US and LC.

Therefore, the hypotheses of the Leray-Schauder fixed point theorem are satisfied and we
conclude that the map R(ũ, σ̃) has a fixed point. This fixed point R(u,σ) = (u,σ) is a
solution of nonlinear scheme (1.56).
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Figure 1.7: Residue RE(un,σn) of schemes US and LC.
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Figure 1.8: Energy E(un, vn) of schemes US, LC and UV.
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Figure 1.9: Residue RE(un, vn) of schemes US, LC and UV.
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Chapter 2

Energy-stable fully discrete
approximation for a chemo-repulsion

model with quadratic production

2.1 Introduction

The aim of this paper is to study an unconditional energy-stable fully discrete scheme for the
following parabolic-parabolic repulsive-productive chemotaxis model (with quadratic pro-
duction term): 

∂tu−∆u = ∇ · (u∇v) in Ω, t > 0,
∂tv −∆v + v = u2 in Ω, t > 0,
∂u
∂n

= ∂v
∂n

= 0 on ∂Ω, t > 0,
u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0 in Ω,

(2.1)

where Ω is a n−dimensional open bounded domain, n = 2, 3, with boundary ∂Ω. The
unknowns for this model are u(x, t) ≥ 0, the cell density, and v(x, t) ≥ 0, the chemical
concentration. Problem (2.1) is conservative in u, because the total mass

∫
Ω
u(t) remains

constant in time, as we can check integrating equation (2.1)1 in Ω,

d

dt

(∫
Ω

u

)
= 0, i.e.

∫
Ω

u(t) =

∫
Ω

u0 := m0, ∀t > 0.

In Chapter 1 was proved that problem (2.1) is well-posed, because there exists global
in time “weak-strong” solutions in the following sense: u ≥ 0 and v ≥ 0 a.e. (t,x) ∈

48



(0,+∞)× Ω,

(u, v) ∈ L∞(0,+∞;L2(Ω)×H1(Ω)) ∩ L2(0, T ;H1(Ω)×H2(Ω)), ∀T > 0,

(∂tu, ∂tv) ∈ Lq′(0, T ;H1(Ω)′ × L2(Ω)), ∀T > 0,

(∇u,∇v) ∈ L2(0,+∞;L2(Ω)×H1(Ω)),

(2.2)

where q′ = 2 in the 2-dimensional case (2D) and q′ = 4/3 in the 3-dimensional case (3D) (q′

is the conjugate exponent of q = 2 in 2D and q = 4 in 3D), satisfying the u-equation (2.1)1 in
a variational sense, the v-equation (2.1)2 a.e. (t,x) ∈ (0,+∞)×Ω, and the following energy
inequality for a.e. t0, t1 : t1 ≥ t0 ≥ 0:

E(u(t1), v(t1))−E(u(t0), v(t0))+

∫ t1

t0

(‖∇u(s)‖2
L2 +

1

2
‖∆v(s)‖2

L2 +
1

2
‖∇v(s)‖2

L2) ds ≤ 0, (2.3)

where E(u, v) = 1
2
‖u‖2

L2 + 1
4
‖∇v‖2

L2 . Moreover, assuming that the following regularity criteria
is satisfied:

(u,∇v) ∈ L∞(0,+∞;H1(Ω)×H1(Ω)), (2.4)

(which, at least in 2D domains, is always true), it was proved that there exists a unique
global in time strong solution of (2.1) satisfying

(u, v) ∈ L∞(0,+∞;H2(Ω)2) ∩ L2(0, T ;H3(Ω)2),

(∂tu, ∂tv) ∈ L∞(0,+∞;L2(Ω)×H1(Ω)) ∩ L2(0,+∞;H1(Ω)×H2(Ω)),

(∂ttu, ∂ttv) ∈ L2(0,+∞;H1(Ω)′ × L2(Ω)).

(2.5)

In particular, (2.5)1 implies

‖(u, v)‖L∞(0,+∞;L∞×L∞) ≤ C. (2.6)

Therefore, it is desired to design numerical methods for the model (2.1) conserving at
the discrete level the main properties of the continuous model, such as mass-conservation,
energy-stability, positivity and regularity.

There are only a few works about numerical analysis for chemotaxis models. For instance,
for the Keller-Segel system (i.e. with chemo-attraction and linear production), Filbet studied
in [4] the existence of discrete solutions and the convergence of a finite volume scheme. Saito,
in [8, 9], proved error estimates for a conservative Finite Element (FE) approximation. A
mixed FE approximation is studied in [6]. In [3], some error estimates are proved for a fully
discrete discontinuous FE method. However, as far as we know, there are not works studying
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FE schemes satisfying the property of energy-stability related to the energy inequality (2.3).

In this paper, we propose an unconditional energy-stable fully discrete scheme, which
inherit some properties from the continuous model, such as mass-conservation, and weak
and strong estimates analogues to (2.2) and (2.5)-(2.6). Moreover, with respect to the
nonnegativity of the discrete cell and chemical variables, unh and vnh , we can deduce that
vnh ≥ 0 (see Remark 2.3.2), but the cell density nonnegativity unh ≥ 0 can not be assured.

In order to design the scheme, we follow the ideas presented in Chapter 1, and we
reformulate (2.1) introducing a new variable σ = ∇v instead of v. Then, model (2.1) is
rewritten as: 

∂tu−∇ · (∇u) = ∇ · (uσ) in Ω, t > 0,
∂tσ −∇(∇ · σ) + σ + rot(rot σ) = ∇(u2) in Ω, t > 0,
∂u
∂n

= 0 on ∂Ω, t > 0,
σ · n = 0, [rot σ × n]tang = 0 on ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, σ(x, 0) = ∇v0(x) in Ω,

(2.7)

where (2.7)2 has been obtained applying the gradient operator to equation (2.1)2 and adding
the term rot(rot σ) using the fact that rot σ = rot(∇v) = 0. Once system (2.7) is solved,
we can recover v from u2 by solving

∂tv −∆v + v = u2 in Ω, t > 0,
∂v
∂n

= 0 on ∂Ω, t > 0,
v(x, 0) = v0(x) > 0 in Ω.

(2.8)

This chapter is organized as follows: In Section 2.2, we give the notation and some pre-
liminary results that will be used along this paper. In Section 2.3, we study the FE Backward
Euler scheme corresponding to formulation (2.7)-(2.8), including mass-conservation, uncon-
ditional energy-stability, solvability, weak and strong estimates, convergence towards weak
solutions, and optimal error estimates of the scheme. In Section 2.4, we propose two diffe-
rent linear iterative methods in order to approach the nonlinear scheme proposed in Section
2.3, which are an energy-stable Picard’s method and the Newton’s method. We prove the
solvability and the convergence of these methods to the nonlinear scheme. Finally, in Section
2.5, we present some numerical results in agreement with the theoretical analysis about the
error estimates.

2.2 Notations and preliminary results

We recall some functional spaces which will be used throughout this paper. We will consider
the usual Sobolev spaces Hm(Ω) and Lebesgue spaces Lp(Ω), 1 ≤ p ≤ ∞, with norms ‖ · ‖m
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and ‖ · ‖Lp , respectively. In particular, the L2(Ω)-norm will be denoted by ‖ · ‖0. We denote
by H1

σ(Ω) := {u ∈H1(Ω) : u ·n = 0 on ∂Ω} and we will use the following equivalent norms
in H1(Ω) and H1

σ(Ω), respectively (see [7] and [1, Corollary 3.5], respectively):

‖u‖2
1 = ‖∇u‖2

0 +

(∫
Ω

u

)2

, ∀u ∈ H1(Ω),

‖σ‖2
1 = ‖σ‖2

0 + ‖rot σ‖2
0 + ‖∇ · σ‖2

0, ∀σ ∈H1
σ(Ω).

If Z is a general Banach space, its topological dual will be denoted by Z ′. Moreover, the
letters C,K will denote different positive constants (independent of discrete parameters)
which may change from line to line (or even within the same line).

We define the linear elliptic operators

Aw = g ⇔


−∆w + w = g in Ω,
∂w

∂n
= 0 on ∂Ω, (2.9)

and

Bσ = h ⇔

{
−∇(∇ · σ) + rot (rot σ) + σ = h in Ω,

σ · n = 0, [rot σ × n]tang = 0 on ∂Ω,
(2.10)

which, in variational form, are given by A : H1(Ω) → H1(Ω)′ and B : H1
σ(Ω) → H1

σ(Ω)′

such that
〈Aw, w̄〉 = (∇w,∇w̄) + (w, w̄), ∀w, w̄ ∈ H1(Ω),

〈Bσ, σ̄〉 = (σ, σ̄) + (∇ · σ,∇ · σ̄) + (rot σ, rot σ̄), ∀σ, σ̄ ∈H1
σ(Ω).

We assume the H2-regularity of problems (2.9) and (2.10). Consequently, we have the
existence of some constants C > 0 such that

‖w‖2 ≤ C‖Aw‖0, ∀w ∈ H2(Ω), and ‖σ‖2 ≤ C‖Bσ‖0, ∀σ ∈H2(Ω). (2.11)

Along this paper, we will use repeatedly the classical 3D interpolation inequality

‖u‖L3 ≤ C‖u‖1/2
0 ‖u‖

1/2
1 ∀u ∈ H1(Ω). (2.12)

Finally, we will use the following results (see [5] and [10]):
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Lemma 2.2.1 Assume that δ, β, k > 0 and dn ≥ 0 satisfy

dn+1 − dn

k
+ δdn+1 ≤ β, ∀n ≥ 0.

Then, for any n0 ≥ 0,

dn ≤ (1 + δk)−(n−n0)dn0 + δ−1β, ∀n ≥ n0.

Lemma 2.2.2 (Uniform discrete Gronwall lemma) Let k > 0 and dn, gn, hn ≥ 0 such
that

dn+1 − dn

k
≤ gndn + hn, ∀n ≥ 0.

If for any r ∈ N, there exist a1(tr), a2(tr) and a3(tr) depending on tr = kr, such that

k

n0+r−1∑
n=n0

gn ≤ a1(tr), k

n0+r−1∑
n=n0

hn ≤ a2(tr), k

n0+r−1∑
n=n0

dn ≤ a3(tr),

for any integer n0 ≥ 0, then

dn ≤
(
a2(tr) +

a3(tr)

tr

)
exp {a1(tr)} , ∀n ≥ r.

As consequence of Lemma 2.2.2 and Discrete Gronwall Lemma, we have the following
result (see Corollary 1.2.4):

Corollary 2.2.3 Under hypothesis of Lemma 2.2.2. Let k0 > 0 be fixed, then the following
estimate holds for all k ≤ k0

dn ≤ C(d0, k0) ∀n ≥ 0.

2.3 Fully Discrete Backward Euler Scheme in variables

(u,σ)

This section is devoted to design an unconditionally energy-stable scheme for model (2.1) (for
a modified energy in variables (u,σ)), using a FE discretization in space and the backward
Euler discretization in time (considered for simplicity on a uniform partition of [0, T ] with
time step k = T/N : (tn = nk)n=N

n=0 ). Concerning the space discretization, we consider
{Th}h>0 be a family of shape-regular and quasi-uniform triangulations of Ω made up of
simplexes K (triangles in two dimensions and tetrahedra in three dimensions), so that Ω =
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∪K∈ThK, where h = maxK∈Th hK , with hK being the diameter ofK. Further, let Nh = {ai}i∈I
denote the set of all the nodes of Th. We choose the following continuous FE spaces for u,
σ and v:

(Uh,Σh, Vh) ⊂ H1 ×H1
σ ×W 1,6, generated by Pk,Pm,Pr with k,m, r ≥ 1.

Now, let Ah : Uh → Uh, Bh : Σh → Σh and Ãh : Vh → Vh be the linear operators defined,
respectively, as follows:

(Ahuh, ūh) = (∇uh,∇ūh) + (uh, ūh), ∀ūh ∈ Uh,

(Bhσh, σ̄h) = (∇ · σh,∇ · σ̄h) + (rot σh, rot σ̄h) + (σh, σ̄h), ∀σ̄h ∈ Σh,

(Ãhvh, v̄h) = (∇vh,∇v̄h) + (vh, v̄h), ∀v̄h ∈ Vh.

(2.13)

Moreover, we choose the following interpolation operators:

Ru
h : H1(Ω)→ Uh, Rσ

h : H1
σ(Ω)→ Σh, Rv

h : H1(Ω)→ Vh

such that for all u ∈ H1(Ω), σ ∈H1
σ(Ω) and v ∈ H1(Ω), Ru

hu ∈ Uh, Rσ
hσ ∈ Σh and Rv

hv ∈ Vh
satisfy

(∇(Ru
hu− u),∇ūh) + (Ru

hu− u, ūh) = 0, ∀ūh ∈ Uh, (2.14)

(∇ · (Rσ
hσ−σ),∇ · σ̄h) + (rot(Rσ

hσ−σ), rot σ̄h) + (Rσ
hσ−σ, σ̄h) = 0, ∀σ̄h ∈ Σh, (2.15)

(∇(Rv
hv − v),∇v̄h) + (Rv

hv − v, v̄h) = 0, ∀v̄h ∈ Vh, (2.16)

respectively. Observe that, from Lax-Milgram Theorem, the interpolation operators Ru
h, R

σ
h

and Rv
h are well defined. Moreover, the following interpolation errors hold

1

h
‖Ru

hu− u‖0 + ‖Ru
hu− u‖1 ≤ Chk‖u‖k+1 ∀u ∈ Hk+1(Ω), (2.17)

1

h
‖Rσ

hσ − σ‖0 + ‖Rσ
hσ − σ‖1 ≤ Chm‖σ‖m+1 ∀σ ∈Hm+1(Ω), (2.18)

1

h
‖Rv

hv − v‖0 + ‖Rv
hv − v‖1 ≤ Chr‖v‖r+1 ∀v ∈ Hr+1(Ω). (2.19)

Also, the following stability properties will be used

‖(Ru
hu,R

σ
hσ,R

v
hv)‖W 1,6 ≤ C‖(u,σ, v)‖2, (2.20)

which can be obtained from (2.17)-(2.19), using the inverse inequality

‖(uh,σh, vh)‖W 1,6 ≤ Ch−1‖(uh,σh, vh)‖1 for all (uh,σh, vh) ∈ Uh ×Σh × Vh,

and comparing R
u,σ,v
h with an average interpolation of Clement or Scott-Zhang type (which

is stable in W 1,6-norm).
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Lemma 2.3.1 Assume the H2-regularity for problems (2.9)-(2.10) given in (2.11). Then,
the following estimates hold

‖uh‖W 1,6 ≤ C‖Ahuh‖0 ∀uh ∈ Uh, ‖vh‖W 1,6 ≤ C‖Ãhvh‖0 ∀vh ∈ Vh, (2.21)

‖σh‖W 1,6 ≤ C‖Bhσh‖0 ∀σh ∈ Σh. (2.22)

Proof. First, we consider regular functions associated to the discrete functions Ahuh,
Ãhvh and Bhσh. We define u(h), v(h) ∈ H2(Ω) and σ(h) ∈ H2(Ω) as the solutions of
problems 

−∆u(h) + u(h) = Ahuh in Ω,
∂u(h)

∂n
= 0 on ∂Ω, (2.23)

 −∆v(h) + v(h) = Ãhvh in Ω,
∂v(h)

∂n
= 0 on ∂Ω,

(2.24)

and {
−∇(∇ · σ(h)) + rot (rot σ(h)) + σ(h) = Bhσh in Ω,
σ(h) · n = 0, [rot σ(h)× n]tang = 0 on ∂Ω.

(2.25)

In particular, from (2.11),

‖u(h)‖2 ≤ C‖Ahun‖0, ‖v(h)‖2 ≤ C‖Ãhvh‖0 and ‖σ(h)‖2 ≤ C‖Bhσh‖0. (2.26)

Now, we decompose the W 1,6-norm as:

‖uh‖W 1,6 ≤ ‖uh − Ru
hu(h)‖W 1,6 + ‖Ru

hu(h)− u(h)‖W 1,6 + ‖u(h)‖W 1,6 := I1 + I2 + I3, (2.27)

‖vh‖W 1,6 ≤ ‖vh−Rv
hv(h)‖W 1,6 + ‖Rv

hv(h)− v(h)‖W 1,6 + ‖v(h)‖W 1,6 := H1 +H2 +H3, (2.28)

‖σh‖W 1,6 ≤ ‖σh−Rσ
hσ(h)‖W 1,6 +‖Rσ

hσ(h)−σ(h)‖W 1,6 +‖σ(h)‖W 1,6 := J1 +J2 +J3. (2.29)

In order to bound Ji (i = 1, 2), we test (2.25)1 by σ̄h ∈ Σh and using (2.13)2 we have

(∇ · σh,∇ · σ̄h) +(rot σh, rot σ̄h) + (σh, σ̄h)

= (∇ · σ(h),∇ · σ̄h) + (rot σ(h), rot σ̄h) + (σ(h), σ̄h), ∀σ̄h ∈ Σh.(2.30)

By subtracting at both sides of equality (2.30) the terms (∇·Rσ
hσ(h),∇·σ̄h), (rotRσ

hσ(h), rot σ̄h)
and (Rσ

hσ(h), σ̄h), testing by σ̄h = σh − Rσ
hσ(h) ∈ Σh and using the Hölder and Young

inequalities, we deduce

‖σh − Rσ
hσ(h)‖1 ≤ C‖Rσ

hσ(h)− σ(h)‖1 ≤ Ch‖σ(h)‖2, (2.31)
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where in the last inequality interpolation error (2.18) was used. Then, using in (2.31) the
inverse inequality ‖σh‖W 1,6 ≤ Ch−1‖σh‖1 for all σh ∈ Σh, we conclude that for i = 1, 2

Ji ≤ Ch−1‖Rσ
hσ(h)− σ(h)‖1 ≤ C‖σ(h)‖2. (2.32)

Finally,
J3 = ‖σ(h)‖W 1,6 ≤ C‖σ(h)‖2. (2.33)

Therefore, using (2.32)-(2.33) in (2.29), and taking into account (2.26), we deduce (2.22).
Proceeding analogously for Ii and Hi (i = 1, 2, 3), we deduce (2.21).

2.3.1 Definition of the scheme

By taking into account the reformulation (2.7), we consider the following FE Backward
Euler Scheme in variables (u,σ) (Scheme US, from now on) which is a first order in time,
nonlinear and coupled scheme:

• Initialization: We fix (u0
h,σ

0
h) = (Ru

hu0,R
σ
hσ0) ∈ Uh×Σh and v0

h = Rv
hv0 ∈ Vh. Then,∫

Ω
u0
h =

∫
Ω
u0 = m0.

Time step n: Given (un−1
h ,σn−1

h ) ∈ Uh ×Σh, compute (unh,σ
n
h) ∈ Uh ×Σh solving{

(δtu
n
h, ūh) + (∇unh,∇ūh) + (unhσ

n
h,∇ūh) = 0, ∀ūh ∈ Uh,

(δtσ
n
h, σ̄h) + (Bhσ

n
h, σ̄h)− 2(unh∇unh, σ̄h) = 0, ∀σ̄h ∈ Σh,

(2.34)

where, in general, we denote δta
n
h =

anh − an−1
h

k
.

Once the scheme US is solved, given vn−1
h ∈ Vh, we can recover vnh = vnh((unh)2) ∈ Vh

solving:
(δtv

n
h , v̄h) + (Ãhv

n
h , v̄h) = ((unh)2, v̄h), ∀v̄h ∈ Vh. (2.35)

Given unh ∈ Uh and vn−1
h ∈ Vh, Lax-Milgram theorem implies that there exists a unique

vnh ∈ Vh solution of (2.35).

Remark 2.3.2 By using the mass-lumping technique in all terms of (2.35) excepting the
self-diffusion term (∇vnh ,∇v̄h), approximating by P1-continuous FE and imposing a condition
based on a geometrical property of the triangulation, related to the fact that the interior angles
of the triangles or tetrahedra must be at most π/2, we can prove that if vn−1

h ≥ 0 then vnh ≥ 0.
However, in all numerical simulations that we have made without using mass-lumping, we
have not found any example in which, beginning with v0

h ≥ 0 we obtain vnh(ai) < 0, for some
n > 0 and ai.
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2.3.2 Solvability, Energy-Stability and Convergence

Assuming that the functions ūh = 1 ∈ Uh and v̄h = 1 ∈ Vh, we deduce that the scheme US
conserves in time the total mass

∫
Ω
unh, that is,∫

Ω

unh =

∫
Ω

un−1
h = · · · =

∫
Ω

u0
h,

and we have the following behavior for
∫

Ω
vnh :

δt

(∫
Ω

vnh

)
=

∫
Ω

(unh)2 −
∫

Ω

vnh .

Now, we establish some results concerning to the solvability and energy-stability of
scheme US, but we will omit their proofs because those follow the same ideas given in
Chapter 1 (Theorem 1.4.3, Lemma 1.4.6 and Theorem 1.4.8, respectively).

Theorem 2.3.3 (Unconditional existence and conditional uniqueness) There exists
(unh,σ

n
h) ∈ Uh ×Σh solution of the scheme US. Moreover, if

k‖(unh,σnh)‖4
1 is small enough, (2.36)

then the solution is unique.

Remark 2.3.4 In the case of 2D domains, from estimate (2.54) below, the uniqueness res-
triction (2.36) can be relaxed to kK2

0 small enough, where K0 is a constant depending on
data (Ω, u0,σ0), but independent of (k, h) and n.

Remark 2.3.5 In 3D domains, using the inverse inequality ‖uh‖1 ≤ C
h
‖uh‖0 (see Lemma

4.5.3 in [2], p. 111) and estimate (2.41) below, we have that

‖(unh,σnh)‖4
1 ≤

C

h4
‖(unh,σnh)‖4

0 ≤
C

h4
C2

0

and therefore, the uniqueness restriction (2.36) can be rewrite as

kC1

h4
small enough, (2.37)

where C1 is a positive constant depending on data (Ω, u0,σ0), but independent of n.
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Definition 2.3.6 A numerical scheme with solution (un,σn) is called energy-stable with
respect to the energy

E(u,σ) =
1

2
‖u‖2

0 +
1

4
‖σ‖2

0, (2.38)

if this energy is time decreasing, that is

E(unh,σ
n
h) ≤ E(un−1

h ,σn−1
h ), ∀n. (2.39)

Lemma 2.3.7 (Unconditional stability) The scheme US is unconditionally energy-stable
with respect to E(u,σ). In fact, if (unh,σ

n
h) is a solution of the scheme US, then the following

discrete energy law holds

δtE(unh,σ
n
h)+

k

2
‖δtunh‖2

0 +
k

4
‖δtσnh‖2

0 + ‖∇unh‖2
0 +

1

2
‖σnh‖2

1 = 0. (2.40)

Remark 2.3.8 Looking at (2.40), we can say that the scheme US introduces the following
two first order “numerical dissipation terms”:

k

2
‖δtunh‖2

0 and
k

4
‖δtσnh‖2

0.

From the (local in time) discrete energy law (2.40), we deduce the following global in
time estimates for (unh,σ

n
h) solution of scheme US:

Theorem 2.3.9 (Uniform Weak estimates of scheme US) Let (unh,σ
n
h) be a solution

of scheme US. Then, the following estimates hold

‖(unh,σnh)‖2
0 + k2

n∑
m=1

‖(δtumh , δtσmh )‖2
0 + k

n∑
m=1

‖(∇umh ,σmh )‖2
L2×H1 ≤ C0, ∀n ≥ 1, (2.41)

k

n+n0∑
m=n0+1

‖(umh ,σmh )‖2
1 ≤ C0 + C1(nk), ∀n ≥ 1, (2.42)

where the integer n0 ≥ 0 is arbitrary, with positive constants C0, C1 depending on the data
(Ω, u0,σ0), but independent of (k, h) and (n, n0).
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Weak estimates of vnh in 3D domains

In this fully discrete scheme US it is not clear how to quantify the relation σnh ' ∇vnh , and
therefore, the uniform estimates for vn cannot be obtained directly from estimates for σnh.
Thus, in this subsection we will obtain directly uniform weak estimates for vnh .

Lemma 2.3.10 (Estimate of
∣∣∫

Ω
vnh
∣∣) Let vnh be the solution of (2.35). Then, it holds∣∣∣∣∫

Ω

vnh

∣∣∣∣ ≤ K0, ∀n ≥ 0, (2.43)

where K0 is a positive constant depending on the data u0,σ0, v0, but independent of k, h and
n.

Proof. The proof follows as in Corollary 1.4.10.

Lemma 2.3.11 (Discrete duality estimates for vnh) Let vnh be the solution of (2.35).
Then, the following estimates hold

‖Ã−1
h vnh‖2

1 ≤ K0, ∀n ≥ 0, (2.44)

k

n0+n∑
m=n0+1

‖vmh ‖2
0 ≤ K0 +K1(nk), ∀n ≥ 1, (2.45)

with positive constants K0, K1 depending on the data Ω, u0,σ0, v0, but independent of (k, h)
and (n, n0).

Proof. Testing (2.35) by v̄ = Ã−1
h vnh , and using (2.21)2 and (2.41), it is not difficult to

deduce

δt

(
1

2
‖Ã−1

h vnh‖2
1

)
+ ‖vnh‖2

0 ≤ ‖unh‖2
0‖Ã−1

h vnh‖L∞ ≤ C‖Ã−1
h vnh‖W 1,6 ≤ C‖vnh‖0 ≤

1

2
‖vnh‖2

0 + C,

which implies that

δt

(
‖Ã−1

h vnh‖2
1

)
+ ‖vnh‖2

0 ≤ C, (2.46)

where C is a constant independent of (k, h) and n. Then, using that ‖vnh‖2
0 ≥ C‖Ã−1

h vnh‖2
1

(owing to (2.21)2) in (2.46), we deduce

(1 + Ck)‖Ã−1
h vnh‖2

1 − ‖Ã−1
h vn−1

h ‖2
1 ≤ Ck, (2.47)

and therefore, using Lemma 2.2.1 in (2.47), we obtain (2.44). Finally, multiplying (2.46) by
k and adding from m = n0 + 1 to m = n+ n0, using (2.44), we conclude (2.45).
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Lemma 2.3.12 (Weak estimates for vhn) Under hypothesis of Lemma 2.3.11, the follo-
wing estimates hold

‖vnh‖2
0 ≤ C2, ∀n ≥ 0, (2.48)

k

n+n0∑
m=n0+1

‖vmh ‖2
1 ≤ C2 + C3(nk), ∀n ≥ 1, (2.49)

with positive constants C2, C3 depending on the data Ω, u0,σ0, v0, but independent of (k, h)
and (n, n0).

Proof. Testing (2.35) by v̄ = vnh we obtain

δt

(
1

2
‖vnh‖2

0

)
+

1

2k
‖vnh − vn−1

h ‖2
0 + ‖vnh‖2

1 = ((unh)2, vnh − vn−1
h ) + ((unh)2, vn−1

h )

≤ 1

4k
‖vnh − vn−1

h ‖2
0 + Ck‖unh‖4

L4 +
1

2
‖unh‖2

L4‖vn−1
h ‖2

0 +
1

2
‖unh‖2

L4 ,

which implies that

‖vnh‖2
0 − ‖vn−1

h ‖2
0 + k‖vnh‖2

1 ≤ Ck2‖unh‖4
L4 + k‖unh‖2

L4‖vn−1
h ‖2

0 + k‖unh‖2
L4 . (2.50)

Moreover, taking into account that k‖unh‖2
L4 ≤ kC‖unh‖2

1, from estimate (2.42) we deduce

k‖unh‖2
L4 ≤ C0 + C1k. (2.51)

Then, from (2.50) and (2.51), we have

‖vnh‖2
0 − ‖vn−1

h ‖2
0 + k‖vnh‖2

1 ≤ (CC0 + CC1k + 1)k‖unh‖2
L4 + k‖unh‖2

L4‖vn−1
h ‖2

0, (2.52)

which, in particular implies

‖vnh‖2
0 − ‖vn−1

h ‖2
0 ≤ C k‖unh‖2

L4 + k‖unh‖2
L4‖vn−1

h ‖2
0. (2.53)

Therefore, taking into account estimates (2.42) and (2.45), applying Corollary 2.2.3 in (2.53),
we conclude (2.48). Finally, summing for m from n0 + 1 to n+n0 in (2.52), and using (2.42)
and (2.48), we deduce (2.49).

Convergence

Starting from the previous stability estimates, proceeding as in Theorem 1.4.11 we can
prove the convergence towards weak solutions as (k, h)→ 0. Concretely, by introducing the
functions:
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• (ũh,k, σ̃h,k) are continuous functions on [0,+∞), linear on each interval (tn−1, tn) and
equal to (unh,σ

n
h) at t = tn, n ≥ 0;

• (urh,k,σ
r
h,k) as the piecewise constant functions taking values (unh,σ

n
h) on (tn−1, tn],

n ≥ 1,

then, we have the following result:

Theorem 2.3.13 (Convergence) There exists a subsequence (k′, h′) of (k, h), with k′, h′ ↓
0, and a weak solution (u,σ) of (2.7) in (0,+∞), such that (ũh′,k′ , σ̃h′,k′) and (urh′,k′ ,σ

r
h′,k′)

converge to (u,σ) weakly-* in L∞(0,+∞;L2(Ω)×L2(Ω)), weakly in L2(0, T ;H1(Ω)×H1(Ω))
and strongly in L2(0, T ;L2(Ω)×L2(Ω)), for any T > 0.

Note that, since the positivity of unh cannot be assured, then the positivity of the limit
function u cannot be proven. Moreover, if we introduce the functions:

• ṽh,k are continuous functions on [0,+∞), linear on each interval (tn−1, tn) and equal to
vnh , at t = tn, n ≥ 0;

• vrh,k as the piecewise constant functions taking values vnh on (tn−1, tn], n ≥ 1,

proceeding as in Lemma 1.4.12, and taking into account the estimates (2.48)-(2.49), the
following result can be proved:

Corollary 2.3.14 There exists a subsequence (k′, h′) of (k, h), with k′, h′ ↓ 0, and a weak so-
lution v of (2.8) in (0,+∞), such that ṽh′,k′ and vrh′,k′ converge to v weakly-* in L∞(0,+∞;L2(Ω)),
weakly in L2(0, T ;H1(Ω)) and strongly in L2(0, T ;L2(Ω)), for any T > 0.

Remark 2.3.15 From the equivalence of problems (2.1) and (2.7)-(2.8) stablished in Chap-
ter 1, and taking into account Theorem 2.3.13 and Corollary 2.3.14, we deduce that the limit
pair (u, v) is a weak-strong solution of problem (2.1).

2.3.3 Uniform Strong Estimates

In this subsection, we are going to establish a priori estimates in strong norms for any
solution (un,σn) of the scheme US and vnh of (2.35). We will assume the estimate

‖(unh,σnh)‖2
1 ≤ K0, ∀n ≥ 0, (2.54)

with K0 > 0 a constant depending on the initial data, but independent of (k, h) and n.
Note that estimate (2.54) can be proven in 2D domains, following line to line the proof of
Theorem 1.4.20.
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Uniform Strong Estimates of the scheme US

Theorem 2.3.16 (Strong estimates) Let (unh,σ
n
h) be a solution of the scheme US satis-

fying the assumption (2.54). Then, the following estimate holds

k

n+n0∑
m=n0+1

(‖(δtumh , δtσmh )‖2
0 + ‖(umh ,σmh )‖2

W 1,6) ≤ K1 +K2(nk), ∀n ≥ 1, (2.55)

for any integer n0 ≥ 0, with positive constants K1, K2 depending on (Ω, u0,σ0), but inde-
pendent of (k, h) and (n, n0).

Proof. The proof follows as in Theorem 1.4.14, but in this case it is necessary to use the
estimate

‖(unh,σnh)‖W 1,6 ≤ C(‖(δtunh, δtσnh)‖0 + ‖(unh,σnh)‖3
1 + ‖unh‖0), (2.56)

which is deduced from (2.21) and (2.22).

Theorem 2.3.17 (More regular estimates) Assume that (u0,σ0) ∈ H2(Ω) ×H2(Ω).
Under the hypothesis of Theorem 2.3.16, the following estimates hold

‖(δtunh, δtσnh)‖2
0 ≤ K3, ∀n ≥ 1, (2.57)

k

n+n0∑
m=n0+1

‖(δtumh , δtσmh )‖2
1 ≤ K4 +K5(nk), ∀n ≥ 1, (2.58)

‖(unh,σnh)‖2
W 1,6 ≤ K6, ∀n ≥ 0, (2.59)

for any integer n0 ≥ 0, with positive constants K3, K4, K5, K6 depending on data (Ω, u0,σ0),
but independent of (k, h) and (n, n0).

Proof. The proof follows as in Theorem 1.4.16, but in this case, in order to obtain (2.59)
it is necessary to use (2.56).

Remark 2.3.18 In particular, from (2.59) one has ‖(unh,σnh)‖L∞ ≤ K7 for all n ≥ 0, with
K7 > 0 a constant independent of (k, h) and n.
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Uniform Strong estimates of vnh

Theorem 2.3.19 (Strong estimates for vhn) Assume (2.54) and let vnh be the solution of
(2.35). Then, the following estimates hold

‖vnh‖2
1 ≤ C1, ∀n ≥ 0, (2.60)

k

n+n0∑
m=n0+1

(‖δtvmh ‖2
0 + ‖Ãhvmh ‖2

0) ≤ C1 + C2(nk), ∀n ≥ 1, (2.61)

for any integer n0 ≥ 0, with positive constants C1, C2 depending on Ω, u0,σ0, v0, but inde-
pendent of (k, h) and (n, n0).

Proof. Testing (2.35) by Ãhv
n
h and δtv

n
h , and using the Hölder and Young inequalities, we

obtain

δt
(
‖vnh‖2

1

)
+

1

2
‖Ãhvnh‖2

0 +
1

2
‖δtvnh‖2

0 ≤ ‖unh‖4
L4 , (2.62)

which, taking into account (2.21)2 and (2.54), in particular implies

(1 + Ck)‖vnh‖2
1 − ‖vn−1

h ‖2
1 ≤ kK2

0 .

Thus, from Lemma 2.2.1, we deduce

‖vnh‖2
1 ≤ (1 + Ck)−n‖v0

h‖2
1 + CK2

0 ≤ ‖v0
h‖2

1 + CK2
0 , ∀n ≥ 0,

which implies (2.60). Moreover, multiplying (2.62) by k and adding from m = n0 + 1 to
m = n+ n0, using (2.54) and (2.60), we deduce (2.61).

Theorem 2.3.20 (More regular estimates for vhn) Assume that v0 ∈ H2(Ω). Under
hypothesis of Theorems 2.3.17 and 2.3.19, the following estimates hold

‖δtvnh‖2
0 ≤ C3, ∀n ≥ 1, (2.63)

k

n+n0∑
m=n0+1

‖δtvmh ‖2
1 ≤ C4 + C5(nk), ∀n ≥ 1, (2.64)

‖vnh‖2
W 1,6 ≤ C6, ∀n ≥ 0, (2.65)

for any integer n0 ≥ 0, with positive constants C3, C4, C5, C6 depending on data Ω, u0,σ0, v0,
but independent of (k, h) and (n, n0).
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Proof. Denote by ṽnh = δtv
n
h . Then, making the time discrete derivative of (2.35) (using

δt(u
n
h)2 = (unh + un−1

h )δtu
n
h), testing by ṽnh and using (2.54) and (2.57), we obtain

1

2
δt
(
‖ṽnh‖2

0

)
+

1

2
‖ṽnh‖2

1 ≤ C‖unh + un−1
h ‖2

L3‖δtunh‖2
0 ≤ C. (2.66)

In particular,
(1 + k)‖ṽnh‖2

0 − ‖ṽnh‖2
0 ≤ kC.

Then, from Lemma 2.2.1, we deduce

‖ṽnh‖2
0 ≤ (1 + k)−(n−1)‖ṽ1

h‖2
0 + C, ∀n ≥ 1. (2.67)

Observe that from (2.35) we have

(δtv
1
h, v̄h) + (Ãh(v

1
h − v0

h), v̄h) + (Ãhv
0
h, v̄h) = ((u1

h)
2, v̄h), ∀v̄h ∈ Vh. (2.68)

Then, testing (2.68) by v̄h = δtv
1
h and using the Hölder and Young inequalities and (2.54),

we can obtain
‖δtv1

h‖2
0 ≤ C‖Ãhv0

h‖2
0 + C‖u1

h‖4
L4 . (2.69)

Moreover, considering the linear and continuous operator Ãeh : H1(Ω)→ Vh defined as

(Ãehv, v̄h) = (∇v,∇v̄h) + (v, v̄h), ∀v̄h ∈ Vh,

(which is an extension of Ãh to H1(Ω)), using the inverse inequality ‖vh‖1 ≤ 1
h
‖vh‖0 for all

vh ∈ Vh, and the interpolation error (2.19), we have

‖Ãhv0
h‖0 ≤ ‖Ãeh(Rv

hv0 − v0)‖0 + ‖Ãehv0‖0

≤ C
1

h
‖∇(Rv

hv0 − v0)‖0 + C‖Rv
hv0 − v0‖0 + ‖v0‖2 ≤ C‖v0‖2. (2.70)

Thus, using (2.54) and (2.70) in (2.69), we conclude that ‖ṽ1
h‖2

0 ≤ C, where the constant C
is independent of (k, h). Therefore, using this fact in (2.67), we conclude (2.63). Moreover,
multiplying (2.66) by k and adding from m = n0 + 1 to m = n+n0, using (2.63), we deduce
(2.64). Finally, taking into account (2.21)2, we have

‖vnh‖W 1,6 ≤ ‖Ãhvnh‖0 ≤ ‖δtvnh‖0 + ‖unh‖2
L4 ,

which, taking into account that from (2.20) we have ‖v0
h‖W 1,6 = ‖Rv

hv0‖W 1,6 ≤ C‖v0‖2, and
using (2.54) and (2.63), implies (2.65).
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2.3.4 Error estimates at finite time

In this subsection, we will obtain error estimates for any solution (unh,σ
n
h) of the scheme

US and vnh of (2.35), with respect to sufficiently regular solutions (u,σ) of (2.7) and v of
(2.8) respectively. In our analysis, in order to obtain optimal error estimates we need to
assume that both spaces Uh,Σh are generated by Pm-continuous FE and Vh is generated by
Pm+1-continuous FE, with m ≥ 1. This is a natural assumption taking into account that
the energy norm for v in the continuous model has one order greater than the energy norms
for u,σ.

Error estimates for scheme US

We start introducing the following notations for the errors at t = tn: enu = u(tn) − unh and

enσ = σ(tn) − σnh, and for the discrete in time derivative of these errors: δte
n
u =

enu − en−1
u

k

and δte
n
σ =

enσ − en−1
σ

k
. Then, subtracting (2.7) at t = tn and the scheme US, we have that

(enu, e
n
σ) satisfies

(δte
n
u, ūh) + (∇enu,∇ūh) + (enuσ(tn) + unhe

n
σ,∇ūh) = (ξn1 , ūh), ∀ūh ∈ Uh, (2.71)

(δte
n
σ, σ̄h) + 〈Benσ, σ̄h〉 = 2(enu∇u(tn) + unh∇enu, σ̄h) + (ξn2 , σ̄h), ∀σ̄h ∈ Σh, (2.72)

where ξn1 , ξ
n
2 are the consistency errors associated to the scheme US, that is, ξn1 = δt(u(tn))−

ut(tn) and ξn2 = δt(σ(tn))−σt(tn). Now, considering the interpolation operators Ru
h and Rσ

h

defined in (2.14)-(2.15), we decompose enu and enσ as follows

enu = (I− Ru
h)u(tn) + Ru

hu(tn)− unh = enu,i + enu,h, (2.73)

enσ = (I− Rσ
h )σ(tn) + Rσ

hσ(tn)− σnh = enσ,i + enσ,h, (2.74)

where enu,i is the interpolation error and enu,h is the discrete error of u. Then, taking into
account (2.14)-(2.15), from (2.71)-(2.74) we have(

δte
n
u,h, ūh

)
+(∇enu,h,∇ūh) + (enu,hσ(tn) + unhe

n
σ,h,∇ūh) = (ξn1 , ūh)

−
(
δte

n
u,i, ūh

)
− (enu,iσ(tn) + unhe

n
σ,i,∇ūh) + (enu,i, ūh), ∀ūh ∈ Uh, (2.75)

(
δte

n
σ,h, σ̄h

)
+(Bhe

n
σ,h, σ̄h) = (ξn2 , σ̄h) + 2(enu,h∇u(tn) + unh∇enu,h, σ̄h)

+2(enu,i∇u(tn) + unh∇enu,i, σ̄h)−
(
δte

n
σ,i, σ̄h

)
, ∀σ̄h ∈ Σh. (2.76)

Notice that
∫

Ω
enu,h = 0 (since u0

h = Ru
hu0 and from (2.14)

∫
Ω
Ru
hu(tn) =

∫
Ω
u(tn) = m0),

hence the following norms are equivalents: ‖∇enu,h‖0 ' ‖enu,h‖1.
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Theorem 2.3.21 We assume that there exists (u,σ) an exact solution of (2.7) with the
following regularity:{

(u,σ) ∈ L∞(0, T ;Hm+1(Ω)×Hm+1(Ω)), (ut,σt) ∈ L2(0, T ;Hm+1(Ω)×Hm+1(Ω)),

(utt,σtt) ∈ L2(0, T ;H1(Ω)′ ×H1
σ(Ω)′).

(2.77)
Let (unh,σ

n
h) be a solution of the scheme US. Then, if

k(‖(u,σ)‖4
L∞(H1) + ‖(u,σ)‖2

L∞(H2)) is small enough, (2.78)

the following a priori error estimate holds

‖(enu,h, enσ,h)‖l∞L2∩l2H1 ≤ C(T )(k + hm+1) (2.79)

where C(T ) = K1Texp(K2T ), with K1, K2 > 0 independent of (k, h).

Recall that u,σ are approximated by Pm-continuous FE.

Proof. Taking ūh = enu,h n (2.75), σ̄h =
1

2
enσ,h in (2.76) and adding, the terms (unh∇enu,h, enσ,h)

cancel, and we obtain

δt

(
1

2
‖enu,h‖2

0 +
1

4
‖enσ,h‖2

0

)
+

1

2
‖(enu,h, enσ,h)‖2

1 = (ξn1 , e
n
u,h) +

1

2
(ξn2 , e

n
σ,h)−

(
δte

n
u,i, e

n
u,h

)
−1

2

(
δte

n
σ,i, e

n
σ,h

)
− (enu,h,σ(tn) · ∇enu,h −∇u(tn) · enσ,h)− (enu,i,σ(tn) · ∇enu,h −∇u(tn) · enσ,h)

−(unh, e
n
σ,i · ∇enu,h −∇enu,i · enσ,h) + (enu,i, e

n
u,h) =

8∑
m=1

Im. (2.80)

Then, using the Hölder and Young inequalities, the 3D interpolation inequality (2.12), the
interpolation errors (2.17)-(2.18), the stability property (2.20) and the hypothesis (2.77), we
control the terms on the right hand side of (2.80) as follows

I1 + I2 ≤ ε‖(enu,h, enσ,h)‖2
1 + Cε‖(ξn1 , ξn2 )‖2

(H1)′×(H1
σ)′

≤ ε‖(enu,h, enσ,h)‖2
1 + Ck

∫ tn

tn−1

‖(utt(t),σtt(t))‖2
(H1)′×(H1

σ)′dt, (2.81)

I5 ≤ ‖enu,h‖L3(‖∇u(tn)‖0‖enσ,h‖L6 + ‖∇ · σ(tn)‖0‖enu,h‖L6)

≤ ε‖(enu,h, enσ,h)‖2
1 + Cε‖(∇u(tn),∇ · σ(tn))‖4

0‖enu,h‖2
0, (2.82)
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I6 ≤ ‖enu,i‖0(‖∇enu,h‖0‖σ(tn)‖L∞ + ‖∇u(tn)‖L3‖enσ,h‖L6)

≤ ε‖(enu,h, enσ,h)‖2
1 + Cε‖(∇u(tn),σ(tn))‖2

L3×L∞‖enu,i‖2
0

≤ ε‖(enu,h, enσ,h)‖2
1 + Ch2(m+1)‖u(tn)‖2

m+1 ≤ ε‖(enu,h, enσ,h)‖2
1 + Ch2(m+1), (2.83)

I7 ≤ |(enu,h, enσ,i · ∇enu,h −∇enu,i · enσ,h)|+ |(Ru
hu(tn), enσ,i · ∇enu,h −∇enu,i · enσ,h)|

≤ ε‖(enu,h, enσ,h)‖2
1 + Cε‖enu,h‖2

0‖(enu,i, enσ,i)‖2
W 1,3×L∞ + Cε‖Ru

hu(tn)‖2
W 1,3∩L∞‖(enu,i, enσ,i)‖2

0

≤ ε‖(enu,h, enσ,h)‖2
1+C‖(u(tn),σ(tn))‖2

2‖enu,h‖2
0+Ch2(m+1)‖(u(tn),σ(tn))‖2

m+1‖u(tn)‖2
2

≤ ε‖(enu,h, enσ,h)‖2
1+C‖(u(tn),σ(tn))‖2

2‖enu,h‖2
0+Ch2(m+1), (2.84)

I8 ≤ ‖enu,i‖0‖enu,h‖0 ≤ ε‖enu,h‖2
1 + Ch2(m+1), (2.85)

I3 + I4 ≤ ‖(enu,h, enσ,h)‖0‖((I− Ru
h)δtu(tn), (I− Rσ

h )δtσ(tn))‖0

≤ ε‖(enu,h, enσ,h)‖2
1 + Ch2(m+1)‖(δtu(tn), δtσ(tn))‖2

m+1

≤ ε‖(enu,h, enσ,h)‖2
1 +

Ch2(m+1)

k

∫ tn

tn−1

‖(ut,σt)‖2
m+1dt, (2.86)

where in the last inequality was used that (δtu(tn), δtσ(tn)) =
1

k

∫ tn

tn−1

(ut,σt). Therefore,

taking ε small enough, from (2.80)-(2.86) we obtain

δt

(
1

2
‖enu,h‖2

0 +
1

4
‖enσ,h‖2

0

)
+ ‖(enu,h, enσ,h)‖2

1

≤ Ck

∫ tn

tn−1

‖(utt(t),σtt(t))‖2
(H1)′×(H1

σ)′dt+
Ch2(m+1)

k

∫ tn

tn−1

‖(ut,σt)‖2
m+1dt+ Ch2(m+1)

+C(‖(u(tn),σ(tn))‖4
1 + ‖(u(tn),σ(tn))‖2

2)‖enu,h‖2
0. (2.87)

Then, multiplying (2.87) by k, adding from n = 1 to n = r, recalling that e0
u,h = e0

σ,h = 0,
taking into account (2.77), we obtain

[1

4
− k C

]
‖(eru,h, erσ,h)‖2

0 + k
r∑

n=1

‖(enu,h, enσ,h)‖2
1 ≤ Ck2 + Ch2(m+1) + C k

r−1∑
n=0

‖enu,h‖2
0.

Therefore, assuming hypothesis (2.78) and using the Discrete Gronwall Lemma, we conclude
(2.79).
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Remark 2.3.22 Under hypothesis of Theorem 2.3.21, one has in particular

‖(unh,σnh)‖2
1 ≤ C + C(T )

(
k +

h2(m+1)

k

)
.

Therefore, under the hypothesis
h2(m+1)

k
≤ C, (2.88)

we have the estimate
‖(unh,σnh)‖2

1 ≤ C, (2.89)

hence the hypothesis (2.36) providing uniqueness of the scheme is equivalent to k small
enough. Finally, since for any choice of (k, h) either (2.37) (see Remark 2.3.5) or (2.88)
holds, one has the uniqueness of (unh,σ

n
h) solution of (2.34) only imposing k small enough.

Error estimates for vnh solution of (2.35)

We introduce the following notation for the errors in t = tn: env = v(tn) − vnh , and for the

discrete in time derivative of this error: δte
n
v =

env − en−1
v

k
. Then, subtracting (2.8) at t = tn

and (2.35), we have that env satisfies

(δte
n
v , v̄h) + 〈Aenv , v̄h〉 = ((u(tn) + unh)enu, v̄h) + (ξn3 , v̄h), ∀v̄h ∈ Vh, (2.90)

where ξn3 is the consistency error associated to (2.35), that is, ξn3 = δt(v(tn))− vt(tn). Now,
considering the interpolation operator Rv

h defined in (2.16), we decompose env as follows

env = (I− Rv
h)v(tn) + Rv

hv(tn)− vnh = env,i + env,h, (2.91)

where env,i is the interpolation error and env,h is the discrete error of v. Then, taking into
account (2.16), from (2.90)-(2.91) we have(

δte
n
v,h, v̄h

)
+(Ãhe

n
v,h, v̄h) = (ξn3 , v̄h) + ((u(tn) + unh)(enu,h+ enu,i), v̄h)−(δte

n
v,i, v̄h), ∀v̄h ∈ Vh.(2.92)

Theorem 2.3.23 Under hypothesis of Theorem 2.3.21. Let vnh be the solution of (2.35),
and assume the following regularity for v exact solution of (2.8):

(vt, vtt) ∈ L2(0, T ;Hm+2(Ω)×H1(Ω)′). (2.93)

Then, the a priori error estimate holds

‖env,h‖l∞L2∩l2H1 ≤ C(T )(k + hm+1), (2.94)

where C(T ) = K1Texp(K2T ), with K1, K2 > 0 independent of (k, h).
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Proof. Taking v̄h = env,h in (2.92) and using the Hölder and Young inequalities, we obtain

δt

(
1

2
‖env,h‖2

0

)
+
k

2
‖δtenv,h‖2

0 +
1

2
‖env,h‖2

1 ≤ C‖ξn3 ‖2
(H1)′

+C‖u(tn) + unh‖2
L3(‖enu,h‖2

0 + ‖enu,i‖2
0) + C‖(I− Rv

h)δtv(tn)‖2
0. (2.95)

Using (2.17), (2.19) and proceeding as in (2.81) and (2.86), we bound the terms on the right
hand side in (2.95) and we deduce

δt
(
‖env,h‖2

0

)
+ ‖env,h‖2

1 ≤ Ck

∫ tn

tn−1

‖vtt(t)‖2
(H1)′dt+ C‖u(tn) + unh‖2

L3‖enu,h‖2
0

+C‖u(tn) + unh‖2
L3h2(m+1)‖u(tn)‖2

m+1 +
Ch2(m+2)

k

∫ tn

tn−1

‖vt‖2
m+2dt. (2.96)

Then, multiplying (2.96) by k, adding from n = 1 to n = r, we obtain (recall e0
v,h = 0):

‖erv,h‖2
0 + k

r∑
n=1

‖env,h‖2
1 ≤ Ck2

∫ tr

0

‖vtt(t)‖2
(H1)′dt+ C‖enu,h‖2

l∞L2k
r∑

n=1

‖u(tn) + unh‖2
L3

+Ch2(m+1)k
r∑

n=1

‖u(tn) + unh‖2
L3 + Ch2(m+2)

∫ tr

0

‖vt‖2
m+2dt.

Then, using (2.42), (2.77), (2.93) and (2.79), we conclude (2.94).

Theorem 2.3.24 Under hypothesis of Theorem 2.3.23, but assuming the regularity:

vtt ∈ L2(0, T ;L2(Ω)), (2.97)

the a priori error estimate

‖env,h‖l∞H1∩l2W 1,6 ≤ C(T )(k + hm+1) (2.98)

holds, where C(T ) = K1Texp(K2T ), with K1, K2 > 0 independent of (k, h).

Proof. Taking v̄h = Ãhe
n
v,h in (2.92) and using the Hölder and Young inequalities, we

obtain

δt

(
1

2
‖env,h‖2

1

)
+
k

2
‖δtenv,h‖2

1 +
1

2
‖Ãhenv,h‖2

0 ≤ C‖ξn3 ‖2
0 + C‖u(tn) + unh‖2

L3‖enu,h‖2
L6

+C‖(u(tn) + unh)enu,i‖2
0 + C‖(I− Rv

h)δtv(tn)‖2
0. (2.99)
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Using the Hölder inequality, the interpolation error (2.17), the stability property (2.20) and
the hypothesis (2.77), we have

‖(u(tn) + unh)enu,i‖2
0 ≤ C‖u(tn) + Ru

hu(tn)‖2
L∞‖enu,i‖2

0 + C‖enu,h‖2
L6‖enu,i‖2

L3

≤ Ch2(m+1) + C‖enu,h‖2
L6 . (2.100)

Therefore, from (2.99), proceeding as in (2.81) and (2.86) and using (2.100), we deduce

δt
(
‖env,h‖2

1

)
+‖Ãhenv,h‖2

0 ≤ Ck

∫ tn

tn−1

‖vtt(t)‖2
0dt

+(C‖u(tn) + unh‖2
L3 + C)‖enu,h‖2

L6 + Ch2(m+1) +
Ch2(m+2)

k

∫ tn

tn−1

‖vt‖2
m+2dt.

Now, in order to bound the term ‖u(tn) + unh‖2
L3 , we split the argument into two cases:

1. Estimates assuming h << f(k) (h small enough with respect to k): From

(2.79) we have that k
r∑

n=1

‖enu,h‖2
1 ≤ C(T )(k2 + h2(m+1)), which implies that

‖enu,h‖1 ≤ C(T )(k1/2 +
hm+1

k1/2
). (2.101)

Moreover, using the interpolation inequality (2.12), (2.79), (2.20), (2.77) and (2.101),
we obtain

‖u(tn) + unh‖2
L3 ≤ C‖u(tn)‖2

L3 + C‖Ru
hu(tn)‖2

L3 + C‖enu,h‖2
L3 ≤ C + C‖enu,h‖0‖enu,h‖1

≤ C + C(T )(k + hm+1)(k1/2 +
hm+1

k1/2
) ≤ C (2.102)

under he hypothesis
h2(m+1)

k1/2
≤ C. (2.103)

2. Estimates assuming k << g(k) (k small enough with respect to h):
Using the inverse inequality ‖uh‖L3 ≤ C

h1/2
‖uh‖0 for all uh ∈ Uh, (2.20), (2.77) and

(2.79), we have that

‖u(tn) + unh‖2
L3 ≤ C‖u(tn)‖2

L3 + C‖Ru
hu(tn)‖2

L3 + C‖enu,h‖2
L3

≤ C

h
‖enu,h‖2

0 + C ≤ C(T )

h
(k2 + h2(m+1)) + C ≤ C

under the hypothesis
k2

h
< C. (2.104)
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Therefore, since for any choice of (k, h) either (2.103) or (2.104) holds, we arrive at

δt
(
‖env,h‖2

1

)
+‖Ãhenv,h‖2

0 ≤ Ck

∫ tn

tn−1

‖vtt(t)‖2
0dt

+C‖enu,h‖2
L6 + Ch2(m+1) +

Ch2(m+2)

k

∫ tn

tn−1

‖vt‖2
m+2dt. (2.105)

Multiplying (2.105) by k, adding from n = 1 to n = r, recalling that e0
v,h = 0 and using

(2.77), (2.93), (2.97) and (2.79), we conclude (2.98).

2.4 Linear iterative methods to approach the Back-

ward Euler scheme

In this section, we propose two different linear iterative methods to approach the Backward
Euler scheme US, which are an energy-stable Picard’s method and the Newton’s method.
We prove the solvability and the convergence of these methods to the nonlinear scheme.

2.4.1 Picard Method

In order to approximate the solution (unh,σ
n
h) of the nonlinear scheme US, we consider the

following Picard method: Let (un−1
h ,σn−1

h ) ∈ Uh ×Σh be fixed. Given ul−1
h ∈ Uh (assuming

u0
h = un−1

h at the first iteration step), find (ulh,σ
l
h) ∈ Uh × Σh solving the linear coupled

problem:
1

k
(ulh, ūh) + (∇ulh,∇ūh) + (ul−1

h σlh,∇ūh) =
1

k
(un−1

h , ūh), ∀ūh ∈ Uh,

1

k
(σlh, σ̄h) + (Bhσ

l
h, σ̄h)− 2(ul−1

h ∇u
l
h, σ̄h) =

1

k
(σn−1

h , σ̄h), ∀σ̄h ∈ Σh,

(2.106)

until the stopping criteria max

{
‖ulh − ul−1

h ‖0

‖ul−1
h ‖0

,
‖σlh − σl−1

h ‖0

‖σl−1
h ‖0

}
≤ tol (with tol > 0 being a

tolerance parameter).

Theorem 2.4.1 (Unconditional Unique Solvability) There exists a unique (ulh,σ
l
h)

solution of (2.106).
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Proof. Since (2.106) can be rewritten as a square linear algebraic system, it is sufficient
to prove uniqueness. Suppose that there exist (ulh,1,σ

l
h,1), (ulh,2,σ

l
h,2) ∈ Uh×Σh two possible

solutions of (2.106). Then defining ulh = ulh,1 − ulh,2 and σlh = σlh,1 − σlh,2, we have that

(ulh,σ
l
h) ∈ Uh ×Σh satisfies

1

k
(ulh, ūh) + (∇ulh,∇ūh) + (ul−1

h σlh,∇ūh) = 0, ∀ūh ∈ Uh, (2.107)

1

k
(σlh, σ̄h) + (Bhσ

l
h, σ̄h)− 2(ul−1

h ∇u
l
h, σ̄h) = 0, ∀σ̄h ∈ Σh. (2.108)

Taking ūh = ulh and σ̄h =
1

2
σlh in (2.107)-(2.108) and adding, the terms (ul−1

h ∇ulh,σlh)
cancel, and we obtain

1

2k
‖(ulh,σlh)‖2

0 +
1

2
‖(∇ulh,σlh)‖2

L2×H1 ≤ 0,

and thus we conclude that ‖(ulh,σlh)‖1 = 0, which implies ulh,1 = ulh,2 and σlh,1 = σlh,2.

Theorem 2.4.2 (Local uniqueness of solution of scheme US and Convergence of
Picard’s method) Given (un−1

h ,σn−1
h ), there exists r > 0 (large enough) such that if

k‖(un−1
h ,σn−1

h )‖4
1 and kr4 are small enough, (2.109)

then the scheme US has a unique solution (unh,σ
n
h) in Br((u

n−1
h ,σn−1

h )) := {(u,σ) ∈ Uh ×
Σh : ‖(u − un−1

h ,σ − σn−1
h )‖1 ≤ r}. Moreover, the sequence of solutions {ulh,σlh}l≥0 of the

iterative algorithm (2.106) (assuming (u0
h,σ

0
h) = (un−1

h ,σn−1
h ) at the first iteration step),

converges to (unh,σ
n
h) strongly in H1(Ω).

Proof. We consider the operator R : Uh → Uh, given by R(ũ) = u, where (u,σ) satisfies
(2.106) with ul−1

h = ũ and (ulh,σ
l
h) = (u,σ), that is,

1

k
(u, ūh) + (∇u,∇ūh) + (ũσ,∇ūh) =

1

k
(un−1

h , ūh), ∀ūh ∈ Uh, (2.110)

1

k
(σ, σ̄h) + (Bhσ, σ̄h)− 2(ũ∇u, σ̄h) =

1

k
(σn−1

h , σ̄h), ∀σ̄h ∈ Σh. (2.111)

Observe that from Theorem 2.4.1, we have that for any ũ ∈ Uh there exists a unique
(u,σ) ∈ Uh ×Σh solution of (2.110)-(2.111). Thus, R is well defined. Now, before to prove
that R is contractive, we will construct a ball Br(u

n−1
h ) = {u ∈ Uh : ‖u− un−1

h ‖1 ≤ r} ⊂ Uh
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such that R(Br(u
n−1
h )) ⊆ Br(u

n−1
h ). In order to define r, we consider w = u − un−1

h and
τ = σ − σn−1

h . Then, from (2.110)-(2.111) we have that (w, τ ) verifies

1

k
(w, ūh) + (∇w,∇ūh) = −(ũτ ,∇ūh)− (∇un−1

h ,∇ūh)− (ũσn−1
h ,∇ūh), ∀ūh ∈ Uh, (2.112)

1

k
(τ , σ̄h) + (Bhτ , σ̄h) = 2(ũ∇w, σ̄h)− (Bhσ

n−1
h , σ̄h) + 2(ũ∇un−1

h , σ̄h), ∀σ̄h ∈ Σh. (2.113)

Testing by ūh = w and σ̄h =
1

2
τ in (2.112)-(2.113) and adding, the terms (ũ∇w, τ )

cancel, and using the fact that

∫
Ω

w = 0 as well as the 3D interpolation inequality (2.12),

we obtain

1

2k
‖(w, τ )‖2

0 +
1

2
‖(w, τ )‖2

1 ≤
1

8
‖(w, τ )‖2

1 + C‖(un−1
h ,σn−1

h )‖2
1

+
1

8
‖ũ− un−1

h ‖2
1 +

1

8
‖un−1

h ‖2
1 +

1

8
‖(w, τ )‖2

1 + C‖(un−1
h ,σn−1

h )‖4
1‖(w, τ )‖2

0.(2.114)

Therefore, from (2.114) we deduce[
1

2k
− C‖(un−1

h ,σn−1
h )‖4

1

]
‖(w, τ )‖2

0 +
1

4
‖(w, τ )‖2

1 ≤ C‖(un−1
h ,σn−1

h )‖2
1 +

1

8
‖ũ− un−1

h ‖2
1.(2.115)

Thus, if k <
1

2C‖(un−1
h ,σn−1

h )‖4
1

, from (2.115) we conclude

‖(w, τ )‖2
1 ≤ C‖(un−1

h ,σn−1
h )‖2

1 +
1

2
‖ũ− un−1

h ‖2
1. (2.116)

Then, choosing r > 0 large enough such that

C‖(un−1
h ,σn−1

h )‖2
1 ≤

1

2
r2, (2.117)

from (2.116) we deduce that R(Br(u
n−1
h )) ⊆ Br(u

n−1
h ). Then, we take the restriction of R

to Br(u
n−1
h ), that is, Rr : Br(u

n−1
h ) → Br(u

n−1
h ). Let’s prove that Rr is contractive. Let

ũ1, ũ2 ∈ Br(u
n−1
h ), and (u1,σ1) and (u2,σ2) solutions of (2.110)-(2.111) corresponding to ũ1

and ũ2 respectively (i.e., Rr(ũ1) = u1 and Rr(ũ2) = u2). Then, from (2.110)-(2.111) we have
that (u1 − u2,σ1 − σ2) ∈ Uh ×Σh satisfies

1

k
(u1−u2, ūh)+(∇(u1−u2),∇ūh)+(ũ1(σ1−σ2),∇ūh)+((ũ1− ũ2)σ2,∇ūh) = 0, ∀ūh ∈ Uh,
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1

k
(σ1−σ2, σ̄h)+(Bh(σ1−σ2), σ̄h)−2(ũ1∇(u1−u2), σ̄h)−2((ũ1−ũ2)∇u2, σ̄h) = 0, ∀σ̄h ∈ Σh.

Testing by ūh = u1−u2, σ̄h =
1

2
(σ1−σ2) and adding, the terms (ũ1(σ1−σ2),∇(u1−u2))

cancel, and using the Hölder and Young inequalities, the 3D interpolation inequality (2.12)
and taking into account that

∫
Ω
u1 − u2 = 0, we obtain

1

2k
‖(u1 − u2,σ1 − σ2)‖2

0 + ‖u1 − u2‖2
1 +

1

2
‖σ1 − σ2‖2

1

≤ C‖ũ1 − ũ2‖1(‖σ2‖1‖u1 − u2‖L3 + ‖u2‖1‖σ1 − σ2‖L3)

≤ 1

4
‖ũ1 − ũ2‖2

1 +
1

2
‖u1 − u2‖2

1 +
1

4
‖σ1 − σ2‖2

1 + C‖(u1 − u2,σ1 − σ2)‖2
0‖(u2,σ2)‖4

1

and thus, we deduce that

1

k
‖(u1 − u2,σ1 − σ2)‖2

0 + ‖u1 − u2‖2
1 +

1

2
‖σ1 − σ2‖2

1

≤ 1

2
‖ũ1 − ũ2‖2

1 + C‖(u1 − u2,σ1 − σ2)‖2
0‖(u2,σ2)‖4

1. (2.118)

Therefore, since from (2.116) and (2.117) we have ‖(u2,σ2)‖4
1 ≤ C(r4 + ‖(un−1

h ,σn−1
h )‖4

1), if
1

2k
> Cr4 and

1

2k
> C‖(un−1

h ,σn−1
h )‖4

1), from (2.118) we have

‖Rr(ũ1)−Rr(ũ2)‖2
1 ≤

1

2
‖ũ1 − ũ2‖2

1,

which implies that Rr is contractive. Then, as a consequence of the Banach fixed point theo-
rem, we conclude that there exists a unique fixed point of Rr, Rr(u) = u. Thus, (u,σ) is the
unique solution of the scheme US in Br(u

n−1
h ). Additionally, we conclude that the sequence

of solutions {ulh,σlh}l≥0 of the iterative algorithm (2.106), where (u0
h,σ

0
h) = (un−1

h ,σn−1
h ),

converges to the solution (unh,σ
n
h).

Remark 2.4.3 In the case of 2D Domains, from estimate (2.54), the restriction (2.109)1

can be relaxed to k ≤ K0, where K0 is a constant depending on data (Ω, u0,σ0), but inde-
pendent of (k, h) and n.

Remark 2.4.4 We have that the restriction (2.109)1 is equivalent to (2.36). Therefore,
under hypothesis of Theorem 2.3.21 and arguing as in Remark 2.3.22, the conclusion of
Theorem 2.4.2 remains true only assuming k small enough.
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2.4.2 Newton’s Method

In this subsection, in order to approximate the solution (unh,σ
n
h) of the nonlinear scheme US,

we consider Newton’s algorithm: Let (un−1
h ,σn−1

h ) ∈ Uh ×Σh be fixed. Given (ul−1
h ,σl−1

h ) ∈
Uh×Σh (assuming (u0

h,σ
0
h) = (un−1

h ,σn−1
h ) at the first iteration step), find (ulh,σ

l
h) ∈ Uh×Σh

such that

1

k
(ulh, ūh) + (∇ulh,∇ūh) + (ul−1

h σlh,∇ūh) + (ulhσ
l−1
h ,∇ūh) =

1

k
(un−1

h , ūh) + (ul−1
h σl−1

h ,∇ūh),

1

k
(σlh, σ̄h) + (Bhσ

l
h, σ̄h)− 2(ul−1

h ∇u
l
h, σ̄h)

−2(ulh∇ul−1
h , σ̄h) =

1

k
(σn−1

h , σ̄h)− 2(ul−1
h ∇u

l−1
h , σ̄h),

(2.119)

for all (ūh, σ̄h) ∈ Uh×Σh; until the stopping criteria max

{
‖ulh − ul−1

h ‖0

‖ul−1
h ‖0

,
‖σlh − σl−1

h ‖0

‖σl−1
h ‖0

}
≤

tol.

The following lemma will be necessary to obtain the convergence of Newton’s method.

Lemma 2.4.5 Let X be a Banach space and consider a sequence {el}l≥0 ⊆ X, such that

‖el‖2
X ≤ C

(
‖el−1‖2

X

)2
, ∀l ≥ 1 and ‖e0‖2

X is small enough.

Then, el converges to 0 as l→ +∞ in the X-norm.

In the following theorem, we will use this lemma to prove the convergence (ulh,σ
l
h) →

(unh,σ
n
h) in the H1(Ω)-norm.

Theorem 2.4.6 (Conditional convergence of Newton’s Method) Let (unh,σ
n
h) be a

fixed solution of the scheme US and let (ulh,σ
l
h) be any solution of (2.119). There exists

δ0 > 0 small enough such that if

‖(e0
u, e

0
σ)‖2

1 ≤ δ0, k‖(unh,σnh)‖4
1 and k(δ0)2 are small enough, (2.120)

then {ulh,σlh}l≥0 converges to (unh,σ
n
h) in the H1(Ω)-norm as l→ +∞.

Proof. We can define problem (2.34) in a vectorial way,

(0, 0) = 〈F(unh,σ
n
h), (ūh, σ̄h)〉 = (〈F1(unh,σ

n
h), ūh〉, 〈F2(unh,σ

n
h), σ̄h〉) , (2.121)
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where each Fi(u
n
h,σ

n
h) corresponds with the equation (2.34)i (i = 1, 2). Therefore, Newton’s

method (2.119) reads

〈F′(ul−1
h ,σl−1

h )(ulh − ul−1
h ,σlh − σl−1

h ), (ūh, σ̄h)〉 = −〈F(ul−1
h ,σl−1

h ), (ūh, σ̄h)〉,

which can be rewritten as

(0, 0) = (〈F1(ul−1
h ,σl−1

h ), ūh〉, 〈F2(ul−1
h ,σl−1

h ), σ̄h〉)
+(〈F ′1(ul−1

h ,σl−1
h )(ulh − ul−1

h ,σlh − σl−1
h ), ūh〉, 〈F ′2(ul−1

h ,σl−1
h )(ulh − ul−1

h ,σlh − σl−1
h ), σ̄h〉).(2.122)

Moreover, from a vectorial Taylor’s formula of F(unh,σ
n
h) with center at (ul−1

h ,σl−1
h ), and

using (2.121), we have that

(0, 0) = (〈F1(unh,σ
n
h), ūh〉, 〈F2(unh,σ

n
h), σ̄h〉)

=
(
〈F1(ul−1

h ,σl−1
h ), ūh〉, 〈F2(ul−1

h ,σl−1
h ), σ̄h〉

)
+
(
〈F ′1(ul−1

h ,σl−1
h )(unh − ul−1

h ,σnh − σl−1
h ), ūh〉, 〈F ′2(ul−1

h ,σl−1
h )(unh − ul−1

h ,σnh − σl−1
h ), σ̄h〉

)
+

1

2

(
〈(unh − ul−1

h ,σnh − σl−1
h )tF ′′1 (un+ε,σn+ε)(unh − ul−1

h ,σnh − σl−1
h ), ūh〉,

〈(unh − ul−1
h ,σnh − σl−1

h )tF ′′2 (un+ε,σn+ε)(unh − ul−1
h ,σnh − σl−1

h ), σ̄h〉
)
, (2.123)

where un+ε = εunh + (1 − ε)ul−1
h , σn+ε = εσnh + (1 − ε)σl−1

h , and F ′i and F ′′i denote the
Jacobian and the Hessian of Fi (i = 1, 2), respectively. Therefore, denoting by elu = unh − ulh
and elσ = σnh − σlh, from (2.122)-(2.123), we deduce〈

∂F1

∂u
(ul−1

h ,σl−1
h )(elu) +

∂F1

∂σ
(ul−1

h ,σl−1
h )(elσ), ūh

〉
= −1

2
〈(el−1

u , el−1
σ )tF ′′1 (un+ε,σn+ε)(el−1

u , el−1
σ ), ūh〉, (2.124)

〈
∂F2

∂u
(ul−1

h ,σl−1
h )(elu) +

∂F2

∂σ
(ul−1

h ,σl−1
h )(elσ), σ̄h

〉
= −1

2
〈(el−1

u , el−1
σ )tF ′′2 (un+ε,σn+ε)(el−1

u , el−1
σ ), σ̄h〉. (2.125)

Thus, from (2.124)-(2.125) and taking into account that F ′′i are constant matrices, we arrive
at

1

k
(elu, ūh) + (∇elu,∇ūh) + (eluσ

l−1
h ,∇ūh) + (ul−1

h elσ,∇ūh) = −(el−1
u el−1

σ ,∇ūh), ∀ūh ∈ Uh,
(2.126)
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1

k
(elσ, σ̄h) + (Bhe

l
σ, σ̄h) + 2(ul−1

h elu,∇ · σ̄h) = −(|el−1
u |2,∇ · σ̄h), ∀σ̄h ∈ Σh. (2.127)

Testing by ūh = elu and σ̄h = elσ in (2.126) and (2.127) respectively, taking into account

that

∫
Ω

elu = 0 and using the Hölder and Young inequalities as well as the 3D interpolation

inequality (2.12), we obtain

1

k
‖(elu, elσ)‖2

0 + ‖(elu, elσ)‖2
1 ≤

1

2
‖(elu, elσ)‖2

1 + C‖(elu, elσ)‖2
0‖(ul−1

h ,σl−1
h )‖4

1 + C‖(el−1
u , el−1

σ )‖4
1

(2.128)
In order to use an induction strategy, we can assume the hypothesis

‖(el−1
u , el−1

σ )‖2
1 ≤ δ0,

which implies that
‖(ul−1

h ,σl−1
h )‖1 ≤ ‖(unh,σnh)‖1 +

√
δ0, (2.129)

where δ0 > 0 is a small enough constant. Therefore, from (2.128)-(2.129) we have(
1

k
− C(‖(unh,σnh)‖4

1 + (δ0)2)

)
‖(elu, elσ)‖2

0 +
1

2
‖(elu, elσ)‖2

1 ≤ C
(
‖(el−1

u , el−1
σ )‖2

1

)2
. (2.130)

Thus, if
1

2k
> C‖(unh,σnh)‖4

1 and
1

2k
> C(δ0)2 (which is possible owing to (2.120)2 and

(2.120)3), from (2.130) we obtain

‖(elu, elσ)‖2
1 ≤ C

(
‖(el−1

u , el−1
σ )‖2

1

)2
. (2.131)

Therefore, choosing δ0 small enough such that δ0C ≤ 1, the inequality ‖(elu, elσ)‖2
1 ≤ δ0 holds.

Indeed, if we assume ‖(e0
u, e

0
σ)‖2

1 ≤ δ0, we obtain the following recurrence expression

‖(elu, elσ)‖2
1 ≤ ‖(el−1

u , el−1
σ )‖2

1 ≤ · · · ≤ ‖(e0
u, e

0
σ)‖2

1 ≤ δ0. (2.132)

Hence, from (2.131) the hypothesis of Lemma 2.4.5 are satisfied, and we conclude the con-
vergence of (ulh,σ

l
h) to (unh,σ

n
h) in the H1(Ω)-norm.

Remark 2.4.7 If (2.54) is satisfied (recall that this estimate holds, at least, in 2D Domains),
we can determine δ0 in terms of k. Indeed, from (2.58), we have that

‖(e0
u, e

0
σ)‖2

1 = ‖(unh − un−1
h ,σnh − σn−1

h )‖2
1 ≤ k(K4 +K5k),

and thus, we consider δ0 := k(K4 + K5k). Then, hypothesis (2.120) in Theorem 2.4.6 are
only imposed on k, and (2.120)2 is reduced to k ≤ K0, where K0 is a constant depending on
data (Ω, u0,σ0), but independent of (k, h) and n.
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Remark 2.4.8 Since restriction (2.120)2 is equivalent to (2.36), analogously as in Remark
2.3.5, under the hypothesis of Theorem 2.3.21, we have that the conclusion of Theorem 2.4.6
remains true assuming k small enough, (2.120)1 and (2.120)3.

Now, observe that from (2.132), we have the following uniform estimate for (ulh,σ
l
h)

solution of (2.119):

‖(ulh,σlh)‖1 ≤ ‖(unh,σnh)‖1 +
√
δ0, ∀l ≥ 0. (2.133)

Then, using the above estimate, we will prove the conditional unique solvability of (2.119).

Theorem 2.4.9 (Conditional Unique Solvability) Assume (2.120). Then there exists
a unique (ulh,σ

l
h) solution of (2.119).

Proof. By linearity, it suffices to prove uniqueness of solution of (2.119). Suppose that
there exist (ulh,1,σ

l
h,1), (ulh,2,σ

l
h,2) ∈ Uh ×Σh two solutions of (2.119). Then, denoting ulh =

ulh,1 − ulh,2 and σlh = σlh,1 − σlh,2, we arrive at

1

k
(ulh, ūh) + (∇ulh,∇ūh) + (ul−1

h σlh,∇ūh) + (ulhσ
l−1
h ,∇ūh) = 0, ∀ūh ∈ Uh, (2.134)

1

k
(σlh, σ̄h) + (Bhσ

l
h, σ̄h)− 2(ul−1

h ∇u
l
h, σ̄h)− 2(ulh∇ul−1

h , σ̄h) = 0, ∀σ̄h ∈ Σh. (2.135)

Taking ūh = ulh and σ̄h =
1

2
σlh in (2.134)-(2.135), taking into account that

∫
Ω

ulh = 0 and

using the Hölder and Young inequalities as well as the interpolation inequality (2.12), we
obtain

1

2k
‖(ulh,σlh)‖2

0 +
1

2
‖(ulh,σlh)‖2

1 ≤
1

4
‖(ulh,σlh)‖2

1 + C‖(ul−1
h ,σl−1

h )‖4
1‖(ulh,σlh)‖2

0,

which, using (2.133) (recall that (2.133) holds assuming (2.120)), implies that[
1

k
− C(‖(unh,σnh)‖4

1 + (δ0)2)

]
‖(ulh,σlh)‖2

0 +
1

2
‖(ulh,σlh)‖2

1 ≤ 0. (2.136)

Therefore, assuming (2.120)2−3, from (2.136) we conclude that ‖(ulh,σlh)‖1 = 0, and there-
fore, ulh,1 = ulh,2 and σlh,1 = σlh,2. Thus, there exists a unique (ulh,σ

l
h) solution of (2.119).
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2.5 Numerical results

In this section, we consider the nonlinear scheme US with right hand sides f(x, t), g(x, t) and
h(x, t) in (2.34) and (2.35) respectively, where these right hand sides are chosen corresponding
to the exact solutions u = e−t(cos(2πx)cos(2πy)+2), v = (1+sin(t))(cos(2πx)cos(2πy)+2)
and σ = ∇v = (1 + sin(t))(−2πsin(2πx)cos(2πy),−2πsin(2πy)cos(2πx)). In our compu-
tation, we take Ω = [0, 1] × [0, 1], and we use a uniform partition with m + 1 nodes in
each direction. We choose the spaces for u, σ and v, generated by P1,P1,P2-continuous FE,
respectively. The linear iterative method used to approach the nonlinear scheme US is the
Newton Method, and in all the cases, the iterative method stops when the relative error in
L2-norm is less than ε = 10−6.

In order to check numerically the error estimates obtained in our theoretical analysis,
we choose k = 10−5 and the numerical results with respect to time T = 0.001 are listed
in Tables 2.1-2.3. We can see that when h → 0, ‖u(tn) − unh‖L2H1 is convergent in optimal
rate O(h), and ‖unh−Ru

hu
n
h‖L2H1 , ‖u(tn)−unh‖L∞L2 , ‖unh−Ru

hu
n
h‖L∞L2 , ‖v(tn)− vnh‖L∞H1 and

‖vnh − Rv
hv

n
h‖L∞H1 are convergent in optimal rate O(h2).

m×m ‖u(tn)− unh‖L∞L2 Order ‖unh − Ru
hu

n
h‖L∞L2 Order

40× 40 2.5× 10−3 - 1.5× 10−3 -
50× 50 1.6× 10−3 1.9970 9× 10−4 1.9846
60× 60 1.1× 10−3 1.9980 7× 10−4 1.9896
70× 70 8× 10−4 1.9985 5× 10−4 1.9923
80× 80 6× 10−4 1.9989 4× 10−4 1.9938

Table 2.1: Error orders for ‖u(tn)− unh‖L∞L2 and ‖unh − Ru
hu

n
h‖L∞L2 .

m×m ‖u(tn)− unh‖L2H1 Order ‖unh − Ru
hu

n
h‖L2H1 Order

40× 40 1.11× 10−2 - 5.219× 10−4 -
50× 50 8.9× 10−3 0.9978 3.348× 10−4 1.9896
60× 60 7.4× 10−3 0.9985 2.328× 10−4 1.9937
70× 70 6.3× 10−3 0.9989 1.711× 10−4 1.9966
80× 80 5.5× 10−3 0.9992 1.310× 10−4 1.9988

Table 2.2: Error orders for ‖u(tn)− unh‖L2H1 and ‖unh − Ru
hu

n
h‖L2H1 .
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m×m ‖v(tn)− vnh‖L∞H1 Order ‖vnh − Rv
hv

n
h‖L∞H1 Order

40× 40 1.08× 10−2 - 9.875× 10−4 -
50× 50 6.9× 10−3 1.9985 5.526× 10−4 2.6014
60× 60 4.8× 10−3 1.9990 3.448× 10−4 2.5874
70× 70 3.5× 10−3 1.9993 2.318× 10−4 2.5768
80× 80 2.7× 10−3 1.9995 1.645× 10−4 2.5684

Table 2.3: Error orders for ‖v(tn)− vnh‖L∞H1 and ‖vnh − Rv
hv

n
h‖L∞H1 .
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Chapter 3

Asymptotic behaviour for a
chemo-repulsion system with

quadratic production: The continuous
problem and fully discrete numerical

schemes

3.1 Introduction

The directed movement of cells in response to a chemical stimulus is known in biology as
chemotaxis. More specifically, if the cells move towards regions of high chemical concentra-
tion, the motion is called chemoattraction, while if the cells move towards regions of lower
chemical concentration, the motion is called chemorepulsion. Models for chemoattraction
and chemorepulsion motion has been studied in literature (see [4, 9, 7, 10] and references
therein). One of the most important characteristics of chemoattractant models is that the
finite blow up of solutions can happen in space dimension greater or equal to 2; while in
chemorepulsion models this phenomenon is not expected. Many works have been devoted
to study in what cases and how this phenomenon takes place.

In those cases in which blow-up phenomenon does not happen, it is interesting to study
the asymptotic behaviour of the solutions of the model. In fact, in [14], Osaki and Yagi
studied the convergence of the solution of the Keller-Segel model to a stationary solution
in the one-dimensional case. In [8], the convergence of the solution of the Keller-Segel
model with an additional term of cross-diffusion to a steady state was shown. In [4] the
authors proved the convergence to constant state for a chemorepulsion model with linear
production. Therefore, taking into account the results above, the aim of this paper is to
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study the asymptotic behaviour of the following parabolic-parabolic repulsive-productive
chemotaxis model (with quadratic production term):

∂tu−∆u = ∇ · (u∇v) in Ω, t > 0,
∂tv −∆v + v = u2 in Ω, t > 0,
∂u

∂n
=
∂v

∂n
= 0 on ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0 in Ω,

(3.1)

where Ω is a n−dimensional open bounded domain, n = 2, 3, with boundary ∂Ω; and the
unknowns are u(x, t) ≥ 0, the cell density, and v(x, t) ≥ 0, the chemical concentration. This
model has been studied in Chapter 1, and it was proved that model (3.1) is well-posed: there
exists global in time weak-strong solution in the sense of Definition 3.2.1 (below), and, for
2D domains, there exists a unique global in time strong solution.

On the other hand, another interesting topic is to study the asymptotic behaviour of fully
discrete numerical schemes approximating (3.1). In fact, in [5] Guillén-González and Samsidy
studied and proved asymptotic convergence for a fully discrete finite element scheme for a
Ginzburg-Landau model for nematic liquid crystal flow. In [12] Merlet and Pierre studied
the asymptotic behaviour of the Backward Euler scheme applied to gradient flows. It is
important to notice that, in chemotaxis models, there are few works studying large-time
behaviour for fully discrete schemes. We refer to [2], where the authors shown convergence
at infinite time of a finite volume scheme for a Keller-Segel model with an additional term
of cross-diffusion. Meanwhile, the behavior at infinite time of a fully discrete scheme for
model (3.1) seem to be still an open problem. For this reason, in this paper we also study
the large-time behavior for two fully discrete numerical schemes associated to model (3.1).

This chapter is organized as follows: In Section 3.2, we study the asymptotic behavior
of the global weak-strong solutions for the model (3.1), and we prove the exponential con-
vergence as time goes to infinity to a constant state. In Section 3.3, we analyze this same
behavior for two fully discrete numerical schemes associated to system (3.1): the nonlinear
backward Euler in the variables (u, v), and the nonlinear scheme defined in Chapter 2 by
introducing the auxiliary variable σ = ∇v. Moreover, in order to analyze the asymptotic
behaviour for the backward Euler scheme, we study its solvability and unconditional energy-
stability. Finally, in Section 3.4, we compare the numerical schemes throughout several
numerical simulations.

3.1.1 Notation

We recall some functional spaces which will be used throughout this paper. We will consider
the usual Sobolev spaces Hm(Ω) and Lebesgue spaces Lp(Ω), 1 ≤ p ≤ ∞, with norms ‖ · ‖m
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and ‖ · ‖Lp , respectively. In particular, the L2(Ω)-norm will be denoted by ‖ · ‖0. We denote
by H1

σ(Ω) := {u ∈H1(Ω) : u ·n = 0 on ∂Ω} and we will use the following equivalent norms
in H1(Ω) and H1

σ(Ω), respectively (see [13] and [1, Corollary 3.5], respectively):

‖u‖2
1 = ‖∇u‖2

0 +

(∫
Ω

u

)2

, ∀u ∈ H1(Ω), (3.2)

‖σ‖2
1 = ‖σ‖2

0 + ‖rot σ‖2
0 + ‖∇ · σ‖2

0, ∀σ ∈H1
σ(Ω). (3.3)

In particular, (3.3) implies that

‖∇v‖2
1 = ‖∇v‖2

0 + ‖∆v‖2
0, ∀v : ∇v ∈H1

σ(Ω).

If Z is a general Banach space, its topological dual will be denoted by Z ′. Moreover,
the letters C,K will denote different positive constants (independent of discrete parameters)
which may change from line to line (or even within the same line).

3.2 Continuous problem

First we give the following definition of weak-strong solutions for problem (3.1).

Definition 3.2.1 (Weak-strong solutions) Given (u0, v0) ∈ L2(Ω)×H1(Ω) with u0, v0 ≥
0 a.e. x ∈ Ω, a pair (u, v) is called weak-strong solution of problem (3.1) in (0,+∞), if
u ≥ 0, v ≥ 0 a.e. (t,x) ∈ (0,+∞)× Ω,

(u, v) ∈ L∞(0,+∞;L2(Ω)×H1(Ω)) ∩ L2(0, T ;H1(Ω)×H2(Ω)), ∀T > 0,

∂tu ∈ Lq
′
(0, T ; (H1(Ω))′) and ∂tv ∈ Lq

′
(0, T ;L2(Ω)), ∀T > 0,

(3.4)

where q′ = 2 in 2D and q′ = 4/3 in 3D (q′ is the conjugate exponent of q = 2 in 2D and
q = 4 in 3D); the following variational formulation holds∫ T

0

〈∂tu, ū〉+

∫ T

0

(∇u,∇ū) +

∫ T

0

(u∇v,∇ū) = 0, ∀ū ∈ Lq(0, T ;H1(Ω)), ∀T > 0, (3.5)

the following equation holds pointwisely

∂tv −∆v + v = u2, a.e. (t,x) ∈ (0,+∞)× Ω, (3.6)

the initial conditions (3.1)4 are satisfied and the following energy inequality (in integral
version) holds for a.e. t0, t1 : t1 ≥ t0 ≥ 0:

E(u(t1), v(t1))− E(u(t0), v(t0)) +

∫ t1

t0

(
‖∇u(s)‖2

0 +
1

2
‖∇v(s)‖2

1

)
ds ≤ 0, (3.7)

where E(u(t), v(t)) = 1
2
‖u(t)‖2

0 + 1
4
‖∇v(t)‖2

0.
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Remark 3.2.2 In particular, the energy inequality (3.7) is valid for t0 = 0. Moreover, (3.7)
shows the dissipative character of the model with respect to the total energy E(u(t), v(t)).

Remark 3.2.3 (Positivity) u ≥ 0 in 2D domains and v ≥ 0 in any (2D or 3D) dimen-
sion are a consequence of (3.4)-(3.6). Indeed, this follows from the fact that in these cases
we can test (3.5) by u− := min{u, 0} ∈ L2(0, T ;H1(Ω)) and (3.6) by v− := min{v, 0} ∈
L2(0, T ;H2(Ω)) ↪→ L2(0, T ;L2(Ω)).

Observe that the problem (3.1) conserves in time the total mass
∫

Ω
u, because taking

ū = 1 in (3.5),
d

dt

(∫
Ω

u

)
= 0, i.e.

∫
Ω

u(t) =

∫
Ω

u0, ∀t > 0.

Moreover, integrating (3.6) in Ω we deduce the following behavior of
∫

Ω
v:

d

dt

(∫
Ω

v

)
+

∫
Ω

v =

∫
Ω

u2.

We recall that in Chapter 1 it was proved the existence of weak-strong solutions of
problem (3.1) (satisfying in particular the energy inequality (3.7)), through convergence of
a time-discrete numerical scheme associated to model (3.1).

3.2.1 Convergence at infinite time

In this subsection, we will prove the exponential convergence of any weak-strong solution
(u, v) of problem (3.1) obtained by Galerkin approximations. First, we will prove exponential
bounds for weak-strong norms a.e. t ≥ 0.

Theorem 3.2.4 Let (u, v) be any weak-strong solution of problem (3.1) obtained by Galerkin
approximations. Then, the following estimates hold

‖(u(t)−m0,∇v(t))‖2
0 ≤ C0e

−2t, a.e. t ≥ 0. (3.8)

‖v(t)− (m0)2‖2
0 ≤ C0e

−t, ∀t ≥ 0, (3.9)

where m0 :=
1

|Ω|

∫
Ω

u0 and C0 is a positive constant depending on the data (u0, v0), but

independent of t.
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Proof. For each m ≥ 1, we say that (um, vm) is a Galerkin solution if um : [0,+∞)→ Um
and vm : [0,+∞)→ Vm are C1 functions and satisfy

(∂tu
m, ū) + (∇um,∇ū) + (um∇vm,∇ū) = 0, ∀ū ∈ Um, t ≥ 0

(∂tv
m, v̄) + (∇vm,∇v̄) + (vm, v̄)− ((um)2, v̄) = 0, ∀v̄ ∈ Vm, t ≥ 0,

um(0) = um0 := Pm(u0), vm(0) = vm0 := Qm(v0),

(3.10)

where Um and Vm are finite dimensional spaces generated by orthonormal eigenfunctions
of the operator (−∆ + I), with ∆ and I being the laplacian and identity operators; Pm :
L2(Ω) → Um denotes the projection from L2(Ω) onto Um, and Qm : H1(Ω) → Vm the
projection from H1(Ω) onto Vm. Then, (3.10) can be regarded as a Cauchy problem for a
first order ordinary differential system in time, and the classical existence and uniqueness
theory for ordinary differential systems implies that, for every m ≥ 1, there exist Tm > 0
and unique functions um : [0, Tm)→ Um and Vm : [0, Tm)→ Vm that solve (3.10), with either
Tm = +∞ or lim sup t→Tm‖(um(t), vm(t))‖0 = +∞. Now, we are going to deduce some
estimates for (um, vm) showing that only Tm = +∞ can be true.

We define ũm := um −m0 and taking ū = ũm and v̄ = −1
2
∆vm in (3.10), we arrive at

1

2

d

dt

(
‖ũm(t)‖2

0 +
1

2
‖∇vm(t)‖2

0

)
+ ‖ũm(t)‖2

1 +
1

2
‖∇vm(t)‖2

1 = 0, (3.11)

from which we deduce that{
(um,∇vm) is bounded in L∞(0,+∞;L2(Ω)×L2(Ω)),
(∇um,∇vm) is bounded in L2(0,+∞;L2(Ω)×H1(Ω)).

(3.12)

Moreover, Moreover, we observe that the function ym(t) =
( ∫

Ω
vm(x, t)dx

)2

satisfies (ym)′(t)+

ym(t) ≤ wm(t), with wm(t) = ‖um(t)‖4
0. In fact, it follows by taking v̄ = 1 in (3.10), multi-

plying the resulting equation by

∫
Ω

vm(x, t) dx and using the Young inequality. Therefore,

ym(t) = ym(0) e−t +

∫ t

0

e−(t−s) wm(s) ds, which implies that

(∫
Ω

vm(x, t) dx
)2

≤
(∫

Ω

vm0 (x) dx
)2

+ ‖um‖4
L∞(0,+∞;L2), ∀t ≥ 0. (3.13)

Then, from (3.12) and (3.13), we deduce that

vm is bounded in L∞(0,+∞;H1(Ω)) ∩ L2(0, T ;H2(Ω)), ∀T > 0. (3.14)
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Taking into account (3.12) and (3.14), we can deduce (∂tu
m, ∂t∇vm) is bounded in

L4/3(0, T ;H1(Ω)′ ×H1(Ω)′). Therefore, proceeding as in Theorem 1.4.11, we obtain that
there exists a subsequence m′ of m, and (u, v) weak-strong solution of (3.1), such that
(um

′
, vm

′
) converges to (u, v) weakly-* in L∞(0,+∞;L2(Ω)×H1(Ω)), weakly in L2(0, T ;H1(Ω)×

H2(Ω)) and strongly in L2(0, T ;L2(Ω)×H1(Ω))∩C([0, T ];H1(Ω)′×Lp(Ω)), for any T > 0,
1 ≤ p < 6. Therefore, in particular

‖(ũm′(t),∇vm′(t))‖2
0 → ‖(ũ(t),∇v(t))‖2

0, a.e. t ≥ 0. (3.15)

Moreover, from the equality (3.11), we deduce

‖ũm′(t)‖2
0 +

1

2
‖∇vm′(t)‖2

0 ≤ ‖(um
′

0 −m0,∇vm
′

0 )‖2
0e
−2t, ∀t ≥ 0. (3.16)

Thus, from (3.15)-(3.16), we arrive at (3.8). Finally, testing (3.6) by ṽ := v− (m0)2, one can
obtain

1

2

d

dt
‖ṽ(t)‖2

0 + ‖ṽ(t)‖2
1 =

∫
Ω

((u(x, t))2 − (m0)2)ṽ(x, t)dx,

which, using the Hölder and Young inequalities, implies that

d

dt
‖ṽ(t)‖2

0 + ‖ṽ(t)‖2
1 ≤ ‖u(t) +m0‖2

L3‖u(t)−m0‖2
0. (3.17)

Therefore, from (3.17) and (3.8), we can deduce for all t ≥ 0,

‖ṽ(t)‖2
0 ≤ ‖v0 − (m0)2‖2

0e
−t + e−t

∫ t

0

‖u(s)−m0‖2
0‖u(s) +m0‖2

L3esds

≤ C0e
−t + C0e

−t
∫ t

0

‖u(s) +m0‖2
L3e−2sesds

≤ C0e
−t + C0e

−t
∫ t

0

‖∇u(s)‖2
0e
−sds+ C0e

−t
∫ t

0

‖u(s) +m0‖2
0e
−sds,

from which, using (3.12), we conclude (3.9).

In next theorem, we will show, for large times, exponential bounds for more regular
norms.

Theorem 3.2.5 Let ε > 0. Under hypothesis of Theorem 3.2.4, there exists a constant
C1 > 0 such that if ε2 ≤ 1

2C1
it holds

‖(u(t)−m0,∇v(t))‖2
1 ≤ 2εe−

1
2

(t−t2), a.e. t ≥ t2(ε), (3.18)

with t2 := t2(ε) ≥ 0 a large enough time that will be obtained in the proof.
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Proof. We define Fm(t) := ‖ũm(t)‖2
1 + 1

2
‖∇vm(t)‖2

1. Then, from (3.8) and (3.11), we have
that ∫ +∞

t

Fm(s)ds ≤ ‖(um(t)−m0,∇vm(t))‖2
0 ≤ C0e

−2t,

which, in particular, implies that for all δ > 0, there exists a large enough time t0 = t0(δ) ≥ 0
such that ∫ +∞

t0

Fm(s)ds ≤ δ. (3.19)

Then, taking into account that Fm(t) satisfies (3.19), proceeding as in [3, Lemma 2.1], we
have that for all δ > 0, t ≥ t0(δ) and τ > 0, there exists a time t̄ ∈ [t, t+ τ ] such that

Fm(t̄) ≤ 2δ

τ
. (3.20)

Indeed, the set of points t̄ ∈ [t, t + τ ] satisfying (3.20) has measure greater than τ/2. Now,
in order to obtain strong estimates, we take ū = −∆um and v̄ = 1

2
∆2vm in (3.10), and

proceeding as in (1.33), we arrive at

d

dt

(
‖∇ũm(t)‖2

0+
1

2
‖∆vm(t)‖2

0

)
+‖∆ũm(t)‖2

0+‖∆vm(t)‖2
1 ≤ C‖ũm(t)‖6

1+C‖∇vm(t)‖6
1. (3.21)

Then, adding (3.11) and (3.21), we have

d

dt

(
‖ũm(t)‖2

1 +
1

2
‖∇vm(t)‖2

1

)
+ ‖ũm(t)‖2

2 + ‖∇vm(t)‖2
2 ≤ C1

(
‖ũm(t)‖2

1 +
1

2
‖∇vm(t)‖2

1

)3

,

or equivalently, Fm(t) satisfies

F ′m(t) +Gm(t) ≤ C1Fm(t)3, (3.22)

with Gm(t) = ‖ũm(t)‖2
2 + ‖∇vm(t)‖2

2. Therefore, taking into account that Fm(t) satisfies
(3.22), proceeding as in [3, Lemma 2.2], we can deduce that for any ε > 0 and t1 ≥ 0,

Fm(t1) ≤ ε/2 ⇒ Fm(t) ≤ ε, ∀t ∈
[
t1, t1 +

1

2C1ε2

]
. (3.23)

Thus, as consequence of (3.20) and (3.23), following the proof of [3, Theorem 2.3], we con-
clude that for any ε > 0, taking τ = 1

4C1ε2
, δ = 1

16C1ε
and t0 = t0(δ) such that Fm(t) satisfies

(3.19), where C1 is the constant in the estimate (3.22), it holds

Fm(t) ≤ ε, ∀t ≥ t2(ε) := t0(δ) +
1

4C1ε2
. (3.24)
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Therefore, from (3.22) and (3.24), using the fact that Gm(t) ≥ Fm(t) and taking ε such that
ε2 ≤ 1

2C1
, we deduce

F ′m(t) +
1

2
Gm(t) ≤ 0, ∀t ≥ t2 := t2(ε)

and
Fm(t) ≤ Fm(t2)e−

1
2

(t−t2) ≤ εe−
1
2

(t−t2), ∀t ≥ t2. (3.25)

Moreover, from (3.24), (3.22) and (3.19) we have that (ũm,∇vm) is bounded in
L∞(t2,+∞;H1(Ω) × H1(Ω)) ∩ L2(t2,+∞;H2(Ω) × H2(Ω)). Then, using the fact that
(∂tũ

m, ∂t∇vm) is bounded in L2(t2,+∞;L2(Ω) × L2(Ω)), a compactness result of Aubin-
Lions type implies that (ũm,∇vm) is relatively compact in L2(t2, t3;H1(Ω)×H1(Ω)) for all
t3 ≥ t2. Therefore, in particular for some subsequence m′ of m, we have

‖(ũm′(t),∇vm′(t))‖2
1 → ‖(ũ(t),∇v(t))‖2

1, a.e. t ≥ t2,

and using (3.25) we arrive at (3.18).

3.3 Fully Discrete Schemes associated to system (3.1)

In this section, we study the large-time behavior for two fully discrete schemes associated to
model (3.1): the nonlinear backward Euler for model (3.1), and the nonlinear scheme defined
in Chapter 2 by introducing the auxiliary variable σ = ∇v. Along this section we will use
repeatedly the following result (see[6, Lemma 4.1]):

Lemma 3.3.1 Assume that δ, k > 0 and β, dn ≥ 0 satisfy

(1 + δk)dn+1 − dn ≤ βk, ∀n ≥ 0.

Then,
dn ≤ (1 + δk)−(n−n0)dn0 + δ−1β, ∀n ≥ n0 ≥ 0.

3.3.1 Scheme UV

The first scheme that will be studied in this paper is obtained by using FE backward Euler
for the system (3.1) (considered for simplicity a uniform partition of [0, T ] with time step
k = T/N : (tn = nk)n=N

n=0 ). Concerning the space discretization, we consider {Th}h>0 be a
family of shape-regular and quasi-uniform triangulations of Ω made up of simplexes (triangles
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in two dimensions and tetrahedra in three dimensions), so that Ω = ∪K∈ThK, where h =
maxK∈Th hK , with hK being the diameter of K. Further, let Nh = {ai}i∈I denote the set
of all the nodes of Th. We choose finite element spaces for u and v, which we denote by
(Uh, Vh) ⊂ H1×W 1,6 generated by (Pm,P2m)-continuous FE, with m ≥ 1. Then, we consider
the following first order in time, nonlinear and coupled scheme (Scheme UV, from now on):

Initialization: Let (u0
h, v

0
h) ∈ Uh× Vh be a suitable approximation of (u0, v0) ∈ L2(Ω)×

H1(Ω), as h→ 0, with
1

|Ω|

∫
Ω

u0
h =

1

|Ω|

∫
Ω

u0 = m0, and satisfying (3.27) below.

Time step n: Given (un−1
h , vn−1

h ) ∈ Uh × Vh, compute (unh, v
n
h) ∈ Uh × Vh solving{

(δtu
n
h, ūh) + (∇unh,∇ūh) + (unh∇vnh ,∇ūh) = 0, ∀ūh ∈ Uh,

(δtv
n
h , v̄h) + (∇vnh ,∇v̄h) + (vnh , v̄h)− ((unh)2, v̄h) = 0, ∀v̄h ∈ Vh,

(3.26)

where we denote in general δta
n =

an − an−1

k
. For the initial approximation (u0

h, v
0
h) ∈ Uh×Vh

we assume that there exists a positive constant C independent of (k, h) such that

‖(u0
h, v

0
h)‖L2×H1 ≤ C‖(u0, v0)‖L2×H1 . (3.27)

Existence, energy-stability and convergence

Assuming that the functions ūh = 1 ∈ Uh and v̄h = 1 ∈ Vh, we deduce that the scheme UV
conserves the total mass

∫
Ω
unh, that is,∫

Ω

unh =

∫
Ω

un−1
h = · · · =

∫
Ω

u0
h, (3.28)

and we have the following behavior for
∫

Ω
vnh

δt

(∫
Ω

vnh

)
=

∫
Ω

(unh)2 −
∫

Ω

vnh . (3.29)

Theorem 3.3.2 (Unconditional existence) There exists (unh, v
n
h) ∈ Uh × Vh solution of

the scheme UV.
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Proof. The proof follows the argument of Theorem 1.4.3, by using the Leray-Schauder
fixed point theorem.

Let Ah : Vh → Vh be the linear operator defined as follows

(Ahvh, v̄h) = (∇vh,∇v̄h) + (vh, v̄h), ∀v̄h ∈ Vh. (3.30)

Then, the discrete chemical equation (3.26)2 can be rewritten as

(δtv
n
h , v̄h) + (Ahv

n
h , v̄h)− ((unh)2, v̄h) = 0, ∀v̄h ∈ Vh. (3.31)

Moreover, the following estimate holds (see for instance, Lemma 2.3.1):

‖vh‖W 1,6 ≤ C‖Ahvh‖0, ∀vh ∈ Vh, . (3.32)

Lemma 3.3.3 (Unconditional stability) The scheme UV is unconditionally energy-
stable. In fact, if (un, vn) is any solution of UV, then the following discrete energy law
holds

δtE(unh, v
n
h)+

k

2
‖δtunh‖2

0 +
k

4
‖δt∇vnh‖2

0 + ‖∇unh‖2
0 +

1

2
‖(Ah − I)vnh‖2

0 +
1

2
‖∇vnh‖2

0 = 0,(3.33)

where E(unh, v
n
h) =

1

2
‖unh‖2

0 +
1

4
‖∇vnh‖2

0.

Proof. Taking ūh = unh in (3.26)1, v̄h =
1

2
(Ah− I)vnh in (3.31) and using (3.30), we obtain∫

Ω

unh · δtunh + ‖∇unh‖2
0 +

1

2

∫
Ω

∇vnh · δt∇vnh +
1

2
‖(Ah − I)vnh‖2

0 +
1

2
‖∇vnh‖2

0 = 0. (3.34)

To get (3.34), the fact that (unh)2 ∈ Vh is essential (which holds from the choice (Pm,P2m)
approximation for (Uh, Vh)) in order to cancel the terms (unh∇vnh ,∇unh) and

−1
2
((unh)2, (Ah − I)vnh). Moreover, using the formula a(a − b) =

1

2
(a2 − b2) +

1

2
(a − b)2 we

deduce that∫
Ω

unh ·δtunh +
1

2

∫
Ω

∇vnh ·δt∇vnh = δt

(
1

2
‖unh‖2

0 +
1

4
‖∇vnh‖2

0

)
+
k

2
‖δtunh‖2

0 +
k

4
‖δt∇vnh‖2

0. (3.35)

Thus, from (3.34)-(3.35), we deduce (3.33).

From the (local in time) discrete energy law (3.33), we deduce the following global in
time estimates for (unh, v

n
h) solution of the scheme UV:
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Lemma 3.3.4 (Uniform Weak estimates) Let (unh, v
n
h) be a solution of the scheme UV.

Then, the following estimates hold

‖(unh,∇vnh)‖2
0 +k2

n∑
m=1

‖(δtumh , δt∇vmh )‖2
0

+k
n∑

m=1

(
‖∇umh ‖2

0 + ‖∇vmh ‖2
0 + ‖(Ah − I)vmh ‖2

0

)
≤ C0, ∀n ≥ 1, (3.36)

∣∣∣∣∫
Ω

vnh

∣∣∣∣ ≤ C0, ∀n ≥ 0, (3.37)

k

n0+n∑
m=n0+1

‖(umh , vmh )‖2
H1×W 1,6 ≤ C0 + C1(nk), ∀n ≥ 1, (3.38)

where n0 ≥ 0 is any integer and C0, C1 are positive constants depending on the data (u0, v0)
and (Ω, u0, v0) respectively, but independent of (k, h) and (n, n0).

Proof. Multiplying (3.33) by k, summing for m = 1, · · ·, n and using (3.27), we obtain
(3.36). On the other hand, from (3.29) and using (3.36), we have

(1 + k)

∣∣∣∣∫
Ω

vnh

∣∣∣∣− ∣∣∣∣∫
Ω

vn−1
h

∣∣∣∣ ≤ k

∣∣∣∣∫
Ω

(unh)2

∣∣∣∣ = k‖unh‖2
0 ≤ kC0. (3.39)

Then, using Lemma 3.3.1 in (3.39), we deduce∣∣∣∣∫
Ω

vnh

∣∣∣∣ ≤ (1 + k)−n
∣∣∣∣∫

Ω

v0
h

∣∣∣∣+ C0 ≤
∣∣∣∣∫

Ω

v0
h

∣∣∣∣+ C0, ∀n ≥ 0,

which implies (3.37). Finally, from (3.33), summing for m from n0 +1 to n+n0, using (3.32),
(3.36), (3.37) and the Poincaré inequality for the zero-mean value function umh −m0, where

m0 =
1

|Ω|

∫
Ω

u0 =
1

|Ω|

∫
Ω

umh , we have

k

n0+n∑
m=n0+1

‖(umh −m0, v
m
h )‖2

H1×W 1,6 ≤ C0 + C1(nk),

and thus, we deduce (3.38).

Starting from the previous stability estimates, we can prove the convergence towards
weak solutions of (3.1). Concretely, by introducing the functions:
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• (ũh,k, ṽh,k) are continuous functions on [0,+∞), linear on each interval (tn, tn+1) and
equal to (unh, v

n
h) at t = tn, n ≥ 0;

• (urh,k, v
r
h,k) as the piecewise constant functions taking values (unh, v

n
h) on (tn−1, tn], n ≥ 1,

we have the following result:

Theorem 3.3.5 (Convergence) There exist subsequences (k′) of (k) and (h′) of (h), with
k′, h′ ↓ 0, and a weak-strong solution (u, v) of (3.1) in (0,+∞), such that (ũh′,k′ , ṽh′,k′) and
(urh′,k′ , v

r
h′,k′) converge to (u, v) weakly-* in L∞(0,+∞;L2(Ω)×H1(Ω)), weakly in L2(0, T ;H1(Ω)×

W 1,6(Ω)) and strongly in L2(0, T ;L2(Ω)×Lp(Ω))∩C([0, T ];H1(Ω)′×Lq(Ω)), for any T > 0,
1 ≤ p < +∞ and 1 ≤ q < 6.

Remark 3.3.6 Note that, since the positivity of unh cannot be assured, then the positivity of
the limit function u cannot be proven in the 3D case (see Remark 3.2.3).

Proof. Proceeding as in Theorem 1.4.11 (whose proof follows the arguments of [11]), we
can prove that there exist subsequences (k′) of (k) and (h′) of (h), with k′, h′ ↓ 0, and (u, v)
satisfying (3.5), (3.6) and the initial conditions (3.1)4, such that (ũh′,k′ , ṽh′,k′) and (urh′,k′ , v

r
h′,k′)

converge to (u, v) weakly-* in L∞(0,+∞;L2(Ω) × H1(Ω)), weakly in L2(0, T ;H1(Ω) ×
W 1,6(Ω)) and strongly in L2(0, T ;L2(Ω)×Lp(Ω))∩C([0, T ];H1(Ω)′×Lq(Ω)), for any T > 0,
1 ≤ p < +∞ and 1 ≤ q < 6. Moreover, it holds

d

dt

(
1

2
‖ũk′,h′(t)‖2

0 +
1

4
‖∇ṽk′,h′(t)‖2

0

)
+

(tn − t)
2
‖(δtun, δt∇vn)‖2

0

+‖∇urk′,h′(t)‖2
0 +

1

2
‖(Ah − I)vrk′,h′(t)‖2

0 +
1

2
‖∇vrk′,h′(t)‖2

0 = 0.

In order to obtain that (u, v) satisfies the energy inequality (3.7), we need to prove that

lim inf
(k′,h′)→(0,0)

∫ t1

t0

‖(Ah − I)vrk′,h′(t)‖2
0 ≥

∫ t1

t0

‖∆v(t)‖2
0. (3.40)

Taking into account that {(Ah − I)vrk′,h′} is bounded in L2(0, T ;L2(Ω)), we have that there
exists w ∈ L2(0, T ;L2(Ω) such that for some subsequence of (k′, h′), still denoted by (k′, h′),

(Ah − I)vrk′,h′ → w weakly in L2(0, T ;L2(Ω). (3.41)

Therefore, on the one hand, since u2 ∈ L2(0, T ;L3/2(Ω)) ↪→ L2(0, T ;H1(Ω)′), we have

∂tv −∆v + v = u2 in L2(H1)′, (3.42)
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and, on the other hand, using (3.41), we can deduce

∂tv + w + v = u2 in L2(H1)′. (3.43)

Thus, from (3.42)-(3.43), we deduce that w = −∆v in D′(Ω), which implies −∆v ∈
L2(0, T ;L2(Ω)) because of w ∈ L2(0, T ;L2(Ω). Therefore, (u, v) satisfies the regularity
(3.4) and taking into account (3.41), we conclude (3.40). Finally, using (3.40) and arguing
as in the last part of the proof of Theorem 1.4.11, we deduce that (u, v) satisfies the energy
inequality (3.7), and therefore, (u, v) is a weak-strong solution of (3.1).

Large-time behavior of the scheme UV

In this subsection, we will prove exponential bounds for any solution (unh, v
n
h) of the scheme

UV in weak-strong norms. In fact, the next result is the discrete version of Theorem 3.2.4.

Theorem 3.3.7 Let (unh, v
n
h) be a solution of the scheme UV associated to an initial data

(u0
h, v

0
h) ∈ Uh× Vh which is a suitable approximation of (u0, v0) ∈ L2(Ω)×H1(Ω), as h→ 0,

with
1

|Ω|

∫
Ω

u0
h =

1

|Ω|

∫
Ω

u0 = m0. Then,

‖(unh −m0,∇vnh)‖2
0 ≤ C0e

− 2
1+2k

kn, ∀n ≥ 0, (3.44)

‖vnh − (m0)2‖2
0 ≤ C0e

− 1
1+k

kn, ∀n ≥ 0, (3.45)

k
∑
m>n

(
‖ũmh ‖2

1 +
1

2
‖(Ah − I)vnh‖2

0 +
1

2
‖∇vnh‖2

0

)
≤ C0e

− 2
1+2k

kn, ∀n ≥ 0, (3.46)

where C0 is a positive constant depending on the data (u0, v0), but independent of (k, h) and
n.

Proof. Taking ūh = ũnh := unh−m0 in (3.26)1, v̄h =
1

2
(Ah−I)vnh in (3.31) and using (3.28)

and (3.30), we obtain

δt

(1

2
‖ũnh‖2

0 +
1

4
‖∇vnh‖2

0

)
+
k

2
‖δtũnh‖2

0 +
k

4
‖δt∇vnh‖2

0

+‖ũnh‖2
1 +

1

2
‖(Ah − I)vnh‖2

0 +
1

2
‖∇vnh‖2

0 = 0. (3.47)

Again, to get (3.47), the fact that (unh)2 ∈ Vh is essential (which comes from the choice
(Pm,P2m) approximation for (Uh, Vh)) in order to cancel the terms (unh∇vnh ,∇ũnh) and
−1

2
((unh)2, (Ah − I)vnh). Then, from (3.47) we can obtain

(1 + 2k)
(
‖ũnh‖2

0 +
1

2
‖∇vnh‖2

0

)
−
(
‖ũn−1

h ‖2
0 +

1

2
‖∇vn−1

h ‖2
0

)
≤ 0. (3.48)
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Then, applying Lemma 3.3.1 to (3.48), using the inequality 1− x ≤ e−x for all x ≥ 0 as well
as (3.36), we have for all n ≥ 0,

‖ũnh‖2
0 +

1

2
‖∇vnh‖2

0 ≤ (1 + 2k)−n
(
‖ũ0

h‖2
0 +

1

2
‖∇v0

h‖2
0

)
≤ C0

(
1− 2

1 + 2k
k
)n
≤ C0e

− 2
1+2k

kn,

(3.49)
which implies (3.44). Moreover, taking v̄h = ṽnh := vnh − (m0)2 in (3.31), we can deduce

1

2
δt‖ṽnh‖2

0 + ‖ṽnh‖2
1 =

∫
Ω

((unh)2 − (m0)2)ṽnh ,

which, using the Hölder and Young inequalities, implies that

(1 + k)‖ṽnh‖2
0 − ‖ṽn−1

h ‖2
0 ≤ k‖unh +m0‖2

L3‖unh −m0‖2
0. (3.50)

Then, multiplying (3.50) by (1 + k)n−1, summing from n = 1 to n = m and using (3.36)
and (3.49), we deduce

‖ṽmh ‖2
0 ≤ (1 + k)−m‖ṽ0

h‖2
0 + k(1 + k)−m

m∑
n=1

(1 + k)n−1‖unh −m0‖2
0‖unh +m0‖2

L3

≤ C0(1 + k)−m + C0k(1 + k)−m
m∑
n=1

(1 + k)n−1(1 + 2k)−n‖unh +m0‖2
L3

≤ C0(1 + k)−m

[
1 + k

m∑
n=1

‖∇unh‖2
0 +

k

1 + 2k

m∑
n=1

( 1 + k

1 + 2k

)n−1

‖unh +m0‖2
0

]

≤ C0e
− 1

1+k
km

[
1 + C0 + C0

k

1 + 2k

m∑
n=1

( 1 + k

1 + 2k

)n−1
]

≤ C0e
− 1

1+k
km

[
1 + C0 + C0

(
1−

( 1 + k

1 + 2k

)m)]
, ∀m ≥ 0,

from which we arrive at (3.45). Finally, from (3.44) and (3.47), we have that for all n ≥ 0,

k
∑
m>n

(
‖ũmh ‖2

1 +
1

2
‖(Ah − I)vnh‖2

0 +
1

2
‖∇vnh‖2

0

)
≤ ‖(unh −m0,∇vnh)‖2

0 ≤ C0e
− 2

1+2k
kn.
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3.3.2 Scheme US

The second scheme which will be analyzed has been defined and studied in Chapter 2, where
the auxiliary variable σ = ∇v is introduced, and the model (3.1) is rewritten as follows:

∂tu−∇ · (∇u) = ∇ · (uσ) in Ω, t > 0,
∂tσ −∇(∇ · σ) + σ + rot(rot σ) = ∇(u2) in Ω, t > 0,
∂u

∂n
= 0 on ∂Ω, t > 0,

σ · n = 0, [rot σ × n]tang = 0 on ∂Ω, t > 0,

u(x, 0) = u0(x) > 0, σ(x, 0) = ∇v0(x) in Ω.

(3.51)

In fact, (3.51)2 was obtained applying the gradient to equation (3.1)2 and adding the term
rot(rot σ) using the fact that rot σ = rot(∇v) = 0. Once solved (3.51), it is possible to
recover v from u2 solving 

∂tv −∆v + v = u2 in Ω, t > 0,
∂v

∂n
= 0 on ∂Ω, t > 0,

v(x, 0) = v0(x) > 0 in Ω.

(3.52)

Based on the above decomposition, the scheme is obtained by using FE backward Euler
for the system (3.51)-(3.52) (again considered for simplicity on a uniform partition of [0, T ]
with time step k = T/N : (tn = nk)n=N

n=0 ). Concerning the space discretization, we consider
the triangulation as in the scheme UV. We choose finite element spaces for u, σ and v,
which we denote by (Uh,Σh, Vh) ⊂ H1 ×H1

σ ×W 1,6 generated by Pk,Pm,Pr-continuous FE,
with k,m, r ≥ 1. Then, we consider the following first order in time, nonlinear and coupled
scheme (Scheme US, from now on):

Initialization: Let (u0
h,σ

0
h, v

0
h) ∈ Uh×Σh×Vh be a suitable approximation of (u0,σ0, v0),

as h→ 0, with
1

|Ω|

∫
Ω

u0
h =

1

|Ω|

∫
Ω

u0 = m0.

Time step n: Given (un−1
h ,σn−1

h ) ∈ Uh ×Σh, compute (unh,σ
n
h) ∈ Uh ×Σh solving{

(δtu
n
h, ūh) + (∇unh,∇ūh〉+ (unhσ

n
h,∇ūh) = 0, ∀ūh ∈ Uh,

(δtσ
n
h, σ̄h) + (σnh, σ̄) + (∇ · σnh,∇ · σ̄) + (rot σnh, rot σ̄)− 2(unh∇unh, σ̄h) = 0, ∀σ̄h ∈ Σh.

(3.53)

Once solved (3.53), given vn−1
h ∈ Vh we can recover vnh = vnh((unh)2) solving:

(δtv
n
h , v̄h) + (∇vnh ,∇v̄h) + (vnh , v̄h)− ((unh)2, v̄h) = 0, ∀v̄h ∈ Vh. (3.54)
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Known results

The scheme US also conserves the total mass
∫

Ω
unh (satisfying (3.28)), and also has the

behaviour for
∫

Ω
vnh given in (3.29). The existence of (unh,σ

n
h) ∈ Uh × Σh solution of the

scheme US, vnh solution of (3.54), and the unconditional energy-stability of the scheme US
was proved in Chapter 2. In fact, the following discrete energy law holds

δtE(unh,σ
n
h)+

k

2
‖δtunh‖2

0 +
k

4
‖δtσnh‖2

0 + ‖∇unh‖2
0 +

1

2
‖σnh‖2

1 = 0, (3.55)

where E(unh,σ
n
h) = 1

2
‖unh‖2

0 + 1
4
‖σnh‖2

0.

From the (local in time) discrete energy law (3.55), the following global in time weak
estimates for (unh,σ

n
h) are deduced (see Theorem 2.3.9):

‖(unh,σnh)‖2
0 + k2

n∑
m=1

‖(δtumh , δtσmh )‖2
0 + k

n∑
m=1

‖(∇umh ,σmh )‖2
L2×H1 ≤ C0, ∀n ≥ 1,

k

n0+n∑
m=n0+1

‖umh ‖2
1 ≤ C0 + C1(nk), ∀n ≥ 1,

where n0 ≥ 0 is any integer and C0, C1 are positive constants depending on the data
(Ω, u0,σ0), but independent of (k, h) and (n, n0).

Large-time behavior of scheme US

Theorem 3.3.8 Let (unh,σ
n
h) be a solution of the scheme US associated to an initial data

(u0
h,σ

0
h) ∈ Uh×Σh which is a suitable approximation of (u0,σ0) ∈ L2(Ω)×L2(Ω), as h→ 0,

with
1

|Ω|

∫
Ω

u0
h =

1

|Ω|

∫
Ω

u0 = m0. Then,

‖(unh −m0,σ
n
h)‖2

0 ≤ C0e
− 2

1+2k
kn, ∀n ≥ 0, (3.56)

k
∑
m>n

(
‖ũmh ‖2

1 +
1

2
‖σmh ‖2

1

)
≤ C0e

− 2
1+2k

kn, ∀n ≥ 0, (3.57)

where C0 is a positive constant depending on the data (u0,σ0), but independent of (k, h) and
n.

Proof. Taking ūh = ũnh := unh −m0 in (3.53)1, σ̄h =
1

2
σnh in (3.54) and using (3.28), we

obtain

δt

(1

2
‖ũnh‖2

0 +
1

4
‖σnh‖2

0

)
+
k

2
‖δtũnh‖2

0 +
k

4
‖δtσnh‖2

0 + ‖ũnh‖2
1 +

1

2
‖σnh‖2

1 = 0. (3.58)
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Then, from (3.58) we can obtain

(1 + 2k)
(
‖ũnh‖2

0 +
1

2
‖σnh‖2

0

)
−
(
‖ũn−1

h ‖2
0 +

1

2
‖σn−1

h ‖2
0

)
≤ 0. (3.59)

Then, applying Lemma 3.3.1 to (3.59), and proceeding as in (3.49), we arrive at (3.56).
Finally, from (3.56) and (3.58), we have that for all n ≥ 0,

k
∑
m>n

(
‖ũmh ‖2

1 +
1

2
‖σmh ‖2

1

)
≤ ‖(unh −m0,σ

n
h)‖2

0 ≤ C0e
− 2

1+2k
kn.

Corollary 3.3.9 Let vnh = vnh((unh)2) be a solution of (3.54) associated to an initial data
v0
h ∈ Vh which is a suitable approximation of v0 ∈ H1(Ω), as h→ 0. Then (3.45) holds.

Proof. The proof follows as in Theorem 3.3.7.

Now, in order to obtain more regular estimates, we consider the linear operators Ãh :
Uh → Uh and Bh : Σh → Σh defined as follows{

(Ãhuh, ūh) = (∇uh,∇ūh) + (uh, ūh), ∀ūh ∈ Uh,

(Bhσh, σ̄h) = (∇ · σh,∇ · σ̄h) + (rot σh, rot σ̄h) + (σh, σ̄h), ∀σ̄h ∈ Σh.

Then, we rewrite (3.53) as{
(δtu

n
h, ūh) + (Ãhu

n
h, ūh)− (unh, ūh) + (unhσ

n
h,∇ūh) = 0, ∀ūh ∈ Uh,

(δtσ
n
h, σ̄h) + (Bhσ

n
h, σ̄h)− 2(unh∇unh, σ̄h) = 0, ∀σ̄h ∈ Σh.

(3.60)

Moreover, the following estimates hold (see for instance, Lemma 2.3.1):

‖uh‖W 1,6 ≤ C‖Ahuh‖0 ∀uh ∈ Uh, ‖σh‖W 1,6 ≤ C‖Bhσh‖0 ∀σh ∈ Σh.

Theorem 3.3.10 Under hypothesis of Theorem 3.3.8, the following estimate holds

k
∑
m>n

‖(Ãhũmh , Bhσ
m
h )‖2

0 ≤ C

(
1

k
e−

2
1+2k

k(n−1) +
( 1

k2
e−

4
1+2k

k(n−1) + 1
)
e−

2
1+2k

kn

)
, ∀n ≥ 1,

(3.61)
where C is a positive constant independent of (k, h) and n.
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Proof. We define Fn := ‖ũnh‖2
1 + 1

2
‖σnh‖2

1. Then, from (3.57) we have that∑
m>n

Fm ≤
1

k
C0e

− 2
1+2k

kn, ∀n ≥ 0,

which, taking into account that Fm ≥ 0 for all m ∈ N, implies that

Fn ≤
1

k
C0e

− 2
1+2k

k(n−1), ∀n ≥ 1. (3.62)

Now, taking ūh = Ãhũ
n
h and σ̄h = Bhσ

n
h in (3.60), we have

1

2
δt

(
‖(ũnh,σnh)‖2

1

)
+
k

2
‖(δtũnh, δtσnh)‖2

1 + ‖(Ãhũnh, Bhσ
n
h)‖2

0 ≤ ‖ũnh‖2
1 + τ‖(Ãhũnh, Bhσ

n
h)‖2

0

+Cτ‖∇ũnh‖2
L3‖σnh‖2

L6 + Cτ‖ũnh‖2
L6‖∇ · σnh‖2

L3 + Cτ‖∇ũnh‖2
L3‖ũnh‖2

L6 + Cτ (m0)2‖(∇ũnh,∇ · σnh)‖2
0

≤ ‖ũnh‖2
1 + τ‖(Ãhũnh, Bhσ

n
h)‖2

0 + τ‖(∇ũnh,∇ · σnh)‖2
L6 + Cτ‖ũnh‖2

1‖σnh‖4
1 + Cτ‖ũnh‖6

1

+Cτ‖σnh‖2
1‖ũnh‖4

1 + Cτ (m0)2‖(ũnh,σnh)‖2
1. (3.63)

Therefore, taking into account that ‖(uh,σh)‖2
W 1,6 ≤ C‖(Ãhuh, Bhσh)‖2

0 for all (uh,σh) ∈
Uh ×Σh (see Lemma 2.3.1), from (3.63) (choosing τ small enough) we deduce

δt

(
‖(ũnh,σnh)‖2

1

)
+ ‖(Ãhũnh, Bhσ

n
h)‖2

0 ≤ C1

(
‖(ũnh,σnh)‖2

1

)3

+ C2‖(ũnh,σnh)‖2
1. (3.64)

Then, from (3.64), taking into account (3.62) and (3.57), we deduce for all n ≥ 1,

k
∑
m>n

‖(Ãhũmh , Bhσ
m
h )‖2

0 ≤ ‖(ũnh,σnh)‖2
1 + (

1

k2
C2

0C1e
− 4

1+2k
k(n−1) + C2)k

∑
m>n

‖(ũmh ,σmh )‖2
1

≤ 1

k
C0e

− 2
1+2k

k(n−1) +
(
C3

1

k2
e−

4
1+2k

k(n−1) + C4

)
e−

2
1+2k

kn,

from which we conclude (3.61).

Remark 3.3.11 In the case of the scheme UV it is not clear how to obtain one more regular
estimate equivalent to the obtained in Theorem 3.3.10 for the scheme US. In fact, a key step
in the proof of Theorem 3.3.10, is to integrate by parts in the term (unhσ

n
h,∇(Ãhũ

n
h)) arriving

at (∇unh · σnh, Ãhũnh) + (unh∇ · σnh, Ãhũnh), which it is not possible for the scheme UV in the

term (unh∇vnh ,∇(Ãhũ
n
h)), because unh∇vnh does not have a derivative in L2(Ω).
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3.4 Numerical Simulations

In this section we will compare the results of several numerical simulations that we have
carried out using the schemes studied in the paper. We are considering P1-continuous appro-
ximation for unh, σnh and P2-continuous approximation for vnh . Moreover, we have chosen the
2D domain Ω = [0, 2]2 using a structured mesh, and all the simulations are carried out using
FreeFem++ software. The linear iterative method used to approach the nonlinear schemes
US and UV is the Newton Method, and in all the cases, the iterative method stops when
the relative error in L2-norm is less than ε = 10−6.

3.4.1 Positivity

The aim of this subsection is to compare the fully discrete schemes UV and US in terms of
positivity. Theoretically, for both schemes, is not clear the positivity of the variables unh and
vnh . In fact, in some simulations, we obtain numerical results in which unh is negative. For
example, choosing k = 10−5, the initial conditions (see Figure 3.1):

u0=−10xy(2− x)(2− y)exp(−10(y − 1)2 − 10(x− 1)2) + 10.0001

and
v0=200xy(2− x)(2− y)exp(−30(y − 1)2 − 30(x− 1)2) + 0.0001,

and taking meshes in space increasingly thinner (h = 1
10

, h = 1
20

, h = 1
35

and h = 1
75

), we

(a) Initial cell density u0 (b) Initial chemical concentration v0

Figure 3.1: Initial conditions.

obtain that in both schemes, the discrete cell density unh takes negative values for some x ∈ Ω
in some times tn > 0 (see Figures 3.2-3.5). Moreover, as h tends to 0, (a) the behaviour
of both schemes is increasingly similar, and (b) the negative values taken for unh in both
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schemes are closer to 0. This is in accordance with the results obtained in Chapter 1, where
it was proved that the only time-discrete schemes corresponding to the schemes UV and
US are equivalents and have nonnegative solution (un, vn).
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Figure 3.2: Minimum values of unh, with h = 1
10

.

Remark 3.4.1 In the computations, the execution time for the scheme UV is smaller than
the execution time for the scheme US. In fact, the scheme UV is twice faster than the
scheme US.

On the other hand, with respect to the discrete chemical concentration vnh , we observe that
the same behavior is obtained for the minimum of vnh in both schemes. In fact, independently
of h, if v0 is positive, then vh also is positive (we show this behavior in Figure 3.6 for the
case h = 1

35
, but the same holds for the cases h = 1

10
, h = 1

20
and h = 1

75
).

3.4.2 Energy-Stability

In Lemma 3.3.3, the unconditional energy-stability for the scheme UV with respect to the
energy E(u, v) was proved. In fact, if (unh, v

n
h) is any solution of the scheme UV, the following

relation holds

δtE(unh, v
n
h) + ‖∇unh‖2

0 +
1

2
‖(Ah − I)vnh‖2

0 +
1

2
‖∇vnh‖2

0 ≤ 0, ∀n.
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Figure 3.3: Minimum values of unh, with h = 1
20

.

On the other hand, in Chapter 2 it was proved the unconditional energy-stability for
the scheme US with respect to the modified energy E(u,σ). Even more, if (unh,σ

n
h) is any

solution of the scheme US, it holds

δtE(unh,σ
n
h) + ‖∇unh‖2

0 +
1

2
‖σnh‖2

1 ≤ 0, ∀n.

Then, the aim of this subsection is to compare numerically the energy-stability of the schemes
UV and US with respect to the energy E(u, v). Indeed, if we take k = 10−6, h = 1

25
and the

initial conditions

u0=−10xy(2− x)(2− y)exp(−10(y − 1)2 − 10(x− 1)2) + 10.0001

and
v0=20xy(2− x)(2− y)exp(−30(y − 1)2 − 30(x− 1)2) + 0.0001,

we obtain that:

(a) The schemes UV and US satisfy the energy decreasing in time property for the energy
E(u, v), that is, E(unh, v

n
h) ≤ E(un−1

h , vn−1
h ) for all n, see Figure 3.7.

(b) The schemes UV and US satisfy (see Figure 3.8)

RE(unh, v
n
h) := δtE(unh, v

n
h) + ‖∇unh‖2

0 +
1

2
‖(Ah − I)vnh‖2

0 +
1

2
‖∇vnh‖2

0 ≤ 0, ∀n.
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Figure 3.4: Minimum values of unh, with h = 1
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[2] M. Bessemoulin-Chatard and A. Jüngel, A finite volume scheme for a Keller-Segel model
with additional cross-diffusion. IMA J. Numer. Anal. 34 (2014), no. 1, 96–122.

[3] B. Climent-Ezquerra, F. Guillén-González and M.A. Rodŕıguez-Bellido, Stability for
nematic liquid crystals with stretching terms. I nternat. J. Bifur. Chaos Appl. Sci. Engrg.
20 (2010), no. 9, 2937–2942.
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Chapter 4

Energy stable fully discrete schemes
for a chemo-repulsion model with

linear production

4.1 Introduction

Chemotaxis is a biological phenomenon in which the movement of living organisms is in-
duced by a chemical stimulus. The chemotaxis is called attractive when the organisms move
towards regions with higher chemical concentration, while if the motion is towards lower
concentrations, the chemotaxis is called repulsive. In this paper, we study unconditionally
energy stable fully discrete schemes for the following parabolic-parabolic repulsive-productive
chemotaxis model (with linear production term):

∂tu−∆u = ∇ · (u∇v) in Ω, t > 0,
∂tv −∆v + v = u in Ω, t > 0,
∂u

∂n
=
∂v

∂n
= 0 on ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0 in Ω,

(4.1)

in a bounded domain Ω ⊆ Rd, d = 2, 3, with boundary ∂Ω. The unknowns for this model
are u(x, t) ≥ 0, the cell density, and v(x, t) ≥ 0, the chemical concentration. Problem (4.1)
is conservative in u, because the total mass

∫
Ω
u(·, t) remains constant in time, as we can

check integrating equation (4.1)1 in Ω,

d

dt

(∫
Ω

u(·, t)
)

= 0, i.e.

∫
Ω

u(·, t) =

∫
Ω

u0 := m0, ∀t > 0. (4.2)

Problem (4.1) is well-posed [7]: In 3D domains, there exist global in time nonnegative
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weak solutions of model (4.1) in the following sense:

u ∈ Cw([0, T ];L1(Ω)) ∩ L5/4(0, T ;W 1,5/4(Ω)), ∀T > 0,

v ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)) ∩ C([0, T ];L2(Ω)), ∀T > 0,

∂tu ∈ L4/3(0, T ;W 1,∞(Ω)′), ∂tv ∈ L5/3(0, T ;L5/3(Ω)), ∀T > 0,

satisfying the following variational formulation of the u-equation∫ T

0

〈∂tu, ū〉+

∫ T

0

(∇u,∇ū) +

∫ T

0

(u∇v,∇ū) = 0, ∀ū ∈ L4(0, T ;W 1,∞(Ω)), ∀T > 0,

and the v-equation pointwisely

∂tv −∆v + v = u a.e. (t,x) ∈ (0,+∞)× Ω.

Moreover, for 2D domains, there exists a unique classical and bounded in time solution.
A key step of the existence proof in [7] is to establish an energy equality, which in a formal
manner, is obtained as follows: if we consider

F (s) := s(lns− 1) + 1 ≥ 0 ⇒ F ′(s) = ln s ⇒ F ′′(s) = s−1, ∀s > 0,

then multiplying (4.1)1 by F ′(u), (4.1)2 by −∆v, integrating over Ω, using (4.1)3 and adding,
the chemotactic and production terms cancel, and we obtain

d

dt

∫
Ω

(
F (u) +

1

2
|∇v|2

)
dx+

∫
Ω

(
4|∇(
√
u)|2 + |∆v|2 + |∇v|2

)
dx = 0. (4.3)

The aim of this work is to design numerical methods for model (4.1) conserving, at
the discrete level, the mass-conservation and energy-stability properties of the continuous
model (see (4.2)-(4.3), respectively). There are only a few works about numerical analysis for
chemotaxis models. For instance, for the Keller-Segel system (i.e. with chemo-attraction and
linear production), Filbet studied in [9] the existence of discrete solutions and the convergence
of a finite volume scheme. Saito, in [14, 15], proved error estimates for a conservative Finite
Element (FE) approximation. A mixed FE approximation is studied in [12]. In [8], some
error estimates are proved for a fully discrete discontinuous FE method. In the case where
the chemotaxis occurs in heterogeneous medium, in [6] the convergence of a combined finite
volume-nonconforming finite element scheme is studied, and some discrete properties are
proved.

Some previous energy stable numerical schemes have also been studied in the chemotaxis
framework. A finite volume scheme for a Keller-Segel model with an additional cross-diffusion
term satisfying the energy-stablity property (that means, a discrete energy decreases in time)
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has been studied in [5]. Unconditionally energy stable time-discrete numerical schemes and
fully discrete FE schemes for a chemo-repulsion model with quadratic production has been
analyzed in Chapters 1 and 2 of this PhD thesis, respectively. However, as far as we know,
for the chemo-repulsion model with linear production (4.1) there are not works studying
energy-stable schemes. We emphasize that the numerical analysis of energy stability in
the chemo-repulsion model with linear production has greater difficulties than the case of
quadratic production (see Chapters 1 and 2). In fact, in the continuous case of quadratic
production, in order to obtain an energy equality, it is necessary to test the u-equation by u,
and the v-equation by −∆v, which, if we want to move to the fully discrete approximation,
is much easier than the case of linear production in which, as it was said before, the energy
equality is obtained multiplying the u-equation by the nonlinear function F ′(u) = ln u.

In this paper, we propose three unconditional energy stable fully discrete schemes, in
which, in order to obtain rigorously a discrete version of the energy law (4.3), we argue
through a regularization technique. This regularization procedure has been used in previous
works to deal with the test function F ′(u) = ln u in fully discrete approximations, as for
example, for a cross-diffusion competitive population model [3] or a cross-diffusion segre-
gation problem arising from a model of interacting particles [10]. The model that will be
analyzed in this paper differs primarily from these previous works in the fact that, in our
case, the term of self-diffusion in (4.1)1 is ∇ · (∇u) and it is not in the form ∇ · (u∇u) as
in [3, 10], which makes the analysis a bit more difficult. In fact, in the continuous problem,
if we multiply equation (4.1)1 by F ′(u) = ln u, in our case we obtain the dissipative term∫

Ω
1
u
|∇u|2 (which does not provide an estimate for ∇u), while in the cases of [3, 10], it is

obtained
∫

Ω
|∇u|2 which gives directly an estimate for ∇u in L2(Ω).

This chapter is organized as follows: In Section 4.2, we give the notation and define the
regularized functions that will be used in the fully discrete approximations. In Section 4.3, we
study a nonlinear fully discrete FE approximation of (4.1) in the original variables (u, v). We
prove the well-posedness of the numerical approximation, and show the mass-conservation
and energy-stability properties of this scheme by imposing the orthogonality condition on
the mesh (see (H) below). In Section 4.4, we analyze another nonlinear FE approximation
obtained by introducing σ = ∇v as an auxiliary variable, and again, we prove the well-
posedness of the scheme, as well as its mass-conservation and energy-stability properties,
but without imposing the orthogonality condition (H). In Section 4.5, we study a linear
fully discrete FE approximation constructed by mixing the regularization procedure with
the Energy Quadratization (EQ) strategy, in which the energy of the system is transformed
into a quadratic form by introducing new auxiliary variables. This EQ technique has been
applied to different fields such as liquid crystals [2, 19], phase fields [18] (and references
therein) and molecular beam epitaxial growth [16] models, among others. Finally, in Section
4.6, we compare the behavior of the schemes throughout several numerical simulations, and
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provide some conclusions in Section 4.7.

4.2 Notation and preliminary results

First, we recall some functional spaces which will be used throughout this paper. We will
consider the usual Sobolev spaces Hm(Ω) and Lebesgue spaces Lp(Ω), 1 ≤ p ≤ ∞, with
norms ‖ · ‖m and ‖ · ‖Lp , respectively. In particular, the L2(Ω)-norm will be denoted by
‖ · ‖0. Throughout (·, ·) denotes the standard L2-inner product over Ω. We denote by
H1

σ(Ω) := {σ ∈ H1(Ω) : σ · n = 0 on ∂Ω} and we will use the following equivalent norms
in H1(Ω) and H1

σ(Ω), respectively (see [13] and [1, Corollary 3.5], respectively):

‖u‖2
1 = ‖∇u‖2

0 +

(∫
Ω

u

)2

, ∀u ∈ H1(Ω),

‖σ‖2
1 = ‖σ‖2

0 + ‖rot σ‖2
0 + ‖∇ · σ‖2

0, ∀σ ∈H1
σ(Ω),

where rot σ denotes the well-known rotational operator (also called curl) which is scalar
for 2D domains and vectorial for 3D ones. If Z is a general Banach space, its topological
dual space will be denoted by Z ′. Moreover, the letters C,K will denote different positive
constants which may change from line to line (or even within the same line).

In order to construct energy-stable fully discrete schemes for problem (4.1), we are going
to follow a regularization procedure. We will use the approach introduced by Barrett and
Blowey [3]. Let ε ∈ (0, 1) and consider the truncated function λε : R→ [ε, ε−1] given by

λε(s) :=


ε if s ≤ ε,

s if ε ≤ s ≤ ε−1,

ε−1 if s ≥ ε−1.

(4.4)

If we define

F ′′ε (s) :=
1

λε(s)
, (4.5)

then, we can integrate twice in (4.5), imposing the conditions F ′ε(1) = Fε(1) = 0, and we
obtain a convex function Fε : R → [0,+∞), such that Fε ∈ C2,1(R) (see Figure 4.1). Even
more, for ε ∈ (0, e−2), it holds [3]

Fε(s) ≥
ε

2
s2 − 2 ∀s ≥ 0 and Fε(s) ≥

s2

2ε
∀s ≤ 0. (4.6)

Finally, we will use the following result to get large time estimates [11]:
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Figure 4.1: Functions λε and Fε and its derivatives.

Lemma 4.2.1 Assume that δ, β, k > 0 and dn ≥ 0 satisfy

(1 + δk)dn+1 ≤ dn + kβ, ∀n ≥ 0.

Then, for any n0 ≥ 0,

dn ≤ (1 + δk)−(n−n0)dn0 + δ−1β, ∀n ≥ n0.

4.3 Scheme UV

In this section, we propose an energy-stable nonlinear fully discrete scheme (in the variables
(u, v)) associated to model (4.1). With this aim, taking into account the functions λε and
Fε and its derivatives, we consider the following regularized version of problem (4.1): Find
uε, vε : Ω× [0, T ]→ R such that

∂tuε −∆uε −∇ · (λε(uε)∇vε) = 0 in Ω, t > 0,
∂tvε −∆vε + vε = uε in Ω, t > 0,
∂uε
∂n

=
∂vε
∂n

= 0 on ∂Ω, t > 0,

uε(x, 0) = u0(x) ≥ 0, vε(x, 0) = v0(x) ≥ 0 in Ω.

(4.7)
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Remark 4.3.1 The idea is to define a fully discrete scheme associated to (4.7), taking in
general ε = ε(k, h), such that ε(k, h)→ 0 as (k, h)→ 0, where k is the time step and h the
mesh size.

Observe that multiplying (4.7)1 by F ′ε(uε), (4.7)2 by −∆vε, integrating over Ω and adding,
again the chemotactic and production terms cancel, and we obtain the following energy law

d

dt

∫
Ω

(
Fε(uε) +

1

2
|∇vε|2

)
dx+

∫
Ω

(
F ′′ε (uε)|∇uε|2 + |∆vε|2 + |∇vε|2

)
dx = 0.

In particular, the modified energy

Eε(u, v) =

∫
Ω

(
Fε(u) +

1

2
|∇v|2

)
dx

is decreasing in time. Then, we consider a fully discrete approximation using FE in space
and backward Euler in time (considered for simplicity on a uniform partition of [0, T ] with
time step k = T/N : (tn = nk)n=N

n=0 ). Let Ω be a polygonal domain. We consider a shape-
regular and quasi-uniform family of triangulations of Ω, denoted by {Th}h>0, with simplices
K, hK = diam(K) and h := maxK∈Th hK , so that Ω = ∪K∈ThK. Moreover, in this case we
will assume the following hypothesis:

(H) The triangulation is structured in the sense that all simplices have a right angle.

We choose the following continuous FE spaces for u and v:

(Uh, Vh) ⊂ H1(Ω)2, generated by P1,Pm with m ≥ 1.

Remark 4.3.2 The right angled requirement and the choice of P1-continuous FE for Uh are
necessary in order to obtain the relation (4.10) below, which is essential in order to prove
the energy-stability of the scheme UV (see Theorem 4.3.7 below).

Let J be the set of vertices of Th and {aj}j∈J the coordinates of these vertices. We denote
the Lagrange interpolation operator by Πh : C(Ω)→ Uh, and we introduce the discrete semi-
inner product on C(Ω) (which is an inner product in Uh) and its induced discrete seminorm
(norm in Uh):

(u1, u2)h :=

∫
Ω

Πh(u1u2), |u|h =
√

(u, u)h. (4.8)
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Remark 4.3.3 In Uh, the norms | · |h and ‖ · ‖0 are equivalents uniformly with respect to h
(see [4]).

We consider also the L2-projection Qh : L2(Ω)→ Uh given by

(Qhu, ū)h = (u, ū), ∀ū ∈ Uh, (4.9)

and the standard H1-projection Rh : H1(Ω)→ Vh. Moreover, for each ε ∈ (0, 1) we consider
the construction of the operator Λε : Uh → L∞(Ω)d×d given in [3], satisfying that Λεu

h is a
symmetric and positive definite matrix for all uh ∈ Uh and a.e. x in Ω, and the following
relation holds

(Λεu
h)∇Πh(F ′ε(u

h)) = ∇uh in Ω. (4.10)

Basically, Λεu
h is a constant by elements matrix such that (4.10) holds by elements. We

highlight that (4.10) is satisfied due to the right angled constraint (H) and the choice of
P1-continuous FE for Uh. Moreover, the following stability estimate holds [3, 10]

‖Λε(u
h)‖rLr ≤ C(1 + ‖uh‖2

1), ∀uh ∈ Uh (for r = 2(d+ 1)/d), (4.11)

where the constant C > 0 is independent of ε and h.

We recall the result below concerning to Λε(·) (see [3, Lemma 2.1]).

Lemma 4.3.4 Let ‖ · ‖ denote the spectral norm on Rd×d. Then for any given ε ∈ (0, 1) the
function Λε : Uh → [L∞(Ω)]d×d is continuous and satisfies

εξT ξ ≤ ξTΛε(u
h)ξ ≤ ε−1ξT ξ, ∀ξ ∈ Rd, ∀uh ∈ Uh. (4.12)

In particular, for all uh1 , u
h
2 ∈ Uh and K ∈ Th with vertices {aKl }dl=0, it holds

‖(Λε(u
h
1)− Λε(u

h
2))|K‖ ≤ ε−2 max

l=1,...,d
{|uh1(aKl )− uh2(aKl ))|+ |uh1(aK0 )− uh2(aK0 ))|}, (4.13)

where aK0 is the right-angled vertex.

Let Ah : Vh → Vh be the linear operator defined as follows

(Ahv
h, v̄) = (∇vh,∇v̄) + (vh, v̄), ∀v̄ ∈ Vh.

Then, the following estimate holds (see for instance, Lemma 2.3.1):

‖vh‖W 1,6 ≤ C‖Ahvh‖0, ∀vh ∈ Vh. (4.14)

Taking into account the regularized problem (4.7), we consider the following first order
in time, nonlinear and coupled scheme:
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• Scheme UV :

Initialization: Let (u0
h, v

0
h) = (Qhu0, R

hv0) ∈ Uh × Vh.
Time step n: Given (un−1

ε , vn−1
ε ) ∈ Uh × Vh, compute (unε , v

n
ε ) ∈ Uh × Vh solving{

(δtu
n
ε , ū)h + (∇unε ,∇ū) + (Λε(u

n
ε )∇vnε ,∇ū) = 0, ∀ū ∈ Uh,

(δtv
n
ε , v̄) + (Ahv

n
ε , v̄)− (unε , v̄) = 0, ∀v̄ ∈ Vh,

(4.15)

where, in general, we denote δta
n :=

an − an−1

k
.

4.3.1 Mass conservation and Energy-stability

Since ū = 1 ∈ Uh and v̄ = 1 ∈ Vh, we deduce that the scheme UV is conservative in unε , that
is,

(unε , 1) = (unε , 1)h = (un−1
ε , 1)h = ··· = (u0

h, 1)h = (u0
h, 1) = (Qhu0, 1) = (u0, 1) := m0, (4.16)

and we have the following behavior for
∫

Ω
vnε :

δt

(∫
Ω

vnε

)
+

∫
Ω

vnε =

∫
Ω

unε = m0. (4.17)

Lemma 4.3.5 (Estimate of
∣∣∫

Ω
vnε
∣∣) The following estimate holds∣∣∣∣∫

Ω

vnε

∣∣∣∣ ≤ (1 + k)−n
∣∣∣∣∫

Ω

v0

∣∣∣∣+m0, ∀n ≥ 0. (4.18)

Proof. From (4.17) we have (1 + k)
∣∣∫

Ω
vnε
∣∣ − ∣∣∫

Ω
vn−1
ε

∣∣ ≤ k m0, and therefore, applying
Lemma 4.2.1 (for δ = 1 and β = m0), we arrive at∣∣∣∣∫

Ω

vnε

∣∣∣∣ ≤ (1 + k)−n
∣∣∣∣∫

Ω

v0
ε

∣∣∣∣+m0 = (1 + k)−n
∣∣∣∣∫

Ω

Rhv0

∣∣∣∣+m0,

which implies (4.18).

Definition 4.3.6 A numerical scheme with solution (unε , v
n
ε ) is called energy-stable with

respect to the energy

Ehε (u, v) = (Fε(u), 1)h +
1

2
‖∇v‖2

0 (4.19)

if this energy is time decreasing, that is, Ehε (u
n
ε , v

n
ε ) ≤ Ehε (u

n−1
ε , vn−1

ε ) for all n ≥ 1.
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Theorem 4.3.7 (Unconditional stability) The scheme UV is unconditional energy sta-
ble with respect to Ehε (u, v). In fact, if (unε , v

n
ε ) is a solution of UV, then the following discrete

energy law holds

δtE
h
ε (u

n
ε , v

n
ε ) + ε

k

2
‖δtunε‖2

0 +
k

2
‖δt∇vnε ‖2

0 + ε‖∇unε‖2
0 + ‖(Ah − I)vnε ‖2

0 + ‖∇vnε ‖2
0 ≤ 0. (4.20)

Proof. Testing (4.15)1 by ū = Πh(F ′ε(u
n
ε )) and (4.15)2 by v̄ = (Ah − I)vnε , adding

and taking into account that Λε(u
n
ε ) is symmetric as well as (4.10) (which implies that

∇Πh(F ′ε(u
n
ε )) = Λ−1

ε (unε )∇unε ), the terms −(Λε(u
n
ε )∇vnε ,∇Πh(F ′ε(u

n
ε ))) =

−(∇vnε ,Λε(u
n
ε )∇Πh(F ′ε(u

n
ε ))) = −(∇vnε ,∇unε ) and (unε , (Ah−I)vnε ) = (∇unε ,∇vnε ) cancel, and

we obtain

(δtu
n
ε , F

′
ε(u

n
ε ))h +

∫
Ω

(∇unε )T ·Λ−1
ε (unε )·∇unεdx

+δt

(1

2
‖∇vnε ‖2

0

)
+
k

2
‖δt∇vnε ‖2

0 + ‖(Ah − I)vnε ‖2
0 + ‖∇vnε ‖2

0 = 0. (4.21)

Moreover, observe that from the Taylor formula we have

Fε(u
n−1
ε ) = Fε(u

n
ε ) + F ′ε(u

n
ε )(un−1

ε − unε ) +
1

2
F ′′ε (θunε + (1− θ)un−1

ε )(un−1
ε − unε )2,

and therefore,

F ′ε(u
n
ε )δtu

n
ε = δt

(
Fε(u

n
ε )
)

+
k

2
F ′′ε (θunε + (1− θ)un−1

ε )(δtu
n
ε )2. (4.22)

Then, using (4.22) and taking into account that Πh is linear and F ′′ε (s) ≥ ε for all s ∈ R, we
have

(δtu
n
ε , F

′
ε(u

n
ε ))h =

∫
Ω

Πh(δtu
n
ε · F ′ε(unε ))

= δt

(∫
Ω

Πh(Fε(u
n
ε ))
)

+
k

2

∫
Ω

Πh(F ′′ε (θunε + (1− θ)un−1
ε )(δtu

n
ε )2)

≥ δt(Fε(u
n
ε ), 1)h + ε

k

2
|δtunε |2h. (4.23)

Thus, from (4.12), (4.21), (4.23) and Remark 4.3.3, we arrive at (4.20).

Corollary 4.3.8 (Uniform estimates) Assume that (u0, v0) ∈ L2(Ω) × H1(Ω). Let
(unε , v

n
ε ) be a solution of scheme UV. Then, it holds

(Fε(u
n
ε ), 1)h+

1

2
‖vnε ‖2

1+k
n∑

m=1

(
ε‖∇umε ‖2

0 + ‖(Ah − I)vmε ‖2
0 + ‖∇vmε ‖2

0

)
≤ C0, ∀n ≥ 1, (4.24)
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k

n+n0∑
m=n0+1

‖vmε ‖2
W 1,6 ≤ C1(1 + kn), ∀n ≥ 1, (4.25)

where the integer n0 ≥ 0 is arbitrary, with the constants C0, C1 > 0 depending on the data
(Ω, u0, v0), but independent of k, h, n and ε. Moreover, if ε ∈ (0, e−2), the following estimates
hold ∫

Ω

(Πh(unε−))2 ≤ C0ε, and

∫
Ω

|unε | ≤ m0 + C
√
ε, ∀n ≥ 1, (4.26)

where unε− := min{unε , 0} ≤ 0 and the constant C > 0 depends on the data (Ω, u0, v0), but is
independent of k, h, n and ε.

Proof. First, using the inequality s(ln s − 1) ≤ s2 for all s > 0 (which implies Fε(s) ≤
C(s2 + 1) for all s ≥ 0) and taking into account that (u0

h, v
0
h) = (Qhu0, R

hv0), u0 ≥ 0 (and
therefore, u0

h ≥ 0), as well as the definition of Fε, we have

Ehε (u
0
h, v

0
h) =

∫
Ω

Πh(Fε(u
0
h)) +

1

2
‖∇v0

h‖2
0 ≤ C

∫
Ω

Πh((u0
h)

2 + 1) +
1

2
‖∇v0

h‖2
0

≤ C(‖u0
h‖2

0 + ‖∇v0
h‖2

0 + 1) ≤ C(‖u0‖2
0 + ‖v0‖2

1 + 1) ≤ C0, (4.27)

with the constant C0 > 0 depending on the data (Ω, u0, v0), but independent of k, h, n and
ε. Therefore, from the discrete energy law (4.20) and (4.27), we have

Ehε (u
n
ε , v

n
ε ) + k

n∑
m=1

(
ε‖∇umε ‖2

0 + ‖(Ah − I)vmε ‖2
0 + ‖∇vmε ‖2

0

)
≤ Ehε (u

0
h, v

0
h) ≤ C0. (4.28)

Thus, from (4.18) and (4.28) we conclude (4.24). Moreover, adding (4.20) from m = n0 +1 to
m = n+n0, and using (4.14) and (4.24), we deduce (4.25). By other hand, if ε ∈ (0, e−2), from
(4.6)2 and taking into account that Fε(s) ≥ 0 for all s ∈ R, we have 1

2ε
(unε−(x))2 ≤ Fε(u

n
ε (x))

for all unε ∈ Uh; and therefore, using that (Πh(u))2 ≤ Πh(u2) for all u ∈ C(Ω), we have

1

2ε

∫
Ω

(Πh(unε−))2 ≤ 1

2ε

∫
Ω

Πh((unε−)2) ≤
∫

Ω

Πh(Fε(u
n
ε )) ≤ C0,

where in the last inequality (4.24) was used. Thus, we obtain (4.26)1. Finally, considering
unε+ := max{unε , 0} ≥ 0, taking into account that unε = unε+ + unε− and |unε | = unε+ − unε− =
unε − 2unε−, using the Hölder and Young inequalities as well as (4.16) and (4.26)1, we have∫

Ω

|unε | ≤
∫

Ω

Πh|unε | =
∫

Ω

unε − 2

∫
Ω

Πh(unε−) ≤ m0 + C
(∫

Ω

(Πh(unε−))2
)1/2

≤ m0 + C
√
ε,

which implies (4.26)2.
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Remark 4.3.9 The l∞(L1)-norm is the only norm in which unε is bounded independently of
(k, h) and ε (see (4.26)2). However, we can also obtain ε-dependent bounds for unε . In fact,

from (4.6) and taking into account that ε ∈ (0, e−2), we can deduce that
ε

2
s2 ≤ Fε(s) + 2 for

all s ∈ R, which together with (4.24), implies that (
√
ε unε ) is bounded in l∞(L2) ∩ l2(H1).

Remark 4.3.10 (Approximated positivity)

1. From (4.26)1, the following estimate holds

max
n≥0
‖Πh(unε−)‖2

0 ≤ C0ε.

2. Assuming Vh furnished by P1-continuous FE and considering the following approxima-
tion for the v-equation:

(δtv
n
ε , v̄)h + (Ãhv

n
ε , v̄)h − (unε , v̄)h = 0, ∀v̄ ∈ Vh, (4.29)

where Ãh : Vh → Vh is the operator defined by (Ãhvh, v̄)h = (∇vh,∇v̄) + (vh, v̄)h for all
v̄ ∈ Vh, then the unconditional energy-stability also holds and the following estimates
are satisfied

max
n≥0
‖Πh(vnε−)‖2

0 ≤ Cε and k
n∑

m=1

‖Πh(vnε−)‖2
1 ≤ Cε(kn), (4.30)

where the constant C is independent of k, h, n and ε. In fact, testing by v̄ = Πh(vnε−) ∈
Vh in (4.29), taking into account that (∇Πh(vnε+),∇Πh(vnε−)) ≥ 0 (owing to the interior
angles of the triangles or tetrahedra are less than or equal to π/2), and using again
that (Πh(v))2 ≤ Πh(v2) for all v ∈ C(Ω), we have(1

k
+ 1
)
‖Πh(vnε−)‖2

0 +‖∇Πh(vnε−)‖2
0 ≤

∫
Ω

Πh

[(
unε +

1

k
vn−1
ε

)
vnε−

]
≤
∫

Ω

Πh

[(
unε− +

1

k
vn−1
ε−

)
vnε−

]
≤ 1

2

(
1

k
+ 1

)
‖Πh(vnε−)‖2

0 +
1

2
‖Πh(unε−)‖2

0 +
1

2k
‖Πh(vn−1

ε− )‖2
0,

from which, using (4.26)1, we arrive at

1

2

(1

k
+ 1
)
‖Πh(vnε−)‖2

0 + ‖∇Πh(vnε−)‖2
0 ≤

1

2
C0ε+

1

2k
‖Πh(vn−1

ε− )‖2
0. (4.31)

Therefore, if v0
h ≥ 0 (which holds for instance by considering v0

h = R̃hv0, where R̃h

is an average interpolator of Clement or Scott-Zhang type, and using that v0 ≥ 0),
using Lemma 4.2.1 in (4.31), we conclude (4.30)1. Finally, multiplying (4.31) by k
and adding from m = 1 to m = n, and using again that v0

h ≥ 0, we arrive at (4.30)2.
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4.3.2 Well-posedness

In this subsection, we will prove the well-posedness of the scheme UV. We recall that, taking
into account that we remain in finite dimension, all norms are equivalents.

Theorem 4.3.11 (Unconditional existence) There exists at least one solution (unε , v
n
ε )

of the scheme UV.

Proof. We will use the Leray-Schauder fixed point theorem. With this aim, given
(un−1

ε , vn−1
ε ) ∈ Uh × Vh, we define the operator R : Uh × Vh → Uh × Vh by R(ũ, ṽ) = (u, v),

such that (u, v) ∈ Uh × Vh solves the following linear decoupled problem

u ∈ Uh s.t.
1

k
(u, ū)h + (∇u,∇ū) =

1

k
(un−1

ε , ū)h − (Λε(ũ)∇ṽ,∇ū), ∀ū ∈ Uh, (4.32)

v ∈ Vh s.t.
1

k
(v, v̄) + (Ahv, v̄) =

1

k
(vn−1
ε , v̄) + (ũ, v̄), ∀v̄ ∈ Vh. (4.33)

1. R is well defined. Applying the Lax-Milgram theorem to (4.32) and (4.33), we can
deduce that, for each (ũ, ṽ) ∈ Uh × Vh, there exists a unique (u, v) ∈ Uh × Vh solution
of (4.32)-(4.33).

2. Let us now prove that all possible fixed points of λR (with λ ∈ (0, 1]) are bounded. In
fact, observe that if (u, v) is a fixed point of λR, then R(u, v) = ( 1

λ
u, 1

λ
v), and therefore

(u, v) satisfies the coupled system
1

k
(u, ū)h + (∇u,∇ū) + λ(Λε(u)∇v,∇ū) =

λ

k
(un−1

ε , ū)h, ∀ū ∈ Uh,

1

k
(v, v̄) + (Ahv, v̄)− λ(u, v̄) =

λ

k
(vn−1
ε , v̄), ∀v̄ ∈ Vh.

(4.34)

Then, testing (4.34)1 and (4.34)2 by ū = Πh(F ′ε(u)) and v̄ = (Ah − I)v respectively,
proceeding as in Theorem 4.3.7 and taking into account that λ ∈ (0, 1], we obtain

(Fε(u), 1)h +
1

2
‖∇v‖2

0 +k
(
ε‖∇u‖2

0 + ‖(Ah − I)v‖2
0 + ‖∇v‖2

0

)
≤ (Fε(λu

n−1
ε ), 1)h +

λ2

2
‖∇vn−1

ε ‖2
0 ≤ C(un−1

ε , vn−1
ε ),(4.35)

where the last estimate is λ-independent (arguing as in (4.27)). Moreover, procee-
ding as in Lemma 4.3.5 and Corollary 4.3.8 (taking into account (4.35)), we deduce
‖(u, v)‖L1×H1 ≤ C, where the constant C depends on data (Ω, un−1

ε , vn−1
ε , ε), but it is

independent of λ and h.
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3. We prove that R is continuous. Let {(ũl, ṽl)}l∈N ⊂ Uh×Vh ↪→ W 1,∞(Ω)2 be a sequence
such that

(ũl, ṽl)→ (ũ, ṽ) in Uh × Vh as l→ +∞. (4.36)

In particular, since we remain in finite dimension, {(ũl, ṽl)}l∈N is bounded in W 1,∞(Ω)2.
Then, if we denote (ul, vl) = R(ũl, ṽl), we can deduce

1

2k
‖(ul, vl)‖2

0 +
1

2
‖∇ul‖2

0 +
1

2
‖vl‖2

1

≤ 1

2k
‖(un−1

ε , vn−1
ε )‖2

0 + (1 + ‖ũl‖2
1)2/r‖∇ṽl‖2

L∞ + C‖ũl‖2
0 ≤ C,

where in the first inequality (4.11) was used and C is a constant independent of l ∈ N.
Therefore, {(ul, vl) = R(ũl, ṽl)}l∈N is bounded in Uh × Vh ↪→ W 1,∞(Ω)2. Then, there
exists a subsequence of {R(ũl, σ̃l)}l∈N, still denoted by{R(ũl, σ̃l)}l∈N, such that

R(ũl, ṽl)→ (u′, v′) in W 1,∞(Ω)2, as l→ +∞. (4.37)

Then, from (4.36)-(4.37) and using Lemma 4.3.4, a standard procedure allows us to
pass to the limit, as l goes to +∞, in (4.32)-(4.33) (with (ũl, ṽl) and (ul, vl) instead
of (ũ, ṽ) and (u, v) respectively), and we deduce that R(ũ, ṽ) = (u′, v′). Therefore, we
have proved that any convergent subsequence of {R(ũl, ṽl)}l∈N converges to R(ũ, ṽ)
in Uh × Vh, and from uniqueness of R(ũ, ṽ), we conclude that the whole sequence
R(ũl, ṽl)→ R(ũ, ṽ) in Uh × Vh. Thus, R is continuous.

Therefore, the hypotheses of the Leray-Schauder fixed point theorem (in finite dimension)
are satisfied and we conclude that the map R has a fixed point (u, v), that is R(u, v) = (u, v),
which is a solution of the scheme UV.

Lemma 4.3.12 (Conditional uniqueness) If k g(h, ε) < 1 (where g(h, ε) ↑ +∞ as h ↓ 0
or ε ↓ 0), then the solution (unε , v

n
ε ) of the scheme UV is unique.

Proof. Suppose that there exist (un,1ε , vn,1ε ), (un,2ε , vn,2ε ) ∈ Uh × Vh two possible solutions
of the scheme UV. Then, defining u = un,1ε − un,2ε and v = vn,1ε − vn,2ε , we have that
(u, v) ∈ Uh × Vh satisfies, for all (ū, v̄) ∈ Uh × Vh,

1

k
(u, ū)h + (∇u,∇ū) + (Λε(u

n,1
ε )∇v,∇ū) + ((Λε(u

n,1
ε )− Λε(u

n,2
ε ))∇vn,2ε ,∇ū) = 0, (4.38)

1

k
(v, v̄) + (Ahv, v̄) = (u, v̄). (4.39)
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Taking ū = u, v̄ = Ahv in (4.38)-(4.39), adding the resulting expressions and using the fact

that

∫
Ω

u = 0 and the equivalence of the norms ‖ · ‖0 and | · |h in Uh given in Remark 4.3.3,

we obtain

1

k
‖(u,∇v)‖2

0 + ‖(u,Ahv)‖2
H1×L2 ≤ ‖u‖0‖Ahv‖0

+‖Λε(u
n,1
ε )‖L6‖∇v‖L3‖∇u‖0 + ‖Λε(u

n,1
ε )− Λε(u

n,2
ε )‖L∞‖∇vn,2ε ‖0‖∇u‖0

≤ 1

4
‖Ahv‖0 + ‖u‖2

0 +
1

4
‖∇u‖2

0 +
1

4
‖Ahv‖2

0 + C‖Λε(u
n,1
ε )‖4

L6‖∇v‖2
0

+
1

4
‖∇u‖2

0 + ‖Λε(u
n,1
ε )− Λε(u

n,2
ε )‖2

L∞‖∇vn,2ε ‖2
0.

Then, taking into account (4.11), (4.13), (4.24), (4.26)2 and using the inverse inequalities:
‖uh‖2

L6 ≤ C1(h)‖uh‖2
Lr , ‖uh‖2

1 ≤ C2(h)‖uh‖2
L1 and ‖uh‖2

L∞ ≤ C3(h)‖uh‖2
0 for all uh ∈ Uh, we

have

‖(u,∇v)‖2
0 +

k

2
‖(u,Ahv)‖2

H1×L2 ≤ k
(
1 + C‖Λε(u

n,1
ε )‖4

L6

)
‖(u,∇v)‖2

0 + kC0Cε
−2‖u‖2

L∞

≤ k
(
1 + C1(h)2(1 + C2(h))4/r + kC0C3(h)ε−2

)
‖(u,∇v)‖2

0 := k g(h, ε)‖(u,∇v)‖2
0.

Therefore, if k g(h, ε) < 1, we conclude that u = 0, and therefore (from (4.39)) v = 0.

4.4 Scheme US

In this section, we propose another energy-stable nonlinear fully discrete scheme associated
to model (4.1), which is obtained by introducing the auxiliary variable σ = ∇v. In fact,
taking into account the functions λε and Fε and its derivatives (given in (4.4)-(4.5)), another
regularized version of problem (4.1) reads: Find uε : Ω× [0, T ]→ R and σε : Ω× [0, T ]→ Rd

such that

∂tuε −∇ · (λε(uε)∇(F ′ε(uε)))−∇ · (uεσε) = 0 in Ω, t > 0,
∂tσε + rot(rot σε)−∇(∇ · σε) + σε = uε∇(F ′ε(uε)) in Ω, t > 0,
∂uε
∂n

= 0 on ∂Ω, t > 0,

σε · n = 0, [rot σε × n]tang = 0 on ∂Ω, t > 0,

uε(x, 0) = u0(x) ≥ 0, σε(x, 0) = ∇v0(x), in Ω.

(4.40)

This kind of formulation considering σ = ∇v as auxiliary variable has been used in the
construction of numerical schemes for other chemotaxis models (see for instance [17] and
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Chapter 2 of this PhD thesis). Once problem (4.40) is solved, we can recover vε from uε
solving 

∂tvε −∆vε + vε = uε in Ω, t > 0,
∂vε
∂n

= 0 on ∂Ω, t > 0,

vε(x, 0) = v0(x) ≥ 0 in Ω.

(4.41)

Observe that multiplying (4.40)1 by F ′ε(uε), (4.40)2 by σε, and integrating over Ω, we
obtain the following energy law

d

dt

∫
Ω

(
Fε(uε) +

1

2
|σε|2

)
dx+

∫
Ω

λε(uε)|∇(F ′ε(uε))|2dx+ ‖σε‖2
1 = 0.

In particular, the modified energy

Eε(u,σ) =

∫
Ω

(
Fε(u) +

1

2
|σ|2

)
dx

is decreasing in time. Then, we consider a fully discrete approximation of the regularized
problem (4.40) using a FE discretization in space and the backward Euler discretization
in time (again considered for simplicity on a uniform partition of [0, T ] with time step
k = T/N : (tn = nk)n=N

n=0 ). Concerning the space discretization, we consider the triangulation
as in the scheme UV, but in this case without imposing the constraint (H) related with the
right-angles simplices. We choose the following continuous FE spaces for uε, σε, and vε:

(Uh,Σh, Vh) ⊂ H1(Ω)3, generated by P1,Pm,Pr with m, r ≥ 1.

Then, we consider the following first order in time, nonlinear and coupled scheme:

• Scheme US :

Initialization: Let (u0
h,σ

0
h) = (Qhu0, Q̃

h(∇v0)) ∈ Uh ×Σh.

Time step n: Given (un−1
ε ,σn−1

ε ) ∈ Uh ×Σh, compute (unε ,σ
n
ε ) ∈ Uh ×Σh solving{

(δtu
n
ε , ū)h + (λε(u

n
ε )∇Πh(F ′ε(u

n
ε )),∇ū) = −(λε(u

n
ε )σnε ,∇ū), ∀ū ∈ Uh,

(δtσ
n
ε , σ̄) + (Bhσ

n
ε , σ̄) = (λε(u

n
ε )∇Πh(F ′ε(u

n
ε )), σ̄), ∀σ̄ ∈ Σh,

(4.42)

where Qh is the L2-projection on Uh defined in (4.9), Q̃h is the standard L2-projection on
Σh, and the operator Bh is defined as

(Bhσ
n
ε , σ̄) = (rot σnε , rot σ̄) + (∇ · σnε ,∇ · σ̄) + (σnε , σ̄).
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We recall that Πh : C(Ω)→ Uh is the Lagrange interpolation operator, and the discrete semi-
inner product (·, ·)h was defined in (4.8). Once the scheme US is solved, given vn−1

ε ∈ Vh,
we can recover vnε = vnε (unε ) ∈ Vh solving:

(δtv
n
ε , v̄) + (∇vnε ,∇v̄) + (vnε , v̄) = (unε , v̄), ∀v̄ ∈ Vh. (4.43)

Given unε ∈ Uh and vn−1
ε ∈ Vh, Lax-Milgram theorem implies that there exists a unique

vnε ∈ Vh solution of (4.43). The solvability of (4.42) will be proved in Subsection 4.4.2.

4.4.1 Mass conservation and Energy-stability

Observe that the scheme US is also conservative in u (satisfying (4.16)) and also has the
behavior for

∫
Ω
vn given in (4.17).

Definition 4.4.1 A numerical scheme with solution (unε ,σ
n
ε ) is called energy-stable with

respect to the energy

Ehε (u,σ) = (Fε(u), 1)h +
1

2
‖σ‖2

0 (4.44)

if this energy is time decreasing, that is, Ehε (u
n
ε ,σ

n
ε ) ≤ Ehε (u

n−1
ε ,σn−1

ε ) for all n ≥ 1.

Theorem 4.4.2 (Unconditional stability) The scheme US is unconditional energy sta-
ble with respect to Ehε (u,σ). In fact, if (unε ,σ

n
ε ) is a solution of US, then the following

discrete energy law holds

δtE
h
ε (u

n
ε ,σ

n
ε ) + ε

k

2
‖δtunε‖2

0 +
k

2
‖δtσnε‖2

0 +

∫
Ω

λε(u
n
ε )|∇Πh(F ′ε(u

n
ε ))|2dx+ ‖σnε‖2

1 ≤ 0. (4.45)

Proof. Testing (4.42)1 by ū = Πh(F ′ε(u
n
ε )), (4.42)2 by σ̄ = σnε and adding, the terms

(λε(u
n
ε )∇Πh(F ′ε(uε)),σ

n
ε ) cancel, and we obtain

(δtu
n
ε ,Π

h(F ′ε(u
n
ε )))h +

∫
Ω

λε(u
n
ε )|∇Πh(F ′ε(u

n
ε ))|2dx+ δt

(1

2
‖σnε‖2

0

)
+
k

2
‖δtσnε‖2

0 + ‖σnε‖2
1 = 0,

which, proceeding as in (4.22)-(4.23) and using Remark 4.3.3, implies (4.45).

Corollary 4.4.3 (Uniform estimates) Assume that (u0, v0) ∈ L2(Ω) × H1(Ω). Let
(unε ,σ

n
ε ) be a solution of scheme US. Then, it holds

(Fε(u
n
ε ), 1)h + ‖σnε‖2

0 + k

n∑
m=1

(
ε‖∇Πh(F ′ε(u

m
ε ))‖2

0 + ‖σmε ‖2
1

)
≤ C0, ∀n ≥ 1,

with the constant C0 > 0 depending on the data (Ω, u0, v0), but independent of k, h, n and ε.
Moreover, if ε ∈ (0, e−2), estimates (4.26) hold.
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Proof. Proceeding as in (4.27) (using the fact that (u0
h,σ

0
h) = (Qhu0, Q̃

h(∇v0))), we can
deduce that

(Fε(u
0
h), 1)h + ‖σ0

h‖2
0 ≤ C0, (4.46)

where C0 > 0 is a constant depending on the data (Ω, u0, v0), but independent of k, h, n and
ε. Therefore, from the discrete energy law (4.45) and estimate (4.46), we have

(Fε(u
n
ε ), 1)h + ‖σnε‖2

0 + k

n∑
m=1

(
ε‖∇Πh(F ′ε(u

m
ε ))‖2

0 + ‖σmε ‖2
1

)
≤ (Fε(u

0
h), 1)h + ‖σ0

h‖2
0 ≤ C0.

Finally, the estimates given in (4.26) are proved as in Corollary 4.3.8.

Remark 4.4.4 The conclusions obtained in Remark 4.3.9 and the approximated positivity
results established in Remark 4.3.10 remain true for the scheme US.

4.4.2 Well-posedness

Theorem 4.4.5 (Unconditional existence) There exists at least one solution (unε ,σ
n
ε ) of

scheme US.

Proof. We will use the Leray-Schauder fixed point theorem. With this aim, given
(un−1

ε ,σn−1
ε ) ∈ Uh×Σh, we define the operator R : Uh×Σh → Uh×Σh by R(ũ, σ̃) = (u,σ),

such that (u,σ) ∈ Uh ×Σh solves the following linear decoupled problem

u ∈ Uh s.t.
1

k
(u, ū)h =

1

k
(un−1

ε , ū)h − (λε(ũ)∇Πh(F ′ε(ũ)),∇ū)− (λε(ũ)σ̃,∇ū), ∀ū ∈ Uh,
(4.47)

σ ∈ Σh s.t.
1

k
(σ, σ̄) + (Bhσ, σ̄) =

1

k
(σn−1

ε , σ̄) + (λε(ũ)∇Πh(F ′ε(ũ)), σ̄), ∀σ̄ ∈ Σh. (4.48)

1. R is well defined. Applying the Lax-Milgram theorem to (4.47) and (4.48), we can
deduce that, for each (ũ, σ̃) ∈ Uh×Σh, there exists a unique (u,σ) ∈ Uh×Σh solution
of (4.47)-(4.48).

2. Let us now prove that all possible fixed points of λR (with λ ∈ (0, 1]) are bounded.
In fact, observe that if (u,σ) is a fixed point of λR, then (u,σ) satisfies the coupled
system

1

k
(u, ū)h + λ(λε(u)∇Πh(F ′ε(u)),∇ū) + λ(λε(u)σ,∇ū) =

λ

k
(un−1

ε , ū)h, ∀ū ∈ Uh,

1

k
(σ, σ̄) + (Bhσ, σ̄)− λ(λε(u)∇Πh(F ′ε(u)), σ̄) =

λ

k
(σn−1

ε , σ̄), ∀σ̄ ∈ Σh.

(4.49)
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Then, testing (4.49)1 and (4.49)2 by ū = Πh(F ′ε(u)) ∈ Uh and σ̄ = σ ∈ Σh respectively,
proceeding as in Theorem 4.4.2 and taking into account that λ ∈ (0, 1], we obtain

(Fε(u), 1)h +
1

2
‖σ‖2

0 +k
(
ελ‖∇Πh(F ′ε(u))‖2

0 + ‖σ‖2
1

)
≤ (Fε(λu

n−1
ε ), 1)h +

λ2

2
‖σn−1

ε ‖2
0 ≤ C(un−1

ε ,σn−1
ε ), (4.50)

which implies ‖σ‖1 ≤ C (with the constant C > 0 independent of λ). Moreover,
proceeding as in the proof of (4.26) (using (4.50)) we deduce ‖u‖L1 ≤ C, where the
constant C depends on data (Ω, un−1

ε ,σn−1
ε , ε).

3. We prove that R is continuous. Let {(ũl, σ̃l)}l∈N ⊂ Uh ×Σh ↪→ W 1,∞(Ω)×W 1,∞(Ω)
be a sequence such that

(ũl, σ̃l)→ (ũ, σ̃) in Uh ×Σh as l→ +∞. (4.51)

In particular, {(ũl, σ̃l)}l∈N is bounded in W 1,∞(Ω) ×W 1,∞(Ω). Observe that from
(4.51), we have that for h fixed, ũl → ũ in C(Ω); and thus, F ′ε(ũ

l) → F ′ε(ũ) in C(Ω)
since F ′ε is a Lipschitz continuous function. Then, the linearity and continuity of Πh

with respect to C0(Ω)-norm imply that Πh(F ′ε(ũ
l))→ Πh(F ′ε(ũ)) in C(Ω) . Moreover,

if we denote (ul,σl) = R(ũl, σ̃l), we can deduce (recall that ε ≤ λε(s) ≤ ε−1 for all
s ∈ R)

1

2k
‖(ul,σl)‖2

0 +
1

2
‖σl‖2

1 ≤
1

2k
‖(un−1

ε ,σn−1
ε )‖2

0 + C(h, k)ε−2‖σ̃l‖2
L6

+Cε−2‖∇Πh(F ′ε(ũ
l))‖2

0 + C(h, k)ε−2‖∇Πh(F ′ε(ũ
l))‖2

0 ≤ C,

where C is a constant independent of l ∈ N. Therefore, {(ul,σl) = R(ũl, σ̃l)}l∈N
is bounded in Uh × Σh ↪→ W 1,∞(Ω) ×W 1,∞(Ω). Then, since we remain in finite
dimension, there exists a subsequence of {R(ũl, σ̃l)}l∈N, still denoted by{R(ũl, σ̃l)}l∈N,
such that

R(ũl, σ̃l)→ (u′,σ′) in W 1,∞(Ω)×W 1,∞(Ω). (4.52)

Then, from (4.51)-(4.52), a standard procedure allows us to pass to the limit, as l
goes to +∞, in (4.47)-(4.48) (with (ũl, σ̃l) and (ul,σl) instead of (ũ, σ̃) and (u,σ)
respectively), and we deduce that R(ũ, σ̃) = (u′,σ′). Therefore, we have proved that
any convergent subsequence of {R(ũl, σ̃l)}l∈N converges to R(ũ, σ̃) in Uh × Σh, and
from uniqueness of R(ũ, σ̃), we conclude that the whole sequence R(ũl, σ̃l)→ R(ũ, σ̃)
in Uh ×Σh. Thus, R is continuous.

Therefore, the hypotheses of the Leray-Schauder fixed point theorem (in finite dimension)
are satisfied and we conclude that the mapR has a fixed point (u,σ), that isR(u,σ) = (u,σ),
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which is a solution of nonlinear scheme US.

Lemma 4.4.6 (Conditional uniqueness) If k f(h, ε) < 1 (where f(h, ε) ↑ +∞ when
h ↓ 0 or ε ↓ 0), then the solution (unε ,σ

n
ε ) of the scheme US is unique.

Proof. Suppose that there exist (un,1ε ,σn,1ε ), (un,2ε ,σn,2ε ) ∈ Uh ×Σh two possible solutions
of the scheme US. Then, defining u = un,1ε − un,2ε and σ = σn,1ε − σn,2ε , we have that
(u,σ) ∈ Uh ×Σh satisfies

1

k
(u, ū)h +(λε(u

n,1
ε )∇Πh(F ′ε(u

n,1
ε )− F ′ε(un,2ε )),∇ū) + ((λε(u

n,1
ε )− λε(un,2ε ))∇ΠhF ′ε(u

n,2
ε ),∇ū)

+(λε(u
n,1
ε )σ,∇ū) + ((λε(u

n,1
ε )− λε(un,2ε ))σn,2ε ,∇ū) = 0, ∀ū ∈ Uh, (4.53)

1

k
(σ, σ̄) + (Bhσ, σ̄) = (λε(u

n,1
ε )∇Πh(F ′ε(u

n,1
ε )− F ′ε(un,2ε )), σ̄)

+((λε(u
n,1
ε )− λε(un,2ε ))∇ΠhF ′ε(u

n,2
ε ), σ̄), ∀σ̄ ∈ Σh. (4.54)

Taking ū = u, σ̄ = σ in (4.53)-(4.54), adding the resulting expressions and using the fact that∫
Ω

u = 0 as well as Remark 4.3.3, estimates in Corollary 4.4.3 and some inverse inequalities,

we obtain

1

k
‖(u,σ)‖2

0 + ‖σ‖2
1 ≤ ‖λε(un,1ε )‖L∞‖∇Πh(F ′ε(u

n,1
ε )− F ′ε(un,2ε ))‖0‖∇u‖0

+‖λε(un,1ε )− λε(un,2ε )‖L∞‖∇ΠhF ′ε(u
n,2
ε )‖0‖∇u‖0 + ‖λε(un,1ε )‖L∞‖σ‖0‖∇u‖0

+‖λε(un,1ε )− λε(un,2ε )‖L∞‖σn,2ε ‖0‖∇u‖0 + ‖λε(un,1ε )‖L∞‖∇Πh(F ′ε(u
n,1
ε )− F ′ε(un,2ε ))‖0‖σ‖0

+‖λε(un,1ε )− λε(un,2ε )‖L3‖∇ΠhF ′ε(u
n,2
ε )‖0‖σ‖L6

≤ ε−2C(h)‖u‖2
0 + ε−1C(h)‖u‖2

0 +
1

6
‖σ‖0 + ε−2C(h)‖u‖2

0 + C0C(h)‖u‖2
0

+
1

6
‖σ‖0 + ε−4C(h)‖u‖2

0 +
1

6
‖σ‖1 + ε−2C(h)‖u‖2

0,

and therefore,

‖(u,σ)‖2
0 +

k

2
‖σ‖2

1 ≤ k f(h, ε)‖u‖2
0,

where f(h, ε) ↑ +∞ when h ↓ 0 or ε ↓ 0. Thus, if k f(h, ε) < 1, we conclude that
(u,σ) = (0,0).
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4.5 Scheme UZSW

In this section, we propose an energy-stable linear fully discrete scheme associated to model
(4.1). With this aim, we introduce the new variables

zε = F ′ε(uε), σε = ∇vε and wε =
√
Fε(uε) + A, with (A > 0).

Then, a regularized version of problem (4.1) in the variables (uε, zε,σε, wε) is the following:

∂tuε −∇ · (λε(uε)∇zε)−∇ · (uεσε) = 0 in Ω, t > 0,
∂tσε + rot(rot σε)−∇(∇ · σε) + σε = uε∇zε in Ω, t > 0,

∂twε =
1

2
√
Fε(uε) + A

F ′ε(uε) ∂tuε in Ω, t > 0,

zε =
1√

Fε(uε) + A
F ′ε(uε)wε in Ω, t > 0,

∂zε
∂n

= 0 on ∂Ω, t > 0,

σε · n = 0, [rot σε × n]tang = 0 on ∂Ω, t > 0,

uε(x, 0) = u0(x) ≥ 0, σε(x, 0) = ∇v0(x), wε(x, 0) =
√
Fε(u0(x)) + A in Ω,

(4.55)

for all constant A > 0.

Remark 4.5.1 Notice that problems (4.40) and (4.55) are equivalents for all A > 0. In
fact, if (uε,σε) is a solution of the scheme US, then defining zε = F ′ε(uε) and wε =√
Fε(uε) + A, we deduce that (uε, zε,σε, wε) is a solution of the scheme UZSW. Recip-

rocally, if (uε, zε,σε, wε) is a solution of the scheme UZSW, then from ∂twε =
1

2
√
Fε(uε) + A

F ′ε(uε) ∂tuε,

wε|t=0 =
√
Fε(u0) + A,

⇐⇒ wε =
√
Fε(uε) + A

and (4.55)4, we deduce that zε = F ′ε(uε), and therefore, (uε,σε) is a solution of (4.40).

As in the previous section, once solved (4.55), we can recover vε from uε solving (4.41).
Observe that multiplying (4.55)1 by zε, (4.55)2 by σε, (4.55)3 by 2wε, (4.55)4 by ∂tuε,
integrating over Ω and using the boundary conditions of (4.55), we obtain the following
energy law

d

dt

∫
Ω

(
|wε|2 +

1

2
|σε|2

)
dx+

∫
Ω

λε(uε)|∇zε|2dx+ ‖σε‖2
1 = 0.
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In particular, the modified energy

E(w,σ) =

∫
Ω

(
|w|2 +

1

2
|σ|2

)
dx

is decreasing in time. Then, we consider a fully discrete approximation of the regularized
problem (4.55) using a FE discretization in space and a first order semi-implicit discretization
in time (again considered for simplicity on a uniform partition of [0, T ] with time step
k = T/N : (tn = nk)n=N

n=0 ). Concerning the space discretization, we consider the triangulation
as in the scheme US (hence, the constraint (H) related with the right-angles simplices is
not imposed), and we choose the following continuous FE spaces for uε, zε, σε, wε and vε:

(Uh, Zh,Σh,Wh, Vh) ⊂ H1(Ω)5, generated by Pk,Pl,Pm,Pr,Ps with k, l,m, r, s ≥ 1 and k ≤ l.

Remark 4.5.2 The constraint k ≤ l implies Uh ⊆ Zh which will be used to prove the well-
posedness of the scheme UZSW (see Theorem 4.5.6 below).

Then, we consider the following first order in time, linear and coupled scheme:

• Scheme UZSW :

Initialization: Let (u0
h,σ

0
h, w

0
h,ε) = (Qhu0, Q̃

h(∇v0), Q̂h(
√
Fε(u0) + A)) ∈ Uh ×Σh ×

Wh.

Time step n: Given (un−1
ε ,σn−1

ε , wn−1
ε ) ∈ Uh ×Σh ×Wh, compute (unε , z

n
ε ,σ

n
ε , w

n
ε ) ∈

Uh × Zh ×Σh ×Wh solving
(δtu

n
ε , z̄) + (λε(u

n−1
ε )∇znε ,∇z̄) = −(un−1

ε σnε ,∇z̄), ∀z̄ ∈ Zh,
(δtσ

n
ε , σ̄) + (Bhσ

n
ε , σ̄) = (un−1

ε ∇znε , σ̄), ∀σ̄ ∈ Σh,

(δtw
n
ε , w̄) =

(
1

2
√
Fε(u

n−1
ε )+A

F ′ε(u
n−1
ε ) δtu

n
ε , w̄

)
, ∀w̄ ∈ Wh,

(znε , ū) =
(

1√
Fε(u

n−1
ε )+A

F ′ε(u
n−1
ε )wnε , ū

)
, ∀ū ∈ Uh.

(4.56)

Recall that (Bhσ
n
ε , σ̄) := (rot σnε , rot σ̄) + (∇ · σnε ,∇ · σ̄) + (σnε , σ̄) for all σ̄ ∈ Σh, Q

h is

the L2-projection on Uh defined in (4.9), and Q̃h and Q̂h are the standard L2-projections on
Σh and Wh respectively. As in the scheme US, once the scheme UZSW is solved, given
vn−1
ε ∈ Vh, we can recover vnε = vnε (unε ) ∈ Vh solving (4.43).
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4.5.1 Mass conservation and Energy-stability

Observe that the scheme UZSW is also conservative in u (satisfying (4.16)) and also has
the behavior for

∫
Ω
vn given in (4.17).

Definition 4.5.3 A numerical scheme with solution (unε , z
n
ε ,σ

n
ε , w

n
ε ) is called energy-stable

with respect to the energy

E(w,σ) = ‖w‖2
0 +

1

2
‖σ‖2

0 (4.57)

if this energy is time decreasing, that is, E(wnε ,σ
n
ε ) ≤ E(wn−1

ε ,σn−1
ε ) for all n ≥ 1.

Theorem 4.5.4 (Unconditional stability) The scheme UZSW is unconditional energy
stable with respect to E(w,σ). In fact, if (unε , z

n
ε ,σ

n
ε , w

n
ε ) is a solution of UZSW, then the

following discrete energy law holds

δtE(wnε ,σ
n
ε ) + k‖δtwnε ‖2

0 +
k

2
‖δtσnε‖2

0 +

∫
Ω

λε(u
n−1
ε )|∇znε |2 + ‖σnε‖2

1 = 0. (4.58)

Proof. The proof follows taking (z̄, σ̄, w̄, ū) = (znε ,σ
n
ε , 2w

n
ε , δtu

n
ε ) in (4.56).

From the (local in time) discrete energy law (4.58), we deduce the following global in
time estimates for (unε , z

n
ε ,σ

n
ε , w

n
ε ) solution of the scheme UZSW:

Corollary 4.5.5 (Uniform Weak estimates) Assume that (u0, v0) ∈ L2(Ω) × H1(Ω).
Let (unε , z

n
ε ,σ

n
ε , w

n
ε ) be a solution of scheme UZSW. Then, the following estimate holds

‖wnε ‖2
0 + ‖σnε‖2

0 + k
n∑

m=1

(∫
Ω

λε(u
m−1
ε )|∇zmε |2 + ‖σmε ‖2

1

)
≤ C0, ∀n ≥ 1, (4.59)

with the constant C0 > 0 depending on the data (Ω, u0, v0), but independent of k, h, n and ε.

Proof. Proceeding as in (4.27) and taking into account that u0 ≥ 0 and (u0
h,σ

0
h, w

0
h,ε) =

(Qhu0, Q̃
h(∇v0), Q̂h(

√
Fε(u0(x)) + A)), we have that

‖w0
h,ε‖2

0 +
1

2
‖σ0

h‖2
0 = ‖Q̂h(

√
Fε(u0) + A)‖2

0 +
1

2
‖Q̃h(∇v0)‖2

0 ≤
∫

Ω

(Fε(u0) + A) +
1

2
‖∇v0‖2

0

≤ C

∫
Ω

((u0)2 + 1) +
1

2
‖∇v0‖2

0 ≤ C(‖u0‖2
0 + ‖v0‖2

1 + 1) ≤ C0, (4.60)

with the constant C0 > 0 depending on the data (Ω, u0, v0), but independent of k, h, n and
ε. Therefore, multiplying the discrete energy law (4.58) by k, adding from m = 1 to m = n
and using (4.60), we arrive at (4.59).
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4.5.2 Well-posedness

Theorem 4.5.6 (Unconditional unique solvability) There exists a unique (unε , z
n
ε ,σ

n
ε , w

n
ε )

solution of scheme UZSW.

Proof. By linearity of the scheme UZSW, it suffices to prove uniqueness. Suppose
that there exist (unε,1, z

n
ε,1,σ

n
ε,1, w

n
ε,1), (unε,2, z

n
ε,2,σ

n
ε,2, w

n
ε,2) ∈ Uh × Zh ×Σh ×Wh two possible

solutions of UZSW. Then defining u = unε,1 − unε,2, z = znε,1 − znε,2, σ = σnε,1 − σnε,2 and
w = wnε,1 − wnε,2, we have that (u, z,σ, w) ∈ Uh × Zh ×Σh ×Wh satisfies

1
k
(u, z̄) + (λε(u

n−1
ε )∇z,∇z̄) = −(un−1

ε σ,∇z̄), ∀z̄ ∈ Zh,
1
k
(σ, σ̄) + (Bhσ, σ̄) = (un−1

ε ∇z, σ̄), ∀σ̄ ∈ Σh,
1
k
(w, w̄) = 1

2k

(
1√

Fε(u
n−1
ε )+A

F ′ε(u
n−1
ε )u, w̄

)
, ∀w̄ ∈ Wh,

(z, ū) =
(

1√
Fε(u

n−1
ε )+A

F ′ε(u
n−1
ε )w, ū

)
, ∀ū ∈ Uh.

(4.61)

Taking (z̄, σ̄, w̄, ū) = (z,σ, 2w, 1
k
u) in (4.61) and adding, we obtain

2

k
‖w‖2

0 +
1

k
‖σ‖2

0 +

∫
Ω

λε(u
n−1
ε )|∇z|2 + ‖σ‖2

1 = 0.

Taking into account that λε(u
n−1
ε ) ≥ ε, we deduce that (∇z,σ, w) = (0,0, 0), hence

z = C := cte. Moreover, using the fact that w = 0 and z = C, from (4.61)4 we con-
clude that z = 0. Finally, taking z̄ = u in (4.61)1 (which is possible thanks to the choice
Uh ⊆ Zh), since (∇z,σ) = (0,0) we conclude u = 0.

4.6 Numerical simulations

The aim of this section is to compare the results of several numerical simulations using the
schemes derived throughout the paper. We choose the spaces for (u, z,σ, w) generated by
P1-continuous FE. Moreover, we have chosen the 2D domain [0, 2]2 with a structured mesh
(then (H) holds and the scheme UV can be defined), and all the simulations are carried
out using FreeFem++ software. In the comparison, we will also consider the classical
Backward Euler scheme for model (4.1), which is given for the following first order in time,
nonlinear and coupled scheme:

• Scheme BEUV :

Initialization: Let (u0, v0) = (Qhu0, R
hv0) ∈ Uh × Vh.
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Time step n: Given (un−1, vn−1) ∈ Uh × Vh, compute (un, vn) ∈ Uh × Vh solving{
(δtu

n, ū) + (∇un,∇ū) = −(un∇vn,∇ū), ∀ū ∈ Uh,

(δtv
n, v̄) + (Ahv

n, v̄) = (un, v̄), ∀v̄ ∈ Vh.

Remark 4.6.1 The scheme BEUV has not been analyzed in the previous sections because
it is not clear how to prove its energy-stability. In fact, observe that the scheme UV (which
is the “closest” approximation to the scheme BEUV considered in this paper) differs from
the scheme BEUV in the use of the regularized functions Fε, F

′
ε and F ′′ε (see (4.5) and

Figure 4.1) and in the approximation of cross-diffusion term (u∇v,∇ū), which are crucial
for the proof of the energy-stability of the scheme UV.

The linear iterative methods used to approach the solutions of the nonlinear schemes
UV, US and BEUV are the following Picard methods, in which, we denote (unε , v

n
ε ,σ

n
ε ) :=

(un, vn,σn).

(i) Picard method to approach a solution (un, vn) of the scheme UV

Initialization (l = 0): Set (u0, v0) = (un−1, vn−1) ∈ Uh × Vh.
Algorithm: Given (ul, vl) ∈ Uh × Vh, compute (ul+1, vl+1) ∈ Uh × Vh such that{

1
k
(ul+1, ū)h + (∇ul+1,∇ū) = 1

k
(un−1, ū)h − (Λε(u

l)∇vl+1,∇ū), ∀ū ∈ Uh,
1
k
(vl+1, v̄) + (Ahv

l+1, v̄) = 1
k
(vn−1, v̄) + (ul, v̄), ∀v̄ ∈ Vh,

until the stopping criteria max

{
‖ul+1 − ul‖0

‖ul‖0

,
‖vl+1 − vl‖0

‖vl‖0

}
≤ tol.

(ii) Picard method to approach a solution (un,σn) of the scheme US

Initialization (l = 0): Set (u0,σ0) = (un−1,σn−1) ∈ Uh ×Σh.

Algorithm: Given (ul,σl) ∈ Uh ×Σh, compute (ul+1,σl+1) ∈ Uh ×Σh such that
1
k
(ul+1, ū)h + (∇(ul+1,∇ū)− (∇ul,∇ū)

= 1
k
(un−1, ū)h − (λε(u

l)∇Πh(F ′ε(u
l)),∇ū)− (λε(u

l)σl+1,∇ū), ∀ū ∈ Uh,
1
k
(σl+1, σ̄) + 〈Bσl+1, σ̄〉 = 1

k
(σn−1, σ̄) + (λε(u

l)∇Πh(F ′ε(u
l)), σ̄), ∀σ̄ ∈ Σh,

until the stopping criteria max

{
‖ul+1 − ul‖0

‖ul‖0

,
‖σl+1 − σl‖0

‖σl‖0

}
≤ tol. Note that a resi-

dual term (∇(ul+1 − ul),∇ū) is considered.
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(iii) Picard method to approach a solution (un, vn) of the scheme BEUV

Initialization (l = 0): Set (u0, v0) = (un−1, vn−1) ∈ Uh × Vh.
Algorithm: Given (ul, vl) ∈ Uh × Vh, compute (ul+1, vl+1) ∈ Uh × Vh such that{

1
k
(ul+1, ū) + (∇ul+1,∇ū) = 1

k
(un−1, ū)− (ul∇vl+1,∇ū), ∀ū ∈ Uh,

1
k
(vl+1, v̄) + (Ahv

l+1, v̄) = 1
k
(vn−1, v̄) + (ul, v̄), ∀v̄ ∈ Vh,

until the stopping criteria max

{
‖ul+1 − ul‖0

‖ul‖0

,
‖vl+1 − vl‖0

‖vl‖0

}
≤ tol.

Remark 4.6.2 In all cases, first we compute vl+1 (resp. σl+1) solving the v-equation (resp.
σ-system) and then, inserting vl+1 (resp. σl+1) in u-equation, we compute ul+1.

4.6.1 Positivity of un

In this subsection, we compare the positivity of the variable un ∈ Uh in the four schemes.
Here, we choose the space Vh generated by P2-continuous FE. We recall that for the three
schemes studied in this paper, namely schemes UV, UZSW and US, it is not clear the
positivity of the variable un. Moreover, for the schemes UV and US, it was proved that
Πh(unε−)→ 0 in L2(Ω) as ε→ 0 (see Remarks 4.3.10 and 4.4.4); while for the scheme UZSW
this fact is not clear. For this reason, in Figures 4.3-4.5 we compare the positivity of the
variable unε in the schemes, taking ε = 10−3, ε = 10−5 and ε = 10−8. In the scheme UZSW
we fix A = 1 (and thus, Fε(s) + A ≥ 1 for all s ∈ R). We consider the time step k = 10−5,
the tolerance parameter for the linear iterative methods tol = 10−4 and the initial conditions
(see Figure 4.2)

u0=−10xy(2− x)(2− y)exp(−10(y − 1)2 − 10(x− 1)2) + 10.0001,

v0=100xy(2− x)(2− y)exp(−30(y − 1)2 − 30(x− 1)2) + 0.0001.

Note that u0, v0 > 0 in Ω, min(u0) = u0(1, 1) = 0.0001 and max(v0) = v0(1, 1) =
100.0001. Moreover, for the schemes UV and UZSW we take the mesh size h = 1

40
, while

for the scheme US it was necessary to take h = 1
80

, because for thicker meshes we had
convergence problems of the iterative method.

In the case of the schemes UV and US, we observe that although unε is negative for some
x ∈ Ω in some times tn > 0, when ε → 0 these values are closer to 0; while in the case of
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(a) Initial cell density u0 (b) Initial chemical concentration v0

Figure 4.2: Initial conditions.

the scheme UZSW, this same behavior is not observed (see Figures 4.3-4.5). Finally, in the
case of the scheme BEUV (see Figure 4.6), we have also observed negative values for the
minimum of un in some times tn > 0, with more negative values than in the schemes UV
and US.

Remark 4.6.3 In Figures 4.3 and 4.5 there are also negative values of minimum of unε for
ε = 10−5 and ε = 10−8, but those are of order 10−4 and 10−7 respectively in both figures.

4.6.2 Energy stability

In this subsection, we compare numerically the stability of the schemes UV, UZSW, US
and BEUV with respect to the “exact” energy

Ee(u, v) =

∫
Ω

F0(u(x))dx+
1

2
‖∇v‖2

0, (4.62)

where

F0(u) := F (u+) =

{
1, if u ≤ 0,
uln(u)− u+ 1, if u > 0.

It was proved that the schemes UV, UZSW and US are unconditionally energy-stables
with respect to modified energies obtained in terms of the variables of each scheme. Even
more, some energy inequalities are satisfied (see Theorems 4.3.7, 4.4.2 and 4.5.4). However,
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Figure 4.3: Minimum values of unε computed using the scheme UV.

it is not clear how to prove the energy-stability of these schemes with respect to the “exact”
energy Ee(u, v) given in (4.62), which comes from the continuous problem (4.1) (see (4.3)).
Therefore, it is interesting to compare numerically the schemes with respect to this energy
Ee(u

n, vn), and to study the behaviour of the corresponding discrete residual of the energy
law (4.3):

REe(u
n, vn) := δtEe(u

n, vn) + 4

∫
Ω

|∇
√
un+|2dx+ ‖(Ah − I)vn‖2

0 + ‖∇vn‖2
0. (4.63)

1. First test: We consider k = 10−3, h = 1
40

, tol = 10−4 and the initial conditions (see
Figure 4.7)

u0 = 7w + 7.0001 and v0 = −7w + 7.0001,

where w := cos(2πx)cos(2πy). We choose Vh generated by P2-continuous FE. Then, we
obtain that:

(i) The scheme BEUV satisfies the energy decreasing in time property for the exact
energy Ee(u, v), that is,

Ee(u
n, vn) ≤ Ee(u

n−1, vn−1) ∀n. (4.64)

Its behaviour can be observed in Figure 4.8. The same behaviour is obtained for the
schemes UV and US independently of the choice of ε. In the case of the scheme
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Figure 4.4: Minimum values of unε computed using the scheme UZSW.

UZSW, this property (4.64) is not satisfied for any value of ε. Indeed, increasing
energies are obtained for different values of ε (see Figure 4.9).

(ii) The scheme BEUV satisfies the discrete energy inequalityREe(u
n, vn) ≤ 0 forREe(u

n, vn)
defined in (4.63) (see Figure 4.10). The same is observed for the schemes UV and US
independently of the choice of ε. In the case of the scheme UZSW, it is observed that
this discrete energy inequality is not satisfied for any value of ε. Indeed, the residual
REe(u

n
ε , v

n
ε ) obtained for each ε reaches very large positive values (see Figure 4.11).

2. Second test: We consider k = 10−5, h = 1
20

, tol = 10−4 and the initial conditions

u0 = 14w + 14.0001 and v0 = −14w + 14.0001,

with the function w as before. Now, we choose the space Vh generated by P1-continuous FE.
Then, we obtain that:

(i) The schemes BEUV, UV and US satisfy the energy decreasing in time property
(4.64), independently of the choice of ε.

(ii) The schemes UV and US satisfy the discrete energy inequality REe(u
n
ε , v

n
ε ) ≤ 0,

independently of the choice of ε; while the scheme BEUV have RE(un, vn) > 0 for
some n ≥ 0 (see Figure 4.12).
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Figure 4.5: Minimum values of unε computed using the scheme US.

4.7 Conclusions

In this paper we have developed three new mass-conservative and unconditionally energy-
stable fully discrete FE schemes for the chemorepulsion production model (4.1), namely UV,
US and UZSW. From the theoretical point of view we have obtained:

(i) The well-posedness of the numerical schemes (with conditional uniqueness for the non-
linear schemes UV and US).

(ii) The nonlinear scheme UV is unconditional energy-stable with respect to the energy
Ehε (u, v) given in (4.19), under the constraint (H) on the space triangulation related
with the right-angles and assuming that Uh is approximated by P1-continuous FE.

(iii) The nonlinear scheme US and the linear scheme UZSW are unconditional energy-
stables with respect to the modified energies Ehε (u,σ) (given in (4.44)) and E(w,σ)
(given in (4.57)) respectively, without the constraint on the triangulation related with
the right-angles simplices and assuming that Uh can be approximated by P1-continuous
and Pk-continuous FE respectively, for any k ≥ 1.

(iv) It is not clear how to prove the energy-stability of the nonlinear scheme BEUV with
respect to the energy Ee(u, v) (given in (4.62)) or some modified energy (see Remark
4.6.1).
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(v) In the schemes UV and US there is a control for Πh(unε−) in L2-norm, which tends to
0 as ε → 0. This allows to conclude the nonnegativity of the solution unε in the limit
when ε→ 0. This property is not clear for the linear scheme UZSW.

On the other hand, from the numerical simulations, we can conclude:

(i) There are initial conditions for which the scheme UZSW is not energy stable with
respect to the energy Ee(u, v), that is, the decreasing in time property (4.64) is not
satisfied for any value of ε. Indeed, time increasing energies are obtained for different
values of ε.

(ii) For the three compared nonlinear schemes (UV, US and BEUV), only the scheme
US has convergence problems for the linear iterative method. However, these problems
are overcomed considering thinner meshes.

(iii) The schemes UV and US have decreasing in time energy Ee(u, v), independently of
the choice of ε. In fact, the discrete energy inequality REe(u

n
ε , v

n
ε ) ≤ 0 is satisfied in

all cases, for REe(u
n
ε , v

n
ε ) defined in (4.63).

(iv) The scheme BEUV has decreasing in time energy Ee(u, v), but the discrete energy
inequality REe(u

n, vn) ≤ 0 is not satisfied for some n ≥ 0.
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(a) Initial cell density u0 (b) Initial chemical concentration v0

Figure 4.7: Initial conditions.

(v) Finally, it was observed numerically that, for the schemes UV and US, unε− → 0 as
ε→ 0; while for the scheme UZSW this behavior was not observed.
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In the previous figure: on the bottom, scheme US (for ε = 10−3, 10−5, 10−8); in the middle,
scheme UV (for ε = 10−3, 10−5, 10−8); and on the top, scheme BEUV.
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[13] J. Necas, Les Méthodes Directes en Théorie des Equations Elliptiques. Editeurs
Academia, Prague (1967).

[14] N. Saito, Conservative upwind finite-element method for a simplified Keller-Segel system
modelling chemotaxis. IMA J. Numer. Anal. 27 (2007), no. 2, 332–365.

[15] N. Saito, Error analysis of a conservative finite-element approximation for the Keller-
Segel system of chemotaxis. Commun. Pure Appl. Anal. 11 (2012), no. 1, 339–364.

[16] X. Yang, J. Zhao and Q. Wang, Numerical approximations for the molecular beam
epitaxial growth model based on the invariant energy quadratization method. Journal
of Computational Physics 333 (2017), 102–127.

[17] J. Zhang, J. Zhu and R. Zhang, Characteristic splitting mixed finite element analysis
of Keller-Segel chemotaxis models. Appl. Math. Comput. 278 (2016), 33–44.

[18] J. Zhao, X. Yang, Y. Gong, X. Zhao, J. Li, X. Yang and Q. Wang, A General Strategy for
Numerical Approximations of Thermodynamically Consistent Nonequilibrium Models–
Part I: Thermodynamical Systems. International Journal of Numerical Analysis and
Modeling, accepted (2018).

[19] J. Zhao, X. Yang, Y. Gong and Q. Wang. A novel linear second order unconditionally
energy-stable scheme for a hydrodynamic Q tensor model for liquid crystals. Computer
Methods in Applied Mechanics and Engineering 318 (2017), 803–825.

142



Chapter 5

On a chemo-repulsion model with
nonlinear production: The continuous

problem and unconditionally energy
stable fully discrete schemes

5.1 Introduction

Chemotaxis is the biological process of the movement of living organisms in response to a
chemical stimulus, which can be given towards a higher (chemo-attraction) or lower (chemo-
repulsion) concentration of a chemical substance. At the same time, the presence of living
organisms can produce or consume chemical substance. A repulsive-productive chemotaxis
model can be given by the following parabolic PDE’s system:{

∂tu−∆u = ∇ · (u∇v) in Ω, t > 0,
∂tv −∆v + v = f(u) in Ω, t > 0,

where Ω ⊆ Rd, d = 2, 3, is a bounded domain with boundary ∂Ω. The unknowns for
this model are u(x, t) ≥ 0, the cell density, and v(x, t) ≥ 0, the chemical concentration.
Moreover, f(u) ≥ 0 (if u ≥ 0) is the production term. In this paper, we consider the
particular case in which f(u) = up, with 1 < p < 2, and then we focus on the following
initial-boundary problem:

∂tu−∆u = ∇ · (u∇v) in Ω, t > 0,
∂tv −∆v + v = up in Ω, t > 0,
∂u

∂n
=
∂v

∂n
= 0 on ∂Ω, t > 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0 in Ω.

(5.1)
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In the case of linear (p = 1) and quadratic (p = 2) production terms, the problem
(5.1) is well-posed (see [7] and Chapter 1 of this PhD thesis, respectively) in the following
sense: there exist global in time weak solutions (based on an energy inequality) and, for 2D
domains, there exists a unique global in time strong solution. However, as far as we know,
there are not works studying problem (5.1) with production up, with 1 < p < 2.

Problem (5.1) is conservative in u, because the total mass
∫

Ω
u(·, t) remains constant in

time, as we can check integrating equation (5.1)1 in Ω,

d

dt

(∫
Ω

u(·, t)
)

= 0, i.e.

∫
Ω

u(·, t) =

∫
Ω

u0 := m0, ∀t > 0. (5.2)

The first aim of this work is to study the existence of weak-strong solutions for problem
(5.1) (in the sense of Definition 5.3.1 below), satisfying in particular the energy inequality
(5.8) below. The second aim of this work is to design numerical methods for model (5.1)
conserving, at the discrete level, the mass-conservation and energy-stability properties of the
continuous model (see (5.2) and (5.8), respectively).

There are only a few works about numerical analysis for chemotaxis models. For ins-
tance, for the Keller-Segel system (i.e. with chemo-attraction and linear production), in
[9] Filbet proved the existence of discrete solutions and the convergence of a finite volume
scheme. Saito, in [16, 17], studied error estimates for a conservative Finite Element (FE)
approximation. In [8], some error estimates are proved for a fully discrete discontinuous FE
method, and a mixed FE approximation is studied in [14].

Energy stable numerical schemes have been also studied in the chemotaxis framework. An
energy-stable finite volume scheme for a Keller-Segel model with an additional cross-diffusion
term has been studied in [6]. In Chapters 1 and 2 of this PhD thesis, unconditionally energy
stable time-discrete numerical schemes and fully discrete FE schemes for a chemo-repulsion
model with quadratic production have been analyzed. Unconditionally energy stable fully
discrete FE schemes for a chemo-repulsion model with linear production has been studied
in Chapter 4. However, as far as we know, for the chemo-repulsion model with production
term up (5.1) there are not works studying energy-stable numerical schemes.

This chapter is organized as follows: In Section 5.2, we give the notation and some
preliminary results that will be used throughout the paper. In Section 5.3, we prove the
existence of weak-strong solutions of model (5.1) (in the sense of Definition 5.3.1 below)
by using a regularization technique. In Section 5.4, we propose three fully discrete FE
nonlinear approximations of problem (5.1), where the first one is defined in the variables
(u, v), and the second and third ones introduce σ = ∇v as an auxiliary variable. We prove
some unconditional properties such as mass-conservation, energy-stability and solvability of
the schemes. In Section 5.5, we compare the behavior of the schemes throughout several
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numerical simulations; and in Section 5.6, the main conclusions obtained in this paper are
sumarized.

5.2 Notation and preliminary results

We recall some functional spaces which will be used throughout this paper. We will consider
the usual Lebesgue spaces Lq(Ω), 1 ≤ q ≤ ∞, with norm ‖ · ‖Lq . In particular, the L2(Ω)-
norm will be denoted by ‖ ·‖0. From now on, (·, ·) will denote the standard L2-inner product
over Ω. We also consider the usual Sobolev spaces Wm,p(Ω) = {u ∈ Lp(Ω) : ‖∂αu‖Lp <
+∞, ∀|α| < m}, for a multi-index α and m ∈ N, with norm denoted by ‖ · ‖Wm,p . In the
case when p = 2, we denote Hm(Ω) := Wm,2(Ω), with respective norm ‖ · ‖m. Moreover, we
denote by

H1
σ(Ω) := {σ ∈H1(Ω) : σ · n = 0 on ∂Ω},

Wm,p
n (Ω) :=

{
u ∈ Wm,p(Ω) :

∂u

∂n
= 0 on ∂Ω

}
,

and we will use the following equivalent norms in H1(Ω) and H1
σ(Ω), respectively (see [15]

and [2, Corollary 3.5], respectively):

‖u‖2
1 = ‖∇u‖2

0 +

(∫
Ω

u

)2

, ∀u ∈ H1(Ω),

‖σ‖2
1 = ‖σ‖2

0 + ‖rot σ‖2
0 + ‖∇ · σ‖2

0, ∀σ ∈H1
σ(Ω), (5.3)

where rot σ denotes the well-known rotational operator (also called curl) which is scalar for
2D domains and vectorial for 3D ones. In particular, (5.3) implies that, for all σ = ∇v ∈
H1

σ(Ω),
‖∇v‖2

1 = ‖∇v‖2
0 + ‖∆v‖2

0. (5.4)

If Z is a general Banach space, its topological dual space will be denoted by Z ′. Moreover,
the letters C,K will denote different positive constants which may change from line to line.

We will use the following results:

Theorem 5.2.1 ([10]) Let 1 < q < +∞ and suppose that f ∈ Lq(0, T ;Lq(Ω)), u0 ∈
Ŵ 2− 2

q
,q(Ω), where

Ŵ 2− 2
q
,q(Ω) :=

{
W 2− 2

q
,q(Ω) if 1− 2

q
− 1

q
< 0,

W
2− 2

q
,q

n (Ω) if 1− 2
q
− 1

q
> 0.

145



Then, the problem 
∂tu−∆u = f in Ω, t > 0,
∂u

∂n
= 0 on ∂Ω, t > 0,

u(x, 0) = u0(x) in Ω,

admits a unique solution u in the class

u ∈ Lq(0, T ;W 2,q(Ω)) ∩ C([0, T ]; Ŵ 2− 2
q
,q(Ω)), ∂tu ∈ Lq(0, T ;Lq(Ω)).

Moreover, there exists a positive constant C = C(q,Ω, T ) such that

‖u‖
C(0,T ;Ŵ

2− 2
q ,q(Ω))

+‖∂tu‖Lq(0,T ;Lq(Ω))+‖u‖Lq(0,T ;W 2,q(Ω)) ≤ C(‖f‖Lq(0,T ;Lq(Ω))+‖u0‖
Ŵ

2− 2
q ,q(Ω)

).

Proposition 5.2.2 ([1]) Let X be a Banach space, Ω ⊆ X an open subset, U ⊆ Ω a
nonempty convex subset and J : Ω→ R a functional. Suppose that J is G−differentiable in
Ω. Then, J is convex over U if and only if the following relation holds

J(x1)− J(x2) ≤ δJ(x1, x1 − x2), ∀x1, x2 ∈ U, x1 6= x2. (5.5)

Finally, we will use the following result to get large time estimates [13]:

Lemma 5.2.3 Assume that δ, β, k > 0 and dn ≥ 0 satisfy

(1 + δk)dn+1 ≤ dn + kβ, ∀n ≥ 0.

Then, for any n0 ≥ 0,

dn ≤ (1 + δk)−(n−n0)dn0 + δ−1β, ∀n ≥ n0.

5.3 Analysis of the continuous model

In this section, we will prove the existence of weak-strong solutions of problem (5.1) in the
sense of the following definition.
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Definition 5.3.1 (Weak-strong solutions of (5.1)) Let 1 < p < 2. Given (u0, v0) ∈
Lp(Ω)×H1(Ω) with u0 ≥ 0, v0 ≥ 0 a.e. in Ω, a pair (u, v) is called weak-strong solution of
problem (5.1) in (0,+∞), if u ≥ 0, v ≥ 0 a.e. in (0,+∞)× Ω,

u ∈ L∞(0,+∞;Lp(Ω)) ∩ L
5p
p+3 (0, T ;W 1, 5p

p+3 (Ω)), ∀T > 0,

v ∈ L∞(0,+∞;H1(Ω)) ∩ L2(0, T ;H2(Ω)), ∀T > 0,

∂tu ∈ L
10p
3p+6 (0, T ;W 1, 10p

7p−6 (Ω)′), ∂tv ∈ L
5
3 (0, T ;L

5
3 (Ω)), ∀T > 0,

the following variational formulation for the u-equation holds∫ T

0

〈∂tu, ū〉+

∫ T

0

(∇u,∇ū) +

∫ T

0

(u∇v,∇ū) = 0, ∀ū ∈ L
10p
7p−6 (0, T ;W 1, 10p

7p−6 (Ω)), ∀T > 0,

(5.6)
the v-equation holds pointwisely

∂tv −∆v + v = up a.e. (t,x) ∈ (0,+∞)× Ω, (5.7)

the boundary condition
∂v

∂n
= 0 and the initial conditions (5.1)4 are satisfied and the following

energy inequality (in integral version) holds for a.e. t0, t1 with t1 ≥ t0 ≥ 0:

E(u(t1), v(t1))− E(u(t0), v(t0)) +

∫ t1

t0

(
4

p
‖∇(up/2(s))‖2

0 + ‖∇v(s)‖2
1

)
ds ≤ 0, (5.8)

where

E(u, v) =
1

p− 1
‖u‖pp +

1

2
‖∇v‖2

0. (5.9)

Observe that any weak-strong solution of (5.1) is conservative in u (see (5.2)). In addition,
integrating (5.1)2 in Ω, we deduce

d

dt

(∫
Ω

v

)
+

∫
Ω

v =

∫
Ω

up. (5.10)

5.3.1 Regularized problem

In order to prove the existence of weak-strong solution of problem (5.1) in the sense of
Definition 5.3.1, we introduce the following regularized problem associated to model (5.1):
Let ε ∈ (0, 1), find (uε, zε), with uε ≥ 0 a.e. in (0,+∞)× Ω, such that, for all T > 0,

uε, zε ∈ X̃ := {w ∈ L∞(0, T ;W
4
5
, 5
3 (Ω)) ∩ L

5
3 (0, T ;W 2, 5

3 (Ω)) : ∂tw ∈ L
5
3 (0, T ;L

5
3 (Ω))},

(5.11)
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and 
∂tu

ε −∆uε = ∇ · (uε∇vε(zε)) in Ω, t > 0,
∂tz

ε −∆zε + zε = (uε)p in Ω, t > 0,
∂uε

∂n
=
∂zε

∂n
= 0 on ∂Ω, t > 0,

uε(x, 0) = uε0(x) ≥ 0, zε(x, 0) = vε0(x)− ε∆vε0(x) in Ω,

(5.12)

where vε = vε(zε) is the unique solution of the elliptic-Newman problem{
vε − ε∆vε = zε in Ω,
∂vε

∂n
= 0 on ∂Ω,

(5.13)

and (uε0, z
ε
0) ∈ W 4

5
, 5
3 (Ω)2 with

(uε0, z
ε
0)→ (u0, z0) in L2(Ω)× L2(Ω), as ε→ 0. (5.14)

From now on in this section, we will denote vε(zε) solution of (5.13) only by vε . Observe
that if (uε, zε) is any solution of (5.12), then (5.2) and (5.10) are satisfied for (u, v) = (uε, vε).

Theorem 5.3.2 Let ε ∈ (0, 1). Then, there exists at least one solution of problem (5.11)-
(5.12).

Proof. We will use the Leray-Schauder fixed point theorem. With this aim, we denote

X := L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)),

and we define the operator R : X× X→ X̃× X̃ ↪→ X× X by R(ũε, z̃ε) = (uε, zε), such that
(uε, zε) solves the following linear decoupled problem

∂tu
ε −∆uε = ∇ · (ũε+∇ṽε) in Ω, t > 0,

∂tz
ε −∆zε = (ũε)p − z̃ε in Ω, t > 0,

∂uε

∂n
=
∂zε

∂n
= 0 on ∂Ω, t > 0,

uε(x, 0) = uε0(x) ≥ 0, zε(x, 0) = vε0(x)− ε∆vε0(x) in Ω,

(5.15)

where ṽε = vε(z̃ε) and, in general, we denote a+ := max{a, 0}.
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1. R is well defined. Observe that if z̃ε ∈ X, from the H2 and H3-regularity of pro-
blem (5.13) (see [11, Theorems 2.4.2.7 and 2.5.1.1] respectively), we have that ṽε ∈
L∞(0, T ;H2(Ω)) ∩ L2(0, T ;H3(Ω)). Thus, we deduce that ∇ṽε ∈ L∞(0, T ;H1(Ω)) ∩
L2(0, T ;H2(Ω)) ↪→ L10(0, T ;L10(Ω)). Then, using this fact and taking into account

that (ũε, z̃ε) ∈ X× X, we obtain that ∇ · (ũε+∇ṽε) ∈ L
5
3 (0, T ;L

5
3 (Ω)) and (ũε)p + z̃ε ∈

L
5
3 (0, T ;L

5
3 (Ω)) for any p ∈ (1, 2). Thus, applying Theorem 5.2.1 to (5.15), we deduce

that there exists a unique (uε, zε) ∈ X̃× X̃ solution of (5.15).

2. Let us now prove that all possible fixed points of λR (with λ ∈ (0, 1]) are bounded in
X× X and uε ≥ 0. In fact, observe that if (uε, zε) is a fixed point of λR, then (uε, zε)
satisfies 

∂tu
ε −∆uε = λ∇ · (uε+∇vε) in Ω, t > 0,

∂tz
ε −∆zε = λ(uε)p − λzε in Ω, t > 0,

∂uε

∂n
=
∂zε

∂n
= 0 on ∂Ω, t > 0,

uε(x, 0) = uε0(x) ≥ 0, zε(x, 0) = vε0(x)− ε∆vε0(x) in Ω,

(5.16)

Then, multiplying (5.16)1 by uε− := min{uε, 0} and integrating in Ω, we have

1

2

d

dt
‖uε−‖2

0 + ‖∇uε−‖2
0 = λ(uε+∇vε,∇uε−) = 0,

which, taking into account that uε0(x) ≥ 0, implies that uε ≥ 0 a.e. in (0,+∞) ×
Ω. Thus, uε+ = uε. Now, testing (5.16)1 and (5.16)2 by

p

p− 1
(uε)p−1 and −∆vε

respectively, and adding both equations, the terms −λ p

p− 1
(uε∇vε,∇(uε)p−1) and

λ(∇(uε)p,∇vε) cancel, and taking into account (5.13), we obtain

d

dt
Eε(u

ε, vε) +
4

p

∫
Ω

|∇((uε)p/2)|2

+ε‖∇(∆vε)‖2
0 + ‖∆vε‖2

0 = −λ‖∇vε‖2
0 − λε‖∆vε‖2

0 ≤ 0, (5.17)

where

Eε(u
ε, vε) :=

1

p− 1
‖uε‖pLp +

1

2
‖∇vε‖2

0 +
ε

2
‖∆vε‖2

0.

Moreover, we observe that the function yε(t) =
(∫

Ω

vε(x, t) dx
)2

satisfies (yε)′(t) +

yε(t) ≤ wε(t), with wε(t) = ‖uε(t)‖2p
Lp . In fact, it follows by multiplying (5.10) (for

(u, v) = (uε, vε)) by

∫
Ω

vε(x, t) dx and using the Young inequality. Therefore, yε(t) =
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yε(0) e−t +

∫ t

0

e−(t−s) wε(s) ds, which implies that

(∫
Ω

vε(x, t) dx
)2

≤
(∫

Ω

vε0(x) dx
)2

+ ‖uε‖2p
L∞(0,+∞;Lp), ∀t ≥ 0. (5.18)

Then, from (5.17)-(5.18) and using (5.4), we deduce the following estimates with res-
pect to λ:{

(uε, vε) is bounded in L∞(0,+∞;Lp(Ω)×H2(Ω)),
uε is bounded in Lp(0, T ;L3p(Ω)) and vε is bounded in L2(0, T ;H3(Ω)).

(5.19)
Then, from (5.19) we conclude that zε is bounded in X. Moreover, testing (5.16)1 by
uε, we have

1

2

d

dt
‖uε‖2

0 + ‖uε‖2
1 = −λ(uε∇vε,∇uε) + ‖uε‖2

0 ≤
1

2
‖uε‖2

1 + C
(
‖∇vε‖4

1 + 1
)
‖uε‖2

0,

from which, taking into account (5.19) and using the Gronwall Lemma, we deduce that
uε is bounded in X.

3. R is compact. Let {(ũεn, z̃εn)}n∈N be a bounded sequence in X × X. Then (uεn, z
ε
n) =

R(ũεn, z̃
ε
n) solves (5.15) (with (ũεn, z̃

ε
n) and (uεn, z

ε
n) instead of (ũε, z̃ε) and (uε, zε) respec-

tively). Therefore, analogously as in item 1, we obtain that ∇· ((ũεn+)∇ṽεn) is bounded

L
5
3 (0, T ;L

5
3 (Ω)) and (ũεn)p + z̃εn is bounded L

5
3 (0, T ;L

5
3 (Ω)); and therefore, from The-

orem 5.2.1 we conclude that {R(ũεn, z̃
ε
n)}n∈N is bounded in X̃ × X̃ which is compactly

embedded in X× X, and thus R is compact.

4. We prove that R is continuous. Let {(ũεn, z̃εn)}n∈N ⊂ X× X be a sequence such that

(ũεn, z̃
ε
n)→ (ũε, z̃ε) in X× X, as n→ +∞. (5.20)

Therefore, {(ũεn, z̃εn)}n∈N is bounded in X×X, and from item 3 we deduce that {(uεn, zεn) =

R(ũεn, z̃
ε
n)}n∈N is bounded in X̃ × X̃. Then, there exist (ûε, ẑε) and a subsequence of

{R(ũεn, z̃
ε
n)}n∈N still denoted by {R(ũεn, z̃

ε
n)}n∈N such that

R(ũεn, z̃
ε
n)→ (ûε, ẑε) weakly in X̃× X̃ and strongly in X× X. (5.21)

Then, from (5.20)-(5.21), a standard procedure allows us to pass to the limit, as n goes
to +∞, in (5.15) (with (ũεn, z̃

ε
n) and (uεn, z

ε
n) instead of (ũε, z̃ε) and (uε, zε) respectively),

and we deduce that R(ũε, z̃ε) = (ûε, ẑε). Therefore, we have proved that any conver-
gent subsequence of {R(ũεn, z̃

ε
n)}n∈N converges to R(ũε, z̃ε) strong in X × X, and from

uniqueness of R(ũε, z̃ε), we conclude that the whole sequence R(ũεn, z̃
ε
n)→ R(ũε, z̃ε) in

X× X. Thus, R is continuous.
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Therefore, the hypotheses of the Leray-Schauder fixed point theorem are satisfied and
we conclude that the map R(ũε, z̃ε) has a fixed point (uε, zε), that is, R(uε, zε) = (uε, zε),
which is a solution of problem (5.11)-(5.12).

5.3.2 Existence of weak-strong solutions of (5.1)

Theorem 5.3.3 There exists at least one (u, v) weak-strong solution of problem (5.1).

Proof. Observe that a variational problem associated to (5.12) is:
∫ T

0

〈∂tuε, ū〉+

∫ T

0

(∇uε,∇ū) +

∫ T

0

(uε∇vε,∇ū) = 0, ∀ū ∈ L
10p
7p−6 (0, T ;W 1, 10p

7p−6 (Ω))∫ T

0

〈∂tzε, z̄〉+

∫ T

0

(∇zε,∇z̄) +

∫ T

0

(zε, z̄) =

∫ T

0

((uε)p, z̄), ∀z̄ ∈ L
5
2 (0, T ;H1(Ω)).

(5.22)

Recall that vε = vε(zε) is the unique solution of problem (5.13). From (5.17) we have
that (uε, vε) satisfies the following energy equality:

d

dt
Eε(u

ε, vε) +
4

p
‖∇((uε)p/2)‖2

0 + ε‖∆vε‖2
1 + ‖∇vε‖2

1 = 0. (5.23)

Then, from (5.23) and using (5.18) we deduce that
{uε} is bounded in L∞(0,+∞;Lp(Ω)) ∩ Lp(0, T ;L3p(Ω)) ↪→ L

5p
3 (0, T ;L

5p
3 (Ω)),

{vε} is bounded in L∞(0,+∞;H1(Ω)) ∩ L2(0, T ;H2(Ω)),
√
ε∆vε is bounded in L∞(0,+∞;L2(Ω)) ∩ L2(0, T ;H1(Ω)),

(5.24)
and therefore, 

zε is bounded in L∞(0,+∞;L2(Ω)) ∩ L2(0, T ;H1(Ω)),

{∂tuε} is bounded in L
10p
3p+6 (0, T ;W 1, 10p

7p−6 (Ω)′),

{∂tzε} is bounded in L
5
3 (0, T ;H1(Ω)′).

(5.25)

Moreover, taking into account that from (5.23) and (5.24)1 we have that ∇((uε)p/2) is

bounded in L2(0, T ;L2(Ω)) and u1− p
2 is bounded in L

10p
6−3p (0, T ;L

10p
6−3p (Ω)), we conclude that

∇uε =
2

p
u1− p

2∇((uε)p/2) is bounded in L
5p
p+3 (0, T ;L

5p
p+3 (Ω)). Therefore, we deduce that

{uε} is bounded in L
5p
p+3 (0, T ;W 1, 5p

p+3 (Ω)). (5.26)
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Notice that from (5.13) and (5.24), we can deduce that ‖zε − vε‖0 ≤ ε‖∆vε‖0 → 0 as
ε → 0. Moreover, taking into account (5.25)2 and (5.26), the Aubin-Lions Lemma implies

that {uε} is relatively compact in L
5p
p+3 (0, T ;L2(Ω)). Then, using these facts as well as

(5.24)-(5.26), we deduce that there exists (u, v), with u ≥ 0 a.e. in (0,+∞)× Ω, with{
u ∈ L∞(0,+∞;Lp(Ω)) ∩ L 5p

3 (0, T ;L
5p
3 (Ω)) ∩ L

5p
p+3 (0, T ;W 1, 5p

p+3 (Ω)),

v ∈ L∞(0,+∞;H1(Ω)) ∩ L2(0, T ;H2(Ω)),

such that for some subsequence of {uε, zε, vε} still denoted by {uε, zε, vε}, the following
convergences hold when ε→ 0,

uε → u weakly in L
5p
3 (0, T ;L

5p
3 (Ω)) ∩ L

5p
p+3 (0, T ;W 1, 5p

p+3 (Ω)),

vε → v weakly in L2(0, T ;H2(Ω)),

zε → v weakly in L2(0, T ;H1(Ω)),

∂tu
ε → ∂tu weakly in L

10p
3p+6 (0, T ;W 1, 10p

7p−6 (Ω)′),

∂tz
ε → ∂tv weakly in L

5
3 (0, T ;H1(Ω)′).

(5.27)

Taking into account that the embedding L∞(0, T ;L2(Ω))∩L2(0, T ;H1(Ω)) ↪→ L3(0, T ;L3(Ω))
is compact, from (5.24)2 we deduce that

∇vε → ∇v strongly in L3(0, T ;L3(Ω)). (5.28)

Thus, from (5.27)1 and (5.28) we deduce

uε∇vε → u∇v weakly in L
15p
5p+9 (0, T ;L

15p
5p+9 (Ω)),

and therefore, using that uε∇vε is bounded in L
10p
3p+6 (0, T ;L

10p
3p+6 ), we deduce that

uε∇vε → u∇v weakly in L
10p
3p+6 (0, T ;L

10p
3p+6 ). (5.29)

Thus, taking to the limit when ε→ 0 in (5.22), and using (5.27) and (5.29), we obtain that
(u, v) satisfies∫ T

0

〈∂tu, ū〉+

∫ T

0

(∇u,∇ū) +

∫ T

0

(u∇v,∇ū) = 0, ∀ū ∈ L
10p
7p−6 (0, T ;W 1, 10p

7p−6 (Ω)), (5.30)

∫ T

0

〈∂tv, z̄〉+

∫ T

0

(∇v,∇z̄) +

∫ T

0

(v, z̄) =

∫ T

0

(up, z̄), ∀z̄ ∈ L
5
2 (0, T ;H1(Ω)), (5.31)
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and therefore, integrating by parts in (5.31) and taking into account that up ∈ L 5
3 (0, T ;L

5
3 (Ω))

and v ∈ L2(0, T ;H2(Ω)), we arrive at

∂tv −∆v + v = up in L
5
3 (0, T ;L

5
3 (Ω)), (5.32)

with
∂v

∂n
= 0 on ∂Ω. Notice that the limit function v is nonnegative. In fact, it follows by

testing (5.32) by v− and taking into account that v0 ≥ 0. Finally, we will prove that (u, v)
satisfies the energy inequality (5.8). Indeed, integrating (5.23) in time from t0 to t1, with
t1 > t0 ≥ 0, and taking into account that∫ t1

t0

d

dt
Eε(u

ε, vε) = Eε(u
ε(t1), vε(t1))− Eε(u

ε(t0), vε(t0)) ∀t0 < t1,

since Eε(u
ε(t), vε(t)) is continuous in time, we deduce

Eε(u
ε(t1), vε(t1))− Eε(u

ε(t0), vε(t0))

+

∫ t1

t0

(4

p
‖∇((uε(t))p/2)‖2

0 + ε‖∆vε(t)‖2
1 + ‖∇vε(t)‖2

1

)
dt ≤ 0, ∀t0 < t1. (5.33)

Now, we will prove that

Eε(u
ε(t), vε(t))→ E(u(t), v(t)), a.e. t ∈ [0,+∞). (5.34)

From (5.24)1 we can deduce that uε is relatively compact in Lp(0, T ;Lp(Ω)). Therefore,

uε → u strongly in Lp(0, T ;Lp(Ω)). (5.35)

Moreover, for any T > 0,

‖Eε(uε(t), vε(t))− E(u(t), v(t))‖L1(0,T ) =

∫ T

0

|Eε(uε(t), vε(t))− E(u(t), v(t))|dt

≤
∫ T

0

∣∣∣∣ 1

p− 1
(‖uε(t)‖pLp − ‖u(t)‖pLp) +

1

2

(
‖∇vε(t)‖2

0 − ‖∇v(t)‖2
0

)∣∣∣∣ dt+
ε

2
‖∆vε‖2

0

≤ C
p

p− 1
‖uε − u‖Lp(0,T ;Lp)(‖uε‖pLp(0,T ;Lp) + ‖u‖pLp(0,T ;Lp))

p−1
p

+
1

2
‖∇vε −∇v‖L2(0,T ;L2)(‖∇vε‖L2(0,T ;L2) + ‖∇v‖L2(0,T ;L2)) +

ε

2
‖∆vε‖2

0. (5.36)

Then, taking into account that uε → u strongly in Lp(0, T ;Lp(Ω)), ∇vε → ∇v strongly
in L2(0, T ;L2(Ω)) for any T > 0, and ∆vε is bounded in L2(0, T ;L2(Ω)), from (5.36) we
conclude that Eε(u

ε(t), vε(t))→ E(u(t), v(t)) strongly in L1(0, T ) for all T > 0, which implies
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in particular (5.34). Finally, observe that from (5.35) we have that (uε)p/2 → up/2 strongly
in L2(0, T ;L2(Ω)); and since ∇((uε)p/2 is bounded in L2(0, T ;L2(Ω)) we deduce that

∇((uε)p/2)→ ∇(up/2) weakly in L2(0, T ;L2(Ω)).

Then, on the one hand

lim inf
ε→0

∫ t1

t0

(4

p
‖∇((uε(t))p/2)‖2

0 + ε‖∆vε(t)‖2
1 + ‖∇vε(t)‖2

1

)
dt

≥
∫ t1

t0

(4

p
‖∇(u(t)p/2)‖2

0 + ‖∇v(t)‖2
1

)
dt ∀t1 ≥ t0 ≥ 0,

and on the other hand, owing to (5.34),

lim inf
ε→0

[
Eε(u

ε(t1), vε(t1))− Eε(u
ε(t0), vε(t0))

]
= E(u(t1), v(t1))− E(u(t0), v(t0)),

for a.e. t1, t0 : t1 ≥ t0 ≥ 0. Thus, taking lim inf as ε→ 0 in the inequality (5.33), we deduce
the energy inequality (5.8) for a.e. t0, t1 : t1 ≥ t0 ≥ 0.

5.4 Fully discrete numerical schemes

In this section we will propose three fully discrete numerical schemes associated to model
(5.1). We prove some unconditional properties such as mass-conservation, energy-stability
and solvability of the schemes.

5.4.1 Scheme UVε

In this section, in order to construct an energy-stable fully discrete scheme of model (5.1),
we are going to make a regularization procedure, in which we will adapt the ideas of [3]
(see also [12]). With this aim, given ε ∈ (0, 1) we consider a function Fε : R → [0,+∞),
approximation of f(s) = sp, such that Fε ∈ C2(R) and

F ′′ε (s) :=


εp−2 if s ≤ ε,

sp−2 if ε ≤ s ≤ ε−1,

ε2−p if s ≥ ε−1.

(5.37)
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Then, Fε is obtained integrating in (5.37) and imposing the conditions F ′ε(1) = 1
p−1

and

Fε(1) = 1
p(p−1)

+ p3−4p2+3p+2
2p(p−1)2

εp (see Figure 5.1); and

aε(s) := (p− 1)
F ′ε(s)

F ′′ε (s)
=


(p− 1)s+ (2− p)ε if s ≤ ε,

s if ε ≤ s ≤ ε−1,

(p− 1)s+ (2− p)ε−1 if s ≥ ε−1.

(5.38)
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Figure 5.1: The function Fε and its derivatives.

Lemma 5.4.1 The function Fε satisfies

Fε(s) ≥
εp−2s2

4
∀s ≤ ε and Fε(s) ≥ Csp ∀s > ε, (5.39)

where the constant C > 0 is independent of ε.

Proof. Since Fε ∈ C2(R), using the Taylor formula as well as the definition of Fε and F ′ε,
we have that, for some s0 ∈ R between 0 and s,

Fε(s) = Fε(0) + F ′ε(0)s+
1

2
F ′′ε (s0)s2 =

(2− p
p− 1

)2

εp +
2− p
p− 1

εp−1s+
1

2
F ′′ε (s0)s2. (5.40)
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Then, taking into account that F ′′ε (s) = εp−2 for all s ≤ ε, from (5.40) we have that: (a) if
s ∈ [0, ε], Fε(s) ≥ 1

2
εp−2s2; and (b) if s < 0, by using the Young inequality,

Fε(s) ≥
(2− p
p− 1

)2

εp − 1

4
εp−2s2 −

(2− p
p− 1

)2

εp +
1

2
εp−2s2 =

1

4
εp−2s2,

from which we deduce (5.39)1. Finally, (5.39)2 follows directly from the definition of Fε for
s ≥ ε.

Remark 5.4.2 Notice that estimates in (5.39) imply that |s|p ≤ K1Fε(s)+K2 for all s ∈ R,
where the constants K1, K2 > 0 are independent of ε.

Then, taking into account the functions Fε, its derivatives and aε, a regularized version
of problem (5.1) reads: Find uε : Ω × [0, T ] → R and vε : Ω × [0, T ] → R, with uε, vε ≥ 0,
such that 

∂tuε −∆uε −∇ · (aε(uε)∇vε) = 0 in Ω, t > 0,
∂tvε −∆vε + vε = p(p− 1)Fε(uε) in Ω, t > 0,
∂uε
∂n

=
∂vε
∂n

= 0 on ∂Ω, t > 0,

uε(x, 0) = u0(x) ≥ 0, vε(x, 0) = v0(x) ≥ 0 in Ω.

(5.41)

Remark 5.4.3 The idea is to define a fully discrete scheme associated to (5.41), taking in
general ε = ε(k, h), such that ε(k, h)→ 0 as (k, h)→ 0, where k is the time step and h the
mesh size.

Observe that (formally) multiplying (5.41)1 by pF ′ε(uε), (5.41)2 by −∆vε, integrating
over Ω and adding, the chemotaxis and production terms cancel and we obtain the following
energy law

d

dt

∫
Ω

(
pFε(uε) +

1

2
|∇vε|2

)
dx+

∫
Ω

pF ′′ε (uε)|∇uε|2dx+ ‖∇vε‖2
1 = 0.

In particular, the modified energy

Eε(u, v) =

∫
Ω

(
pFε(u) +

1

2
|∇v|2

)
dx

is decreasing in time. Thus, we consider a fully discrete approximation of the regularized
problem (5.41) using a FE discretization in space and the backward Euler discretization in
time (considered for simplicity on a uniform partition of [0, T ] with time step k = T/N :
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(tn = nk)n=N
n=0 ). Let Ω be a polygonal domain. We consider a shape-regular and quasi-uniform

family of triangulations of Ω, denoted by {Th}h>0, with simplices K, hK = diam(K) and
h := maxK∈Th hK , so that Ω = ∪K∈ThK. Further, let Nh = {ai}i∈I denote the set of all the
vertices of Th, and in this case we will assume the following hypothesis:

(H) The triangulation is structured in the sense that all simplices have a right angle.

We choose the following continuous FE spaces for uε and vε:

(Uh, Vh) ⊂ H1(Ω)2, generated by P1,Pr with r ≥ 1.

Remark 5.4.4 The right-angled constraint (H) and the approximation of Uh by P1-continuous
FE are necessary to obtain the relations (5.44)-(5.45) below, which are essential in order to
obtain the energy-stability of the scheme UVε (see Theorem 5.4.9 below).

We denote the Lagrange interpolation operator by Πh : C(Ω) → Uh, and we introduce
the discrete semi-inner product on C(Ω) (which is an inner product in Uh) and its induced
discrete seminorm (norm in Uh):

(u1, u2)h :=

∫
Ω

Πh(u1u2), |u|h =
√

(u, u)h. (5.42)

Remark 5.4.5 In Uh, the norms | · |h and ‖ · ‖0 are equivalents uniformly with respect to h
(see [5]).

We consider also the L2-projection Qh : L2(Ω)→ Uh given by

(Qhu, ū)h = (u, ū), ∀ū ∈ Uh, (5.43)

and the standard H1-projection Rh : H1(Ω) → Vh. Moreover, owing to the right angled
constraint (H) and the choice of P1-continuous FE for Uh, following the ideas of [3] (see also
[12]), for each ε ∈ (0, 1), we can construct two operators Λi

ε : Uh → L∞(Ω)d×d (i = 1, 2) such
that Λi

εu
h are symmetric matrices and Λ1

εu
h is positive definite, for all uh ∈ Uh and a.e. in

Ω, and satisfy
(Λ1

εu
h)∇Πh(F ′ε(u

h)) = ∇uh in Ω, (5.44)

(Λ2
εu

h)∇Πh(F ′ε(u
h)) = (p− 1)∇Πh(Fε(u

h)) in Ω. (5.45)
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Basically, Λi
εu

h (i = 1, 2) are constant by elements matrices such that (5.44) and (5.45)
holds by elements. In the 1-dimensional case, Λi

ε are constructed as follows: For all uh ∈ Uh
and K ∈ Th with vertices aK0 and aK1 , we set

Λ1
ε(u

h)|K :=


uh(aK1 )−uh(aK0 )

F ′ε(u
h(aK1 ))−F ′ε(uh(aK0 ))

= 1
F ′′ε (uh(ξ))

if uh(aK0 ) 6= uh(aK1 ),

1
F ′′ε (uh(aK0 ))

if uh(aK0 ) = uh(aK1 ),
(5.46)

for some ξ ∈ K, and

Λ2
ε(u

h)|K :=

(p− 1)
Fε(uh(aK1 ))−Fε(uh(aK0 ))

F ′ε(u
h(aK1 ))−F ′ε(uh(aK0 ))

=(p− 1) F
′
ε(u

h(ξ1))
F ′′ε (uh(ξ2))

if uh(aK0 ) 6= uh(aK1 ),

(p− 1)
F ′ε(u

h(aK0 ))

F ′′ε (uh(aK0 ))
if uh(aK0 ) = uh(aK1 ),

(5.47)

for some ξ1, ξ2 ∈ K. Following [3] (see also [12]), these constructions can be extended to
dimensions 2 and 3, and from (5.46) the following estimate holds:

ε2−pξT ξ ≤ ξTΛ1
ε(u

h)−1ξ ≤ εp−2ξT ξ, ∀ξ ∈ Rd, uh ∈ Uh. (5.48)

Now, we prove the following result which will be used to proof the well-posedness of the
scheme UVε.

Lemma 5.4.6 Let ‖ · ‖ denote the spectral norm on Rd×d. Then for any given ε ∈ (0, 1)
the function Λ2

ε : Uh → [L∞(Ω)]d×d satisfies, for all uh1 , u
h
2 ∈ Uh and K ∈ Th with vertices

{aKl }dl=0,

‖(Λ2
ε(u

h
1)− Λ2

ε(u
h
2))|K‖

≤ 3ε2(p−2) max{1, (p− 1)ε2(p−2)} max
l=1,...,d

{|uh1(aKl )− uh2(aKl ))|+ |uh1(aK0 )− uh2(aK0 )|},(5.49)

where aK0 is the right-angled vertex.

Proof. The proof follows the ideas of [4, Lemma 2.1], with some modifications. For
simplicity in the notation, we will prove (5.49) in the 1-dimensional case, but this proof can
be extended to dimensions 2 and 3 as in [4, Lemma 2.1]. Observe that, from (5.47)

‖(Λ2
ε(u

h
1)− Λ2

ε(u
h
2))|K‖ ≤ |(Λ2

ε(u
h
1)− Λ2

ε(u
h
1,2))|K |+ |(Λ2

ε(u
h
1,2)− Λ2

ε(u
h
2))|K |

= (p− 1)

∣∣∣∣ F ′ε(µ11)

F ′′ε (µ12)
− F ′ε(ξ1)

F ′′ε (ξ2)

∣∣∣∣+ (p− 1)

∣∣∣∣ F ′ε(ξ1)

F ′′ε (ξ2)
− F ′ε(µ21)

F ′′ε (µ22)

∣∣∣∣ , (5.50)
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where uh1,2 ∈ P1(K) with uh1,2(aK0 ) = uh2(aK0 ) and uh1,2(aK1 ) = uh1(aK1 ), µ1i (i = 1, 2) lie between
uh1(aK0 ) and uh1(aK1 ), µ2i (i = 1, 2) lie between uh2(aK0 ) and uh2(aK1 ), and ξi (i = 1, 2) lie between
uh1(aK1 ) and uh2(aK0 ). Then, first we will show that

(p− 1)

∣∣∣∣ F ′ε(µ11)

F ′′ε (µ12)
− F ′ε(ξ1)

F ′′ε (ξ2)

∣∣∣∣ ≤ 3ε2(p−2) max{1, (p− 1)ε2(p−2)}|uh1(aK0 )− uh2(aK0 )|, (5.51)

for uh1(aK0 ) 6= uh2(aK0 ), because the case uh1(aK0 ) = uh2(aK0 ) is trivially true. With this aim, we
consider γi (i = 1, 2) lying between uh1(aK0 ) and uh2(aK0 ) such that

F ′ε(γ1) =
Fε(u

h
2(aK0 ))− Fε(uh1(aK0 ))

uh2(aK0 )− uh1(aK0 )
and F ′′ε (γ2) =

F ′ε(u
h
2(aK0 ))− F ′ε(uh1(aK0 ))

uh2(aK0 )− uh1(aK0 )
, (5.52)

and therefore, from (5.50) and (5.52), we deduce

(uh2(aK0 )− uh1(aK0 ))F ′ε(γ1) = (uh2(aK0 )− uh1(aK1 ))F ′ε(ξ1) + (uh1(aK1 )− uh1(aK0 ))F ′ε(µ11), (5.53)

(uh2(aK0 )− uh1(aK0 ))F ′′ε (γ2) = (uh2(aK0 )− uh1(aK1 ))F ′′ε (ξ2) + (uh1(aK1 )− uh1(aK0 ))F ′′ε (µ12). (5.54)

Then, for uh2(aK0 ), uh1(aK0 ) and uh1(aK1 ), there are only 3 options: (1) uh1(aK1 ) lies between
uh2(aK0 ) and uh1(aK0 ); (ii) uh2(aK0 ) lies between uh1(aK1 ) and uh1(aK0 ); and (iii) uh1(aK0 ) lies between
uh1(aK1 ) and uh2(aK0 ).

Notice that from (5.37)-(5.38), we have that F ′ε and (p − 1) F
′
ε

F ′′ε
are globally Lipschitz

functions with constants εp−2 and 1 respectively, and 1
|F ′′ε |
≤ εp−2. Then, in case (i), taking

into account that all intermediate values µ1i, γi, ξi (i = 1, 2) lie between uh2(aK0 ) and uh1(aK0 ),
we have

(p− 1)

∣∣∣∣ F ′ε(µ11)

F ′′ε (µ12)
− F ′ε(ξ1)

F ′′ε (ξ2)

∣∣∣∣ ≤ (p− 1)

∣∣∣∣F ′ε(µ11)− F ′ε(µ12)

F ′′ε (µ12)

∣∣∣∣
+(p− 1)

∣∣∣∣ F ′ε(µ12)

F ′′ε (µ12)
− F ′ε(ξ2)

F ′′ε (ξ2)

∣∣∣∣+ (p− 1)

∣∣∣∣F ′ε(ξ1)− F ′ε(ξ2)

F ′′ε (ξ2)

∣∣∣∣
≤ (p− 1)ε2(p−2)|µ11 − µ12|+ |µ12 − ξ2|+ (p− 1)ε2(p−2)|ξ1 − ξ2|
≤ 3 max{1, (p− 1)ε2(p−2)}|uh1(aK0 )− uh2(aK0 )|. (5.55)

In case (ii), all intermediate values µ1i, γi, ξi (i = 1, 2) lie between uh1(aK1 ) and uh1(aK0 ),
and from (5.53)-(5.54) by eliminating the term (uh2(aK0 )− uh1(aK1 )), we have the equality

(uh1(aK1 )− uh1(aK0 ))

[
F ′ε(ξ1)

F ′′ε (ξ2)
− F ′ε(µ11)

F ′′ε (µ12)

]
= (uh2(aK0 )− uh1(aK0 ))

F ′′ε (γ2)

F ′′ε (µ12)

[
F ′ε(ξ1)

F ′′ε (ξ2)
− F ′ε(γ1)

F ′′ε (γ2)

]
,
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from which, bounding the term
∣∣∣ F ′ε(ξ1)
F ′′ε (ξ2)

− F ′ε(γ1)
F ′′ε (γ2)

∣∣∣ as in (5.55), we obtain

(p− 1) |uh1(aK1 )− uh1(aK0 ))|
∣∣∣∣ F ′ε(µ11)

F ′′ε (µ12)
− F ′ε(ξ1)

F ′′ε (ξ2)

∣∣∣∣
≤ ε2(p−2)3 max{1, (p− 1)ε2(p−2)}|uh1(aK0 )− uh2(aK0 )||uh1(aK1 )− uh1(aK0 ))|,

and therefore, dividing by |uh1(aK1 )− uh1(aK0 ))| we arrive at

(p− 1)

∣∣∣∣ F ′ε(µ11)

F ′′ε (µ12)
− F ′ε(ξ1)

F ′′ε (ξ2)

∣∣∣∣ ≤ 3ε2(p−2) max{1, (p− 1)ε2(p−2)}|uh1(aK0 )− uh2(aK0 )|. (5.56)

In case (iii), by arguing analogously to case (ii), from (5.53)-(5.54) we have

(uh1(aK1 )− uh2(aK0 ))

[
F ′ε(ξ1)

F ′′ε (ξ2)
− F ′ε(µ11)

F ′′ε (µ12)

]
= (uh2(aK0 )− uh1(aK0 ))

F ′′ε (γ2)

F ′′ε (ξ2)

[
F ′ε(γ1)

F ′′ε (γ2)
− F ′ε(µ11)

F ′′ε (µ12)

]
,

which implies (5.56). Therefore, we have proved (5.51).

Analogously, we can prove that

(p− 1)

∣∣∣∣ F ′ε(ξ1)

F ′′ε (ξ2)
− F ′ε(µ21)

F ′′ε (µ22)

∣∣∣∣ ≤ 3ε2(p−2) max{1, (p− 1)ε2(p−2)}|uh1(aK1 )− uh2(aK1 )|. (5.57)

Thus, from (5.50), (5.51) and (5.57) we conclude (5.49).

Let Ah : Vh → Vh be the linear operator defined as follows

(Ahv
h, v̄) = (∇vh,∇v̄) + (vh, v̄), ∀v̄ ∈ Vh.

Then, the following estimate holds (see for instance, Lemma 2.3.1):

‖vh‖W 1,6 ≤ C‖Ahvh‖0, ∀vh ∈ Vh. (5.58)

Thus, we consider the following first order in time, nonlinear and coupled scheme:

• Scheme UVε:

Initialization: Let (u0, v0) = (Qhu0, R
hv0) ∈ Uh × Vh.

Time step n: Given (un−1
ε , vn−1

ε ) ∈ Uh × Vh, compute (unε , v
n
ε ) ∈ Uh × Vh solving{

(δtu
n
ε , ū)h + (∇unε ,∇ū) = −(Λ2

ε(u
n
ε )∇vnε ,∇ū), ∀ū ∈ Uh,

(δtv
n
ε , v̄) + (Ahv

n
ε , v̄) = p(p− 1)(Πh(Fε(u

n
ε )), v̄), ∀v̄ ∈ Vh,

(5.59)
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where, in general, we denote δta
n :=

an − an−1

k
.

Remark 5.4.7 (Positivity of vnε ) By using the mass-lumping technique in all terms of
(5.59)2 excepting the self-diffusion term (∇vnε ,∇v̄), and approximating Vh by P1-continuous
FE, we can prove that if vn−1

ε ≥ 0 then vnε ≥ 0. In fact, it follows testing (5.59)2 by
v̄ = Πh(vnε−) ∈ Vh, where vnε− := min{vnε , 0} (see Remark 4.3.10).

Mass-conservation, Energy-stability and Solvability

Since ū = 1 ∈ Uh and v̄ = 1 ∈ Vh, we deduce that the scheme UVε is conservative in unε ,
that is,

(unε , 1) = (unε , 1)h = (un−1
ε , 1)h = · · · = (u0, 1)h = (u0, 1) = (Qhu0, 1) = (u0, 1) := m0, (5.60)

and we have the following behavior for
∫

Ω
vnε :

δt

(∫
Ω

vnε

)
= p(p− 1)

∫
Ω

Πh(Fε(u
n
ε ))−

∫
Ω

vnε . (5.61)

Definition 5.4.8 A numerical scheme with solution (unε , v
n
ε ) is called energy-stable with

respect to the energy

Ehε (u, v) = p(Fε(u), 1)h +
1

2
‖∇v‖2

0 (5.62)

if this energy is time decreasing, that is Ehε (u
n
ε , v

n
ε ) ≤ Ehε (u

n−1
ε , vn−1

ε ) for all n ≥ 1.

Theorem 5.4.9 (Unconditional stability) The scheme UVε is unconditional energy sta-
ble with respect to Ehε (u, v). In fact, if (unε , v

n
ε ) is a solution of UVε, then the following

discrete energy law holds

δtE
h
ε (u

n
ε , v

n
ε ) +

kε2−pp

2
‖δtunε‖2

0 +
k

2
‖δt∇vnε ‖2

0 + pε2−p‖∇unε‖2
0 + ‖(Ah− I)∇vnε ‖2

0 + ‖∇vnε ‖2
0 ≤ 0.

(5.63)

Proof. Testing (5.59)1 by ū = pΠh(F ′ε(u
n
ε )) and (5.59)2 by v̄ = (Ah − I)vnε , adding and

taking into account that Λi
ε(u

n
ε ) are symmetric as well as (5.44)-(5.45), the terms

−p(Λ2
ε(u

n
ε )∇vnε ,∇Πh(F ′ε(u

n
ε )))=−p(∇vnε ,Λ2

ε(u
n
ε )∇Πh(F ′ε(u

n
ε )))=−p(p−1)(∇vnε ,∇Πh(Fε(u

n
ε )))
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and p(p− 1)(Πh(Fε(u
n
ε )), (Ah − I)vnε ) = p(p− 1)(∇Πh(Fε(u

n
ε )),∇vnε ) cancel, and using that

∇Πh(F ′ε(u
n
ε )) = Λ1

ε(u
n
ε )−1∇unε we obtain

p(δtu
n
ε , F

′
ε(u

n
ε ))h +p

∫
Ω

(∇unε )T ·Λ1
ε(u

n
ε )−1 ·∇unεdx

+δt

(1

2
‖∇vnε ‖2

0

)
+
k

2
‖δt∇vnε ‖2

0 + ‖(Ah − I)vnε ‖2
0 + ‖∇vnε ‖2

0 = 0.(5.64)

Moreover, observe that from the Taylor formula we have

Fε(u
n−1
ε ) = Fε(u

n
ε ) + F ′ε(u

n
ε )(un−1

ε − unε ) +
1

2
F ′′ε (θunε + (1− θ)un−1

ε )(un−1
ε − unε )2,

and therefore,

δtu
n
ε · F ′ε(unε ) = δt

(
Fε(u

n
ε )
)

+
k

2
F ′′ε (θunε + (1− θ)un−1

ε )(δtu
n
ε )2. (5.65)

Then, using (5.65) and taking into account that Πh is linear and F ′′ε (s) ≥ ε2−p for all s ∈ R,
we have

(δtu
n
ε , F

′
ε(u

n
ε ))h = δt

(∫
Ω

Πh(Fε(u
n
ε ))
)

+
k

2

∫
Ω

Πh(F ′′ε (θunε + (1− θ)un−1
ε )(δtu

n
ε )2)

≥ δt

(
(Fε(u

n
ε ), 1)h

)
+
kε2−p

2
|δtunε |2h. (5.66)

Thus, from (5.64), (5.48), (5.66) and Remark 5.4.5, we arrive at (5.63).

Corollary 5.4.10 (Uniform estimates) Assume that (u0, v0) ∈ L2(Ω) × H1(Ω). Let
(unε , v

n
ε ) be a solution of scheme UVε. Then, it holds

p(Fε(u
n
ε ), 1)h+

1

2
‖vnε ‖2

1+k
n∑

m=1

(
pε2−p‖∇umε ‖2

0 + ‖(Ah − I)vmε ‖2
0 + ‖∇vmε ‖2

0

)
≤ C0

(p− 1)2
, ∀n ≥ 1,

(5.67)

k

n+n0∑
m=n0+1

‖vmε ‖2
W 1,6 ≤

C1

(p− 1)2
(1 + kn), ∀n ≥ 1, (5.68)

where the integer n0 ≥ 0 is arbitrary, with the constants C0, C1 > 0 depending on the data
(Ω, u0, v0), but independent of k, h, n and ε. Moreover,

‖Πh(unε−)‖2
0 ≤

C0

(p− 1)2
ε2−p and ‖unε‖

p
Lp ≤

C0K

(p− 1)2
+K, ∀n ≥ 1, (5.69)

where unε− := min{unε , 0} ≤ 0 and the constant K > 0 is independent of k, h, n and ε.
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Remark 5.4.11 (Approximated positivity of unε ) From (5.69)1, the following estimate
holds

max
n≥0
‖Πh(unε−)‖2

0 ≤
C0

(p− 1)2
ε2−p.

Proof. First, taking into account that (u0, v0) = (Qhu0, R
hv0), u0 ≥ 0 (and therefore,

u0 ≥ 0), as well as the definition of Fε, we have that

Ehε (u
0, v0) = p

∫
Ω

Πh(Fε(u
0)) +

1

2
‖∇v0‖2

0 ≤
C

p− 1

∫
Ω

Πh
(

(u0)2 +
1

p− 1

)
+

1

2
‖∇v0‖2

0

≤ C

p− 1

(
‖u0‖2

0 + ‖∇v0‖2
0 +

1

p− 1

)
≤ C

p− 1

(
‖u0‖2

0 + ‖v0‖2
1 +

1

p− 1

)
≤ C0

(p− 1)2
,(5.70)

where the constant C0 > 0 depends on the data (Ω, u0, v0), but is independent of k, h, n and
ε. Therefore, from the discrete energy law (5.63) and estimate (5.70), we have

Ehε (u
n
ε , v

n
ε ) + k

n∑
m=1

(
pε2−p‖∇umε ‖2

0 + ‖(Ah − I)vmε ‖2
0 + ‖∇vmε ‖2

0

)
≤ Ehε (u

0, v0) ≤ C0

(p− 1)2
.

(5.71)
Moreover, from (5.61), the definition of Fε, Remark 5.4.2 and (5.71), we have

(1 + k)

∣∣∣∣∫
Ω

vnε

∣∣∣∣− ∣∣∣∣∫
Ω

vn−1
ε

∣∣∣∣ ≤ kp(p− 1)

∫
Ω

Πh(Fε(u
n
ε )) ≤ k

C

p− 1
, (5.72)

where the constant C > 0 is independent of k, h, n and ε. Then, applying Lemma 5.2.3 in
(5.72) (for δ = 1 and β = C

p−1
), we arrive at∣∣∣∣∫

Ω

vnε

∣∣∣∣ ≤ (1 + k)−n
∣∣∣∣∫

Ω

v0
h

∣∣∣∣+
C

p− 1
= (1 + k)−n

∣∣∣∣∫
Ω

Rhv0

∣∣∣∣+
C

p− 1
,

which, together with (5.71), imply (5.67). Moreover, adding (5.63) from m = n0 + 1 to
m = n+ n0, and using (5.58) and (5.67), we deduce (5.68).

On the other hand, from (5.39)1, we have 1
4
εp−2(unε−(x))2 ≤ Fε(u

n
ε (x)) for all unε ∈ Uh;

and therefore, using that (Πhu)2 ≤ Πh(u2) for all u ∈ C(Ω), we have

1

4
εp−2

∫
Ω

(Πh(unε−))2 ≤ 1

4
εp−2

∫
Ω

Πh((unε−)2) ≤
∫

Ω

Πh(Fε(u
n
ε )) ≤ C0

(p− 1)2
,

where in the last inequality (5.67) was used. Thus, we obtain (5.69)1. Finally, taking into
account that |Πhu|p ≤ Πh(|u|p) for all u ∈ C(Ω), as well as Remark 5.4.2 and (5.67), we have

‖unε‖
p
Lp =

∫
Ω

|Πhunε |p ≤
∫

Ω

Πh(|unε |p) ≤
∫

Ω

Πh(K1Fε(u
n
ε ) +K2) ≤ C0K

(p− 1)2
+K,

163



arriving at (5.69)2.

Theorem 5.4.12 (Unconditional existence) There exists at least one solution (unε , v
n
ε )

of scheme UVε.

Proof. The proof follows as in Theorem 4.3.11, by using the Leray-Schauder fixed point
theorem.

5.4.2 Scheme USε

In this section, in order to construct another energy-stable fully discrete scheme of (5.1), we
are going to use the regularized functions Fε, F

′
ε and F ′′ε defined in Section 5.4.1 and we will

consider the auxiliary variable σ = ∇v. Then, another regularized version of problem (5.1)
reads: Find uε : Ω× [0, T ]→ R and σε : Ω× [0, T ]→ Rd, with uε ≥ 0, such that

∂tuε −∆uε −∇ · (uεσε) = 0 in Ω, t > 0,
∂tσε + rot(rot σε)−∇(∇ · σε) + σε = p uε∇(F ′ε(uε)) in Ω, t > 0,
∂uε
∂n

= 0, σε · n = 0, [rot σε × n]tang = 0 on ∂Ω, t > 0,

uε(x, 0) = u0(x) ≥ 0, σε(x, 0) = ∇v0(x), in Ω.

(5.73)

This kind of formulation considering σ = ∇v as auxiliary variable has been used in the
construction of numerical schemes for other chemotaxis models (see for instance [18] and
Chapters 2 and 4 of this PhD thesis). Once problem (5.73) is solved, we can recover vε from
uε solving 

∂tvε −∆vε + vε = upε in Ω, t > 0,
∂vε
∂n

= 0 on ∂Ω, t > 0,

vε(x, 0) = v0(x) ≥ 0 in Ω.

Observe that (formally) multiplying (5.73)1 by pF ′ε(uε), (5.73)2 by σε, integrating over Ω
and adding both equations, the terms p(uε∇(F ′ε(uε)),σε) cancel, and we obtain the following
energy law

d

dt

∫
Ω

(
pFε(uε) +

1

2
|σε|2

)
dx+

∫
Ω

pF ′′ε (uε)|∇uε|2dx+ ‖σε‖2
1 = 0.

In particular, the modified energy

Eε(u,σ) =

∫
Ω

(
pFε(u) +

1

2
|σ|2

)
dx
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is decreasing in time. Then, we consider a fully discrete approximation of the regularized
problem (5.73) using a FE discretization in space and the backward Euler discretization in
time (considered for simplicity on a uniform partition of [0, T ] with time step k = T/N :
(tn = nk)n=N

n=0 ). Concerning the space discretization, we consider the triangulation as in the
scheme UVε, imposing again the constraint (H) related with the right angled simplices. We
choose the following continuous FE spaces for uε, σε, and vε:

(Uh,Σh, Vh) ⊂ H1(Ω)3, generated by P1,Pm,Pr with m, r ≥ 1.

Remark 5.4.13 The right-angled constraint (H) and the approximation of Uh by P1-continuous
FE are necessary again to obtain the relation (5.44) and the estimate (5.48) for Λ1

ε, which
are essential in order to obtain the energy-stability of the scheme USε (see Theorem 5.4.17
below).

Then, we consider the following first order in time, nonlinear and coupled scheme:

• Scheme USε:

Initialization: Let (u0,σ0) = (Qhu0, Q̃
h(∇v0)) ∈ Uh ×Σh.

Time step n: Given (un−1
ε ,σn−1

ε ) ∈ Uh ×Σh, compute (unε ,σ
n
ε ) ∈ Uh ×Σh solving{

(δtu
n
ε , ū)h + (∇unε ,∇ū) = −(unεσ

n
ε ,∇ū), ∀ū ∈ Uh,

(δtσ
n
ε , σ̄) + (Bhσ

n
ε , σ̄) = p(unε∇Πh(F ′ε(u

n
ε )), σ̄), ∀σ̄ ∈ Σh,

(5.74)

where Qh is the L2-projection on Uh defined in (5.43), Q̃h is the standard L2-projection on
Σh, and the operator Bh is defined as

(Bhσ
n
ε , σ̄) = (rot σnε , rot σ̄) + (∇ · σnε ,∇ · σ̄) + (σnε , σ̄), ∀σ̄ ∈ Σh.

We recall that Πh : C(Ω) → Uh is the Lagrange interpolation operator, and the discrete
semi-inner product (·, ·)h was defined in (5.42).

Remark 5.4.14 Notice that the right-angled constraint (H) is necessary in the implemen-
tation of the scheme UVε (in order to construct the matricial function Λ2

ε(u
n
ε )); while, for

the implementation of the scheme USε, this hypothesis (H) is not necessary.
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Remark 5.4.15 Following the ideas of Chapter 4 (see Section 4.4), we can construct another
unconditional energy-stable nonlinear scheme in the variables (unε ,σ

n
ε ) without imposing the

right-angled constraint (H), replacing the self-diffusion term (∇unε ,∇ū) by ∇·( 1
F ′′ε (unε )

∇Πh(F ′ε(u
n
ε ))).

However, this scheme has convergence problems for the linear iterative method as p→ 1 and
ε→ 0.

Once the scheme USε is solved, given vn−1
ε ∈ Vh, we can recover vnε = vnε (unε ) ∈ Vh

solving:
(δtv

n
ε , v̄) + (∇vnε ,∇v̄) + (vnε , v̄) = p(p− 1)(Fε(u

n
ε ), v̄), ∀v̄ ∈ Vh. (5.75)

Given unε ∈ Uh and vn−1
ε ∈ Vh, Lax-Milgram theorem implies that there exists a unique

vnε ∈ Vh solution of (5.75). Moreover, notice that the result concerning to the positivity of
vnε solution of scheme UVε established in Remark 5.4.7 remains true for vnε in the scheme
USε.

Mass-conservation and Energy-stability

Observe that the scheme USε is also conservative in u (satisfying (5.60)), and we have the
following behavior for

∫
Ω
vnε :

δt

(∫
Ω

vnε

)
= p(p− 1)

∫
Ω

Fε(u
n
ε )−

∫
Ω

vnε .

Definition 5.4.16 A numerical scheme with solution (unε ,σ
n
ε ) is called energy-stable with

respect to the energy

Ehε (u,σ) = p(Fε(u), 1)h +
1

2
‖σ‖2

0 (5.76)

if this energy is time decreasing, that is Ehε (u
n
ε ,σ

n
ε ) ≤ Ehε (u

n−1
ε ,σn−1

ε ) for all n ≥ 1.

Theorem 5.4.17 (Unconditional stability) The scheme USε is unconditional energy
stable with respect to Ehε (u,σ). In fact, if (unε ,σ

n
ε ) is a solution of USε, then the following

discrete energy law holds

δtE
h
ε (u

n
ε ,σ

n
ε ) +

kε2−pp

2
‖δtunε‖2

0 +
k

2
‖δtσnε‖2

0 + pε2−p‖∇unε‖2
0 + ‖σnε‖2

1 ≤ 0. (5.77)
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Proof. Testing (5.74)1 by ū = pΠh(F ′ε(u
n
ε )), (5.74)2 by σ̄ = σnε and adding, the terms

p(unε∇Πh(F ′ε(uε)),σ
n
ε ) cancel, and using that ∇Πh(F ′ε(u

n
ε )) = Λ1

ε(u
n
ε )−1∇unε , we arrive at

p(δtu
n
ε , F

′
ε(u

n
ε ))h + p

∫
Ω

(∇unε )T ·Λ1
ε(u

n
ε )−1 ·∇unεdx+ δt

(1

2
‖σnε‖2

0

)
+
k

2
‖δtσnε‖2

0 + ‖σnε‖2
1 = 0,

which, proceeding as in (5.65)-(5.66) and using Remark 5.4.5 and estimate (5.48), implies
(5.77).

Corollary 5.4.18 (Uniform estimates) Assume that (u0, v0) ∈ L2(Ω) × H1(Ω). Let
(unε ,σ

n
ε ) be a solution of scheme USε. Then, it holds

p(Fε(u
n
ε ), 1)h +

1

2
‖σnε‖2

0 + k
n∑

m=1

(
pε2−p‖∇umε ‖2

0 + ‖σmε ‖2
1

)
≤ C0

(p− 1)2
, ∀n ≥ 1, (5.78)

with the constant C0 > 0 depending on the data (Ω, u0, v0), but independent of k, h, n and ε;
and the estimates given in (5.69) also hold.

Proof. Proceeding as in (5.70) (using the fact that (u0,σ0) = (Qhu0, Q̃
h(∇v0))), we can

deduce that

p

∫
Ω

Πh(Fε(u
0)) +

1

2
‖σ0‖2

0 ≤
C0

(p− 1)2
, (5.79)

where the constant C0 > 0 depends on the data (Ω, u0, v0), but is independent of k, h, n and
ε. Therefore, from the discrete energy law (5.77) and estimate (5.79), we have

Ehε (u
n
ε ,σ

n
ε ) + k

n∑
m=1

(
pε2−p‖∇umε ‖2

0 + ‖σmε ‖2
1

)
≤ Ehε (u

0,σ0) ≤ C0

(p− 1)2
,

which implies (5.78). Finally, the estimates given in (5.69) are proved as in Corollary 5.4.10.

Remark 5.4.19 (Approximated positivity of unε ) The approximated positivity result for
unε established in Remark 5.4.11 remains true for the scheme USε.
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Well-posedness

The following two results are concerning to the well-posedness of the scheme USε.

Theorem 5.4.20 (Unconditional existence) There exists at least one solution (unε ,σ
n
ε )

of scheme USε.

Proof. The proof follows as in Theorem 4.4.5, by using the Leray-Schauder fixed point
theorem.

Lemma 5.4.21 (Conditional uniqueness) If k f(h, ε) < 1 (where f(h, ε) ↑ +∞ when
h ↓ 0 or ε ↓ 0), then the solution (unε ,σ

n
ε ) of the scheme USε is unique.

Proof. The proof follows as in Lemma 4.4.6.

5.4.3 Scheme US0

In this section, we are going to study another unconditional energy-stable fully discrete
scheme associated to model (5.1). With this aim, we consider the following reformulation of
problem (5.1): Find u : Ω× [0, T ]→ R and σ : Ω× [0, T ]→ Rd, with u ≥ 0, such that

∂tu−∆u−∇ · (uσ) = 0 in Ω, t > 0,
∂tσ + rot(rot σ)−∇(∇ · σ) + σ = ∇(up) in Ω, t > 0,
∂u

∂n
= 0, σ · n = 0, [rot σ × n]tang = 0 on ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, σ(x, 0) = ∇v0(x), in Ω.

(5.80)

Once system (5.80) is solved, we can recover v from u by solving
∂tv −∆v + v = up in Ω, t > 0,
∂v
∂n

= 0 on ∂Ω, t > 0,
v(x, 0) = v0(x) > 0 in Ω.

(5.81)

Observe that (formally) multiplying (5.80)1 by p
p−1

up−1, (5.80)2 by σ, integrating over Ω

and adding both equations, the terms p
p−1

(uσ,∇(up−1)) and (∇(up),σ) vanish, we obtain
the following energy law

d

dt

∫
Ω

( 1

p− 1
|u|p +

1

2
|σ|2

)
dx+

∫
Ω

4

p
|∇(up/2)|2dx+ ‖σ‖2

1 = 0.
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In particular, the modified energy

E(u,σ) =

∫
Ω

( 1

p− 1
|u|p +

1

2
|σ|2

)
dx

is decreasing in time. Then, taking into account the reformulation (5.80)-(5.81), we consider
a fully discrete approximation using a FE discretization in space and the backward Euler
discretization in time (considered for simplicity on a uniform partition of [0, T ] with time step
k = T/N : (tn = nk)n=N

n=0 ). Concerning the space discretization, we consider the triangulation
as in the scheme UVε, but in this case without imposing the constraint (H) related with
the right-angles simplices. We choose the following continuous FE spaces for u, σ and v:

(Uh,Σh, Vh) ⊂ H1(Ω)3, generated by P1,Pm,Pr with m, r ≥ 1.

Then, we consider the following first order in time, nonlinear and coupled scheme:

• Scheme US0 :

Initialization: Let (u0,σ0) = (Qhu0, Q̃
h(∇v0)) ∈ Uh ×Σh.

Time step n: Given (un−1,σn−1) ∈ Uh ×Σh, compute (un,σn) ∈ Uh ×Σh solving{
(δtu

n, ū)h + 1
p−1

((un+)2−p∇(Πh((un+)p−1)),∇ū) = −(unσn,∇ū), ∀ū ∈ Uh,

(δtσ
n, σ̄) + (Bhσ

n, σ̄) = p
p−1

(un∇(Πh((un+)p−1)), σ̄), ∀σ̄ ∈ Σh,
(5.82)

where un+ := max{un, 0} ≥ 0. Recall that Qh is the L2-projection on Uh defined in (5.43),

Q̃h is the standard L2-projection on Σh, Πh : C(Ω) → Uh is the Lagrange interpolation
operator, (Bhσ

n, σ̄) = (rot σn, rot σ̄) + (∇·σn,∇· σ̄) + (σn, σ̄) and the discrete semi-inner
product (·, ·)h was defined in (5.42).

Once the scheme US0 is solved, given vn−1 ∈ Vh, we can recover vn = vn(un) ∈ Vh
solving:

(δtv
n, v̄) + (∇vn,∇v̄) + (vn, v̄) = ((un+)p, v̄), ∀v̄ ∈ Vh. (5.83)

Given un ∈ Uh and vn−1 ∈ Vh, Lax-Milgram theorem implies that there exists a unique
vn ∈ Vh solution of (5.83).

Remark 5.4.22 (Positivity of vn) Imposing the geometrical property of the triangulation
where the interior angles of the triangles or tetrahedra must be at most π/2, the result
concerning to the positivity of vn stablished in Remark 5.4.7 remains true for the scheme
US0.
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Mass-conservation, Energy-stability and Solvability

Since ū = 1 ∈ Uh and v̄ = 1 ∈ Vh, we deduce that the scheme US0 is conservative in un,
that is,

(un, 1) = (un, 1)h = (un−1, 1)h = · · · = (u0, 1)h = (u0, 1) = m0, (5.84)

and we have the following behavior for
∫

Ω
vn:

δt

(∫
Ω

vn
)

=

∫
Ω

(un+)p −
∫

Ω

vn.

Definition 5.4.23 A numerical scheme with solution (un,σn) is called energy-stable with
respect to the energy

Eh(u,σ) =
1

p− 1
((u+)p, 1)h +

1

2
‖σ‖2

0, (5.85)

if this energy is time decreasing, that is Eh(un,σn) ≤ Eh(un−1,σn−1), for all n ≥ 1.

Theorem 5.4.24 (Unconditional stability) The scheme US0 is unconditional energy
stable with respect to Eh(u,σ). In fact, if (un,σn) is a solution of US0, then the following
discrete energy law holds

δtE
h(un,σn) +

k

2
‖δtσn‖2

0 +
p

(p− 1)2

∫
Ω

(un+)2−p|∇(Πh((un+)p−1))|2dx+ ‖σn‖2
1 ≤ 0. (5.86)

Proof. Testing (5.82)1 by ū = p
p−1

Πh((un+)p−1), (5.82)2 by σ̄ = σn and adding, the terms
p
p−1

(un∇(Πh((un+)p−1)),σn) cancel, and we obtain

p

p− 1

∫
Ω

Πh(δtu
n · (un+)p−1)dx+

1

2
δt‖σn‖2

0 +
k

2
‖δtσn‖2

0

+
p

(p− 1)2

∫
Ω

(un+)2−p|∇(Πh((un+)p−1))|2dx+ ‖σn‖2
1 = 0. (5.87)

Denoting by F (un) =
1

p
(un+)p, we have that F is differentiable and convex, and then, from

(5.5) we have that

δtu
n · (un+)p−1 =

1

k
F ′(un)(un − un−1) ≥ 1

k
(F (un)− F (un−1)) = δtF (un),
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and therefore,∫
Ω

Πh(δtu
n · (un+)p−1) ≥ δt

(∫
Ω

ΠhF (un)

)
=

1

p
δt

(∫
Ω

Πh((un+)p)

)
. (5.88)

Therefore, from (5.87) and (5.88) we deduce (5.86).

Corollary 5.4.25 (Uniform estimates) Let (un,σn) be a solution of scheme US0. Then,
it holds for all n ≥ 1,

1

p− 1
((un+)p, 1)h+

1

2
‖σn‖2

0+k
n∑

m=1

(
p

(p− 1)2

∫
Ω

(um+ )2−p|∇(Πh((um+ )p−1))|2dx+ ‖σm‖2
1

)
≤ C0

p− 1
,

(5.89)∫
Ω

|un| ≤ C1, (5.90)

with the constants C0, C1 > 0 depending on the data (Ω, u0, v0), but independent of (k, h)
and n.

Proof. In order to obtain (5.89), by multiplying (5.86) by k and adding from m = 1
to m = n, it suffices to bound the initial energy Eh(u0,σ0). Taking into account that

(u0,σ0) = (Qhu0, Q̃
h(∇v0)) and u0 ≥ 0 (and therefore, u0 ≥ 0), we have

Eh(u0,σ0) ≤ C

p− 1

∫
Ω

Πh((u0)2 + 1) +
1

2
‖v0‖2

1 ≤
C

p− 1
(‖u0‖2

0 + ‖v0‖2
1 + 1).

On the other hand, by considering un− = min{un, 0} ≥ 0, taking into account that |un| =
2un+ − un, using the Hölder and Young inequalities as well as (5.84), we have∫

Ω

|un| ≤
∫

Ω

Πh|un| = 2

∫
Ω

Πh(un+)−
∫

Ω

un

≤ C
(∫

Ω

(Πh(un+))p + 1
)
≤ C

(∫
Ω

Πh((un+)p) + 1
)
. (5.91)

Therefore, from (5.89) and (5.91), we deduce (5.90).

Theorem 5.4.26 (Unconditional existence) There exists at least one solution (un,σn)
of scheme US0.

Proof. The proof follows as in Theorem 4.4.5, by using the Leray-Schauder fixed point
theorem.
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5.5 Numerical simulations

In this section, we will compare the results of several numerical simulations using the schemes
derived through the paper. We have chosen the 2D domain [0, 2]2 using a structured mesh
(then the right-angled constraint (H) holds and the scheme UVε can be defined), the spaces
for u and σ generated by P1-continuous FE, and all the simulations are carried out using
FreeFem++ software. We will also compare with the usual Backward Euler scheme for
problem (5.1), which is given for the following first order in time, nonlinear and coupled
scheme:

• Scheme UV :

Initialization: Let (u0, v0) ∈ Uh × Vh an approximation of (u0, v0) as h→ 0.

Time step n: Given (un−1, vn−1) ∈ Uh × Vh, compute (un, vn) ∈ Uh × Vh solving{
(δtu

n, ū) + (∇un,∇ū) = −(un∇vn,∇ū), ∀ū ∈ Uh,

(δtv
n, v̄) + (∇vn,∇v̄) + (vn, v̄) = ((un+)p, v̄), ∀v̄ ∈ Vh.

Remark 5.5.1 The scheme UV has not been analyzed in the previous sections because it
is not clear how to prove its energy-stability. In fact, observe that the scheme UVε (which
is the “closest” approximation to the scheme UV considered in this paper) differs from the
scheme UV in the use of the regularized functions Fε and its derivatives (see Figure 5.1)
and in the approximation of cross-diffusion and production terms, (u∇v,∇ū) and (up, v̄)
respectively, which are crucial for the proof of the energy-stability of the scheme UVε.

The linear iterative methods used to approach the solutions of the nonlinear schemes UVε,
USε, US0 and UV are the following Picard methods:

(i) Picard method to approach a solution (unε , v
n
ε ) of the scheme UVε:

Initialization (l = 0): Set (u0
ε, v

0
ε) = (un−1

ε , vn−1
ε ) ∈ Uh × Vh.

Algorithm: Given (ulε, v
l
ε) ∈ Uh × Vh, compute (ul+1

ε , vl+1
ε ) ∈ Uh × Vh such that{

1
k
(ul+1

ε , ū)h + (∇ul+1
ε ,∇ū) = 1

k
(un−1

ε , ū)h − (Λ2
ε(u

l
ε)∇vlε,∇ū), ∀ū ∈ Uh,

1
k
(vl+1
ε , v̄) + (Ahv

l+1
ε , v̄) = 1

k
(vn−1
ε , v̄) + p(p− 1)(ΠhFε(u

l+1
ε ), v̄), ∀v̄ ∈ Vh,

until the stopping criteria max

{
‖ul+1

ε − ulε‖0

‖ulε‖0

,
‖vl+1

ε − vlε‖0

‖vlε‖0

}
≤ tol.
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(ii) Picard method to approach a solution (unε ,σ
n
ε ) of the scheme USε:

Initialization (l = 0): Set (u0
ε,σ

0
ε) = (un−1

ε ,σn−1
ε ) ∈ Uh ×Σh.

Algorithm: Given (ulε,σ
l
ε) ∈ Uh ×Σh, compute (ul+1

ε ,σl+1
ε ) ∈ Uh ×Σh such that{

1
k
(ul+1

ε , ū)h + (∇ul+1
ε ,∇ū) + (ul+1

ε σlε,∇ū) = 1
k
(un−1

ε , ū)h, ∀ū ∈ Uh,
1
k
(σl+1

ε , σ̄) + (Bhσ
l+1
ε , σ̄) = 1

k
(σn−1

ε , σ̄) + p(ul+1
ε ∇Πh(F ′ε(u

l+1
ε )), σ̄), ∀σ̄ ∈ Σh,

until the stopping criteria max

{
‖ul+1

ε − ulε‖0

‖ulε‖0

,
‖σl+1

ε − σlε‖0

‖σlε‖0

}
≤ tol.

(iii) Picard method to approach a solution (un,σn) the scheme US0:

Initialization (l = 0): Set (u0,σ0) = (un−1,σn−1) ∈ Uh ×Σh.

Algorithm: Given (ul,σl) ∈ Uh ×Σh, compute (ul+1,σl+1) ∈ Uh ×Σh such that
1
k
(ul+1, ū)h + (∇ul+1,∇ū)− (∇ul,∇ū) + (ul+1σl,∇ū)

= 1
k
(un−1, ū)h − 1

p−1
((ul+)2−p∇(Πh(ul+)p−1),∇ū), ∀ū ∈ Uh,

1
k
(σl+1, σ̄) + (Bhσ

l+1, σ̄) = 1
k
(σn−1, σ̄) + p

p−1
(ul+1∇(Πh(ul+1

+ )p−1), σ̄), ∀σ̄ ∈ Σh,

until the stopping criteria max

{
‖ul+1 − ul‖0

‖ul‖0

,
‖σl+1 − σl‖0

‖σl‖0

}
≤ tol. Observe that the

residual term (∇(ul+1 − ul),∇ū) is considered.

(iv) Picard method to approach a solution (un, vn) of the scheme UV:

Initialization (l = 0): Set (u0, v0) = (un−1, vn−1) ∈ Uh × Vh.
Algorithm: Given (ul, vl) ∈ Uh × Vh, compute (ul+1, vl+1) ∈ Uh × Vh such that{

1
k
(ul+1, ū) + (∇ul+1,∇ū) + (ul+1∇vl,∇ū) = 1

k
(un−1, ū), ∀ū ∈ Uh,

1
k
(vl+1, v̄) + (∇vl+1,∇v̄) + (vl+1, v̄) = 1

k
(vn−1, v̄) + ((ul+1

+ )p, v̄), ∀v̄ ∈ Vh,

until the stopping criteria max

{
‖ul+1 − ul‖0

‖ul‖0

,
‖vl+1 − vl‖0

‖vl‖0

}
≤ tol.

Remark 5.5.2 In all cases, first we compute ul+1 solving the u-equation, and then, inserting
ul+1 in the v-equation (resp. σ-system), we compute vl+1 (resp. σl+1).
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5.5.1 Positivity of un

In this subsection, we compare the positivity of the variable un in the four schemes. Here, we
choose the space for v generated by P2-continuous FE. We recall that for the three schemes
studied in this paper, namely schemes UVε, USε and US0, it is not clear the positivity of
the variable un. Moreover, for the schemes UVε and USε, it was proved that Πh(unε−)→ 0
as ε → 0 (see Remarks 5.4.11 and 5.4.19). For this reason, in Figures 5.3-5.9 we compare
the positivity of the variable unε in the schemes, for different values of 1 < p < 2 and taking
ε = 10−3, ε = 10−5 and ε = 10−8 in the schemes UVε and USε. We consider k = 10−5,
h = 1

40
, the tolerance parameter tol = 10−3 and the initial conditions (see Figure 5.2)

u0=−10xy(2− x)(2− y)exp(−10(y − 1)2 − 10(x− 1)2) + 10.0001,

v0=100xy(2− x)(2− y)exp(−30(y − 1)2 − 30(x− 1)2) + 0.0001.

(a) Initial cell density u0 (b) Initial chemical concentration v0

Figure 5.2: Initial conditions.

Note that u0, v0 > 0 in Ω, min(u0) = u0(1, 1) = 0.0001 and max(v0) = v0(1, 1) =
100.0001. We obtain that:

(i) All the schemes take negative values for the minimum of un in different times tn ≥ 0,
for the different values taken for p and ε. However, in the case of the schemes UVε
and USε, it is observed that these values are closer to 0 as ε→ 0 (see Figures 5.3-5.9).

(ii) In all cases, the scheme UVε “preserves” better the positivity than the schemes UV,
USε and US0 (see Figures 5.3-5.9).
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Figure 5.3: Minimum values of unε for p = 1.1, computed using the scheme UVε.

Remark 5.5.3 In Figures 5.3 and 5.6 there are also negative values of minimum of unε for
ε = 10−8, but those are of order 10−8 and 10−5, respectively.

5.5.2 Energy stability

In this subsection, we compare numerically the stability of the schemes UVε, USε, US0
and UV with respect to the “exact” energy

Ee(u, v) =

∫
Ω

1

p− 1
(u+)pdx+

1

2
‖∇v‖2

0. (5.92)

It was proved that the schemes UVε, USε and US0 are unconditionally energy-stables
with respect to modified energies defined in terms of the variables of each scheme, and some
energy inequalities are satisfied (see Theorems 5.4.9, 5.4.17 and 5.4.24). However, it is not
clear how to prove the energy-stability of these schemes with respect to the “exact” energy
Ee(u, v) given in (5.92), which comes from the continuous problem (5.1) (see (5.8)-(5.9)).
Therefore, it is interesting to compare numerically the schemes with respect to this energy
Ee(u, v), and to study the behaviour of the corresponding discrete energy law residual

REe(u
n, vn) := δtEe(u

n, vn) +
4

p

∫
Ω

|∇((un+)p/2)|2dx+ ‖∆hv
n‖2

0 + ‖∇vn‖2
0. (5.93)
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Figure 5.4: Minimum values of unε for p = 1.1, computed using the scheme USε.

We consider k = 10−5, h = 1
25

, p = 1.4, tol = 10−3 and the initial conditions (see Figure
5.10)

u0 = 14cos(2πx)cos(2πy) + 14.0001 and v0 = −14cos(2πx)cos(2πy) + 14.0001.

We choose the space for v generated by P1-continuous FE. Then, we obtain that:

(i) All the schemes UVε, USε, UV and US0 satisfy the energy decreasing in time pro-
perty for the exact energy Ee(u, v) (see Figure 5.11), that is,

Ee(u
n, vn) ≤ Ee(u

n−1, vn−1) ∀n.

(ii) The schemes US0 and USε satisfy the discrete energy inequality REe(u
n, vn) ≤ 0,

for REe(u
n, vn) defined in (5.93), independently of the choice of ε; while the schemes

UV and UVε have RE(un, vn) > 0 for some tn ≥ 0. However, it is observed that
the scheme UVε introduces lower numerical source than the scheme UV, and lower
numerical dissipation than the schemes US0 and USε (see Figure 5.12).

5.6 Conclusions

In this paper we have developed three new mass-conservative and unconditionally energy-
stable fully discrete FE schemes for the chemorepulsion production model (5.1), namely
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Figure 5.5: Minimum values of unε for p = 1.1, computed using the schemes UV and US0.

UVε, USε and US0. From the theoretical point of view we have obtained:

(i) The solvability of the numerical schemes.

(ii) The schemes UVε and USε are unconditionally energy-stables with respect to the
modified energies Ehε (u, v) (given in (5.62)) and Ehε (u,σ) (given in (5.76)) respectively,
under the right-angles constraint (H); while the scheme US0 is unconditionally energy-
stable with respect to the modified energy Eh(u,σ) given in (5.85), without this res-
triction (H) on the mesh.

(iii) It is not clear how to prove the energy-stability of the nonlinear scheme UV (see
Remark 5.5.1).

(iv) In the schemes UVε and USε there is a control for Πh(unε−) in L2-norm, which tends
to 0 as ε→ 0. This allows to conclude the nonnegativity of the solution unε in the limit
as ε→ 0.

On the other hand, from the numerical simulations, we can conclude:

(i) The four schemes have decreasing in time energy Ee(u, v), independently of the choice
of ε.

177



0 0.005 0.01 0.015

Time

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

M
in

 u
n UVǫ - ǫ=10

-3

UVǫ - ǫ=10
-5

UVǫ - ǫ=10
-8

Figure 5.6: Minimum values of unε for p = 1.5, computed using the scheme UVε.

(ii) The schemes US0 and USε satisfy the discrete energy inequality REe(u
n, vn) ≤ 0,

for REe(u
n, vn) defined in (5.93), independently of the choice of ε; while the schemes

UV and UVε have RE(un, vn) > 0 for some tn ≥ 0. However, it was observed that
the scheme UVε introduces lower numerical source than the scheme UV, and lower
numerical dissipation than the schemes US0 and USε.

(iii) Finally, it was observed numerically that for the schemes UVε and USε, min
Ω×[0,T ]

unε → 0

as ε→ 0.
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Figure 5.7: Minimum values of un for p = 1.5, computed using the schemes UV, USε and
US0.
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Figure 5.8: Minimum values of unε for p = 1.9, computed using the scheme UVε.
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Figure 5.9: Minimum values of un for p = 1.9, computed using the schemes UV, USε and
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(a) Initial cell density u0 (b) Initial chemical concentration v0

Figure 5.10: Initial conditions.
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Figure 5.11: Ee(u
n, vn) of the schemes UV, US0, UVε and USε (for ε = 10−4, 10−7).
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n, vn) of the schemes UV, US0, UVε and USε (for ε = 10−4, 10−7).
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