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Abstract

In this study we consider the focal curve Cγ of a space curve γ and its
focal curvatures. We characterize some special types of ruled surface,
choosing one of the base curves or director curves as the focal curve of
the space curve γ. Finally we construct new types of ruled surface and
calculate their distinguished parameters. We give necessary and sufficient
conditions for these types of ruled surface to become developable.
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1. Introduction

The differential geometry of space curves is a classical subject which usually relates geo-
metrical intuition with analysis and topology. For any unit speed curve γ = γ(s) : I → E

3,

the focal curve Cγ is defined as the centers of the osculating spheres of γ. Since the center
of any sphere tangent to γ at a point lies on the normal plane to γ at that point, the focal
curve of γ may be parameterized using the Frenet frame (t(s), n1(s), n2(s)) of γ as follows:

Cγ(s) = (γ + c1n1 + c2n2)(s),

where the coefficients c1, c2 are smooth functions that are called focal curvatures of γ [15].

Recently, ruled surfaces have been studied by many authors (see,[7, 8, 9, 10]). A ruled
surface in E

3 is (locally) the map F(γ,δ) : I × R → E
3 defined by

F(γ,δ)(s, u) = γ(s) + uδ(s)

where γ : I → E
3, δ : I → E

3 \ {0} are smooth mappings and I is an open interval or
the unit circle S1, We call γ the base curve and δ the director curve. The straight lines
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u → γ(s) + uδ(s) are called rulings. The ruled surface F(γ,δ) is called developable if the
Gaussian curvature of the regular part of F(γ,δ) vanishes. This is equivalent to the fact that
F(γ,δ) is developable if and only if the distinguished parameter

P(γ,δ) =
〈γ′, δ ∧ δ′〉

〈δ′, δ′〉

of F(γ,δ) vanishes identically. In [7], S. Izumiya and N. Takeuchi studied a special type of

ruled surface with Darboux vector D̃(s) = δ(s). They called the ruled surface F(γ,D̃) the

rectifying developable surface of the space curve γ.

In this study we use the properties of the focal curvatures to obtain some results for the
curve γ and its focal curve Cγ . Further, we characterize some special types of ruled surface
obtained by choosing either the base curve or director curve as the focal curve of the space
curve γ. Finally, we characterize the ruled surfaces related with the distinguished parameter
of the focal surface.

In § 2 we describe basic notions and properties of space curves. In § 3 we review the basic
notions and properties of the focal curve Cγ(s) of a space curve γ. We prove that γ is a
cylindrical helix if and only if the focal curve Cγ(s) has constant length. Further, we also
prove that γ is a conical geodesic curve if and only if the ratio of its torsion and curvature
is a nonzero linear function in the arclength function s. In the final section we define new
types of ruled surface, and calculate their distinguished parameters. We give necessary and
sufficient conditions for these types of ruled surface to become developable.

All manifolds and maps considered here are of class C∞ unless otherwise stated.

2. Basic notation and properties

We now review some basic concepts on the classical differential geometry of space curves
in Euclidean space. Let γ = γ(s) : I → E

3 be a curve parametrized by the arc-length

parameter s with γ′(s) 6= 0, where γ′(s) = dγ(s)
ds

. The tangent vector t(s) = γ′(s) is unitary
and it is orthogonal to t′(s) = γ′′(s). If γ′′(s) 6= 0, these vectors span the osculating plane
of γ at s.

Define the first curvature of γ by κ1(s) = ‖γ′′(s)‖. If κ1(s) 6= 0, the unit principal
normal vector n1(s) of the curve γ at s is given by t′(s) = κ1(s)n1(s). The unit vector
n2(s) = t(s) × n1(s) is called the unit binormal vector of γ at s. Then the Serret-Frenet
formulae of γ are

(2.1)

t
′(s) = κ1(s)n1(s),

n
′
1(s) = −κ1(s)t(s) + κ2(s)n2(s),

n
′
2(s) = −κ2(s)n1(s),

where κ2(s) is the second curvature of the curve γ at s. The radius of the osculating circle
of γ at s is given by R(s) = 1

κ1(s)
, and is called the radius of curvature of γ at s [3].

The Serret-Frenet formulae can be interpreted kinematically as follows: If a moving point
traverses the curve in such a way that s is the time parameter, then the moving frame
{t(s), n1(s), n2(s)} moves in accordance with (2.1). This motion contains, apart from an
instantaneous translation, an instantaneous rotation with angular velocity vector given by
the Darboux vector D(s) = κ2(s)t(s) + κ1(s)n2(s). The direction of the Darboux vector is

that of instantaneous axis of rotation and its length
√

κ2
1(s) + κ2

2(s) is the scalar angular
velocity (cf. [12, p. 12]).

For any unit speed curve γ : I → E
3 we define a vector field

(2.2) D̃(s) =
(κ2

κ1

)
(s)t(s) + n2(s),
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along γ under the condition that κ1(s) 6= 0, and we call it the modified Darboux vector field
along γ. We also denote the unit Darboux vector field by

D(s) =

(
1√

κ2
1 + κ2

2

)
(s)(κ2(s)t(s) + κ1(s)n2(s)),

(cf. [11, Section 5.2]).

A curve γ : I → E
3 with κ1(s) 6= 0 is called a generalized helix if the tangent lines of γ

make a constant angle with a fixed direction. It is known that the curve γ is a generalized
helix if and only if

(
κ2

κ1

)
(s) is constant. If both of κ1(s) 6= 0 and κ2(s) are constant, the

curve γ is called circular helix.

3. Focal curve of a space curve

For a unit speed curve γ = γ(s) : I → E
3, the curve consisting of the centers of the

osculating spheres of γ is called the parametrized focal curve of γ. The hyperplanes normal
to γ at a point consist of the set of centers of all spheres tangent to γ at that point. Hence
the center of the osculating spheres at that point lies in such a normal plane. Therefore,
denoting the focal curve by Cγ we can write

(3.1) Cγ(s) = (γ + c1n1 + c2n2)(s),

where the coefficients c1, c2 are smooth functions of the parameter of the curve γ, called the
first and second focal curvatures of γ, respectively. Further, the focal curvatures c1, c2 are
defined by

(3.2) c1 =
1

κ1
, c2 =

c′1
κ2

; κ1 6= 0, κ2 6= 0.

The focal curvatures c1, c2 of γ satisfy the following Frenet equations:

(3.3)




1
c′1

c′2 −
(R2)′

2c2


 =




0 κ1 0
−κ1 0 κ2

0 −κ2 0







0
c1

c2


 ,

where R is the radius of the osculating sphere of γ. If the curve γ is spherical, i.e., lies on a
sphere, then the last component of the left hand side vector of equation only consists of c′2
[15]. We give some classical results for the spherical curves:

3.1. Proposition. [13] A curve γ : I → E
3 is spherical, i.e., it is contained in a sphere of

radius R, if and only if

(3.4)
1

κ2
1

+ (
κ′

1

κ2
1κ2

) = R
2
.

This means that the curve γ is spherical if and only if the equality c′2 + c1κ2 = 0 holds. �

Further, the derivative of the focal curve with respect to the arclength parameter is
C′

γ = (c′2 + c1κ2)n2, where (R2)′ = 2c2(c
′
2 + c1κ2) and R2 = c2

1 + c2
2.

3.2. Lemma. [2, 15] Let K1 and K2 (resp. κ1 and κ2) be the curvatures of Cγ (resp. of γ).
Then

(3.5)
K1

|κ2|
=

|K2|

κ1
=

1

|c′2 + c1κ2|
=

2c2

|(R2)′|
. �

By the use of Lemma 3.2 we obtain the following results.

3.3. Proposition. Let γ ⊂ E
3 be a unit speed curve and Cγ its focal curve. Then γ is a

generalized helix if and only if

|C′
γ | = |c′2 + c1κ2|

is a nonzero constant. �
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3.4. Definition. [7] A curve γ : I → E
3 with κ1(s) 6= 0 is called a conical geodesic if

(
κ2

κ1

)
(s)

is a constant function.

3.5. Theorem. Let γ ⊂ E
3 be a unit speed curve and Cγ its focal curve. Then γ is a conical

geodesic if and only if

∣∣C′
γ

∣∣ =
1

as + b

for some real constants a, b with a 6= 0.

Proof. =⇒ Suppose γ is a conical geodesic curve and Cγ its focal curve. Then from

Lemma 3.2 and Definition 3.4, we get ( |κ2|
κ1

)′′(s) = 0. Further, by the use of

|κ2|

κ1
=

1

|c′2 + c1κ2|
,

and after some computations we obtain

(3.6)
∣∣C′

γ

∣∣ =
∣∣c′2 + c1κ2

∣∣ =
1

as + b
.

⇐= Conversely, if (3.6) holds then by the use of (3.5) we get ( |κ2|
κ1

)′′ = 0, which means

that γ is a conical geodesic. �

3.6. Definition. A curve γ : I → E
3 is called rectifying if the position vector of γ lies in its

rectifying plane, i.e. the position vector satisfies

(3.7) γ(s) = λ(s)t(s) + µ(s)n2(s)

for some functions λ and µ [1].

By taking the derivative of (3.7) with respect to the parameter s and applying the Serret-
Frenet equations (2.1), we get

(3.8) λ(s) = 1, µ(s) = 0, λ(s)κ1 = µ(s)κ2(s).

3.7. Theorem. Let γ ⊂ E
3 be a non-spherical unit speed curve and Cγ its focal curve. Then

γ is a conical geodesic if and only if γ is congruent to a rectifying curve.

Proof. =⇒ Suppose γ is a conical geodesic. Then by Theorem 3.5, the ratio of the torsion

and curvature of γ is a nonzero linear function of s, i.e. |κ2|
κ1

= as+ b for some real constants

a, b with a 6= 0. So, by B. Y. Chen [1, Theorem 2], γ is congruent to a rectifying curve.

⇐= Conversely, if γ is congruent to a rectifying curve then by (3.7), the ratio of the
torsion and curvature of γ is a nonzero linear function of s. �

4. Developable surfaces associated with a space curve

In this section we consider developable surfaces associated with a space curve. A ruled
surface in E

3 is (locally) the map F(γ,δ)(s, u) : I × R → E
3 defined by F(γ,δ)(s, u) = γ(s) +

uδ(s), where γ : I → E
3, δ : I → E

3 \ {0} are smooth mappings and I is an open interval
or the unit circle S1. We call γ the base curve and δ the director curve. The straight lines
u → γ(s) + uδ(s) are called rulings of F(γ,δ) (see, [5]).

Let F(γ,δ) be a ruled surface. We say that F(γ,δ) is developable if the Gaussian curvature
of the regular part of F(γ,δ) vanishes. From now on, we may assume that ‖δ(s)‖ = 1. It is
easy to show that Gaussian curvature of F(γ,δ) is

(4.1) K(s, u) =
− (det (γ′(s), δ′(s), δ(s)))

(EG − F 2)2
,
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where E = E(s, u) = ‖γ′(s) + uδ′(s)‖
2
, F = F (s, u) = 〈γ′(s), δ(s)2〉, and G = G(s, u) = 1

(see [4]).

For a given ruled surface F(γ,δ), the distinguished parameter Pδ of F(γ,δ) is defined by

(4.2) P(γ,δ) =
〈γ′, δ ∧ δ′〉

〈δ′, δ′〉
.

Comparing (4.1) with (4.2), it is easy to see that the ruled surface F(γ,δ) is developable if
and only if Pδ vanishes identically [6]. See also [14] for the Lorentzian case.

For a ruled surface F(γ,δ), we can find the following equality;

(4.3)
∂F(γ,δ)

∂t
(s, u) ×

∂F(γ,δ)

∂u
(s, u) = γ

′(s) × δ(s) + uδ
′(s) × δ(s).

Therefore, (s0, u0) is a singular point of F(γ,δ) if and only if γ(s0)×δ(s0)+u0δ
′(s0)×δ(s0) = 0.

We say that a ruled surface is cylindrical if the equality δ′(s)× δ(s) ≡ 0 holds. Thus, we can
say that the ruled surface F(γ,δ) is non-cylindrical if δ′(s) × δ(s) 6= 0.

In [8], S. Izumiya and N. Tekauchi studied the rectifying developable surfaces of a unit
speed space curve γ with κ1(s) 6= 0 using

(4.4) F(γ,D̃)(s, u) = γ(s) + uD̃(s).

From Equation (2.2), an easy calculation gives

(4.5) D̃
′(s) = (

κ2

κ1
)′(s)t(s),

so that (s0, u0) is singular point of F(γ,D̃) if and only if (κ2

κ1

)′(s0) 6= 0 and u0 = −1

(
κ2

κ1
)′(s0)

.

Moreover, they proved the following results.

4.1. Proposition. [8] For a unit speed curve γ : I → E
3 with κ1(s) 6= 0, the following are

equivalent:

(1) The rectifying developable surface F(γ,D̃) : I×R → E
3 of γ is a non-singular surface.

(2) γ is a cylindrical helix.
(3) The rectifying developable surface F(γ,D̃) of γ is a cylindrical surface. �

4.2. Proposition. [7] For a unit speed curve γ : I → E
3 with κ1(s) 6= 0, the following are

equivalent:

(1) The rectifying developable surface F(γ,D̃) : I × R → E
3 of γ is a conical surface.

(2) γ is a conical geodesic curve. �

We now consider a curve τ (s) on the ruled surface F(γ,δ) with the property that
〈
τ
′(s), δ′(u)

〉
6= 0.

We call such a curve a line of striction [7]. Let γ be a geodesic of a rectifying developable
surface F(γ,D̃). The locus of the singular points of the rectifying developable surface of γ is

given by

(4.6) τ (s) = γ(s) −
1(

κ2

κ1

)′
(s)

D̃(s),

where D̃ is the modified Darboux vector defined by the equation (2.2). An easy calculation
gives

(4.7) τ
′(s) =

(
κ2

κ1

)′′
(s)

(
κ2

κ1

)′
(s)

D̃(s),

so τ (s) is a regular space curve which is a generalized helix [8].
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4.3. Definition. Let γ ⊂ E
3 be a unit speed curve. We define the following ruled surfaces;

F(γ,Cγ )(s, u) = γ(s) + uCγ(s),(4.8)

F(Cγ ,γ)(s, u) = Cγ(s) + uγ
′(s),(4.9)

F(D̃,Cγ)(s, u) = D̃(s) + uCγ(s),(4.10)

F(Cγ ,D̃)(s, u) = Cγ(s) + uD̃(s),(4.11)

where Cγ and D̃ are the focal curve and modified Darboux vector field of γ, respectively.

Now, we have the following results:

4.4. Lemma. Let γ ⊂ E
3 be a unit speed curve and Cγ its focal curve. Then the equalities

Cγ(s) ∧ C
′
γ(s) =

∥∥C
′
γ(s)

∥∥ (γ ∧ n2(s) + c1t(s)),(4.12)

D̃(s) ∧ D̃(s) = (
κ2

κ1
)(s)(

κ2

κ1
)′(s)n1(s),(4.13)

γ(s) ∧ γ
′′(s) = −κ2(s)n1(s),(4.14)

〈
D̃(s), D̃(s)

〉
=

[(κ2

κ1

)′
(s)

]2

(4.15)

hold. �

4.5. Proposition. For a unit speed curve γ ⊂ E
3 the distinguished parameter of the ruled

surfaces given by the equations (4.8)–(4.11) are, respectively,

P(γ,Cγ ) =
〈γ ∧ n2, t〉 + c1∥∥C′

γ(s)
∥∥ ,

P(Cγ ,γ) = 0,

P(D̃,Cγ) =
(κ2

κ1
)′(s)(〈γ ∧ n2, t〉 + c1)∥∥C′

γ(s)
∥∥ ,

P(Cγ ,D̃) = 0.

Proof. By using (4.2) we obtain the results. �

Finally, we obtain following results.

4.6. Corollary.

i) The ruled surfaces F(Cγ ,γ) and F(Cγ ,D̃) are developable.

ii) If γ is a generalized helix then the ruled surface F(Cγ ,D̃) is cylindrical and also

developable.

Proof. i) Since P(Cγ ,γ) = 0 = P(Cγ ,D̃), then the ruled surfaces F(Cγ ,γ) and F(Cγ ,D̃) are

developable.

ii) Suppose γ is a generalized helix. Then
(

κ2

κ1

)′
= 0. So, the distinguished parameter

P(D̃,Cγ) of the ruled surface vanishes identically. Hence, F(D̃,Cγ) becomes a developable

surface. �
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Basımevi, Ankara, 1983) (In Turkish).

[7] Izumiya, S. and Takeuchi, N. New special curves and developable surfaces, Turkish J. Math. 28,
153–163, 2004.

[8] Izumiya, S. and Takeuchi, N. Special curves and ruled surfaces, Cont. to Alg. and Geo. 44,
200–212, 2003.

[9] Izumiya, S. and Takeuchi, N. Geometry of Ruled Surfaces (Applicable mathematics in the
Goldon Age (ed. J. C. Misra), 305–308, Narosa Pulishing House, New Delhi, 2003).

[10] Izumiya, S., Katsumi, H. and Yamashi, T. The rectifying developable and spherical Darboux

image of a space curve, Geom. and Top. of caustics - Caustics’98 Banach Center Publications
50, 137–149, 1999.

[11] Koenderink, J. Solid Shape (MIT Press, Cambridge MA, 1990).
[12] Laugwitz, D. Differential and Riemannian Geometry (Academic Press, New York, 1965).
[13] Monterde, J. Curves with constant curvatures ratios, arXiv:math/0412323v1.
[14] Ozyilmaz, E. and Yayli, Y. On the closed space-like developable ruled surface, Hadronic J. 23 (4),

439–456, 2000.

[15] Uribe-Vargas, R. On vertices, focal curvatures and differential geometry of space curves, Bull.
Brazilian Math. Soc. 36 (3), 285–307, 2005.


