Fuzzy reasoning spiking neural P system for fault diagnosis

Hong Penga,c, Jun Wangb, Mario J. Pérez-Jiménezc, Hao Wanga, Jie Shaoa, Tao Wangb

aSchool of Mathematics and Computer Engineering, Xihua University, Chengdu 610039, China
bSchool of Electrical and Information Engineering, Xihua University, Chengdu 610039, China
cResearch Group of Natural Computing, Department of Computer Science and Artificial Intelligence, University of Seville, Sevilla 41012, Spain

\begin{abstract}
Spiking neural P systems (SN P systems) have been well established as a novel class of distributed parallel computing models. Some features that SN P systems possess are attractive to fault diagnosis. However, handling fuzzy diagnosis knowledge and reasoning is required for many fault diagnosis applications. The lack of ability is a major problem of existing SN P systems when applying them to the fault diagnosis domain. Thus, we extend SN P systems by introducing some new ingredients (such as three types of neurons, fuzzy logic and new firing mechanism) and propose the fuzzy reasoning spiking neural P systems (FRSN P systems). The FRSN P systems are particularly suitable to model fuzzy production rules in a fuzzy diagnosis knowledge base and their reasoning process. Moreover, a parallel fuzzy reasoning algorithm based on FRSN P systems is developed according to neuron’s dynamic firing mechanism. Besides, a practical example of transformer fault diagnosis is used to demonstrate the feasibility and effectiveness of the proposed FRSN P systems in fault diagnosis problem.
\end{abstract}

1. Introduction

The fault diagnosis of electrical machines have moved in recent years from traditional techniques to artificial intelligence techniques [2,12,24]. In order to guarantee the secure and stable operation of electrical equipment, it is very important to diagnose its faults rapidly and accurately. More recently, a large number of methods or models using artificial intelligence and knowledge engineering have been addressed, such as expert system, Bayesian networks, artificial neural networks, and genetic algorithm [1,5,10,11,21,29]. Unfortunately, however, most of the existing methods are capable of dealing with simple diagnosis reasoning. Consequently, their reasoning processes are often difficult when complex diagnosis are shown.

Membrane computing is a class of distributed parallel computing models inspired by the structure and functioning of living cells, as well as from the way the cells are organized in tissues or higher order structures, which was introduced by Gh. Păun in 2000 [15]. In the membrane computing domain, this kind computing systems (devices) are commonly called P systems. The main ingredients of a P system are (i) the membrane structure (a rooted tree), delimiting compartments where (ii) multisets of objects evolve according to (iii) (reaction) rules of a bio-chemical inspiration [17]. According to their structures, these models can be divided into three categories: cell-like P systems, tissue-like P systems and neural-like P systems. Spiking neural P systems (SN P systems) firstly introduced by Ionescu et al. [8], as main forms of neural-like P systems recently investigated, are incorporated into membrane computing from the way that biological neurons communicate through electrical impulses of identical form (spikes). An SN P system can be viewed as a set of neurons placed in the nodes of a directed graph whose arcs represent the synaptic connections among the neurons. The flow of information is inherently realized by the exciting of pulse potentials, which are encoded by the so-called spikes. The spikes are objects of a unique type and are...
placed inside the neurons and can be sent from presynaptic to postsynaptic neurons according to specific firing/spiking rules and by means of forgetting rules which are associated with neuron. By applying a firing/spiking rule some spikes are consumed and new spikes are produced. The spikes produced are sent to all neurons linked by a synapse to the neuron where the rule is used. By applying a forgetting rule, spikes are removed from neurons. Currently, SN P systems and a number of variants have been proposed \([3,7,8,14,16,20,25,26,28]\). However, only a few results applied to practical problems have been addressed \([9,17,27]\).

This paper focuses on the application of SN P systems paradigm to the fault diagnosis problem. In addition to distributed and parallel computing advantage, the following features can be summarized from inherent mechanism of SN P systems: (i) high understandability (due to their directed graph structure), (ii) dynamically (neuron’s firing and spiking mechanisms make them suitable to model dynamic behaviors of a system), (iii) synchronization (that makes them suitable to describe concurrent events or activities), (iv) non-linearly (that makes them suitable to process non-linear situation), (v) non-deterministically. As we know, fault diagnosis problem can refer to the handling of the uncertainty and incompleteness, the representation of diagnosis knowledge and reasoning \([10,24]\). These features and advantage of SN P systems seem to be suitable to model diagnosis knowledge and reasoning to fault diagnosis. However, major drawback of existing SN P systems and their variants is not capable of handling incomplete and uncertain information.

In this paper we propose a class of extended SN P systems, called fuzzy reasoning spiking neural P systems (FRSN P systems). Some new ingredients are introduced to extend original SN P systems, including three types of neurons (proposition neurons, “AND”-type and “OR”-type rule neurons), fuzzy truth value, fuzzy logic and new firing mechanism. The FRSN P systems can well model and visualize fuzzy production rules in a diagnosis knowledge base due to their graphical nature. Combination of neuron’s new firing mechanism and fuzzy logic ensures to automatically accomplish dynamic fuzzy reasoning. Furthermore, a fuzzy reasoning algorithm based on matrix operations is developed, which can give full play to maximally parallel computing advantage of the FRSN P systems.

The present paper is organized as follows. Section 2 reviews some concepts of SN P systems, and then describes the proposed FRSN P systems. Section 3 describes a modeling method of fuzzy production rules based on the FRSN P systems. A fuzzy reasoning algorithm based on the proposed FRSN P systems is presented in Section 4. A fault diagnosis example is provided in Section 5, and conclusions are discussed in Section 6.

2. FRSN P systems

2.1. SN P systems

Here, we briefly review the basic concepts of SN P systems in the computing form (i.e., able to take some inputs and provide some outputs) (see \([8,17]\)).

Definition 1. A SN P system of degree \(m \geq 1\), is a construct of the form

\[
\Pi = (A, \sigma_1, \ldots, \sigma_m; \text{syn, } I, O)
\]

where

1. \(A = \{a\}\) is the singleton alphabet (the object \(a\) is called spike);
2. \(\sigma_1, \ldots, \sigma_m\) are neurons, of the form \(\sigma_i = (n_i, r_i)\) with \(i \in \{1, \ldots, m\}\), where
 (i) \(n_i \geq 0\) is the initial number of spikes contained by neuron \(\sigma_i\);
 (ii) \(r_i\) is a finite set of rules of the form
 \[
 E/\alpha^c \rightarrow \alpha^d; \text{d}
 \]
 where \(E\) is a regular expression over \(a, c \geq 1\) and \(p, d \geq 0\), with \(c \geq p\); if \(p = 0\), then \(E\) is the empty string, \(d = 0\), and \(\alpha^c\) belongs to the language generated by expression \(E\) for no rule \(E/\alpha^c \rightarrow \alpha^d; \text{d} (c \geq p \geq 1)\) from \(r_i\);
3. \(\text{syn} \subseteq \{1,2,\ldots,m\} \times \{1,2,\ldots,m\}\) with \(i \neq j\) for all \((i,j) \in \text{syn}, 1 \leq i, j \leq m\) (synapses between neurons);
4. \(I\) and \(O\) are input neuron set and output neuron set, respectively.

In the above definition, the rule \(E/\alpha^c \rightarrow \alpha^d; \text{d}\) with \(p \geq 1\) is called firing/spiking rule; the rule \(E/\alpha^c \rightarrow \alpha^d; \text{d}\) with \(p = d = 0\) is written in the form \(\alpha^c \rightarrow \lambda\) is called forgetting rule. The firing mechanism of neurons can be explained as follows: if a neuron \(\sigma_i\) contains \(k\) spikes, \(\alpha^c\) belongs to the language generated by expression \(E\) (see \([23]\) for further details about language theory), and \(k \geq c\), the firing/spiking rule \(E/\alpha^c \rightarrow \alpha^d; \text{d}\) \(\in r_i\) (with \(p \geq 1\)) in neuron \(\sigma_i\) is enabled and can be applied. This means that \(c\) spikes are consumed, \(k - c\) spikes remain in the neuron, the neuron is fired, and then it produces \(p\) spikes after \(d\) time units. If \(d = 0\) the spikes are emitted immediately. In the case \(d \geq 1\), if the rule is used at step \(t\), the neuron is “closed” or “blocked” at steps \(t, t + 1, \ldots, t + d - 1\), and it cannot receive new spikes from other neurons. At step \(t + d\), the neuron emits spikes and becomes again open, hence it can receive spikes. The \(p\) spikes emitted by the neuron \(\sigma_i\) are replicated and they go to all neurons \(\sigma_j\) such that \((i,j) \in \text{syn}\) (each such neuron \(\sigma_j\) of them receives \(p\) spikes). A forgetting rule \(\alpha^c \rightarrow \lambda\) is applicable to a neuron whether the neuron contains exactly \(c\) spikes and then all \(c\) spikes are removed.
SN P systems are synchronized because a global clock is assumed, marking the time for the whole system. Besides, SN P systems are non-deterministic because two rules $E_1 / a^1 \rightarrow d_1$ and $E_2 / a^2 \rightarrow d_2$ can have $L(E_1) \cap L(E_2) \neq \emptyset$. Therefore, it is possible that two or more rules of the system can be enabled in a neuron. In this case, one of them is non-deterministically chosen to be used. Moreover, in each time unit, if a neuron can use a rule, the rule must be used. Each neuron deals with its spikes in the sequential manner, only using one rule in each time unit, but the rules are used in parallel for all neurons of the system.

An instantaneous description or a configuration at any instant of a SN P system is described by both the number of spikes in each neuron and the state of the neuron, more precisely, by the number of steps to count down until it becomes open (this number is zero if the neuron is already open). The initial configuration is described by the number of spikes initially placed in each neuron, n_1, n_2, \ldots, n_m, with all neurons being open. A configuration is a halting configuration if all neurons are open and no rule of the system is applicable to it. Using the rules described above, one can define transitions among configurations. We say that configuration C_1 yields configuration C_2 in one transition step, denoted by $C_1 \Rightarrow C_2$, if we can pass from C_1 to C_2 by applying the rules from the system following the previous remarks.

A computation of II is a (finite or infinite) sequence of configurations such that:

1. the first term of the sequence is the initial configuration of the system;
2. each non-initial configuration of the sequence is obtained from the previous configuration by a transition step; and
3. if the sequence is finite (called halting computation) then the last term of the sequence is a halting configuration.

A computation in a system as above starts in the initial configuration. In order to compute a function $f: N^k \rightarrow N$ we introduce k natural numbers q_1, q_2, \ldots, q_k in the system by “reading” from the environment a binary sequence $z = 10^{(i-1)}10^{(i-1)} \ldots 10^{(i-1)}1$. This means that the input neuron of II receives a spike in each step corresponding to a digit 1 from the string z and no spike otherwise. Note that we input exactly $k + 1$ spikes, i.e., after the last spike we assume that no further spike is coming to the input neuron.

With any computation (halting or not) we can associate a spike train, sequence of symbols 0 and 1 describing the behavior of the output neuron: if the output neuron spikes, then we write 1; otherwise we write 0. Besides, we also associate other forms of computation results according to different computing purposes, such as, the distance between two consecutive steps when there are spikes which exit the system.

2.2. FRSN P systems

The goal of this paper is to develop a new modeling method for fault diagnosis inspired by SN P systems. As stated above, fault diagnosis can involve such a problem, that is, representation of fuzzy diagnosis knowledge and fuzzy reasoning. However, current forms of existing SN P systems and their variants cannot deal with the problem. In order to make them able to handle fuzzy diagnosis knowledge and fuzzy reasoning, we will extend the definition of SN P systems and propose a new class of extended SN P systems, called fuzzy reasoning spiking neural P systems (FRSN P systems, in short).

Definition 2. A FRSN P system of degree $m \geq 1$, is a construct of the form

$$II = (A, \sigma_1, \ldots, \sigma_m, \text{syn}, I, O)$$

where

(1) $A = \{a\}$ is the singleton alphabet (the object a is called spike);
(2) $\sigma_1, \ldots, \sigma_m$ are neurons, of the form $\sigma_i = (a_i, \tau_i, r_i)$ with $i \in \{1, \ldots, m\}$ where
 (i) $a_i \in [0, 1]$ and it is called the (potential) value of spike contained in neuron σ_i (also called pulse value);
 (ii) $\tau_i \in [0, 1]$ is the truth value associated with neuron σ_i;
 (iii) r_i is a firing/spiking rule contained in neuron σ_i of the form $E/a^\alpha \rightarrow a^\beta$, where $\alpha, \beta \in [0, 1]$.
(3) $\text{syn} \subseteq \{1, 2, \ldots, m\} \times \{1, 2, \ldots, m\}$ with $i \neq j$ for all $(i, j) \in \text{syn}$, $1 \leq i, j \leq m$ (synapses between neurons);
(4) I and O are input neuron set and output neuron set, respectively.

Now, we explain how the FRSN P systems are extended from SN P systems. First of all, content of neuron is denoted by a fuzzy truth value in $[0, 1]$ instead of the number of spikes in SN P systems, which can be interpreted as the (potential) value of spike from the viewpoint of biological neuron. For a neuron σ_i, if $\sigma_i > 0$, we say the neuron contains a spike with (potential) value σ_i; otherwise, the neuron contains no spike. Secondly, each neuron in FRSN P systems will associate with either a fuzzy proposition or a fuzzy production rule, and $\tau_i \in [0, 1]$ will be used to express the truth value of the fuzzy proposition or confidence factor (CF) of the fuzzy production rule. Thirdly, each neuron contains only one spiking (firing) rule, of the form $E/a^\alpha \rightarrow a^\beta$, where $E = a^\alpha$ is called the firing condition and n is the number of input synapses from other neurons to the neuron. The firing condition $E = a^\alpha$ indicates that if the neuron receives n spikes the spiking rule can be applied; otherwise the rule cannot be enabled until n spikes are received. When the number of spikes received by a neuron is less than n, value of the spikes received will be updated according to logical “AND” or “OR” operations. Fourthly, the firing mechanism of neurons in FRSN P systems can be described as follows. For the neuron σ_i, if its firing rule $E/a^\alpha \rightarrow a^\beta$ can be applied, this means that its
pulp value \(\alpha > 0 \) is consumed (removed), the neuron fires, and then it produces a spike with value \(\beta \). Once the spike with value \(\beta \) is excited from neuron \(\sigma_i \), all neurons \(\sigma_j \) with \((i, j) \in \text{syn}\) will immediately receive the spike. Further, three types of neurons are defined (see Definitions 3–5 below). The three types of neurons use different ways to handle both \(\alpha \) and \(\beta \), and \(\beta \) is relative with both \(\alpha \) and \(\tau \). Finally, time delay is ignored in FRSN P system, thus all neurons are always open.

As stated above, neurons in FRSN P system are classified into three classes: proposition neuron, “AND”-type rule neuron and “OR”-type rule neuron. These types of neurons are defined as follows.

Definition 3. The proposition neurons are a class of neurons, which are associated with propositions in a fuzzy knowledge base.

A proposition neuron can be denoted by \(\sigma = (x, \tau, r) \), where \(x \) is its pulse value, \(\tau \) is the truth value of the proposition associated with it, and \(r \) is its spiking rule of the form \(E[a^x \rightarrow a^\tau] \). If a proposition neuron \(\sigma \) is an input neuron in \(P \), then we have \(x = \tau \); otherwise, \(x \) equals to logical “OR” operation of all pulse values received from other neurons. After the neuron updates its content, the truth value of the corresponding proposition will be equal to its pulse value, i.e., \(\tau = x \). When the neuron fires and applies its firing rule, it will produce a spike with pulse value \(x \). Fig. 1 shows a proposition neuron.

Definition 4. The “AND”-type rule neurons are a class of neurons, which are associated with fuzzy production rules with “AND”-type antecedent part, where confidence factor (CF) of each the rule is denoted by \(\tau \).

Fig. 2 shows a “AND”-type rule neuron, which is labeled by the symbol “AND”. When a “AND”-type rule neuron receives \(n \) pulse values from other neurons, \(x_1, x_2, \ldots, x_n \), it uses logic operator “AND” to combine its all inputs, i.e., \(x = \min(x_1, x_2, \ldots, x_n) \), where \(x_i \in [0, 1], 1 \leq i \leq n \). If its firing condition \(E \) is satisfied, it fires and applies its spiking rule \(E[a^x \rightarrow a^\tau] \) to produce a spike with value \(\beta = x \times \tau \), hence \(\beta = \min(x_1, x_2, \ldots, x_n) \times \tau \); otherwise, it only updates its content by using pulse values of the received spikes.

Definition 5. The “OR”-type rule neurons are a class of neurons, which are associated with fuzzy production rules with “OR”-type antecedent part, where confidence factor (CF) of each the rule is denoted by \(\tau \).

Fig. 3 shows a “OR”-type rule neuron, which is labeled by the symbol “OR”. When a “OR”-type rule neuron receives \(n \) pulse values from other neurons, \(x_1, x_2, \ldots, x_n \), it uses the logic operator “OR” to combine its all inputs, i.e., \(x = \max(x_1, x_2, \ldots, x_n) \), where \(x_i \in [0, 1], 1 \leq i \leq n \). Similarly, when \(E \) is satisfied, it fires and applies its spiking rule \(E[a^x \rightarrow a^\tau] \) to produce a spike with value \(\beta = x + \tau \), hence \(\beta = \max(x_1, x_2, \ldots, x_n) + \tau \); otherwise, it only updates its content by using pulse values of the received spikes.

3. Modeling fuzzy production rules using FRSN P systems

3.1. Fuzzy production rules

In fault diagnosis application, diagnosis knowledge extracted from real-world data are usually expressed by fuzzy production rules. To date, fuzzy production rule is a widely used tool for fuzzy knowledge representation (see [4,6,13,19,18,22,30]). Usually, a simple fuzzy production rule is of the form

\[
R_i \quad \text{IF} \quad p_1 \quad \text{AND} \quad p_2 \quad \text{AND} \ldots \quad \text{AND} \quad p_k \quad \text{THEN} \quad \text{CF} = \tau_i
\]

where \(R_i \) indicates ith fuzzy production rule of a fuzzy diagnosis knowledge base and \(\tau_i \in [0, 1] \) is its confidence factor. \(p_j \) and \(p_k \) are two propositions and their truth values are real numbers in [0,1].

In addition to above simple fuzzy production rule, composite fuzzy production rules are widely used in fuzzy diagnosis knowledge base, where their antecedent part or consequence part usually contain “and” or “or” connectors. Generally, composite fuzzy production rules can be classified as the following three types.

Type 1 \(R_i \): IF \(p_1 \) and \(p_2 \) and… and \(p_{k-1} \) THEN \(p_k \text{ CF} = \tau_i \)

The type rule is a composite conjunctive fuzzy production rule, where \(p_1, p_2, \ldots, p_{k-1} \) are propositions in the antecedent part of the rule, and \(\tau_i \in [0, 1] \) is a real number and it expresses the confidence factor of the rule. Suppose truth values of propositions \(p_1, p_2, \ldots, p_{k-1} \) are \(x_1, x_2, \ldots, x_{k-1} \) respectively. Then, truth value of proposition \(p_k \) can be evaluated as \(x_k = \min(x_1, x_2, \ldots, x_{k-1}) \times \tau_i \).

![Fig. 1. (a) A proposition neuron P and (b) its simple form.](image-url)
Type 2 \(R_i \): IF \(p_1 \) THEN \(p_2 \) and \(p_3 \) and \ldots and \(p_k \) (CF = \(\tau_i \))

where \(\tau_i \in [0,1] \) is the confidence factor of the rule and \(p_1 \) is alone proposition in the antecedent part of the rule. Suppose the truth value of proposition \(p_1 \) is \(\alpha_1 \). Then, truth values of propositions \(p_2, p_3, \ldots, p_k \) can be evaluated as \(\alpha_2 = \alpha_1 \cdot \tau_i \), \(\alpha_3 = \alpha_1 \cdot \tau_i \), \ldots, \(\alpha_k = \alpha_1 \cdot \tau_i \), respectively.

Type 3 \(R_i \): IF \(p_1 \) or \(p_2 \) or \ldots or \(p_{k-1} \) THEN \(p_k \) (CF = \(\tau_i \))

The type rule is a composite disjunctive fuzzy production rule, where \(p_1, p_2, \ldots, p_{k-1} \) are propositions in antecedent part of the rule, and \(\tau_i \in [0,1] \) is the confidence factor of the rule. Suppose truth values of propositions \(p_1, p_2, \ldots, p_{k-1} \) are \(\alpha_1, \alpha_2, \ldots, \alpha_{k-1} \), respectively. Then, truth value of proposition \(p_k \) can be evaluated as \(\alpha_k = \max(\alpha_1, \alpha_2, \ldots, \alpha_{k-1}) \cdot \tau_i \).

3.2. FRSN P system model for fuzzy production rules

In order to model fuzzy production rules of a fuzzy diagnosis knowledge base, we need map them into a FRSN P system model. The basic principle can be described as follows. Each proposition in the fuzzy diagnosis knowledge base is represented by a proposition neuron, while each fuzzy production rule is expressed by a rule neuron ("AND"-type neuron or "OR"-type neuron). At the initial stage, each input proposition neuron contains a spike and its pulse value is assigned to the truth value of the proposition associated with it. Moreover, value \(\tau_i \) of each rule neuron is assigned to the confidence factor of the fuzzy production rule associated with it. Consequently, fuzzy production rules of a fuzzy diagnosis knowledge base can be modeled by FRSN P systems, and their dynamic reasoning process can be realized by the firing mechanism of neurons.

According to the above principle, simple fuzzy production rule (1) can be modeled by the following FRSN P system \(P_0 \). Fig. 4a shows the model \(P_0 \) and its reasoning result.

\(P_0 = (A, \sigma_1, \sigma_2, \sigma_k, \text{syn}, I, O) \), where

1. \(A = \{a\} \)
2. \(\sigma_1 \) is a rule neuron associated with rule \(R_i \) with confidence factor \(\tau_i \). Its spiking rule is of the form \(E[a^\alpha] \rightarrow a^\beta \), where \(\beta = \alpha \cdot \tau_i \).
3. \(\sigma_j \) and \(\sigma_k \) are two proposition neurons associated with propositions \(p_j \) and \(p_k \) with truth values \(\alpha_j \) and \(\alpha_k \) respectively. Their spiking rules are of the form \(E[a^\alpha] \rightarrow a^\beta \). Synaptic links are \(\text{syn} = \{(j,i), (i,k)\}, I = \{\sigma_j\}, O = \{\sigma_k\} \).

A type-1 composite fuzzy production rule (2) can be modeled by the following FRSN P system \(P_1 \). Fig. 4b shows the model \(P_1 \) and its reasoning result.

\(P_1 = (A, \sigma_1, \sigma_2, \ldots, \sigma_k, \sigma_{k+1}, \text{syn}, I, O) \), where
A type-2 composite fuzzy production rule (3) can be modeled by the following FRSN P system P_2. Fig. 4c shows the model P_0 and its reasoning result.

$$P_2 = (A, r_1, r_2, \ldots, r_k, r_{k+1}, \text{syn}, I, O),$$

where

(1) $A = \{a\}$

(2) $r_j (j = 1, 2, \ldots, k)$ are proposition neurons associated with propositions $p_j (j = 1, 2, \ldots, k)$ with truth values $\alpha_j (j = 1, 2, \ldots, k)$ respectively. Their spiking rules are of the form $E/a^a \rightarrow a^a$.

(3) r_{k+1} is a “AND”-type rule neuron associated with rule R_i with confidence factor τ_i. Its spiking rule is of the form $E/a^a \rightarrow a^\beta$, where $\beta = \alpha \times \tau_i$.

(4) syn $= \{(1, k + 1), (2, k + 1), \ldots, (k - 1, k + 1), (k + 1, k)\}$.

(5) $I = \{r_1, r_2, \ldots, r_{k-1}\}, O = \{r_k\}$.

A type-3 composite fuzzy production rule (4) can be modeled by the following FRSN P system P_3. Fig. 4d shows the model P_0 and its reasoning result.

$$P_3 = (A, r_1, r_2, \ldots, r_k, r_{k+1}, \text{syn}, I, O),$$

where

(1) $A = \{a\}$

(2) $r_j (j = 1, 2, \ldots, k)$ are proposition neurons associated with propositions $p_j (j = 1, 2, \ldots, k)$ with truth values $\alpha_j (j = 1, 2, \ldots, k)$ respectively. Their spiking rules are of the form $E/a^a \rightarrow a^\beta$, where $\beta = \alpha \times \tau_i$.

(3) r_{k+1} is an “OR”-type rule neuron associated with rule R_i with confidence factor τ_i. Its spiking rule is of the form $E/a^a \rightarrow a^\beta$, where $\beta = \alpha \times \tau_i$.

(4) syn $= \{(1, k + 1), (2, k + 1), \ldots, (k - 1, k + 1), (k + 1, k)\}$.

(5) $I = \{r_1, r_2, \ldots, r_{k-1}\}, O = \{r_k\}$.

Fig. 4. Fuzzy production rules modeled by ERSN P systems and their rule reasoning: (a) simple rule; (b) type-1 composite rule; (c) type-2 composite rule; (d) type-3 composite rule.
4. Reasoning algorithm based on FRSN P systems

In this section, we will present a fuzzy reasoning algorithm based on FRSN P systems. Suppose all fuzzy production rules in a fuzzy diagnosis knowledge base have been modeled by a FRSN P system model Π. The model Π consists of m neurons, where $\sigma = \{\sigma_1, \sigma_2, \ldots, \sigma_n\}$ are its n proposition neurons, $\sigma = \{\sigma_1, \sigma_2, \ldots, \sigma_k\}$ are its k rule neurons ("AND" type neurons or 'OR' type neurons), $m = n + k$. Usually, we should provide the fuzzy truth values for a part of the fuzzy propositions before reasoning, and proposition neurons associated with the part of fuzzy propositions are indeed input neurons of Π. The goal of the reasoning algorithm is to reason out the fuzzy truth values of other unknown fuzzy propositions (proposition neurons) from known fuzzy propositions (input neurons). These unknown fuzzy propositions are often associated with output neurons of Π. The reasoning algorithm developed here is based on neuron’s firing mechanism and uses matrix operation. As a result, The reasoning algorithm can give full play to the advantages of parallel computing of FRSN P systems.

In the following, in order to succinctly illustrate the fuzzy reasoning algorithm, we introduce some matrix and vector notations as follows.

(1) $U = (u_{ij})_{m \times k}$ is a binary matrix, where $u_{ij} \in \{0, 1\}$. $u_{ij} = 1$ if there is a directed arc (synapse) from proposition neuron σ_i to rule neuron σ_j, $u_{ij} = 0$ if there is no directed arc (synapse) from proposition neuron σ_i to rule neuron σ_j.

(2) $V = (v_{ij})_{m \times n}$ is a binary matrix, where $v_{ij} \in \{0, 1\}$. $v_{ij} = 1$ if there is a directed arc (synapse) from rule neuron σ_i to proposition neuron σ_j, $v_{ij} = 0$ if there is no directed arc (synapse) from rule neuron σ_i to proposition neuron σ_j.

(3) $A = \text{diag}(\tau_1, \tau_2, \ldots, \tau_k)$ is a diagonal matrix, where τ_i represents confidence factor of ith production rule associated with rule neuron σ_i, $1 \leq i \leq k$.

(4) $H_1 = \text{diag}(h_1, h_2, \ldots, h_k)$ is a diagonal matrix. If the ith rule neuron is an “AND”-type neuron, $h_i = 1$; otherwise $h_i = 0$.

(5) $H_2 = \text{diag}(h_1, h_2, \ldots, h_k)$ is a diagonal matrix. If the ith rule neuron is an “OR”-type neuron, $h_i = 1$; otherwise $h_i = 0$.

(6) $\lambda_2 = (\lambda_{p1}, \lambda_{p2}, \ldots, \lambda_{pn})^T$ is a truth value vector, $\lambda_{pi} \in [0, 1]$. λ_{pi} represents the truth value of ith proposition neuron. λ_2 is also a truth value vector, $\lambda_{pi} \in [0, 1]$, λ_{pi} represents the truth value of jth rule neuron.

(7) $a_p = (a_{p1}, a_{p2}, \ldots, a_{pn})^T$ is an integer vector, where a_{pi} represents the number of spikes received by ith proposition neuron. $a_r = (a_{r1}, a_{r2}, \ldots, a_{rk})^T$ is also an integer vector, where a_{ri} represents the number of spikes received by rth rule neuron.

(8) $\lambda_p = (\lambda_{p1}, \lambda_{p2}, \ldots, \lambda_{pn})^T$ is an integer vector, where λ_{pi} represents the number of spikes received by firing ith proposition neuron. λ_2 is also an integer vector, where λ_{pi} represents the number of spikes required by firing jth rule neuron.

(9) $\beta_2 = (\beta_{p1}, \beta_{p2}, \ldots, \beta_{pn})^T$ is a truth value vector, $\beta_{pi} \in [0, 1]$. β_{pi} represents truth value exported by ith proposition neuron after firing. $\beta_r = (\beta_{r1}, \beta_{r2}, \ldots, \beta_{rk})^T$ is also a truth value vector, $\beta_{ri} \in [0, 1]$, β_{ri} represents the truth value exported by jth rule neuron after firing.

(10) $b_p = (b_{p1}, b_{p2}, \ldots, b_{pn})^T$ is an integer vector, where $b_{pi} \in \{0, 1\}$ represents the number of spikes exported by ith proposition neuron after firing. $b_r = (b_{r1}, b_{r2}, \ldots, b_{rk})^T$ is also an integer vector, where $b_{ri} \in \{0, 1\}$ represents the number of spikes exported by jth rule neuron after firing.

In addition to above notations, we also introduce the following several operators and functions.

(1) \oplus: $C = A \oplus B$, where A, B and C are all $r \times s$ matrices, such that $c_{ij} = \max(a_{ij}, b_{ij})$.

(2) \odot: $C = A \odot B$, where A, B and C are all $r \times s$ matrices and $t \times r$ matrices respectively, such that $c_{ij} = \max(a_{ij}, b_{ij})$.

(3) \odot: $C = A \odot B$, where A, B and C are all $r \times s$, $s \times t$ and $r \times t$ matrices respectively, such that $c_{ij} = \max(a_{ij}, b_{ij})$.

(4) $\beta = \text{fire}(\alpha, a, \lambda)$, where $\beta = (\beta_1, \ldots, \beta_r)^T$, $\alpha = (\alpha_1, \ldots, \alpha_r)^T$, $a = (a_1, \ldots, a_i)^T$, $\lambda = (\lambda_1, \ldots, \lambda_r)^T$. The function is defined as follows:

$$
\beta_i = \begin{cases}
\alpha_i, & \text{if } a_i = \lambda_i \\
0, & \text{if } a_i < \lambda_i
\end{cases}
$$

where $i = 1, 2, \ldots, r$.

(5) $\beta = \text{update}(\alpha, a, \lambda)$, where β, α, a and λ are vectors described above. The function is defined as follows:

$$
\beta_i = \begin{cases}
\beta_i + \alpha_i, & \text{if } 0 < a_i < \lambda_i \\
0, & \text{if } a_i = \lambda_i
\end{cases}
$$

where $i = 1, 2, \ldots, r$.

(6) $D = \text{diag}(b)$, where $D = (d_{ij})$ is a $r \times r$ diagonal matrix and $b = (b_1, \ldots, b_r)$. For $1 \leq i \leq r$, $d_{ii} = b_i$, while $d_{ij} = 0$ for $i \neq j$.
Then, the developed fuzzy reasoning algorithm based on FRSN P system is described as follows.

Fuzzy reasoning algorithm based on FRSN P system.

INPUT: parameter matrixes $U, V, A, H_1, H_2, \beta_p, \beta_r$, and initial inputs x_0^p, a_0^p

OUTPUT: The fuzzy truth values of propositions associated with the neurons in O

Step 1) Let $x_0^p = (0, 0, \ldots, 0)^T, a_0^p = (0, 0, \ldots, 0)^T$.

Step 2) Let $t = 0$.

Step 3)

1. Process the firing of proposition neurons.
 $$\beta_p^t = \text{fire}(x_p^t, a_p^t, \beta_p), b_p^t = \text{fire}(1, a_p^t, \beta_p), x_p^{t+1} = \text{update}(x_p^t, a_p^t, \beta_p^t)$$
 $$a_p^{t+1} = \text{update}(a_p^t, a_p^t, \beta_p^t), b_p^{t+1} = \text{diag}(b_p^t)$$

2. Compute the truth values of rule neurons and the number of received spikes.
 $$x_r^{t+1} = x_p^t \odot \left(H_1 \cdot \left((b_p^t \cdot U)^T \odot \beta_p^t \right) \right) + \left(H_2 \cdot \left((b_p^t \cdot U)^T \odot \beta_p^t \right) \right)$$
 $$a_r^{t+1} = a_r^t + \left((b_p^t \cdot U)^T \cdot b_p^t \right)$$

3. Process the firing of rule neurons.
 $$\beta_r^{t+1} = \text{fire}(A \cdot x_p^{t+1}, a_r^{t+1}, \beta_r), b_r^{t+1} = \text{fire}(1, a_r^{t+1}, \beta_r)$$
 $$x_r^{t+1} = \text{update}(x_r^{t+1}, a_r^t, \beta_r^t), a_r^{t+1} = \text{update}(a_r^{t+1}, a_r^t, \beta_r^t), b_r^{t+1} = \text{diag}(b_r^{t+1})$$

4. Compute the truth values of proposition neurons and the number of received spikes.
 $$x_p^{t+1} = x_p^t \odot \left(V \cdot b_r^{t+1} \right) \odot \beta_r^{t+1}, a_p^{t+1} = a_p^t + \left((V \cdot b_r^{t+1}) \cdot b_r^{t+1} \right)$$

Step 4) If $a_p^{t+1} = (0, 0, \ldots, 0)^T$ and $a_r^{t+1} = (0, 0, \ldots, 0)^T$ (computation halts), the reasoning results are obtained; otherwise, $t = t + 1$, go to Step 3.

5. Application to fault diagnosis

As discussed above, fuzzy production rules can be modeled by the proposed FRSN P system and the developed reasoning algorithm is a parallel fuzzy reasoning algorithm. In this section, a practical example is used to illustrate application of the proposed method to a transformer fault diagnosis system. The following fuzzy production rules are from knowledge base of a transformer fault diagnosis system.

Rule 1 (Confidence = 0.8)

Symptom:
1. Total hydrocarbon is little high (p_1).
2. C_2H_2 is low (p_2).

Anticipated Fault: General overheating fault occurs (p_{11}).

Rule 2 (Confidence = 0.8)

1. Total hydrocarbon is rather high (p_3).
2. C_2H_2 is too high (p_4).
3. H_2 is high (p_5).
4. C_2H_2 in total hydrocarbon occupies a too low proportion p_6

Anticipated Fault: Serious overheating fault occurs (p_{12}).

Rule 3 (Confidence = 0.8)

1. Total hydrocarbon is little low (p_7).
2. H_2 is high (p_5).
3. CH_4 in total hydrocarbon occupies a large proportion p_8
4. CH_4 in total hydrocarbon occupies a higher proportion than C_2H_2 p_9

Anticipated Fault: The partial discharge occurs (p_{13}).

Rule 4 (Confidence = 0.8)

1. Total hydrocarbon is rather low (p_{10}).
2. C_2H_2 is too high (p_4).
(3) H_2 is high (p_5).

Anticipated Fault: The spark discharge occurs (p_{14}).

These fuzzy production rules can be modeled by the following FRSN P system P_4, shown in Fig. 5.

$$P_4 = (A, \sigma_1, \ldots, \sigma_{14}, \sigma_{15}, \ldots, \sigma_{18}, \text{syn}, \text{i}, \text{o})$$

(1) $A = \{a\}$.
(2) $\sigma_1, \ldots, \sigma_{14}$ are proposition neurons associated with propositions p_1, \ldots, p_{14} respectively.
(3) $\sigma_{15}, \ldots, \sigma_{18}$ are “AND”-type rule neurons associated with production rules R_1, \ldots, R_4 respectively.
(4) $\text{syn} = \{(1,15), (2,15), (3,16), (4,16), (4,18), (5,16), (5,17), (5,18), (6,18), (7,17), (8,17), (9,17), (10,18), (15,11), (16,12), (17,13), (18,14)\}$
(5) $I = \{\sigma_1, \sigma_2, \sigma_3, \sigma_4, \sigma_5, \sigma_6, \sigma_7, \sigma_8, \sigma_9, \sigma_{10}\}$, $O = \{\sigma_{11}, \sigma_{12}, \sigma_{13}, \sigma_{14}\}$

According to the definition of matrices and vectors given above, U, V, A, H_1 and H_2 are follows:

$$U = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}^T$$

$$H_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$V = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}^T$$

$$H_2 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0.8 & 0 & 0 & 0 \\ 0.8 & 0 & 0 \\ 0 & 0.8 & 0 \\ 0 & 0 & 0.8 \end{bmatrix}$$

$$\lambda_p = (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)^T$$
$$\lambda_r = (2,4,4,3)^T$$

In on-scene information detection of transformer, total hydrocarbon content is high (confidence = 0.8), C_2H_2 content is high (confidence = 0.8), H_2 content is high (confidence = 0.9), C_2H_2 content in total hydrocarbon content is little (confidence = 0.8), CH_4 content in total hydrocarbon content is little (confidence = 0.1). Thus, initial truth value vector $x_p^0 = (0.8,0.8,0.8,0.8,0.9,0.9,0.8,0.2,0.9,0.1,0.2,0.0,0.0,0.0)^T$ and initial spike vector $a_p^0 = (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)^T$. Let $x_r^0 = (0.0,0.0,0.0)^T$ and $a_r^0 = (0.0,0.0,0.0)^T$.

According to reasoning algorithm described above, we have

(1) $x_r^1 = (0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)^T$, $x_r^2 = (0.16,0.64,0.08,0.16)^T$, $a_p^1 = (0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)^T$, $a_r^1 = (2,4,4,3)^T$.

![Fig. 5. An example of a transformer fault diagnosis modeled by the FRSN P system model P_4.](image-url)
Thus, since the system reaches halting computation \(\sigma_3 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.16, 0.64, 0.08, 0.16)^T \) and \(\sigma_4 = (0.0, 0.0, 0.0)^T \), system exports its reasoning results, i.e., the truth values of propositions \(p_{11}, p_{12}, p_{13} \) and \(p_{14} \) are 0.16, 0.64, 0.08 and 0.16 respectively. These reasoning results indicate the following possible faults: general overheating fault (confidence = 0.16), serious overheating fault (confidence = 0.64), partial discharge (confidence = 0.08) and spark discharge (confidence = 0.16). In the fault diagnosis system, the threshold value of fault occurrence is set to be 0.6. Thus, we can conclude that the transformer shows a serious overheating fault, which is consistent with the actual situation.

6. Conclusions

In this paper, we present a novel model for fault diagnosis, called fuzzy reasoning spiking neural P systems (FRSN P systems). The FRSN P system model can visually represent fuzzy production rules of a fuzzy diagnosis knowledge base and effectively model the corresponding dynamic reasoning behavior because of its nature of directed graph and firing mechanism of neurons. Based on parallel computing feature of FRSN P systems and dynamic firing mechanism of neurons, a parallel fuzzy reasoning algorithm is developed. Moreover, a practical example of transformer fault diagnosis is used to demonstrate the feasibility and effectiveness of FRSN P systems in the fault diagnosis area. From another point of view, FRSN P systems are new extended forms of SN P systems, which can handle fuzzy information and express fuzzy knowledge. This will open a door for more practical applications that need to deal with fuzzy information.

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (Grant No. 61172030), Research Fund of Sichuan Key Laboratory of Intelligent Network Information Processing (No. SGXZD1002-10), and the Importation Project Foundation of Xihua University (No. Z1122632), China. The work of Mario J. Pérez-Jiménez was supported by the project TIN2009–13192 of the Ministerio de Educación y Ciencia of Spain, cofinanced by FEDER funds, and the support of the Project of Excellence with Investigador de Reconocida Valía of the Junta de Andalucía, Grant P08-TIC-04200.

References

