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Abstract. A triangulation of a surface with fixed topological type is
called irreducible if no edge can be contracted to a vertex while remaining
in the category of simplicial complexes and preserving the topology of
the surface. A complete list of combinatorial structures of irreducible
triangulations is made by hand for the once-punctured torus, consisting
of exactly 297 non-isomorphic triangulations.
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1. Introduction

Let S ∈ {Sh, Nk} be a closed surface—that is, the closed orientable (connected
compact) 2-manifold Sh of genus h or the closed nonorientable 2-manifold Nk of
nonorientable genus k. Using this terminology, S0 is the sphere, S1 is the torus, N1

is the projective plane and N2 is the Klein bottle. Let D be an open disk in S,
with boundary ∂D = ∂(S − D) homeomorphic to a circle. In particular, S0 − D
is a disk, N1 −D is the Möbius band, and S1 −D is the punctured torus. We use
the notation “Σ” whenever we assume the general case in which Σ is meant to be
either S or S −D.

If a graph G is 2-cell embedded in Σ, the components of Σ−G are called faces.
A triangulation of Σ with a simple graph G (where “simple” means “without loops
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and without parallel edges”) is a 2-cell embedding T : G→ Σ in which each face is
bounded by a 3-cycle, that is, a cycle of length 3 made up of 3 vertices connected
by 3 edges of G; moreover, we demand that the closures of any two faces are either
disjoint, share a single vertex, or share a single edge. We denote by V = V (T ),
E = E(T ), and F = F (T ) the sets of vertices, edges, and faces of T , respectively.
The cardinality | V (T ) | is called the order of T . By G(T ) we denote the graph
(V (T ), E(T )) of T . Two triangulations T1 and T2 are called isomorphic (denoted
T1 ∼= T2) when there exists a bijection, called an isomorphism, ϕ : V (T1)→ V (T2),
such that [u, v, w] ∈ F (T1) if and only if [ϕ(u), ϕ(v), ϕ(w)] ∈ F (T2). Throughout this
paper we distinguish between triangulations only up to isomorphism. For Σ = S−D,
let ∂T (= ∂D) denote the boundary cycle of T . The vertices and edges of ∂T are
called boundary vertices and boundary edges of T .

A triangulation of a 2-manifold with fixed topological type is viewed as a member
of the category of simplicial complexes. A triangulation is called irreducible if no
edge can be contracted (to a vertex) without vacating the category of simplicial
complexes or changing the topology of the underlying 2-manifold. Obstacles for edge
contraction are studied in Section 3; one typical obstacle is the creation of parallel
edges (forbidden in a simplicial complex). The term “irreducible triangulation” is
more accurately introduced in Section 3. For the sake of brevity we abbreviate
“irreducible triangulation” as “IT”, and “irreducible triangulation of the (once-)
punctured torus” as “ITPT”.
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Figure 1. Splitting (top), edge cracking (middle), face cracking (bottom).

The collection of all ITs of Σ is a basis for the family of all triangulations of
Σ, in the sense that any triangulation of Σ can be obtained from a member of the
basis by repeating the splitting operation introduced in Section 3 and illustrated by
Figure 1 (top) along with two special cases in the middle and bottom. Barnette and
Edelson [2] and independently Negami [23] proved that for every closed 2-manifold
S the basis of ITs is finite.

At present, bases of ITs are known for seven closed 2-manifolds: the sphere
(Steinitz [24], Bowen and Fisk [4]), projective plane (Barnette [1]), torus (Lawrencenko
[11, 12]), Klein bottle (Lawrencenko and Negami [20], and Sulanke [25]) as well as
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S2, N3, and N4 (Sulanke [26, 27, 28]). In Section 2, we briefly consider the case of
the sphere in the historical retrospect.

In 2012 the first author (Lawrencenko) proposed [15] the problem of determining
all ITs of a given 2-manifold with boundary, that is, all irreducible “punctured”
triangulations with given genus and number of punctures (the latter is equal to
the number of boundary components). This problem is motivated by the enormous
growth of the number of ITs on closed 2-manifolds as the genus grows: already
396, 784 ITs on S2, and 6, 297, 982 ITs on N4 (see [27, p. 3]). Firstly, Boulch, Colin
de Verdière, and Nakamoto [3] gave upper bounds on the order of an IT of the
punctured 2-manifold with given genus and number of punctures; their bounds are
asymptotically tight but loose for low genus. Then, three of the authors of the
present paper with participation of Quintero [7, 8] produced a complete list of the
6 ITs on the Möbius band.

Before the current study, a nearly comprehensive list of 293 non-isomorphic
ITPTs was already obtained with the aid of a computer program in [5] and was
announced in [18]. That list missed 4 ITPTs and was corrected in [6]. In this paper
we develop a fully comprehensive list of 297 ITPTs (Theorem 12.1) independently
and without using a computer. (The terminology used in [5, 6] is slightly different
from that used in this paper.) Throughout this paper we intentionally avoid the
use of a computer and all work can be checked tediously by hand.

2. The sphere

In this section we examine more closely the case of the sphere; it is a very
instructive one. It is not very hard to prove the following theorem; this is the
content of Exercise 1 [10, p. 243] and Exercise 6 [9, p. 59].

Theorem 2.1. ([24, 4]). There is only one irreducible triangulation of the sphere:
the boundary of a tetrahedron.

In the historical setting, Bowen and Fisk [4] were the first who brought a modern
version of Theorem 2.1; in fact, [4] contains a stronger result. However, Theorem 2.1
can be derived from the considerations in the book [24, pp. 227-229] of Steinitz and
Rademacher (1934), although the authors use a different terminology. In that book
it is shown that (after appropriate translation and interpretation) every 3-regular
polyhedron can be obtained from a tetrahedron by a succession of the face-splitting
operations. This means in dual form that the tetrahedral triangulation is a unique
spherical IT.

The shortest proof [17] of Theorem 2.1 uses a corollary of [21, Theorem 2, p. 264].
In fact, that corollary is a characteristic property of the sphere; it distinguishes the
sphere from the rest of the 2-manifolds. The corollary states that every triangulation
of the sphere contains a clean vertex—that is, a vertex v whose link is chordless;
the link of v consists of the cycle of vertices and edges surrounding v. Then v is
not incident with any non-facial 3-cycle—that is, a 3-cycle that does not bound a
face of the triangulation. Thus any edge incident with v can be contracted without
creating parallel edges. One can keep iterating the edge contraction process until
it terminates at some triangulation with only four faces. Although all vertices are
still clean in such a tetrahedral triangulation, no edge is contractible anymore, but
for another reason: after having attempted to contract an edge in the tetrahedral
triangulation, one gets to a doubly covered triangle, which is not a simplicial
complex.
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3. Preliminaries

Let T be a triangulation of Σ. An unordered pair of distinct adjacent edges
[v, u], [v, w] of T is called a divider of T (centered ) at vertex v, denoted by 〈u, v, w〉
(= 〈w, v, u〉). The splitting of 〈u, v, w〉, denoted sp〈u, v, w〉, is the operation which
consists of deleting 〈u, v, w〉 from T and closing the resulting hole with two new
triangular faces, [v′, v′′, u] and [v′, v′′, w], where v′ and v′′ denote the two split
vertices; see Figure 1 (top). Under this operation, the vertex v is extended to
the edge [v,′ v′′] and the two faces incident with this edge are inserted into the
triangulation. Specifically in the case in which (Σ = S −D) AND ([u, v] ∈ E(T ))
AND (v ∈ V (∂T )) AND (u /∈ V (∂T )), the operation sp〈u, v] of splitting a truncated
divider 〈u, v] produces a single new triangular face [u, v′, v′′], where [v′, v′′] ∈
E
(
∂ (sp〈u, v](T ))

)
.

Under the inverse operation, which is called contracting the edge [v′, v′′], this
edge collapses into a single vertex v, the faces [v′, v′′, u] and [v′, v′′, w] collapse into
single edges [v, u] and [v, w], respectively. This operation is denoted by sh〉v′, v′′〈,
which comes from the word “shrinking”, a synonym for “contracting”. Therefore,
sh〉v′, v′′〈

(
sp 〈u, v, w〉 (T )

)
= T . It should be noticed that in the case (Σ = S −

D) AND ([v′, v′′] ∈ E(∂T )), there is only one face incident with [v′, v′′] and that
face collapses to a single edge under sh〉v′, v′′〈. Clearly, the operation of splitting
never changes the topology of Σ. We demand that the contraction operation must
preserve the topology of Σ as well; moreover, parallel edges must not be created in
a triangulation. In the case in which an edge ε ∈ E(T ) occurs in some non-facial
3-cycle, if we still insist on contracting ε, parallel edges would be produced, which
would exclude sh〉ε〈(T ) from the category of triangulations. An edge ε is called
contractible or a rope (or a cable) if sh〉ε〈(T ) is still a triangulation of Σ; otherwise
ε is called noncontractible or a rod. Therefore, one can contract ropes but not rods.
The subgraph of G(T ) made up of all ropes is called the rope subgraph of G(T ).

The only constraint to edge-contractibility in a non-tetrahedral triangulation T
of a closed 2-manifold S is determined in [1, 2, 11, 12]: an edge ε ∈ E(T ) is a rod
if and only if ε satisfies the following condition:

(3.1) ε is in a non-facial 3-cycle of G(T ).

That is, one cannot contract the edges of a non-facial 3-cycle.
There are, in all, three constraints to edge-contractibility in a triangulation T of

a punctured 2-manifold S−D. Two of them are determined in [3]: an edge ε ∈ E(T )
is a rod if and only if ε satisfies either condition (3.1) or the following condition:

(3.2) ε is a chord of D—that is, the end vertices of ε are in V (∂D) but ε /∈ E(∂D).

That is, one cannot contract chords.
A triangulation is said to be irreducible if it has no ropes, or in other words, each

edge is a rod. For instance, a single triangle is the only IT of the disk S0−D although
its edges don’t meet either of conditions (3.1) and (3.2). Thus, the following is yet
one more constraint to edge-contractibility of ε:

(3.3) ε is a boundary edge in the case the boundary cycle is a 3-cycle.
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Although condition (3.3) is a specific case of condition (3.1) unless S = S0 and is
not explicitly stated in [3], this condition deserves special mention. In the remainder
of this paper we assume that S 6= S0.

4. The structure of irreducible punctured triangulations

As an energy metaphor (with ropes thought of as high voltage cables), a vertex
of a triangulation R of a closed 2-manifold S is called a pylonic vertex or a ∗-vertex
if that vertex is incident with all ropes of R. A triangulation that has at least one
rope and at least one ∗-vertex is called a pylonic triangulation or a ∗-triangulation.
In other words, R is pylonic if and only if the rope subgraph of R is isomorphic to
the complete bipartite graph K1,n for some n.

Let T be a triangulation of S−D. Let us restore the disk D in T , add a vertex p
in D and join p to the vertices in ∂D. We thus obtain a triangulation, T ∗ = T ∪D,
of S. We call D the patch, call p the central vertex of the patch, and call T ∗ a parent
triangulation for T .

It will be shown in Section 10 that there exist single-roped triangulations of S1—
that is, triangulations that have only one rope and thus two ∗-vertices. However,
if a ∗-triangulation R has at least two ropes, R has a unique ∗-vertex. It is to be
noted that if T is an IT of S −D, then T ∗ may turn out to be an IT of S, but not
necessarily.

Lemma 4.1. If T is an IT of S −D, then unless T ∗ is irreducible T ∗ is pylonic.

Proof. Let ε be an edge of T , necessarily a rod. Then ε satisfies either (3.1) or (3.2).
If ε satisfies (3.1), the corresponding edge ε∗ in T ∗ also satisfies (3.1). If ε satisfies
(3.2), ε∗ still satisfies (3.1). In either case, ε∗ is a rod. Thus, all ropes of T ∗ (if
any) are not edges of T and therefore are incident with the central vertex of the
patch. �

Corollary 4.2. A triangulation T of S − D is irreducible if and only if T is
obtained from a parent triangulation T ∗ of S either by deleting a vertex when T ∗ is
irreducible, or by deleting a ∗-vertex p when T ∗ is pylonic.

Proof. The “only if” part follows from Lemma 4.1. The “if” part is trivial: any edge
that is not incident with p but occurs in some non-facial 3-cycle through p is a
chord of the link of p and therefore is still a rod after the deletion of p. �

It is not a trivial question as to how the rope subgraph evolves under successively
performed splittings. However, the following observation is easy to see: it is hard
to make a rod out of a rope.

Lemma 4.3. The only situation in which a rope in a triangulation of S changes
into a rod under a single application of the splitting operation is when the splitting
is equivalent to the stellar subdivision of a face having that rope as a boundary edge.

Proof. In such a situation, the edge contraction inverse to the splitting changes
some rod ε into a rope. Since the contraction does not change the homotopy type
of the cycles in π1(S), it follows by condition (3.1) above that ε occurs in a non-
facial, null-homotopic 3-cycle, which is possible if and only if the disk bounded by
that 3-cycle is stellar subdivided. �
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Corollary 4.4. If a triangulation of S is neither irreducible nor pylonic, it can
never become pylonic after any sequence of splittings, except the case in which the
rope subgraph is a 3-cycle forming the boundary of a face.

We refer to the exceptional case of Corollary 4.4 as a “∆”. It is easy to see that
a ∆ cannot occur in a once-split IT, but may arise in a twice-split IT of S. By the
way, this is a good exercise for the reader to find an example of a twice-split IT
K12 → S6 in which a ∆ occurs. Interestingly, ∆ does not occur for the Klein bottle
but does occur for S2 and N3, which is obtained by searching ITs with the second
author’s computer program surftri [28]. The example with ∆ for S2 can be joined
to an IT of S1 to produce an example with ∆ for S3, etc. So ∆ does occur for Sh

(h ≥ 2) and, similarly, for Nk (k ≥ 3).

Lemma 4.5. No ∆ can ever be on the torus.

The proof of Lemma 4.5 is postponed until the end of Section 11 when we will
have more factual material to draw upon. By Lemma 4.5, we can restate Corollary
4.4 as follows.

Corollary 4.6. If a triangulation of S1 is neither irreducible nor pylonic, it can
never become pylonic after any sequence of splittings.

5. The torus

Throughout the remainder of this paper, we only consider triangulations of S1

or S1 −D.
A theorem of the first author [11, 12] states that for S1there exist, in all, twenty-

one non-isomorphic ITs: T1,T2, . . . ,T21. They are represented in each of Figures
2, 3, and 4 with their vertices numbered by 1, 2, . . . , 10; each Ti is identical for the
three figures, with fixed vertex numbering. For each rectangle identify each pair of
opposite sides to obtain an actual triangulation of S1.

An automorphism of a triangulation T is an isomorphism of T with itself. The
set of dividers of T as well as the sets V (T ), E(T ), F (T ) naturally fall into disjoint
orbits under the action of the automorphism group Aut(T ). The groups Aut(Ti)
are determined explicitly for each i = 1, 2, . . . , 21 in [13] and are reproduced here
in Table I in the form of generating sets. In particular, the generating set for
Aut(T2) was found in [14, p. 544]. Originally, the technique used in [13] is based
on a computer program, but it is a good exercise for the reader to verify without a
computer that the results in Table I are correct. (Interestingly, the reader may notice
from Figure 2 that for i = 6 to 17, by appropriately dissecting the quadrilaterals
into triangles, each Ti can be obtained from the Cartesian product of two 3-cycles
quadrangularly embedded in S1; the quadrangulation itself has a flag-transitive
automorphism group of order 8× 32 = 72; see [16, 19, 22].)

Based on Table I, we have identified the vertex, face, and edge orbits in each
Ti (i = 1, 2, . . . , 21). Elements in the same orbit are called similar. Figure 2 shows
the vertex orbits in each Ti, where two vertices are marked by the same letter
provided that the vertices are similar. Analogously, Figures 3 and 4 show the face
and edge orbits, respectively. The same set of letters {a, b, c, d, . . . } is used for
marking Figures 2, 3, and 4 in which, for each i, the three sets V (Ti), E(Ti), and
F (Ti), respectively, are marked up independently of each other.
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Figure 2. The vertex orbits (to be continued).

To count the number of vertex, face, or edge orbits in a specified Ti, we just
count the number of distinct letters used for marking Ti in Figures 2, 3, or 4,
respectively.

In what follows we implicitly use the obvious fact that if two dividers 〈u1, v1, w1〉
and 〈u2, v2, w2〉 of Ti are similar, then the triangulations sp〈u1, v1, w1〉(Ti) and
sp〈u2, v2, w2〉(Ti) are isomorphic. However, the converse is not generally true, as
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can be seen in the forthcoming sections; in particular, many counterexamples can
be found in Table II.
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Figure 2. The vertex orbits (contd.)

Let T be an arbitrary triangulation of S1. We define the spread of a divider
〈u, v, w〉 in T , denoted | u, v, w |, to be the least distance between u and w in the
link of v. A divider with spread k is referred to as a k-divider. We observe from
Figure 2 that the largest degree of a vertex in any Ti is 8, thus the largest spread of
a divider in any Ti is 4, and thus the set of all triangulations obtainable by single
splitting from toroidal ITs can be written as Λ =

⋃4
k=1 Λk, where

(1) Λk =

21⋃
i=1

{sp〈u, v, w〉(Ti)
∣∣ | u, v, w |= k}

The spread of the divider used in generating the splitting is not an invariant
of the triangulation obtained because Λ3 ∩ Λ4 6= ∅; for example, sp〈2, 6, 9〉(T6) ∼=
sp〈1, 4, 5〉(T9) with | 2, 6, 9 |= 3 in T6 and | 1, 4, 5 |= 4 in T9. The bottom line,
however, is that we generate all triangulations of S1 by repeatedly applying the
splitting operation to the basis triangulations Ti.
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Lemma 5.1. Λ1 ∩ Λ2 = ∅, Λ2 ∩ Λ3 = ∅, and Λ3 ∩ Λ1 = ∅.
Proof. For k = 1 or 2, the ∗-vertex of any ∗-triangulation T in Λk is incident with
at least two ropes and has degree 3 or 4, respectively, but any ∗-triangulation in Λ3

has either only one rope, or at least two ropes with the degree of the ∗-vertex of at
least 5, and the statement follows immediately. �

Corollary 5.2. Any two ITPTs obtained by deleting a ∗-vertex from parent ∗-
triangulations in different sets Λ1, Λ2, or Λ3, are non-isomorphic.

Proof. We assume to the contrary that two such ITPTs T and R are isomorphic.
Then any isomorphism from T to R takes ∂T onto ∂R and naturally extends to
an isomorphism between the corresponding toroidal ∗-triangulations T ∗ and R∗,
which contradicts Lemma 5.1. �

Table I. The automorphism groups of the toroidal ITs.

Ti Set of permutations generating Aut(Ti) |Aut(Ti)|

T1 (1 5 3 4 7 2), (1 2 3 4 5 6 7) 42
T2 (3 5)(4 7), (1 6)(3 7)(4 5), (1 5 2 7 6 3 8 4) 32
T3 (2 4)(3 7), (1 6)(3 7)(5 8) 4
T4 (3 5)(4 7)(6 8), (1 6 8)(5 3 2) 6
T5 (2 3)(4 5)(6 8), (2 5)(3 4)(6 8) 4
T6 (2 3)(4 5)(6 9)(7 8), (1 6 5 2 7 8 3 4 9) 18
T7 (2 8 5 3 7 4)(6 9), (4 8)(5 7)(6 9),

(1 2 3)(4 6 7)(5 8 9), (1 5 4)(2 8 6)(3 9 7) 108
T8 (2 5)(3 4)(6 9), (1 5)(2 9)(3 8)(6 7),

(1 9 6)(2 5 7)(3 8 4) 12
T9 (1 5)(2 9)(3 8)(6 7) 2
T10 (1 5)(2 9)(3 8)(6 7), (1 6)(3 8)(5 7) 4
T11 (1 7)(2 6)(3 4)(8 9) 2
T12 (1 7 8)(2 4 9)(3 6 5), (2 3)(4 5)(6 9)(7 8),

(2 4)(3 5)(7 8) 12
T13 (2 3)(4 5)(6 9)(7 8) 2
T14 (1 7)(2 9)(5 6) 2
T15 The trivial automorphism group 1
T16 (2 4)(3 5)(7 8), (1 9)(2 7)(4 8) 4
T17 (2 4)(3 5)(7 8) 2
T18 (1 9)(2 8)(3 5)(6 7) 2
T19 (2 3)(4 5)(6 9)(7 8) 2
T20 (1 9)(2 8)(3 5)(6 7) 2
T21 (2 4 3 5)(6 7 8 9), (1 6 7 9)(3 5 4 10),

(1 8 6 9)(2 3 4 10) 20

Thanks to Corollary 4.2, the search for ITPTs is reduced to the search for vertex
orbits in toroidal ITs and the search for toroidal ∗-triangulations, both in and out
of Λ. This task naturally splits into five cases depending on the origin of the parent
triangulation T in Corollary 4.2.
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6. The search for ITPTs: Case 0: Series 1

Case 0. Parent triangulation T ∗ is an irreducible triangulation of S1.

With help from Figure 2, we can count a total of 80 vertex orbits in T ∗ = Ti,
where i runs over the set {1, . . . , 21}. By deleting an arbitrary vertex in each of
the orbits, we obtain Series 1 of 80 non-isomorphic ITPTs, thanks to Corollary
4.2. This Series contains no isomorphic pairs as can be proved using an argument
similar to the one used in Corollary 5.2 by reduction to a contradiction due to the
non-similarity of the vertices deleted.

7. The search for ITPTs: Case 1: Series 2

Case 1. Parent triangulation T ∗ is in Λ1 or can be obtained from a member of
Λ1 by a sequence of splittings.

By Eq. (1), if T ∗ = sp〈u, v, w〉(Ti) ∈ Λ1, then 〈u, v, w〉 is a 1-divider and
sp〈u, v, w〉 is equivalent to the stellar subdivision of the face [u, v, w]. Thus, such a
triangulation T ∗ is pylonic with the only (necessarily 3-valent) ∗-vertex—either v′
or v′′ as a matter of notation. It can be easily seen that there are not any other ∗-
triangulations that belong to Λ1 and that any further splitting of T ∗ would lead to
a triangulation that is no longer pylonic. By Corollary 4.6, there are not any other
∗-triangulations obtainable from a member of Λ1 by any sequence of splittings.

The deletion of the 3-valent ∗-vertex from T ∗ is equivalent to the deletion of
the corresponding face from Ti. Figure 3 shows the face orbits—there are totally
129 non-similar faces in Ti (i = 1, . . . , 21). By deleting an arbitrary face in each of
the 129 orbits from Ti, we obtain Series 2 of 129 non-isomorphic ITPTs thanks to
Corollary 4.2; this Series is complete by Corollary 4.6.

Just as in Section 6 it can be shown that the set of the 129 triangulations contains
no isomorphic pairs.

8. The search for ITPTs: Case 2: Series 3

Case 2. Parent triangulation T ∗ is in Λ2 or can be obtained from a member of
Λ2 by a sequence of splittings.

By Eq. (1), if T ∗ = sp〈u, v, w〉(Ti) ∈ Λ2, then 〈u, v, w〉 is a 2-divider. Denote by
x the vertex determining a path of length 2 in the link of v together with vertices u
and w; see middle left of Figure 1. This specific type of splitting is equivalent to the
cracking of the edge [v, x]—that is, adding a vertex v′ to [v, x] and connecting v′ to
the apices u and w of the triangular faces incident with [v, x]. This transformation
always leads to a triangulation with a new 4-valent vertex v′ at which the two ropes
[v′, v′′] and [v′, x] form a 2-divider shown in bold in the middle right of Figure 1.
Sometimes v′ may turn out to be pylonic, in which event it can be easily seen that
any further splitting of T ∗ would lead to a triangulation that is no longer pylonic.
Thus, by Corollaries 4.2 and 4.6, our first goal is to find all ∗-triangulations T ∗ in
Λ2. Figure 4 shows the edge orbits in Ti. There are totally 203 non-similar edges,
but only 89 of them, when cracked, actually produce ∗-triangulations, as we have
checked by direct inspection; the 89 edges can be seen in Table II.

The removal of the 4-valent ∗-vertex is equivalent to the removal of the corresponding
edge (the one being cracked) from Ti which produces a quadrilateral hole. It
is easy to see that the removal of similar edges gives isomorphic triangulations
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(of S1 − D), but it may happen that the removal of non-similar edges produces
isomorphic triangulations. It can be verified straightforwardly that there are exactly
27 isomorphic pairs among the 89 triangulations, and there are, in all, 89−27 = 62
non-isomorphic ITPTs obtained by deleting an edge from Ti. As a result, we get
Series 3 of ITPTs. This Series is provided in Table II with isomorphic pairs placed
in one row; as a matter of notation, we write, for instance, T2 − a to denote the
triangulation obtained from T2 by deleting an arbitrary edge in orbit a.
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Figure 3. The face orbits (to be continued).
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Figure 3. The face orbits (contd.)

It remains to check that the 62 triangulations in Series 3 (Table II) are pairwise
non-isomorphic. The d-vector (degree vector) of a triangulation T is defined
to be d(T ) = (n3, n4, . . . , n|V (T )|−1), where nr is the number of r-valent vertices.
The bd-sequence (boundary degree sequence) is the cyclic sequence of the degrees of
boundary vertices.

The triangulations in Table II either have differing d-vectors or bd-sequences
except for the following three non-isomorphic pairs: (i) T2−a � T2−b, (ii) T9−f �
T10 − e, (iii) T9 − k � T10 − f . Proofs of their non-isomorphism are provided in
the next couple of paragraphs.

To show that the triangulations in pair (i) are non-isomorphic, we pick T2− [6, 8]
as a representative of T2 − a, and pick T2 − [6, 7] as T2 − b. Since 6 and 8 are the
only two 5-valent vertices in T2 − [6, 8], and 6 and 7 are the only two such vertices
in T2 − [6, 7], and since the edges [6, 8] and [6, 7] are non-similar in T2, it follows
that no isomorphism is possible between T2 − [6, 8] and T2 − [6, 7].
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Figure 4. The edge orbits (to be continued).

The triangulations in pair (ii) are non-isomorphic because only T10−e has a face
with all vertices 6-valent. Finally, the ones in pair (iii) are non-isomorphic because
the only two 6-valent vertices are adjacent in T10 − f but non-adjacent in T9 − k.
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9. The search for ITPTs: Case 3: Identifying non-similar
3-dividers

Case 3. Parent triangulation T ∗ is in Λ3 or can be obtained from a member of
Λ3 by a sequence of splittings.

By Eq. (1), if T ∗ = sp〈u, v, w〉(Ti) ∈ Λ3, then 〈u, v, w〉 is a 3-divider which
divides the link of v into two edge-disjoint paths, sublinks, one of which—u, x, y, w—
has length 3 and the other has length at least 3; see bottom left of Figure 1. This
type of splitting can be thought of as the cracking of the face [x, v, y]. In this context,
we regard the edge ε = [x, y] as the base and the vertex v as one of the two apices
opposite to the base.
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Figure 4. The edge orbits (contd.)
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Table II. ITPTs: Series 3 (to be continued).

No. Triangulation d-vector bd-sequence
1 T1 − a (0,0,2,5) (5,6,5,6)
2 T2 − a ∼= T3 − g (0,0,2,6,0) (5,6,5,6)
3 T2 − b (0,0,2,6,0) (5,6,5,6)
4 T3 − c (0,1,2,3,2) (4,6,5,7)
5 T3 − d (0,0,3,4,1) (5,6,6,6)
6 T3 − e (0,0,4,2,2) (5,5,5,7)
7 T3 − f ∼=T5 − c (0,1,2,3,2) (4,6,5,6)
8 T3 − h (0,0,4,2,2) (5,7,5,7)
9 T4 − a ∼=T5 − h (0,1,2,3,2) (4,6,6,6)
10 T4 − b (0,0,3,4,1) (5,6,7,6)
11 T4 − d (0,1,3,1,3) (4,7,5,7)
12 T5 − d (0,2,1,2,3) (4,7,6,7)
13 T5 − e (0,2,1,2,3) (4,6,6,7)
14 T5 − f (0,2,2,0,4) (4,7,5,7)
15 T5 − g (0,1,3,1,3) (5,5,6,7)
16 T6 − c ∼=T11 − g (0,0,2,7,0,0) (5,6,5,6)
17 T8 − a (0,2,4,0,0,3) (4,8,4,8)
18 T8 − c ∼=T17 − b (0,1,5,0,1,2) (4,5,7,5)
19 T8 − d ∼=T10 − i (0,0,6,0,2,1) (5,7,5,7)
20 T9 − c ∼=T18 − n (0,2,2,2,2,1) (4,6,4,6)
21 T9 − d ∼=T11 − j (0,0,4,3,2,0) (5,6,5,7)
22 T9 − f ∼=T15 − c (0,1,3,3,1,1) (4,5,6,6)
23 T9 − k (0,2,2,2,2,1) (4,7,4,7)
24 T9 − l ∼=T17 − h (0,1,4,1,2,1) (4,5,5,7)
25 T9 − n (0,0,4,4,1) (6,6,6,6)

In this section, we identify all non-similar 3-dividers in each Ti by using inclusion-
exclusion. The idea behind this is that instead of counting non-similar 3-dividers,
we judiciously count the base edges ε that give rise to them. For this, we associate
with each 3-divider 〈u, v, w〉 the edge ε = [x, y] as indicated on the bottom left of
Figure 1 in which the degree of the apex v is assumed to be at least 6 (in Ti). We
say that ε gives rise to the 3-divider 〈u, v, w〉. Each edge (taken as the base) in a
triangulation of a closed 2-manifold gives rise to at most two 3-dividers centered at
the apices.

Let fidx(ε) denote the f-index (face-orbit index) of an edge ε in a given triangulation,
defined as follows: fidx(ε) = 1 if the incident faces are in the same orbit (that is,
the faces are marked by the same letter in Figure 3), fidx(ε) = 2 if the incident
faces are in different orbits (marked by two different letters).

Let us call an edge ε of a triangulation T dually reversible if there is an involutory
automorphism of T that fixes the base ε and swaps the two apices (such an
automorphism reverses the edge dual to ε). Of course, ε is (dually) irreversible
whenever fidx(ε) = 2, but may be either reversible or irreversible when fidx(ε) = 1.

We first study Ti for i = 1, 2, . . . , 20, and postpone T21 until Lemma 9.5. By
direct inspection (with help from Figures 3, 4 along with Table I), we have verified
the following lemma.
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Table II. ITPTs: Series 3 (contd.)

No. Triangulation d-vector bd-sequence
26 T9 − o (0,1,4,1,2,1) (4,7,5,8)
27 T10 − e ∼=T15 − r (0,1,3,3,1,1) (4,5,6,6)
28 T10 − f ∼=T20 − o (0,2,2,2,2,1) (4,7,4,7)
29 T11 − f (0,0,3,5,1,0) (5,5,6,6)
30 T11 − l ∼=T15 −& (0,1,2,4,2,0) (4,6,5,7)
31 T11 − o ∼=T13 − h (0,1,2,4,2,0) (4,6,5,6)
32 T12 − c ∼=T14 − n (0,3,0,2,4,0) (4,6,7,6)
33 T12 − d (0,3,0,2,4,0) (4,6,4,6)
34 T13 − f ∼=T14 − f (0,2,1,3,3,0) (4,6,6,7)
35 T13 − j ∼=T18 − c (0,2,2,1,4,0) (4,6,5,7)
36 T13 −m ∼=T15 − g (0,1,3,2,3,0) (5,5,6,7)
37 T13 − n (0,1,4,0,4,0) (5,5,5,5)
38 T14 − c ∼=T17 −m (0,2,2,2,2,1) (4,5,7,6)
39 T14 − g (0,2,1,3,3,0) (4,6,4,7)
40 T14 − j ∼=T16 − e (0,2,1,4,1,1) (5,6,7,6)
41 T14 − l ∼=T15 − n (0,2,2,2,2,1) (4,5,5,6)
42 T14 − o (0,3,1,1,3,1) (4,7,5,8)
43 T15 − l ∼=T17 − e (0,1,3,3,1,1) (5,6,6,7)
44 T15 − o ∼=T19 − b (0,3,0,3,2,1) (4,6,4,7)
45 T15 − p ∼=T16 − f (0,2,1,4,1,1) (4,5,6,7)
46 T15 − t (0,1,4,1,2,1) (5,7,5,8)
47 T16 − b ∼=T17 − k (0,2,2,3,0,2) (4,5,6,5)
48 T16 − h (0,2,2,3,0,2) (5,8,5,8)
49 T16 − i (0,2,0,5,2,0) (4,7,4,7)
50 T17 − j (0,2,3,1,1,2) (4,8,5,8)
51 T17 − l (0,3,1,2,1,2) (4,7,4,8)
52 T17 − o (0,1,3,2,3,0) (4,7,5,7)
53 T18 − f ∼=T19 − n (0,3,1,1,3,1) (4,5,6,7)
54 T18 − g (0,3,1,1,3,1) (4,7,6,8)
55 T18 − k (0,4,0,0,4,1) (4,7,4,7)
56 T18 − o (0,2,2,2,2,1) (6,7,6,7)
57 T19 − d ∼=T20 − f (0,3,1,2,1,2) (4,5,7,6)
58 T19 − f (0,3,1,2,1,2) (5,7,6,8)
59 T19 − o (0,3,2,0,2,2) (5,8,5,8)
60 T20 − d (0,3,2,1,0,3) (4,8,5,8)
61 T20 − j (0,4,0,2,0,3) (4,8,4,8)
62 T20 − n (0,2,4,0,0,3) (5,8,5,8)

Lemma 9.1. Each edge of Ti (i = 1, 2, . . . , 20) with f-index 1 is dually reversible.

Lemma 9.2. Let i ∈ {1, 2, . . . , 20} and let ε ∈ E(Ti). Assume that ε gives rise
to two 3-dividers. Then the two 3-dividers are similar if and only if fidx(ε) = 1.
(Equivalently, they are non-similar if and only if fidx(ε) = 2.)

Proof. To prove the “if” part, assume fidx(ε) = 1. Then the two 3-dividers are
similar by Lemma 9.1.
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To prove the “only if” part, assume that the two 3-dividers are similar. We have
two cases to consider: (i) the two faces incident with ε are similar, and (ii) the
two incident faces are non-similar. In case (i), we immediately come to the desired
conclusion: fidx(ε) = 1. In case (ii), denote by v and z the two apices corresponding
to ε. Clearly, any automorphism that takes the 3-divider at v onto the 3-divider
at z necessarily sends the sublink of v that contains ε onto the sublink of z that
does not contain ε, which requires that both sublinks have the same length, so the
apices are both necessarily 6-valent. On the other hand, by direct inspection, we
have verified that for each edge of Ti (i = 1, 2, . . . , 20) with f-index 2, the apices are
either non-similar or non-6-valent. Thereby, we still come to the ultimate equality:
fidx(ε) = 1. �

Given a triangulation T , we define the v-index (vertex-degree index) of a base
εm ∈ E(T ) to be the number of its apices with degree at least 6, and denote it by
vidx(εm). Clearly, vidx(εm) = 0, 1, or 2. We define the s1-invariant as follows:

(2) s1 = s1(T ) :=
∑
m

min(fidx(εm), vidx(εm)),

where the sum is taken over all edge orbits in T . The general (mth) term in Eq.
(2) has value 0 if and only if vidx=0, has value 2 if and only if fidx=vidx=2, and
has value 1 in all other cases. To construct such a function, we use min(fidx, vidx).

By Lemma 9.2, s1(Ti) is equal to the number of non-similar 3-dividers in Ti (i =
1, 2, . . . , 20) with some of them counted twice, as explained in the next paragraph.
The bases εm in Eq. (2) give rise to the counted 3-dividers.

In the specific case in which the degree of a vertex, vn, is precisely 6, any two edges
opposite to each other in the link of vn, when taken as bases, give rise to the same
3-divider, centered at vn, regardless of whether the two edges are similar or not. Let
kidx(vn) be the χ-index (link-chirality index) of a 6-valent vertex vn ∈ V (T ), that is,
the number of distinct pairs of non-similar opposite edges in the link of vn (distinct
as unordered pairs of corresponding letters). Clearly, kidx(vn) ∈ {0, 1, 2, 3}. We
define the s2-invariant as follows:

s2 = s2(T ) :=
∑
n

kidx(vn),

where the sum is taken over all 6-valent vertex orbits in T ; if there are no 6-valent
vertices, s2 := 0. It is not hard to observe that s2 is equal to the number of 3-dividers
doubly counted in Eq. (2). We finally come to the following simple formula:

Lemma 9.3. The number of non-similar 3-dividers in Ti (i = 1, 2, . . . , 20) is equal
to the difference s1(Ti)− s2(Ti).

The following is an example of how to intelligently obtain a complete list of
pairwise non-similar 3-dividers in a given triangulation without going through a
tedious check. The example addresses the “hardest triangulation” T3.

Example 9.4. To illustrate the proof of Lemma 9.3, which was given prior to its
statement, we consider an example of its use in determining all (pairwise) non-
similar 3-dividers in T3. Under the action of Aut(T3), the vertices of T3 fall into
four orbits marked by the letters a–d in Figure 2, the edges fall into eight orbits
marked by a–h in Figure 4, and the faces fall into five orbits a–e in Figure 3. We
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choose, arbitrarily, the following eight edges as representatives of the edge orbits:
edge [2, 6] in orbit a, [3, 4] in b, [6, 7] in c, [4, 5] in d, [3, 8] in e, [1, 5] in f , [2, 4] in g,
[5, 8] in h. We calculate the s1-invariant by writing the edge orbits in alphabetical
order and checking with Figure 3—see Table III.

Table III. Calculation of the s1-invariant.

edge [2,6] [3,4] [6,7] [4,5] [3,8] [1,5] [2,4] [5,8]
orbit a b c d e f g h
f-index 2 2 2 2 2 1 1 1
v-index 2 1 2 2 1 2 0 2

min(fidx,vidx) 2 1 2 2 1 1 0 1 s1 =
∑

= 10

s1(T3) = Σmmin(fidx(εm), vidx(εm))
= min(fidx([2, 6]), vidx([2, 6])) + min(fidx([3, 4]), vidx([3, 4]))
+ min(fidx([6, 7]), vidx([6, 7])) + min(fidx([4, 5]), vidx([4, 5]))
+ min(fidx([3, 8]), vidx([3, 8])) + min(fidx([1, 5]), vidx([1, 5]))
+ min(fidx([2, 4]), vidx([2, 4])) + min(fidx([5, 8]), vidx([5, 8]))
= min(2, 2) + min(2, 1) + min(2, 2) + min(2, 2) + min(2, 1)
+ min(1, 2) + min(1, 0) + min(1, 2)
= 2 + 1 + 2 + 2 + 1 + 1 + 0 + 1 = 10.

Now we calculate the s2-invariant. There are four orbits into which the vertices
of T3 fall: a, b, c, and d; see Figure 2. However, only the vertices in orbits c and
d have degree 6; we pick vertices 7 and 8 as their representatives (respectively).
The opposite pairs of edges in the link of vertex 7 are marked by letters (Figure
4) as follows: {a, a}, {f, f}, and {d, d}; here kidx(7) = 0 because there is no pair
of different letters. The opposite pairs of edges in the link of vertex 8 are: {c, d},
{c, d}, and {b, b}; here kidx(8) = 1 because there is only one pair of different letters,
{c, d}, distinct from the other pairs. Therefore,

s2(T3) =
∑
n

kidx(vn) = kidx(7) + kidx(8) = 0 + 1 = 1.

Thus, T3 has exactly s1− s2 = 10− 1 = 9 non-similar 3-dividers. In fact, we can
go even further. The proposed approach allows explicitly identifying all non-similar
3-dividers in T3; see below and check with Table III.

Firstly, we inspect the edges with min(fidx,vidx) = 0 which is equivalent to vidx
= 0. We discard such edges because the 3-dividers that they give rise to are, in fact,
2- or 1-dividers. In the example under consideration, we discard the edge [2, 4].

Secondly, we inspect the edges with min(fidx, vidx) = 1 which is equivalent to
either condition (i) (fidx = 2) AND (vidx = 1), or (ii) (fidx = 1) AND (vidx = 2),
or (iii) (fidx = 1) AND (vidx = 1). In condition (i), since vidx = 1, there is only
one 3-divider each such edge gives rise to; in the example under consideration, we
have two edges in this case: [3, 4] and [3, 8]; the 3-dividers that these edges give rise
to are 〈5, 8, 6〉 and 〈1, 4, 5〉, respectively (Figure 3). In condition (ii), since fidx = 1,
then there is up to similarity just one 3-divider that each such edge gives rise to,
by Lemma 9.2; in the example under consideration, we have two edges in this case:
[1, 5] and [5, 8]; the 3-dividers that the edges give rise to are 〈2, 7, 4〉 and 〈7, 4, 3〉,
respectively (Figure 3). In condition (iii), there is only one 3-divider that each such
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edge gives rise to, by Lemma 9.2; however, in the example under consideration, we
have no edges in this case.

Thirdly, among the remaining edges, we inspect the ones with min(fidx, vidx) = 2
which is equivalent to condition (fidx = 2) AND (vidx = 2). By Lemma 9.2, each
such edge gives rise to two non-similar 3-dividers—namely, as seen in Figure 3, edge
[2, 6] gives rise to 〈1, 4, 7〉 and 〈8, 3, 5〉 (the latter is similar to 〈8, 7, 5〉—Table I),
edge [6, 7] gives rise to 〈2, 4, 5〉 and 〈3, 8, 2〉 (similar to 〈7, 8, 4〉), edge [4,5] gives rise
to 〈6, 7, 1〉 and 〈3, 8, 2〉 (similar to 〈7, 8, 4〉); check with Figure 3. Observe that we
have a duplication: the 3-divider 〈3, 8, 2〉 is doubly counted because on one hand it
is given rise to by two non-similar edges ([6, 7] and [4, 5]), but on the other hand,
since vertex 8 is 6-valent, these opposite (in the link of 8) edges give rise to the
same 3-divider—〈3, 8, 2〉.

Table IV. Calculation of the number of 3-dividers.

Ti s1 s2 The # of
3-dividers

T1 1 0 1
T2 2 0 2
T3 10 1 9
T4 6 1 5
T5 9 0 9
T6 3 0 3
T7 1 0 1
T8 2 0 2
T9 17 3 14
T10 9 1 8
T11 22 6 16
T12 4 0 4
T13 20 3 17
T14 21 3 18
T15 40 9 31
T16 12 3 9
T17 18 3 15
T18 18 0 18
T19 21 3 18
T20 18 3 15
T21 1 0 2∗∑

= 217

It is easy to count s1−s2 with help from Figures 3, 4. The results are collected in
Table IV; this table can be regarded as a corollary of Lemma 9.3; the asterisk in the
last row indicates that the formula in Lemma 9.3 does not apply for T21 addressed
in Lemma 9.5. Moreover, similarly to Example 9.4, we have produced a complete
list of non-similar 3-dividers in each Ti for i = 1, 2, . . . , 20; there are totally 215
3-dividers. Check with Table IV. In addition, two more are found in T21:

Lemma 9.5. If an edge ε of T21 gives rise to at least one 3-divider, then ε is
similar to the edge [2, 6] (Figure 4) which, in fact, gives rise to two non-similar
3-dividers: 〈5, 10, 7〉 and 〈5, 4, 1〉 (the latter is similar to 〈5, 10, 8〉—Table I).
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Proof. All edges of T21 split into two orbits—a and b (see Figure 4). For each edge
in orbit b as the base, both apices are 4-valent. Therefore, no edge in b gives rise
to a 3-divider. On the other hand, each edge in orbit a is dually irreversible (check
with Figure 4 and Table I) and thereby gives rise to two non-similar 3-dividers even
though it has f-index 1 (Figure 3). �

Table V. Λ3 with isomorphic duplications (to be continued).

Triangulations Total

sp〈1, 7, 6〉(T1) 1

sp〈7, 8, 5〉(T2) sp〈6, 8, 1〉(T2) 2

sp〈1, 4, 7〉(T3) sp〈1, 4, 5〉(T3) sp〈2, 4, 5〉(T3) sp〈7, 4, 3〉(T3) sp〈6, 7, 1〉(T3)

sp〈8, 7, 5〉(T3) sp〈2, 7, 4〉(T3) sp〈7, 8, 4〉(T3) sp〈5, 8, 6〉(T3) 9

sp〈4, 3, 2〉(T4) sp〈4, 3, 6〉(T4) sp〈8, 3, 2〉(T4) sp〈6, 3, 1〉(T4) sp〈8, 7, 5〉(T4) 5

sp〈6, 2, 5〉(T5) sp〈6, 2, 7〉(T5) sp〈3, 2, 1〉(T5) sp〈3, 2, 5〉(T5) sp〈8, 2, 4〉(T5)

sp〈8, 2, 1〉(T5) sp〈7, 2, 4〉(T5) sp〈3, 7, 2〉(T5) sp〈8, 7, 6〉(T5) 9
sp〈8, 6, 3〉(T6) sp〈7, 6, 4〉(T6) sp〈9, 6, 2〉(T6) 3
sp〈4, 6, 7〉(T7) 1
sp〈1, 8, 9〉(T8) sp〈2, 8, 4〉(T8) 2
sp〈2, 9, 4〉(T9) sp〈2, 9, 7〉(T9) sp〈3, 9, 6〉(T9) sp〈3, 9, 7〉(T9) sp〈5, 9, 8〉(T9)
sp〈5, 9, 6〉(T9) sp〈4, 9, 8〉(T9) sp〈1, 8, 6〉(T9) sp〈5, 8, 9〉(T9) sp〈4, 8, 2〉(T9)
sp〈3, 4, 5〉(T9) sp〈5, 4, 2〉(T9) sp〈2, 4, 7〉(T9) sp〈6, 4, 3〉(T9) 14
sp〈5, 4, 2〉(T10) sp〈5, 4, 3〉(T10) sp〈8, 9, 5〉(T10) sp〈2, 9, 4〉(T10) sp〈7, 8, 5〉(T10)
sp〈1, 8, 7〉(T10) sp〈9, 8, 4〉(T10) sp〈9, 8, 5〉(T10) 8
sp〈3, 6, 8〉(T11) sp〈7, 6, 4〉(T11) sp〈9, 6, 2〉(T11) sp〈7, 3, 5〉(T11) sp〈7, 3, 9〉(T11)
sp〈6, 3, 5〉(T11) sp〈6, 3, 1〉(T11) sp〈2, 3, 1〉(T11) sp〈2, 3, 4〉(T11) sp〈9, 3, 4〉(T11)
sp〈4, 5, 3〉(T11) sp〈8, 5, 9〉(T11) sp〈1, 5, 7〉(T11) sp〈6, 8, 1〉(T11) sp〈9, 8, 5〉(T11)
sp〈2, 8, 4〉(T11) 16
sp〈9, 6, 4〉(T12) sp〈4, 6, 7〉(T12) sp〈8, 6, 3〉(T12) sp〈5, 6, 3〉(T12) 4
sp〈1, 2, 7〉(T13) sp〈1, 2, 3〉(T13) sp〈5, 2, 7〉(T13) sp〈5, 2, 6〉(T13) sp〈8, 2, 4〉(T13)
sp〈8, 2, 6〉(T13) sp〈3, 2, 4〉(T13) sp〈9, 4, 1〉(T13) sp〈9, 4, 2〉(T13) sp〈7, 4, 2〉(T13)
sp〈7, 4, 6〉(T13) sp〈3, 4, 6〉(T13) sp〈3, 4, 5〉(T13) sp〈1, 4, 5〉(T13) sp〈5, 6, 7〉(T13)
sp〈4, 6, 9〉(T13) sp〈2, 6, 8〉(T13) 17
sp〈5, 6, 3〉(T14) sp〈5, 6, 7〉(T14) sp〈4, 6, 7〉(T14) sp〈4, 6, 9〉(T14) sp〈2, 6, 8〉(T14)
sp〈2, 6, 9〉(T14) sp〈3, 6, 8〉(T14) sp〈2, 3, 5〉(T14) sp〈2, 3, 4〉(T14) sp〈8, 3, 1〉(T14)
sp〈1, 3, 6〉(T14) sp〈3, 9, 7〉(T14) sp〈8, 9, 4〉(T14) sp〈6, 9, 5〉(T14) sp〈9, 4, 1〉(T14)
sp〈9, 4, 2〉(T14) sp〈3, 4, 5〉(T14) sp〈1, 4, 5〉(T14) 18
sp〈1, 2, 3〉(T15) sp〈5, 2, 6〉(T15) sp〈8, 2, 4〉(T15) sp〈9, 4, 1〉(T15) sp〈9, 4, 2〉(T15)
sp〈7, 4, 2〉(T15) sp〈7, 4, 6〉(T15) sp〈3, 4, 6〉(T15) sp〈3, 4, 5〉(T15) sp〈1, 4, 5〉(T15)
sp〈6, 8, 3〉(T15) sp〈7, 8, 2〉(T15) sp〈9, 8, 5〉(T15) sp〈9, 3, 4〉(T15) sp〈9, 3, 6〉(T15)
sp〈5, 3, 7〉(T15) sp〈5, 3, 2〉(T15) sp〈1, 3, 8〉(T15) sp〈1, 3, 6〉(T15) sp〈4, 3, 2〉(T15)
sp〈7, 3, 8〉(T15) sp〈2, 6, 8〉(T15) sp〈3, 6, 5〉(T15) sp〈7, 6, 4〉(T15) sp〈9, 5, 8〉(T15)
sp〈9, 5, 2〉(T15) sp〈4, 5, 1〉(T15) sp〈4, 5, 2〉(T15) sp〈6, 5, 3〉(T15) sp〈6, 5, 1〉(T15)
sp〈8, 5, 3〉(T15) 31
sp〈5, 8, 9〉(T16) sp〈6, 8, 3〉(T16) sp〈7, 8, 2〉(T16) sp〈4, 6, 7〉(T16) sp〈3, 6, 5〉(T16)
sp〈2, 3, 5〉(T16) sp〈2, 3, 4〉(T16) sp〈8, 3, 1〉(T16) sp〈1, 3, 6〉(T16) 9
sp〈9, 3, 4〉(T17) sp〈9, 3, 6〉(T17) sp〈5, 3, 2〉(T17) sp〈5, 3, 7〉(T17) sp〈1, 3, 8〉(T17)
sp〈1, 3, 6〉(T17) sp〈4, 3, 2〉(T17) sp〈7, 3, 8〉(T17) sp〈1, 2, 3〉(T17) sp〈5, 2, 6〉(T17)
sp〈8, 2, 4〉(T17) sp〈2, 6, 9〉(T17) sp〈3, 6, 5〉(T17) sp〈7, 6, 4〉(T17) sp〈7, 6, 5〉(T17) 15
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Table V. Λ3 with isomorphic duplications (contnd.)

Triangulations Total

sp〈2, 8, 7〉(T18) sp〈2, 8, 4〉(T18) sp〈5, 8, 4〉(T18) sp〈5, 8, 9〉(T18) sp〈6, 8, 3〉(T18)
sp〈6, 8, 9〉(T18) sp〈7, 8, 3〉(T18) sp〈2, 3, 5〉(T18) sp〈2, 3, 1〉(T18) sp〈8, 3, 1〉(T18)
sp〈8, 3, 4〉(T18) sp〈9, 3, 4〉(T18) sp〈9, 3, 7〉(T18) sp〈5, 3, 7〉(T18) sp〈7, 4, 2〉(T18)
sp〈3, 4, 6〉(T18) sp〈3, 4, 9〉(T18) sp〈2, 4, 9〉(T18) 18
sp〈5, 7, 3〉(T19) sp〈6, 7, 4〉(T19) sp〈2, 7, 8〉(T19) sp〈4, 2, 8〉(T19) sp〈4, 2, 3〉(T19)
sp〈1, 2, 3〉(T19) sp〈1, 2, 7〉(T19) sp〈5, 2, 6〉(T19) sp〈5, 2, 7〉(T19) sp〈8, 2, 6〉(T19)
sp〈1, 4, 8〉(T19) sp〈1, 4, 5〉(T19) sp〈2, 4, 7〉(T19) sp〈2, 4, 9〉(T19) sp〈6, 4, 3〉(T19)
sp〈6, 4, 8〉(T19) sp〈5, 4, 7〉(T19) sp〈9, 4, 3〉(T19) 18
sp〈5, 8, 9〉(T20) sp〈7, 8, 3〉(T20) sp〈4, 8, 2〉(T20) sp〈2, 3, 5〉(T20) sp〈2, 3, 4〉(T20)
sp〈8, 3, 1〉(T20) sp〈8, 3, 7〉(T20) sp〈9, 3, 6〉(T20) sp〈9, 3, 4〉(T20) sp〈5, 3, 7〉(T20)
sp〈1, 3, 6〉(T20) sp〈7, 4, 5〉(T20) sp〈3, 4, 9〉(T20) sp〈1, 4, 8〉(T20) sp〈6, 4, 8〉(T20) 15
sp〈5, 10, 7〉(T21) sp〈5, 10, 8〉(T21) 2

Using Lemma 9.3 (as in Example 9.4) and Lemma 9.5, we collect in Table V
the 217 triangulations produced by splitting all the 217 non-similar 3-dividers in Ti

(i = 1, 2, . . . , 21), which provides the whole set Λ3 (with isomorphic duplications).

10. The search for ITPTs: Case 3: Series 4-6

In order to apply Corollary 4.2, we identify ∗-triangulations from the 217 triangulations
in Table V. Moreover, we retain only non-isomorphic triangulations. It is a matter
of mere inspection to obtain the following lemma.

Lemma 10.1. There are precisely eleven ∗-triangulations in Λ3, as follows:
sp〈1, 7, 6〉(T1), sp〈6, 8, 1〉(T2), sp〈7, 4, 3〉(T3), sp〈2, 7, 4〉(T3), sp〈7, 8, 4〉(T3),
sp〈5, 8, 6〉(T3), sp〈6, 3, 1〉(T4), sp〈3, 2, 1〉(T5), sp〈3, 2, 5〉(T5), sp〈3, 7, 2〉(T5),
and sp〈8, 7, 6〉(T5).

These triangulations are boxed in Table V and are also presented in Figure 5
with all ropes in bold type.

It should be noticed that eight of the eleven ∗-triangulations in Lemma 10.1 have
only one rope and two ∗-vertices. The removal of a ∗-vertex in each of the eleven
triangulations creates the following 19 ITPTs:

sp〈1, 7, 6〉(T1)− 7′, sp〈1, 7, 6〉(T1)− 7′′, sp〈6, 8, 1〉(T2)− 8′,
sp〈6, 8, 1〉(T2)− 8′′, sp〈7, 4, 3〉(T3)− 4′, sp〈7, 4, 3〉(T3)− 4′′,
sp〈2, 7, 4〉(T3)− 7′, sp〈2, 7, 4〉(T3)− 7′′, sp〈7, 8, 4〉(T3)− 8′,
sp〈5, 8, 6〉(T3)− 8′, sp〈5, 8, 6〉(T3)− 8′′, sp〈6, 3, 1〉(T4)− 3′′,
sp〈3, 2, 1〉(T5)− 2′, sp〈3, 2, 5〉(T5)− 2′, sp〈3, 2, 5〉(T5)− 2′′,
sp〈3, 7, 2〉(T5)− 7′, sp〈3, 7, 2〉(T5)− 7′′, sp〈8, 7, 6〉(T5)− 7′,
sp〈8, 7, 6〉(T5)− 7′′.

However, fourteen of these are isomorphic in pairs as follows:

sp〈1, 7, 6〉(T1)− 7′ ∼= sp〈1, 7, 6〉(T1)− 7′′, sp〈6, 8, 1〉(T2)− 8′ ∼= sp〈6, 8, 1〉(T2)− 8′′,
sp〈2, 7, 4〉(T3)− 7′ ∼= sp〈2, 7, 4〉(T3)− 7′′, sp〈7, 8, 4〉(T3)− 8′ ∼= sp〈3, 2, 1〉(T5)− 2′,
sp〈5, 8, 6〉(T3)− 8′ ∼= sp〈5, 8, 6〉(T3)− 8′′, sp〈3, 7, 2〉(T5)− 7′ ∼= sp〈3, 7, 2〉(T5)− 7′′,
sp〈8, 7, 6〉(T5)− 7′ ∼= sp〈8, 7, 6〉(T5)− 7′′.
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Figure 5. Pylonic triangulations in Λ3.

We thus get Series 4 amounting to 19− 14/2 = 12 non-isomorphic ITPTs:
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Lemma 10.2. There are precisely 12 ITPTs obtainable by deleting a ∗-vertex from
a ∗-triangulation in Λ3. The twelve triangulations form Series 4 and are collected
in Table VI.

Proof. Actually, it remains to verify that these twelve triangulations are non-isomor-
phic. This follows from the fact that they have either differing d-vectors or bd-
sequences; check with Table VI. �

Table VI. ITPTs: Series 4.

No. Triangulation d-vector bd-sequence
1 sp〈1, 7, 6〉(T1)− 7′ (0,1,2,4) (4,6,5,5,6)
2 sp〈6, 8, 1〉(T2)− 8′ (0,1,2,5,0) (4,6,5,5,6)
3 sp〈7, 4, 3〉(T3)− 4′ (0,3,0,5,0) (4,6,4,6,4,6)
4 sp〈7, 4, 3〉(T3)− 4′′ (0,0,5,2,1) (5,6,5,5,6)
5 sp〈2, 7, 4〉(T3)− 7′ (0,2,2,2,2) (4,7,5,4,7)
6 sp〈7, 8, 4〉(T3)− 8′ (0,2,2,2,2) (4,6,4,5,7)
7 sp〈5, 8, 6〉(T3)− 8′ (0,1,3,3,1) (4,5,5,6,6)
8 sp〈6, 3, 1〉(T4)− 3′′ (0,2,4,0,2) (4,5,5,4,5,5)
9 sp〈3, 2, 5〉(T5)− 2′ (1,2,1,2,2) (3,6,4,7,4,7)
10 sp〈3, 2, 5〉(T5)− 2′′ (0,2,3,0,3) (4,5,7,5,7)
11 sp〈3, 7, 2〉(T5)− 7′ (0,3,1,1,3) (4,6,7,4,7)
12 sp〈8, 7, 6〉(T5)− 7′ (0,2,2,2,2) (4,5,6,6,5)

It is possible to produce more ∗-triangulations by further splitting the ∗-triangula-
tions in Lemma 10.1 that have a unique rope, such as sp〈6, 8, 1〉(T2) (Figure 5).
Some of the twice-split triangulations are out of Λ, but some of them may have a
rope whose contraction yields an IT; for instance,

sh〉6, p〈
(

sp〈6, 8′, 1〉
(

sp〈6, 8, 1〉(T2)
) ) ∼= T16,

where p stands for the ∗-vertex. Thus the latter twice-split triangulations remain
in Λ!

Lemma 10.3. Splitting a ∗-triangulation T ∗ in Lemma 10.1 (Figure 5) still
produces a ∗-triangulation if and only if the splitting is equivalent to: (a) the stellar
subdivision of either of the two faces incident with a rope provided that rope is a
unique rope of T ∗, or (b) the cracking of a rope provided that rope is a unique rope
of T ∗.

Proof. The “if” part is obvious. In proving the “only if” part, observe from Figure
5 that there are two cases to consider as follows.

Case “T ∗ has only one rope”. Observe from Figure 5 that the degrees of the
end vertices of the rope are 5 or 6. Furthermore, splitting any divider centered at
a 5 or 6-valent end vertex certainly destroys the pylonicity of T ∗ unless it meets
condition (a) or (b); the only questionable situation is if the center is 6-valent and
the divider has spread 3; then an additional consideration is as follows. There are
precisely two 6-valent end vertices of a rope—vertex 4′ in sp〈7, 4, 3〉(T3) and vertex
2′ in sp〈3, 2, 5〉(T5). By inspection, we verify that the following six triangulations
produced by splitting a 3-divider are not pylonic:

sp〈1, 4′, 7〉
(

sp〈7, 4, 3〉(T3)
)
,
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sp〈2, 4′, 4′′〉
(

sp〈7, 4, 3〉(T3)
)
,

sp〈6, 4′, 3〉
(

sp〈7, 4, 3〉(T3)
)
,

sp〈6, 2′, 5〉
(

sp〈3, 2, 5〉(T5)
)
,

sp〈4, 2′, 2′′〉
(

sp〈3, 2, 5〉(T5)
)
,

sp〈1, 2′, 3〉
(

sp〈3, 2, 5〉(T5)
)
.

Case “T ∗ has precisely two ropes”. In fact, there are only three such triangulations
in Figure 5: T ∗ ∈ {sp〈7, 8, 4〉(T3), sp〈6, 3, 1〉(T4), sp〈3, 2, 1〉(T5)}. Observe from
Figure 5 that each T ∗ contains precisely two ropes—which we denote by [p, y] and
[p, z]—and also observe that the degree of the central ∗-vertex p is 5 or 6, and that
| y, p, z |≥ 2. Assume that splitting sp〈u, v, w〉 of T ∗ produces a ∗-triangulation.
Then, necessarily, v = p, since otherwise the newly produced edge [v′, v′′] would
not be incident with the ∗-vertex p. Furthermore, it is not hard to prove that for
preserving the pylonicity property, it is necessary that 〈u, v, w〉 = 〈u, p, w〉 is a 3-
divider that does not cross 〈y, p, z〉 at p and is edge disjoint from 〈y, p, z〉. Since
| y, p, z |≥ 2, such a situation is theoretically possible but requires the degree of p
to be at least 7. �

By Corollary 4.6, there are not any other ∗-triangulations that belong to Λ3

or can be obtained from a member of Λ3 by splitting. By Corollary 4.2, the
corresponding ITPTs are obtained from Figure 5: (a) by the removal of either
of the two faces incident with a single rope, and (b) by the removal of a single
rope. In case (a), we have to inspect the sixteen triangulations obtained by the face
removal from the eight single-roped triangulations in Lemma 10.1. These sixteen
are naturally paired with each other in Table VII. The triangulations in each pair
]1 − 6 are isomorphic, which is verified straightforwardly. The ones in pair ]7 are
not isomorphic because they have differing bd-sequences (check with Table VII).
Moreover, as shown in the next paragraph, the ones in pair ]8 are not isomorphic
even though they have the same d-vector and the same bd-sequence.

To show that the triangulations sp〈3, 2, 5〉(T5) − [5, 2′, 2′′] and sp〈3, 2, 5〉(T5) −
[3, 2′, 2′′] in pair ]8 of Table VII are not isomorphic, we observe on one hand that any
such isomorphism would fix the single rope [2′, 2′′], swapping the apices 5 and 3. On
the other hand, the degrees of the neighboring vertices are ordered differently in the
links of vertices 5 and 3, and hence vertices 5 and 3 are non-similar in sp〈3, 2, 5〉(T5)
and hence no such isomorphism is possible.

There are no more isomorphic pairs in Table VII except the above-mentioned six
pairs because the rest of the pairs have differing d-vectors or bd-sequences (except
pair ]8). Therefore, Table VII provides Series 5 of 10 non-isomorphic ITPTs.

In case (b) we obtain eight more ITPTs from the single-roped triangulations in
Figure 5 by the rope removal. However, four of them are isomorphic to the ones
originated from Λ2 and already present in Series 3 (Table II):

sp〈6, 8, 1〉(T2)− [8′, 8′′] ∼= T16 − i,
sp〈7, 4, 3〉(T3)− [4′, 4′′] ∼= T17 − o,
sp〈5, 8, 6〉(T3)− [8′, 8′′] ∼= T14 − g,
sp〈8, 7, 6〉(T5)− [7′, 7′′] ∼= T12 − d.

The remaining four form Series 6 of ITPTs, collected in Table VIII; those four are
pairwise non-isomorphic because they have differing d-vectors.

Case 4. Parent triangulation T ∗ is in Λ4 or can be obtained from a member of
Λ4 by a sequence of splittings.
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By Eq. (1), if T ∗ = sp〈u, v, w〉(Ti) ∈ Λ4, then 〈u, v, w〉 is a 4-divider. A comprehensive
list of non-similar 4-dividers can be generated by a sort of inclusion-exclusion
technique like that introduced in Section 9. We omit the details here since it is
not very hard to determine such a list directly, using Table I. There are, in total,
42 non-similar 4-dividers in the list. They are collected in Table IX in the form
of the corresponding splittings of the corresponding ITs. The resulting split-up
triangulations collectively form the whole set Λ4 (with isomorphic duplications). It
is a matter of a routine inspection to verify the following.

Table VII. ITPTs: Series 5.

No. No.
of of Triangulation d-vector bd-sequence

ITPT pair
1 1 sp〈1, 7, 6〉(T1)− [6, 7′, 7′′] ∼= (0,0,2,4,2) (5,5,7)

∼= sp〈1, 7, 6〉(T1)− [1, 7′, 7′′]
2 2 sp〈6, 8, 1〉(T2)− [6, 8′, 8′′] ∼= (0,0,2,5,2,0) (5,5,7)

∼= sp〈6, 8, 1〉(T2)− [1, 8′, 8′′]
3 3 sp〈7, 4, 3〉(T3)− [7, 4′, 4′′] ∼= (0,0,3,3,3,0) (5,6,7)

∼= sp〈7, 4, 3〉(T3)− [3, 4′, 4′′]
4 4 sp〈2, 7, 4〉(T3)− [4, 7′, 7′′] ∼= (0,0,4,3,0,2) (5,5,8)

∼= sp〈2, 7, 4〉(T3)− [2, 7′, 7′′]
5 5 sp〈3, 7, 2〉(T5)− [3, 7′, 7′′] ∼= (0,1,4,0,2,2) (5,5,8)

∼= sp〈3, 7, 2〉(T5)− [2, 7′, 7′′]
6 6 sp〈8, 7, 6〉(T5)− [6, 7′, 7′′] ∼= (0,1,2,2,4,0) (5,5,6)

∼= sp〈8, 7, 6〉(T5)− [8, 7′, 7′′]
7 7 sp〈5, 8, 6〉(T3)− [6, 8′, 8′′] (0,0,3,3,3,0) (5,5,6)
8 7 sp〈5, 8, 6〉(T3)− [5, 8′, 8′′] (0,0,3,3,3,0) (5,5,7)
9 8 sp〈3, 2, 5〉(T5)− [5, 2′, 2′′] (0,1,3,2,1,2) (5,8,6)
10 8 sp〈3, 2, 5〉(T5)− [3, 2′, 2′′] (0,1,3,2,1,2) (5,8,6)

Table VIII. ITPTs: Series 6.

No. Triangulation d-vector bd-sequence
1 sp〈1, 7, 6〉(T1)− [7′, 7′′] (0,2,0,4,2) (7,4,7,4)
2 sp〈2, 7, 4〉(T3)− [7′, 7′′] (0,2,2,3,0,2) (4,8,4,8)
3 sp〈3, 2, 5〉(T5)− [2′, 2′′] (0,2,3,1,1,2) (4,8,5,8)
4 sp〈3, 7, 2〉(T5)− [7′, 7′′] (0,3,2,0,2,2) (4,8,4,8)

11. The search for ITPTs: Case 4

Lemma 11.1. None of the triangulations in Λ4 are pylonic.

Thus, by Lemma 11.1 and Corollaries 4.2, 4.6, there are no ITPTs which can be
derived in Case 4.

Proof of Lemma 4.5: It is not hard to prove that a ∆ may occur only after the
second consecutive splitting of an IT and only if the first applied splitting produces
a single rope, ε. We know from the above that a single rope may only occur as
described above in the proof of Lemma 10.3 (case “T ∗ has only one rope”), in



302 S. LAWRENCENKO ET AL.

which event the degrees of the end vertices of ε are necessarily equal to 5 or 6, but
not both equal to 6. Then, it can be easily seen that the second splitting may lead
to a ∆ only if it is the splitting of the 3-divider that contains ε and is centered at
the 6-valent end vertex of ε. There are only two such second splittings (check with
Figure 5), sp〈2, 4′, 4′′〉

(
sp〈7, 4, 3〉(T3)

)
and sp〈4, 2′, 2′′〉

(
sp〈3, 2, 5〉(T5)

)
, but

neither has a ∆.

Table IX. Λ4 with isomorphic duplications.
Triangulations Total

sp〈4, 8, 3〉(T8) sp〈5, 8, 9〉(T8) sp〈1, 8, 7〉(T8) 3
sp〈1, 4, 5〉(T9) sp〈3, 4, 8〉(T9) sp〈7, 4, 6〉(T9) sp〈9, 4, 2〉(T9) 4
sp〈1, 4, 5〉(T10) sp〈2, 4, 9〉(T10) sp〈8, 4, 3〉(T10) 3
sp〈1, 3, 2〉(T14) sp〈4, 3, 8〉(T14) sp〈6, 3, 5〉(T14) 3
sp〈2, 3, 1〉(T15) sp〈8, 3, 4〉(T15) sp〈9, 3, 7〉(T15) sp〈5, 3, 6〉(T15) 4
sp〈2, 3, 1〉(T16) sp〈8, 3, 4〉(T16) sp〈5, 3, 6〉(T16) 3
sp〈1, 3, 2〉(T17) sp〈4, 3, 8〉(T17) sp〈7, 3, 9〉(T17) sp〈6, 3, 5〉(T17) 4
sp〈1, 4, 9〉(T18) sp〈2, 4, 8〉(T18) sp〈6, 4, 7〉(T18) sp〈5, 4, 3〉(T18) 4
sp〈1, 4, 9〉(T19) sp〈2, 4, 8〉(T19) sp〈6, 4, 7〉(T19) sp〈5, 4, 3〉(T19) 4
sp〈1, 4, 9〉(T20) sp〈2, 4, 8〉(T20) sp〈6, 4, 7〉(T20) sp〈5, 4, 3〉(T20)
sp〈9, 3, 7〉(T20) sp〈5, 3, 6〉(T20) sp〈1, 3, 2〉(T20) sp〈4, 3, 8〉(T20) 8
sp〈2, 10, 3〉(T21) sp〈6, 10, 8〉(T21) 2

12. Concluding theorem

Combining the results in the previous sections, we have identified a total of 297
non-isomorphic ITPTs as detailed in the following summarizing theorem.

Theorem 12.1. Up to isomorphism, there are totally 297 irreducible triangulations
of the once-punctured torus. They are presented in six series as follows: 80 triangulations
in Series 1 (Section 6), 129 triangulations in Series 2 (Section 7), 62 triangulations
in Series 3 (Section 8), and 12, 10, and 4 triangulations in (respectively) Series 4
in Table VI, Series 5 in Table VII, and Series 6 in Table VIII (all in Section 10).

Proof. The considerations of Sections 6–11, along with Corollaries 4.2 and 4.6,
guarantee that we have not missed any ITPT in the search. It remains to show that
all the ITPTs we have found are pairwise non-isomorphic.

We have verified in Section 6 that Series 1 contains no isomorphic pairs, nor
do Series 2 (Section 7), Series 3 (Section 8), nor any of Series 4–6 (Section 10). It
remains to prove that Series 1–6 are pairwise disjoint from each other.

By Corollary 5.2, Series 2 (obtained by deleting the ∗-vertex from the members
of Λ1), Series 3 (from Λ2), and Series 4 (from Λ3) are pairwise disjoint. Clearly,
each of these three Series is disjoint from Series 1 (produced immediately from the
toroidal ITs). Furthermore, each of the triangulations in Series 5 and 6, with the
patch restored, can be produced from some IT by two, but not by one, consecutive
splittings, hence the triangulations resulting from these splittings collectively are
out of Λ, and hence Series 5 and 6 are disjoint from the other Series. Finally, the
triangulations in the union of Series 5 and 6 have pairwise differing d-vectors or
bd-sequences (except the non-isomorphic pair ]8 in Series 5 considered in Section
10) and thus are all non-isomorphic. �
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