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Abstract. Computation with spiking neurons takes advantage of the
abstraction of action potentials into streams of stereotypical events, which
encode information through their timing. This approach both reduces
power consumption and alleviates communication bottlenecks. A num-
ber of such spiking custom mixed-signal address event representation
(AER) chips have been developed in recent years.
In this paper, we present i) a flexible event-driven platform consisting
of the integration of a visual AER sensor and the SpiNNaker system,
a programmable massively parallel digital architecture oriented to the
simulation of spiking neural networks; ii) the implementation of a neural
network for feature-based attentional selection on this platform.
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1 Introduction

The neural processes which subserve attentional selection, and subsequently
drive intelligent behaviour in animals, remain the subject of intense investi-
gation within the field of computational neuroscience [1]. Precise spike timing is
understood to play an important role in biological neural computation, for exam-
ple, spike timing precision has been hypothesised to maximise the information
transfer rate [2]. Event-driven platforms provide a natural architecture on which
to simulate spiking neural networks. Traditionally, the control flow of a program
is time-driven, while the flow in event-driven systems is dependent on the oc-
currence of events, while time is implicitly represented. Recently, sensors [3] [4],
mixed signal VLSI chips [5] [6] [7] and parallel architectures [8] that are na-
tively based on events have been developed. Such systems use Address-Event-
Representation (AER), a lightweight protocol for asynchronous communication
of spike events [9].



In this context, we present a configurable event-driven platform, composed
of an AER visual sensor [4] and the SpiNNaker system [8], a programmable
parallel machine oriented to the simulation of networks of spiking neurons. A
significant feature of this system is that a direct connection (via an FPGA) be-
tween the AER sensor and the event-driven SpiNNaker system allows timing
information in the spike-train to be preserved: spikes (events) are processed as
they arrive, eliminating delays caused by both buffering and by the use of a host
machine as a protocol translator [10]. While the SpiNNaker system offers a flexi-
ble event-driven platform for the real-time exploration of neural networks, which
natively conforms with AER, SpiNNaker also allows neural network dynamics
and topologies to be rapidly reconfigured using a high level language [11] [12].

An attentional selection system was implemented upon this neuromorphic
platform. Visual cues consisted of oriented Gaussians, which were represented
as locations on a retinotopic visual saliency map [13]; such features are the
most basic representation in the hierarchical structure which subserves object
recognition in the visual cortex [14]. The mechanisms of selection were inspired
by the biased competition hypothesis of Duncan and Humphries [15], in which
competition takes place between different representations of potential targets and
goal-directed information from a particular working memory can be used to bias
selection towards a particular target. Goal-directed signals were feature-based,
whereby the activity of a working memory neuron represented the behavioural
importance of attending to a particular visual feature. This work represents the
first neuromorphic implementation of a feature-based selection system. Spatial
bias has previously been implemented by injecting activity into a particular
location on the visual saliency map [5].

The hardware setup is described in the next section, and experimental results
are presented in Section 3; discussion and conclusions are presented in the final
section.

Fig. 1. Overview of the hardware setup: 4 SpiNNaker chips board (left), an FPGA
translating the AER protocol between the two asynchronous systems (middle) and a
DVS Silicon Retina (right)



2 Methods

2.1 Hardware setup

An image of the event-driven platform hardware is shown in Fig. 1.
Silicon Retina: the visual front-end is constituted by a Dynamic Video

Sensor (DVS) silicon retina, an asynchronous sensor which provides spike events
encoding the address of pixels undergoing a contrast change [4]. This approach
lies in opposition to the more traditional method of sending entire frames to
provide fast (3 µs latency) data-driven contrast detection at a wide range of
illuminations. The sensor is capable of transmitting from 1 Keps to 20 Meps
(events per second).

SpiNNaker System: neural processing is carried by 4 SpiNNaker chips,
offering an event-driven digital platform that can interpret incoming events
as neural spikes and inject them in the neural system. Each SpiNNaker chip
is equipped with 18 programmable ARM9 cores embedded in a configurable
packet-switched asynchronous network-on-chip [16], based on an on-chip Mul-
ticast (MC) Router capable of efficiently handling one-to-many communication
of spikes (MC packets), and linked to 6 neighbours through fast asynchronous
links. The system is designed to scale up to 65536 chips (each consuming 1W)
and a million cores [8], offering a flexible, power-efficient platform for large-scale
real-time modelling. Each SpiNNaker chip natively responds to events occurring
in the network, and is therefore able to process information arriving from event-
based sensors attached to its asynchronous links, provided the AER protocol is
translated correctly.

Interconnection: retinal events are translated into asychronous spike trains
in the neural network: as soon as an event is emitted from the silicon retina, it is
translated into a SpiNNaker spike by a Xilinx SPARTAN-6 FPGA and injected
into the system directly on the fast on-board interconnect, via one of the six
asynchronous links available on each SpiNNaker chip.

Configuration: two levels of virtualisation allow a transparent mapping
between the silicon retina and the SpiNNaker system. From a hardware point of
view the DVS is mapped as a virtual SpiNNaker chip, injecting spike events into
the network-on-chip. To the neural network, the silicon retina is represented as a
SpikeSource Population by the mapping tool [12]. As with the rest of the neural
network, the SpiNNaker system allows configurable Projections to this neural
population using a high-level language such as PyNN [11].

2.2 Network Description

Fig. 2 contains a diagram of the implemented network [17], which was inspired
by the primate visual system. In the first layer, neurons responses were selective
to stimulus orientation, in a similar manner to neuronal responses in cortical
area V1 [18]. The pooling & competition layer subsampled the activity of neu-
rons with the same preferred orientation (implementing a localmax function,
in a manner similar V2 complex cells [14]), while local competition between



Fig. 2. Overview of the neural network; shaping indicates preferred orientation (black
neurons do not encode orientation information). Complete projections from only the
palest neurons are shown for clarity. Neurons are represented by triangles, arrows rep-
resent excitatory synapses and circles represent inhibitory synapses.

neurons with different preferred orientations sustained the activity of neurons
whose preferred orientation matched the stimulus, and suppressed activity re-
lating to non-matching neuronal responses. Four neuronal populations in the
working memory layer encoded the goal of selecting a stimulus with a particular
orientation. Activity in this layer was determined by a set of external biasing
currents. In primates, visual search goals are believed to be encoded in the activ-
ity of the dorso-lateral prefrontal cortex neurons [1]. The biasing layer received
combined activity from the pooling & competition layer and the working mem-

ory layer, such that activity was maximised for stimuli of the desired orientation,
provided they are also present in the visual field. These neurons are analogous
to the neurons of cortical area V4, which receives a large input from working
memory via the frontal eye fields [19]. Activity was pooled across all orientation
maps in the selection layer to form a retinotopic visual saliency map (correspond-
ing to the lateral intraparietal cortex, LIP area [20]), and competition between
different retinotopic location in this layer resulted in the selection of a single
target. Activity at this location (i.e. the target of attention) was maintained,
while activity at other locations was suppressed. Attentional effects themselves
were not included in this model.

The network was implemented with 1221 leaky integrate-and-fire neurons
and 20530 current-based exponential synapses on a single SpiNNaker chip, and
128x128x2 DVS neurons that were binned to 16x16x2 spatial locations on the
FPGA, while preserving the number of events received by SpiNNaker. Neurons
were arranged in a square topology (14x14 in visual input, 10x10x4 in orientation

selectivity, 10x10x4 in pooling & competition, 5x5x4 in working memory, 5x5x4
in biasing, 5x5 in selection). Both excitatory and inhibitory projections were
allowed from individual neurons, though this is not observed in biology.
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Fig. 3. Experiment I; (a) Biasing layer mean firing rate (MFR) for neurons of each
preferred orientation; (b) overlayed figure from (a) showing MFR as a function of the
difference between preferred orientation and stimulus orientation. Each biasing layer is
the most active when presented the preferred feature

3 Results

Experiment I tested interaction between working memory activity and the bi-
asing layer for stimuli in isolation and Experiment II tested the ability of the
working memory activity to bias selection towards a particular target in the se-

lection layer. The stimulus consisted of a video of blinking oriented Gaussians,
which were presented on an neutral background, Fig. 3(b) (insert) and Fig. 4.

3.1 Experiment I: Tuning Curves for Stimuli in Isolation

The retina was sequentially stimulated with 8 different oriented Gaussian func-
tions (σ = 4.0 pixels, γ = 0.2 pixels). Each stimulus was presented for 5.0 s,
stimuli blinked with a frequency of 0.5 Hz and working memory neurons fired
with a mean frequency of 9.9 Hz.

Fig. 3(a) contains four panels, each of which shows the mean firing rates
(MFR) of the biasing layer neurons when a particular working memory neuron
was active and Fig. 3(b) shows the average tuning curve for all bias conditions.
The MFR of the biasing layer neurons for the preferred orientation (palest) was
compared with the MFR of the other biasing layer neurons (mid) and the MFR
in the unbiased condition (dark). The MFR for the unbiased and non-preferred
neurons was very similar, while the target neurons experienced an increased firing
rate for all stimuli, indicating that the working memory successfully increased
the gain for only the target neurons. Similar stimuli which were not explicitly
represented by any orientation map also show increased activity.



3.2 Experiment II: Visual Selection Task

Stimuli consisted of two oriented Gaussian functions (σ = 0.89 pixels, γ = 0.07
pixels), one in the top left corner of the stimulus image, and one in the bottom
right corner. Fig. 4(a). Two sets of orientations were tested at both positions:
{0◦, 90◦} and {45◦, 135◦}. Stimuli blinked with a frequency of 0.5 Hz and activity
was recorded for 40 s. Fig. 4(b) shows the probability for a location becoming
the attentional target in the unbiased condition (calculated as the ratio of the
number of spikes at a location in selection to the total number of spikes in the
selection layer). No selection bias was observed in this condition. Figs. 4(c) and
4(d) show the change in the selection probability when working memory was used
to bias selection towards the feature in the top left corner and the bottom-right
corner respectively. In both cases, selection was biased almost entirely towards
the target feature. Fig. 5 shows that the firing of the two active group of selection
neurons follows the activity of the working memory over time.

(a) (b) (c) (d)

Fig. 4. Experiment II; (a) stimulus image; grid indicates the position of the neurons in
the selection layer (b) firing probability across the whole selection layer for all pairs of
unbiased stimuli; (c) change in firing probability (from (b)) when selection was biased
towards the object in the top-left corner for all stimuli pairs; (d) same as before but
towards the feature in the bottom-right corner

4 Discussion and Conclusion

The integration of the SpiNNaker system with an existing visual AER sensor
exposes the advantage of a digital, programmable systems integration platform
for neural computation. The platform presented in this paper forms a generic
event-driven system, where neural networks may be rapidly implemented and
configured. This processing platform benefits from the flexibility of SpiNNaker,
in which neural network models can be described in a high-level programming
language [11], making the hardware accessible to non-hardware experts [12].
Large-scale, real-time models can be rapidly developed and configured before
casting them into their more efficient, but also less accessible and more expensive,
task-specific analog counterparts [5] [7] [9].



A neural network model of feature-based attentional selection was imple-
mented upon this processing platform. In this network, a feature-based working
memory was used to drive attentional selection towards a target visual feature.
This work represents the first neuromorphic implementation of a feature-based
attentional selection system. In future, this work will be extended to include a
more faithful model of the neural circuit which subserves attentional selection
through the inclusion of modulatory top-down bias, as opposed to the additive
effect which presented, and on attending complex stimuli learned from the com-
position of basic features discussed in this paper.
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Fig. 5. Activity in LIP follows the movements of the biased stimulus.
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