
Formal Verification of P Systems with Active

Membranes through Model Checking

Florentin Ipate1, Raluca Lefticaru1, Ignacio Pérez-Hurtado2,
Mario J. Pérez-Jiménez2, and Cristina Tudose1

1 Department of Computer Science, University of Pitesti
Str. Targu din Vale 1, 110040, Pitesti, Romania

{florentin.ipate,raluca.lefticaru,cristina.tudose}@upit.ro
2 Research Group on Natural Computing

Dpt. of Computer Science and Artificial Intelligence, University of Sevilla
Avda. Reina Mercedes s/n. 41012, Sevilla, Spain

{perezh,marper}@us.es

Abstract. Formal verification of P systems using model checking has
attracted a significant amount of research in recent years. However, up
to now only P systems with static structure have been considered. This
paper makes significant advances in this area by considering P systems
with active membranes, in particular P systems with division rules. The
paper presents a theoretical framework for addressing this problem and
reports on a complex case study involving a well-known NP-complete
problem solved using P systems with membrane division rules. This is
implemented in Promela and non trivial properties are verified using
Spin.

1 Introduction

Inspired by the behaviour and functioning of a living cell, membrane computing
has emerged in recent years as a powerful modelling tool; various applications
have been reported [4], especially in biology and bio-medicine, but also in many
other areas, such as economics, approximate optimization and computer graph-
ics [21]. Furthermore, software tools, such as P-Lingua [14], for simulating P
systems, have been developed and used in real life problems. Naturally, such
modelling and simulation tools must be accompanied by appropriate means of
formally verifying that the model satisfies the required properties.

One of the most widely used approaches to formal verification is through
model checking. This uses a model of the implementation, given as an operational
specification, and a specification, given as a temporal logic formula, and verifies,
on the entire state space of the model, whether the property holds or not. If the
property fails, then a counterexample is also returned.

Formal verification of P systems using model-checking has attracted a signif-
icant amount of research in recent years, using tools such as Maude [1], PRISM
[22], NuSMV [13], Spin [7], [12] or ProB [10]. However, up to now only P systems

with static structure have been considered. Some of the aforementioned investi-
gations consider cell dissolution rules, but in this case a simple flag, indicating
whether the membrane exists or not in the current configuration, can be used to
address the change in the membrane structure. This is, indeed, a clear weakness
of these approaches since, in biology, the membrane structure is not static, but
it evolves and changes in time. Furthermore, P systems with active membranes
have a wide range of applications; in particular, P systems with division rules
are used to devise efficient solutions to computationally hard problems [21].

This paper makes significant advances in the area of model checking based ver-
ification of P systems by considering P systems with active membranes. Firstly,
it devises a theoretical framework for addressing this problem: it describes the
Kripke structure associated with a P system with active membranes and how
this can be translated into an executable implementation; it also shows how
properties that can be formulated for the P system can be translated into prop-
erties of the executable implementation. Secondly, it reports on a complex case
study involving a well-known NP-complete problem solved in linear time and in
an uniform way using P systems with membrane division rules [17]. The solution
was improved in [8], where the total cost is logarithmic in one variable and linear
in the rest, but this improvement is not essential in the context of this paper.
For this example, a number of non-trivial properties of the model are formulated
and verified using the Spin model checker [2].

The paper is structured as follows. We start by presenting in Section 2 the
notation and main concepts to be used in the paper. Section 3 presents the
theoretical background for our approach. The case study and empirical results
are given in the next two sections, while Section 6 discusses related work. Finally,
conclusions are drawn in Section 7.

2 Background

2.1 P Systems

Before presenting our approach to P system verification, let us establish the
notation used and define the class of cell-like P systems addressed in the paper.
Basically, a P system is defined as a hierarchical arrangement of membranes,
identifying corresponding regions of the system. Each region has an associated
finite multiset of objects and a finite set of rules; both may be empty. Given
a finite alphabet V = {a1, ..., ap}, a multiset is either denoted by a string u ∈
V ∗ (in which the order is not important, the string notation is only used as
a convention), or by an associated vector of non-negative integers, ΨV (u) =
(|u|a1 , ..., |u|ap), where |u|ai denotes the number of ai occurrences in u, for each
1 ≤ i ≤ p.

The following definition refers to cell-like P systems with active membranes
(see [19, 20] or [21] page 284, for details).

Definition 1. A P system is a tuple Π = (V,H, μ, w1, . . . , wn, R), where V is
a finite set, called alphabet; H is a finite set of labels for membranes; μ is a

membrane structure (a rooted tree), consisting of n membranes injectively labelled
with elements of H; wi, 1 ≤ i ≤ n, are strings over V , describing the multisets
of objects initially placed in the n regions of μ; R is a finite set of rules, where
each rule is of one of the following forms:

(a) [a → v]αh , where h ∈ H, α ∈ {+,−, 0} (electrical charges), a ∈ V and v is a
string over V describing a multiset of objects associated with membranes and
depending on the label and the charge of the membranes (evolution rules).

(b) a[]αh → [b]βh, where h ∈ H, α, β ∈ {+,−, 0}, a, b ∈ V (send-in communication
rules). An object is introduced in the membrane, possibly modified, and the
initial charge α is changed to β.

(c) [a]αh → []βhb, where h ∈ H, α, β ∈ {+,−, 0}, a, b ∈ V (send-out communi-
cation rules). An object is sent out of the membrane, possibly modified, and
the initial charge α is changed to β.

(d) [a]αh → b, where h ∈ H, α ∈ {+,−, 0}, a, b ∈ V (dissolution rules). A
membrane with a specific charge is dissolved in reaction with an object a
(possibly modified).

(e) [a]αh → [b]βh[c]
γ
h, where h ∈ H, α, β, γ ∈ {+,−, 0}, a, b, c ∈ V (division rules).

A membrane is divided into two membranes. The objects inside the mem-
brane are replicated, except for a, that may be modified in each membrane.

The membrane structure, μ, is denoted by a string of left and right brackets ([l
and]el), each with the label l of the membrane; the electrical charge e of each
membrane is also given. The environment is only used to send the answer to and
we do not capture its structure into this definition.

The rules are applied in maximally parallel mode, which means that they are
used in all the regions at the same time and in each region all the objects to which
a rule can be applied must be the subject of a rule application [19]. However, any
membrane can be subject of only one rule of types (b) – (e) in one computation
step. In type (e) (membrane division) rules, all the contents present before the
division, except for object a, can be the subject of rules in parallel with the
division. In this case we consider that in a single step two processes take place:
first the contents are affected by the rules applied to them, and after that the
results are replicated into the two new membranes. If a membrane is dissolved,
its content (multiset and interior membranes) becomes part of the immediately
external membrane which has not been dissolved at that computation step. The
skin is never dissolved neither divided. The behaviour of this system is precisely
the same as the behaviour mentioned in [15–17], [19–21].

A configuration of the P system Π is uniquely identified by the current mem-
brane structure μ′ and the contents of each region in μ′. A transition step from a
configuration c1 to a configuration c2 is realized if the P system can evolve from
c1 to c2 by using the maximal parallelism mode (as well as the rule restrictions
stated above); this is denoted by c1 =⇒ c2. In the set of all configurations, we
will distinguish halting configurations; c is a halting configuration if there is no
region i such that its contents can be further developed.

2.2 Linear Temporal Logic

The Linear Temporal Logic (LTL) was introduced by Amir Pnueli in 1977 [18]
for the verification of computer programs. Compared to CTL (Computation Tree
Logic) [5], LTL does not have an existential path quantifier (the E of CTL). An
LTL formula has to be true over all paths, having the form Af , where f is a path
formula in which the only state subformulas permitted are atomic propositions.
Given a set of atomic propositions AP , an LTL path formula [5] is either:

– If p ∈ AP , then p is a path formula.
– If f and g are path formulas, then ¬f , f ∨ g, f ∧ g, Xf , Ff , Gf , fUg and

fRg are path formulas, where:
• The X operator (“neXt time”, also written ©) requires that a property
holds in the next state of the path.

• The F operator (“eventually” or “in the future”, also written ♦) is used
to assert that a property will hold at some state on the path.

• Gf (“always” or “globally”, also written �) specifies that a property, f ,
holds at every state on the path.

• fUg operator (U means “until”) holds if there is a state on the path
where g holds, and at every preceding state on the path, f holds. This
operator requires that f has to hold at least until g, which holds at the
current or a future position.

• R (“release”) is the logical dual of the U operator. It requires that the
second property holds along the path up to and including the first state
where the first property holds. However, the first property is not required
to hold eventually: if f never becomes true, g must remain true forever.

3 Theoretical Basis for Model Checking of P Systems
with Active Membranes

In this section we describe the transformation of a P system with active mem-
branes into a Kripke structure, by extending the approach given in [7] and [11]
for P systems with static structure.

Definition 2. A Kripke structure over a set of atomic propositions AP is a four
tuple M = (S,H, I, L), where S is a finite set of states; H ⊆ S×S is a transition
relation that must be left-total, that is, for every state s ∈ S there is a state
s′ ∈ S such that (s, s′) ∈ H; I ⊆ S is a set of initial states; L : S −→ 2AP is an
interpretation function, that labels each state with the set of atomic propositions
true in that state.

Usually, the Kripke structure representation of a system results by giving values
to every variable in each configuration of the system. Suppose var1, . . . , vark are
the system variables, V ali denotes the set of values for vari and vali is a value
from V ali, 1 ≤ i ≤ k. Then the states of the system are S = {(val1, . . . , valk) |
val1 ∈ V al1, . . . , valk ∈ V alk}, and the set of atomic predicates are

AP = {(vari = vali) | 1 ≤ i ≤ k, vali ∈ V ali}. Naturally, L will map each
state (given by the values of variables) onto the corresponding set of atomic
propositions. For convenience, in the sequel the expressions of AP and L will
not be explicitly given, the implication being that they are defined as above.

Obviously, in a P system with division rules the number of membranes can
grow infinitely. For practical reasons, we will allow only a finite number of mem-
branes and will assume that the upper bound k on this number is known before-
hand. However, this is not a limitation because, given a specific P system, this
upper bound can be estimated. Then, a configuration of a P system can be rep-
resented by a tuple c = (var1, . . . , vark), where vari holds the current contents
ui of region i (a special symbol not in V will be used when the ith membrane
does not exist), the membrane label, its electrical charge and the number of the
parent membrane.

Consider a P system Π = (V,H, μ, w1, . . . , wn, R) with R = {r1, . . . , rm}. The
states of the Kripke structure associated with Π will correspond to the configu-
rations of the P system (plus two special states, as explained later). Given two
configurations, c and d, there is a transition from c to d if for every membrane i in
c there exist ni

1, . . . , n
i
m, such that the following conditions hold simultaneously:

– At least one rule is applied, i.e. there exists i such that ni
1 + . . .+ ni

m > 0;
– d is obtained from c by applying rules r1, . . . , rm, ni

1, . . . , n
i
m times, respec-

tively, for every membrane i;
– Any membrane can be subject of only one rule of type (b) – (e), i.e. for every

i, there exists at most one j, 1 ≤ j ≤ m, such that ni
j > 0 and rule rj is of

type (b) – (e); furthermore, in this case ni
j = 1;

– A computation from c develops in maximally parallel mode, i.e. for every
membrane i and every j, 1 ≤ j ≤ m, if rules r1, . . . , rm can be applied
ni
1, . . . , n

i
j−1, (n

i
j + 1), ni

j+1 . . . , n
i
m times, respectively, in c then: (1) rj is of

type (b)–(e) and (2) there exists l, 1 ≤ l ≤ m such that rl is of type (b)–(e)
and ni

l = 1.

In order to keep the number of states finite, for each configuration u we will
assume that each component of ΨV (u) has an established upper bound, denoted
Max, and each rule can only be applied for at most a given number of times,
denoted Sup (therefore ni

1, . . . , n
i
m ≤ Sup in the above definition). Whenever

(at least) one of these upper bounds is exceeded, extra transitions to a special
state, Crash, are added. Consequently, as long as the verification is performed
for “specific” P systems (and not for a class of P systems), then this upper
bound is not a limiting factor. However, the upper bounds and the Crash state
are added just to prevent an unexpected behaviour, caused by a P system with
a misleading computation.

The halting configurations of the P system (i.e. in which no rule can be ap-
plied) are also represented by extra transitions, to another special state, Halt. In
order for the transition relation to be left-total, loop-back transitions in Crash
and Halt are also added.

One additional problem arises when implementing the Kripke structure de-
fined above: most modelling languages (Promela included) do not support the

Table 1. Reformulating the basic LTL operators for the Promela specification of a P
system

Property LTL specification

G p [] (p || !pInS)
F p <> (p&& pInS)
p U q (p || !pInS) U (q&& pInS)
X p X (!pInS U (p&& pInS))
p R q (p&& pInS) V (q || !pInS)

existential (or the universal) quantifier. Consequently, a transition involving ∃
(as in the Kripke structure representation of a P system) is normally imple-
mented as a sequence of transitions (e.g. a “do - od” loop in Promela) and so
additional (intermediary) states are introduced into the model. Naturally, the
intermediary states cannot be allowed to form infinite loops and so every pos-
sible path in the Promela executable model will contain infinitely often states
corresponding to the P system configurations. These assumptions ensure that
every path in the P system has at least one corresponding path in the Promela
model and vice versa.

Naturally, the properties to be verified (and which refer to the given P system)
will need to be reformulated as equivalent formulas for the associated Promela
model. Table 1 summarizes the transformations of basic LTL formulas for the
Promela implementation, as formally proven in [12] (pInS is a predicate which
holds in the original (non-intermediary) states). For example, ‘always b > 0’
(the number of occurrences of b objects is always greater than 0), will become,
for the Promela model, ‘Globally b > 0 or not pInS’ (we expect b > 0 only
for configurations corresponding to the P system, but not for the intermediary
states).

4 Case Study: The Subset Sum Problem

The Subset Sum problem has been used with some classes of P systems with
active membranes in order to illustrate the efficiency and power of these mecha-
nisms for solving NP-complete problems in an uniform way ([8, 9, 15–17]). Most
of these solutions follow a similar scenario with a number of stages: generation,
calculation, checking and output. This is important for the approach we suggest
as we can identify specific properties for some of these stages as well as global
ones.

The Subset Sum problem can be formulated as follows:

Given a finite set A = {a1, . . . , an}, of n elements, where each element ai
has an associated weight, wi, and a constant k ∈ N , it is requested to determine
whether or not there exists a subset B ⊆ A such that w(B) = k, where w(B) =∑

ai∈B wi.

For given n and k, a P system with active membranes Π(〈n, k〉) is constructed
to solve the Subset Sum problem - for details see [17]. The P system is given by

Π(〈n, k〉) = (Γ (〈n, k〉), {e, s}, μ, we, ws, R, i(n, k)),where

– Γ (〈n, k〉) = {x0, x1, . . . , xn} ∪ {ā0, ā, a0, a, d1, e0, . . . , en, q, q0, . . . , q2k+1,
z0, . . . , z2n+2k+2, Y es,No0, No,#} is the alphabet;

– μ = [s[e]
0
e]

0
s is the membrane structure;

– ws = z0, we = e0a
k are the initial multisets;

– i(n, k) = e and contains the code xw1
1 . . . xwn

n ;
– the set of evolution rules, R, consists of

(1) [ei]
0
e → [q]−e [ei]

+
e , 0 ≤ i ≤ n;

[ei]
+
e → [ei+1]

0
e[ei+1]

+
e , 0 ≤ i ≤ n− 1. For each subset of A a membrane

is generated.
(2) [x0 → ā0]

0
e; [x0 → λ]+e ; [xi → xi−1]

+
e , for 1 ≤ i ≤ n.

The code from the input membrane is built in such a way that the
multiplicity of xj represents the weight of aj ∈ A. These three rules
calculates in ā0 the weight of a subset.

(3) [q → q0]
−
e ; [ā0 → a0]

−
e ; [ā → a]−e .

These rules mark the beginning of the checking stage; the weight of the
subset is now coded by the multiplicity of a0.

(4) [a0]
−
e → []0e#; [a]0e → []−e #.

The number of occurrences of a0 and a are compared in a checking loop.
(5) [q2j → q2j+1]

−
e , 0 ≤ j ≤ k; [q2j+1 → q2j+2]

0
e, 0 ≤ j ≤ k − 1.

Objects qi are utilised as counters of the checking loop.
(6) [q2k+1]

−
e → []0eY es; [q2k+1]

0
e → []0e#; [q2j+1]

−
e → []−e #; 0 ≤ j ≤ k − 1.

These rules provide an answer to the checking loop given that there
are the same number of a0 and a, more a0 objects, or more a objects,
respectively.

(7) [zi → zi+1]
0
s, 0 ≤ i ≤ 2n+ 2k + 1; [z2n+2k+2 → d1No0]

0
s.

Objects zi control the checking stage in all membranes. When the check-
ing stage is over d1 and No0 are released into the skin membrane.

(8) [d1]
0
s → []+s d1; [No0 → No]+s ; [Y es]+s → []0sY es; [No]+s → []0sNo.

In the final stage either Y es or No is sent out into the environment.

5 Experimental Results

In the sequel we will show how different properties of the above P system, pro-
viding an answer to an instance of the Subset Sum problem, can be checked. We
start with some simpler properties and then will focus on some more complex
ones that have been revealed by the current literature [17]. Before starting the
presentation of these properties it is important to mention that many of the
properties require some transformations or adaptations in order to be checked
and validated - as discussed in Section 3.

We have considered different instances of the Subset Sum problem. We have
considered a set A with two and three elements, weights between one and three,

Table 2. Some properties verified for the Promela specifications of two P systems,
providing an answer to the Subset Sum problem

Property LTL specification Result 1 Result 2

Generally, there is not YES
in the environment.

[](env.Yes == 0 || !pInS) false true

Generally, there is not NO in
the environment.

[](env.No == 0 || !pInS) true false

Eventually, there is YES in
the environment.

<>(env.Yes == 1 && pInS) true false

Eventually, there is NO in
the environment.

<>(env.No == 1 && pInS) false true

When e1 appears in a spe-
cific membrane 1, with elec-
trical charge 0, then a q will
appear with a negative elec-
trical charge.

[]((membr[1].e[1]==1

&& membr[1].charge==0

-> <> (membr[1].q==1 &&

membr[1].charge==-1 &&

pInS)) || !pInS)

true true

When e1 appears in a spe-
cific membrane 1, with elec-
trical charge 0, then a q will
appear with a positive elec-
trical charge.

[]((membr[1].e[1]==1

&& membr[1].charge==0

-> <> (membr[1].q==1 &&

membr[1].charge==1 &&

pInS)) || !pInS)

false false

For all i, j, if ei appears in
membrane j, with electrical
charge 0, then q will appear
in the same membrane with
a negative electrical charge.

[]((i>=0 && i<3 && j>=0 &&

j<10 && (membr[j].e[i]==1

&& membr[j].charge==0

-> <> (membr[j].q==1 &&

membr[j].charge==-1 &&

pInS))) ||!pInS)

true true

and values of k between two and four. We have tested both cases, with and
without solution. In Table 2 we present some properties verified for the Promela
specification of the P system. The first two columns express the properties to
be verified and the last two columns the results obtained for two instances of
the Subset Sum P systems. The first example is n = 3, k = 4, w = [1, 2, 2]
and has the associated results in the third column, while the second example is
n = 3, k = 3, w = [2, 2, 2] and the model checker answers are given in the last
column of Table 2.

We first checked whether there is a solution for a given instance of Subset
Sum (“Generally, there is not NO in the environment”). As said above we had
to slightly change the query due to the current codification of the P system into
Promela and the associated Kripke structure. The current form of the query is
[](env.No == 0 || !pInS), which means that we consider only states associated
with the P system and not intermediary ones and check the variable No from

the environment, env.No, to be 0. The same behaviour of the system can be
checked by “Eventually, there is Y ES in the environment”.

Based on rule of the type “(1)” it can be shown that when ei appears in a
specific e membrane, or more generally, in any such membrane, with electrical
charge 0, then in the membrane obtained from it with negative electrical charge,
q will appear.

We have also made some experiments running simulations with both P-Lingua
and the Promela code. The results obtained were the same (final configuration,
number of steps, obtained membranes etc.) and the two simulations have pro-
duced values of the same order of magnitude regarding the elapsed time. This
shows that the Kripke structure underlying the translation from P-Lingua to
Promela does not introduce much overhead into the system.

For the two instances of the Subset Sum P systems considered before, the
maximum number of membranes obtained during the P system computation
was 16 (corresponding to n = 3) and the verification time of each property listed
in Table 2 was 7− 8 seconds.

In future experiments we will test the limit for which Spin can produce a re-
sponse in a reasonable time interval and will investigate how our implementation
can be improved in order to cope with the well-known state explosion problem
associated with model checking. We also aim to address more complex properties
as well as to identify invariants of various stages.

6 Related Work

A first approach on P system verification using model checking is introduced in
[1]. The authors transform P systems into executable specifications written in
Maude, a programming language and the software system developed around it,
that uses a rewriting semantics. Further, the LTL model checker of Maude is
used to verify some properties of the P systems.

Other papers [6, 7] tackle the decidability problem of P system properties.
The models used for experiments are, similarly to those in [1], simple cell-like
P systems, generating for example n2. They present membrane dissolving rules,
but no membrane division. The tools used for experimentation are Omega and
Spin, the authors conclusion is that Spin is preferable over Omega for model
checking P systems.

Another paper that compares the experimental results obtained by two main
stream model checkers is [12], which concludes that Spin achieves better per-
formance than NuSMV for P system models. More details regarding the P sys-
tem transformation into SMV, the language accepted by NuSMV, are given in
[11, 13], which use the model checker counterexamples for test generation.

In [22] the probabilistic model checker Prism is employed to verify a stochastic
P system. The paper presents a case study representing the cell cycle in eukary-
otes, described using a P system specification which is translated into Prism.
Specific questions are then formulated and run against the Prism specification
of the P system. Daikon, a dynamic invariant detector, has been used in a similar
context to extract P systems properties, which were later validated by Prism [3].

The ProB model checker is employed in [10] to verify P systems translated
into Event-B.

7 Conclusions and Future Work

This paper makes significant advances in the area of model checking based ver-
ification of P systems by considering P systems with active membranes, in par-
ticular P systems with cell division rules, having a bounded number of produced
membranes. It devises a theoretical framework for model checking of P sys-
tems, by extending the previous work on this subject to P systems with active
membranes. This is implemented in Spin for a complex case study involving
a well-known NP-complete problem. For this example, a number of non-trivial
properties of the model are formulated and verified. The case study is very rel-
evant for our approach since division rules may be the source of drastic change
in the membrane structure.

In future experiments we aim to address more complex properties of the ex-
ample considered here and to identify invariants of various stages. More complex
instances (for larger n and k) will be tested and improvements of the Promela
implementation will be sought in order to deal with the state explosion problem.
Future work will also involve automating the process of transforming the P sys-
tem specification, given as a P-Lingua file, into a Promela model and applying
this approach on other challenging, real life examples.

Acknowledgment. The work of FI and RL was supported by CNCSIS - UE-
FISCSU, project number PNII - IDEI 643/2008. The authors IPH and MPJ
acknowledge the support of the project TIN200913192 of the Ministerio de Cien-
cia e Innovación of Spain, cofinanced by FEDER funds, and the support of the
Project of Excellence with Investigador de Reconocida Vaĺıa of the Junta de An-
dalućıa, grant P08-TIC-04200. The authors would like to thank the anonymous
reviewers for their comments and suggestions that allowed us to improve the
paper.

References

1. Andrei, O., Ciobanu, G., Lucanu, D.: Executable Specifications of P Systems. In:
Mauri, G., Păun, G., Jesús Pérez-J́ımenez, M., Rozenberg, G., Salomaa, A. (eds.)
WMC 2004. LNCS, vol. 3365, pp. 126–145. Springer, Heidelberg (2005)

2. Ben-Ari, M.: Principles of the Spin Model Checker. Springer, London (2008)
3. Bernardini, F., Gheorghe, M., Romero-Campero, F.J., Walkinshaw, N.: A Hybrid

Approach to Modeling Biological Systems. In: Eleftherakis, G., Kefalas, P., Păun,
G., Rozenberg, G., Salomaa, A. (eds.) WMC 2007. LNCS, vol. 4860, pp. 138–159.
Springer, Heidelberg (2007)

4. Ciobanu, G., Pérez-Jiménez, M.J., Păun, G. (eds.): Applications of Membrane
Computing. Natural Computing Series. Springer, Heidelberg (2006)

5. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model checking. MIT Press,
Cambridge (1999)

6. Dang, Z., Ibarra, O.H., Li, C., Xie, G.: On Model-Checking of P Systems. In:
Calude, C.S., Dinneen, M.J., Păun, G., Jesús Pérez-J́ımenez, M., Rozenberg, G.
(eds.) UC 2005. LNCS, vol. 3699, pp. 82–93. Springer, Heidelberg (2005)

7. Dang, Z., Ibarra, O.H., Li, C., Xie, G.: On the decidability of model-checking for
P systems. Journal of Automata, Languages and Combinatorics 11(3), 279–298
(2006)

8. Dı́az-Pernil, D., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A.:
A Logarithmic Bound for Solving Subset Sum with P Systems. In: Eleftherakis,
G., Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2007. LNCS,
vol. 4860, pp. 257–270. Springer, Heidelberg (2007)

9. Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A.: A fast P system
for finding a balanced 2-partition. Soft Computing 9(9), 673–678 (2005)

10. Ipate, F., Ţurcanu, A.: Modelling, verification and testing of P systems using
Rodin and ProB. In: Ninth Brainstorming Week on Membrane Computing (BWMC
2011), pp. 209–220 (2011)

11. Ipate, F., Gheorghe, M., Lefticaru, R.: Test generation from P systems using model
checking. Journal of Logic and Algebraic Programming 79(6), 350–362 (2010)

12. Ipate, F., Lefticaru, R., Tudose, C.: Formal verification of P systems using Spin.
International Journal of Foundations of Computer Science 22(1), 133–142 (2011)

13. Lefticaru, R., Ipate, F., Gheorghe, M.: Model checking based test generation from
P systems using P-Lingua. Romanian Journal of Information Science and Technol-
ogy 13(2), 153–168 (2010)

14. P-Lingua website, http://www.p-lingua.org (last visited, November 2011)
15. Pérez-Jiménez, M.J., Jiménez, Á.R., Sancho-Caparrini, F.: Complexity classes in

models of cellular computing with membranes. Natural Computing 2(3), 265–285
(2003)

16. Jesús Pérez-J́ımenez, M., Riscos-Núñez, A.: A Linear-time Solution to the Knap-
sack Problem Using P Systems with Active Membranes. In: Mart́ın-Vide, C.,
Mauri, G., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2003. LNCS,
vol. 2933, pp. 250–268. Springer, Heidelberg (2004)

17. Pérez-Jiménez, M.J., Riscos-Núñez, A.: Solving the Subset-Sum problem by
P systems with active membranes. New Generation Computing 23(4), 339–356
(2005)

18. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science, pp. 46–57. IEEE (1977)

19. Păun, G.: P systems with active membranes: Attacking NP-complete problems.
Journal of Automata, Languages and Combinatorics 6(1), 75–90 (2001)

20. Păun, G.: Membrane Computing: An Introduction. Springer, Heidelberg (2002)
21. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane

Computing. Oxford University Press (2010)
22. Romero-Campero, F.J., Gheorghe, M., Bianco, L., Pescini, D., Jesús Pérez-

J́ımenez, M., Ceterchi, R.: Towards Probabilistic Model Checking on P Systems
Using PRISM. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds.)
WMC 2006. LNCS, vol. 4361, pp. 477–495. Springer, Heidelberg (2006)

http://www.p-lingua.org

	Formal Verification of P Systems with Active Membranes through Model Checking
	Introduction
	Background
	P Systems
	Linear Temporal Logic

	Theoretical Basis for Model Checking of P Systems with Active Membranes
	Case Study: The Subset Sum Problem
	Experimental Results
	Related Work
	Conclusions and Future Work
	References

