
Spiking Neural P Systems:
A Short Introduction and New Normal Forms

Linqiang Pan1,2, Gheorghe Păun2,3, Mario J. Pérez-Jiménez2

1 Department of Control Science and Engineering
Huazhong University of Science and Technology
Wuhan 430074, Hubei, China
lqpan@mail.hust.edu.cn, lqpan@us.es

2 Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

3 Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucureşti, Romania
george.paun@imar.ro, gpaun@us.es

Summary. Spiking neural P systems are a class of P systems inspired from the way
the neurons communicate with each other by means of electrical impulses (called
“spikes”). In the few years since this model was introduced, many results related
to the computing power and efficiency of these computing devices were reported.
The present paper quickly surveys the basic ideas of this research area and the basic
results, then, as typical proofs about the universality of spiking neural P systems,
we present some new normal forms for them. Specifically, we consider a natural
restriction in the architecture of a spiking neural P system, to have neurons of a
small number of types (i.e., using a small number of sets of rules). We prove that
three types of neurons are sufficient in order to generate each recursively enumerable
set of numbers as the distance between the first two spikes emitted by the system;
the problem remains open for accepting SN P systems. The paper ends with the
complete bibliography of this domain, at the level of April 2009.

1 Introduction

Spiking neural P systems (SN P systems, for short) were introduced in [32]
in the aim of defining computing models based on ideas specific to spiking
neurons, currently much investigated in neural computing (see, e.g., [21], [42],
[43]). The resulting models are a variant of tissue-like and neural-like P sys-
tems from membrane computing – we refer to [56] for basic information in
membrane computing, [71] for a comprehensive presentation, and to the web
site [81] for the up-to-date information.

In short, an SN P system consists of a set of neurons placed in the nodes
of a directed graph and sending signals (spikes, denoted in what follows by



2 L. Pan, Gh. Păun, M.L. Pérez-Jiménez

the symbol a) along synapses (arcs of the graph). Thus, the architecture is
that of a tissue-like P system, with only one kind of objects present in the
cells. The objects evolve by means of spiking rules, which are of the form
E/ac → a; d, where E is a regular expression over {a} and c, d are natural
numbers, c ≥ 1, d ≥ 0. The meaning is that a neuron containing k spikes
such that ak ∈ L(E), k ≥ c, can consume c spikes and produce one spike,
after a delay of d steps. This spike is sent to all neurons to which a synapse
exists outgoing from the neuron where the rule was applied. There also are
forgetting rules, of the form as → λ, with the meaning that s ≥ 1 spikes are
forgotten, provided that the neuron contains exactly s spikes. We say that the
rules “cover” the neuron, all spikes are taken into consideration when using
a rule. The system works in a synchronized manner, i.e., in each time unit,
each neuron which can use a rule should do it, but the work of the system
is sequential in each neuron: only (at most) one rule is used in each neuron.
One of the neurons is considered to be the output neuron, and its spikes are
also sent to the environment. The moments of time when a spike is emitted
by the output neuron are marked with 1, the other moments are marked with
0. This binary sequence is called the spike train of the system – it might be
infinite if the computation does not stop.

The result of a computation is encoded in the distance between consecutive
spikes sent into the environment by the (output neuron of the) system. In [32]
only the distance between the first two spikes of a spike train was considered,
then in [66] several extensions were examined: the distance between the first k
spikes of a spike train, or the distances between all consecutive spikes, taking
into account all intervals or only intervals that alternate, all computations or
only halting computations, etc.

Systems working in the accepting mode were also considered: a neuron
is designated as the input neuron and two spikes are introduced in it, at an
interval of n steps; the number n is accepted if the computation halts.

Both in the generating and the accepting case, SN P systems were proved
to be computationally complete (equivalent with Turing machines; we also
say that SN P systems are “universal”: the equivalence with Turing machines
is constructive, hence starting the proof of equivalence from universal Turing
machines, or from equivalent universal devices, directly lead to universal SN
P systems).

Recently, SN P systems were also used in order to devise (theoretical)
ways to solve computationally hard problems in a feasible (polynomial) time.
This is usually achieved in membrane computing by means of tools which
allow producing an exponential working space in a linear time; the standard
way to do it is membrane division. In the SN P area, a different strategy
was first explored: with inspiration from the fact that the brain consists of
a huge number of neurons out of which only a small part are used, in [9]
one address computationally hard problems by assuming that an arbitrarily
large SN P system is given “for free”, pre-computed, with a structure as
regular as possible, and without spikes inside; solving a problem starts by



Spiking Neural P Systems 3

introducing spikes in certain neurons (in a polynomially bounded number of
neurons a polynomially bounded number of spikes are introduced); then, by
moving spikes along synapses, the system self-activates, and a specific output
provides the answer to the problem. This was illustrated in [9] for SAT. Then,
both ways to produce this “pre-computed” resource during the computation
were considered ([74]), and rules for dividing neurons ([53]), with inspiration
from the observation that there are so called neural stem cells, which divide
repeatedly, producing new neurons ([18]). The research in this last direction
is just started, and further progresses are expected.

The present survey is a brief one, many further directions of research
were explored (asynchronous SN P systems, inhibitory spikes and/or synapses,
using the rules in a parallel way, Hebbian learning for SN P systems, modeling
certain neurophysiological processes, and so on); the bibliography which closes
the paper can be a good source of information for the reader.

In order to have a sort of a case study of research in this area, we end the
paper with some results (obtained during the Seventh Brainstorming Week on
Membrane Computing, Sevilla, February 2-6, 2009), concerning a new normal
form for SN P systems. Details will be given in Section 6.

2 Prerequisites

We assume the reader to have some familiarity with (basic elements of) lan-
guage and automata theory, e.g., from [73], as well as with basics of membrane
computing, e.g., from [56], [71], and [81], and we introduce here only a few
notations, as well as the notion of register machines, used in the proofs from
Section 6 (based on paper [51]).

For an alphabet V , V ∗ denotes the set of all finite strings of symbols from
V , the empty string is denoted by λ, and the set of all nonempty strings over
V is denoted by V +. When V = {a} is a singleton, then we write simply a∗

and a+ instead of {a}∗, {a}+. For a regular expression E we denote by L(E)
the regular language identified by E.

By NFIN,NREG,NRE we denote the families of finite, semilinear, and
Turing computable sets of (positive) natural numbers (number 0 is ignored);
they correspond to the length sets of finite, regular, and recursively enumer-
able languages, whose families are denoted by FIN,REG,RE. We also invoke
below the family of recursive languages, REC (the languages with a decidable
membership).

A register machine (see, e.g., [47]) is a construct M = (m,H, l0, lh, I),
where m is the number of registers, H is the set of instruction labels, l0 is
the start label (labeling an ADD instruction), lh is the halt label (assigned to
instruction HALT), and I is the set of instructions; each label from H labels
only one instruction from I, thus precisely identifying it. The instructions are
of the following forms:



4 L. Pan, Gh. Păun, M.L. Pérez-Jiménez

• li : (ADD(r), lj , lk) (add 1 to register r and then go to one of the instructions
with labels lj , lk),

• li : (SUB(r), lj , lk) (if register r is non-empty, then subtract 1 from it and
go to the instruction with label lj , otherwise go to the instruction with
label lk),

• lh : HALT (the halt instruction).

A register machine M computes (generates) a number n in the following
way: we start with all registers empty (i.e., storing the number zero), we apply
the instruction with label l0 and we proceed to apply instructions as indicated
by the labels (and made possible by the contents of registers); if we reach the
halt instruction, then the number n stored at that time in the first register is
said to be computed by M . The set of all numbers computed by M is denoted
by N(M). It is known that register machines compute all sets of numbers
which are Turing computable, hence they characterize NRE.

Without loss of generality, we may assume that in the halting configura-
tion, all registers different from the first one are empty, and that the output
register is never decremented during the computation, we only add to its
contents.

We can also use a register machine in the accepting mode: a number is
stored in the first register (all other registers are empty); if the computa-
tion starting in this configuration eventually halts, then the number is ac-
cepted. Again, all sets of numbers in NRE can be obtained, even using de-
terministic register machines, i.e., with the ADD instructions of the form
li : (ADD(r), lj , lk) with lj = lk (in this case, the instruction is written in the
form li : (ADD(r), lj)).

Convention: when evaluating or comparing the power of two number
generating/accepting devices, number zero is ignored.

3 Spiking Neural P Systems

We introduce here the SN P systems in the standard form (with non-extended
rules):

An SN P system of degree m ≥ 1 is a construct of the form

Π = (O, σ1, . . . , σm, syn, in, out), where:

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, . . . , σm are neurons, of the form

σi = (ni, Ri), 1 ≤ i ≤ m, where:

a) ni ≥ 0 is the initial number of spikes contained in σi;
b) Ri is a finite set of rules of the following two forms:



Spiking Neural P Systems 5

(1) E/ac → a; d, where E is a regular expression over a, c ≥ 1, and
d ≥ 0;

(2) as → λ, for some s ≥ 1, with the restriction that for each rule
E/ac → a; d of type (1) from Ri, we have as /∈ L(E);

3. syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m} with (i, i) /∈ syn for 1 ≤ i ≤ m
(synapses between neurons);

4. in, out ∈ {1, 2, . . . ,m} indicate the input and output neurons, respectively.

The rules of type (1) are firing (we also say spiking) rules, and they are
applied as follows. If the neuron σi contains k spikes, and ak ∈ L(E), k ≥ c,
then the rule E/ac → a; d can be applied. The application of this rule means
removing c spikes (thus only k − c remain in σi), the neuron is fired, and it
produces a spike after d time units (a global clock is assumed, marking the time
for the whole system, hence the functioning of the system is synchronized).
If d = 0, then the spike is emitted immediately, if d = 1, then the spike is
emitted in the next step, etc. If the rule is used in step t and d ≥ 1, then in
steps t, t+ 1, t+ 2, . . . , t+ d− 1 the neuron is closed (this corresponds to the
refractory period from neurobiology), so that it cannot receive new spikes (if
a neuron has a synapse to a closed neuron and tries to send a spike along it,
then that particular spike is lost). In the step t + d, the neuron spikes and
becomes again open, so that it can receive spikes (which can be used starting
with the step t+ d+ 1).

The rules of type (2) are forgetting rules and they are applied as follows:
if the neuron σi contains exactly s spikes, then the rule as → λ from Ri can
be used, meaning that all s spikes are removed from σi.

If a rule E/ac → a; d of type (1) has E = ac, then we will write it in the
simplified form ac → a; d.

In each time unit, if a neuron σi can use one of its rules, then a rule
from Ri must be used. Since two firing rules, E1/a

c1 → a; d1 and E2/a
c2 →

a; d2, can have L(E1) ∩ L(E2) 6= ∅, it is possible that two or more rules
can be applied in a neuron, and in that case, only one of them is chosen non-
deterministically. Note however that, by definition, if a firing rule is applicable,
then no forgetting rule is applicable, and vice versa.

Thus, the rules are used in the sequential manner in each neuron, but
neurons function in parallel with each other.

The initial configuration of the system is described by the numbers
n1, n2, . . . , nm of spikes present in each neuron. During a computation, the
system is described both by the numbers of spikes present in each neuron and
by the state of each neuron, in the open-closed sense. Specifically, if a neuron
is closed, we have to specify the number of steps until it will become again
open, i.e., the configuration is written in the form 〈p1/q1, . . . , pm/qm〉; the
neuron σi contains pi ≥ 0 spikes and will be open after qi ≥ 0 steps (qi = 0
means that the neuron is already open).

Using the rules as suggested above, we can define transitions among con-
figurations. Any sequence of transitions starting in the initial configuration is



6 L. Pan, Gh. Păun, M.L. Pérez-Jiménez

called a computation. A computation halts if it reaches a configuration where
all neurons are open and no rule can be used. With any computation, halting
or not, we associate a spike train, the binary sequence with occurrences of 1
indicating time instances when the output neuron sends a spike out of the
system (we also say that the system itself spikes at that time).

In [32], with any spike train containing at least two spikes, the first two
being emitted at steps t1, t2, one associates a result, in the form of the number
t2 − t1; we say that this number is computed by Π. The set of all numbers
computed in this way by Π is denoted by N2(Π) (the subscript indicates that
we only consider the distance between the first two spikes of any computation;
note that 0 cannot be computed, that is why we disregard this number when
estimating the computing power of any device).

This idea was extended in [66] to several other sets of numbers which can
be associated with a spike train: taking into account the intervals between the
first k spikes, k ≥ 2 (direct generalization of the previous idea), or between
all intervals; only halting computations can be considered or arbitrary com-
putations; an important difference is between the case when all intervals are
considered and the case when the intervals are taken into account alternately
(take the first interval, ignore the next one, take the third, and so on); the
halting condition can be combined with the alternating style of defining the
output.

The result of a computation can be defined also as usual in membrane
computing, as the number of spikes present in the output neuron in the end
of a computation – we have then to work with halting computations. It is also
possible to consider SN P systems working in the accepting mode: we start
the computation from an initial configuration, and we introduce in the input
neuron two spikes, in steps t1 and t2; the number t2 − t1 is accepted by the
system if the computation eventually halts.

Then, the spike train itself can be considered as the result of a computa-
tion. The halting computations will thus provide finite strings over the binary
alphabet, the non-halting computations will produce infinite sequences of bits.
If also an input neuron is provided, then a transducer is obtained, translating
input binary strings into binary strings.

4 Example

We illustrate the previous definition with only one example; further construc-
tions of SN P systems will be examined in Section 6. The system is given in
a graphical form in Figure 1, following the standard way to pictorially repre-
sent a configuration of an SN P system, in particular, the initial configuration.
Specifically, each neuron is represented by a “membrane” (a circle or an oval),
marked with a label and having inside both the current number of spikes
(written explicitly, in the form an for n spikes present in a neuron) and the
evolution rules; the synapses linking the neurons are represented by arrows;



Spiking Neural P Systems 7

besides the fact that the output neuron will be identified by its label, out, it
is also suggestive to draw a short arrow which exits from it, pointing to the
environment.

Formally, the system is the following:

Π1 = ({a}, σ1, σ2, σs, syn, 3), with
σ1 = (1, {r11 : a→ a; 0, r12 : a→ a; 1}),
σ2 = (1, {r21 : a→ a; 0, r22 : a→ a; 1}),
σ3 = (2, {r31 : a→ a; 0, r32 : a2 → λ}),
syn = {(1, 2), (2, 1), (1, 3), (3, 1), (2, 3)}.

Fig. 1. The initial configuration of system Π

This system is meant to generate binary strings – number computing SN
P systems will be given in Section 6.

Fig. 2. The transition diagram of system Π

Its evolution can be analyzed on a transition diagram as that from Figure
2, which is a very useful tool for studying systems with a bounded number
of spikes present in their neurons (we also say that such a system is finite):
because the number of configurations reachable from the initial configura-
tion is finite, we can place them in the nodes of a graph, and between two
nodes/configurations we draw an arrow if and only if a direct transition is
possible between them. In Figure 2, also the rules used in each neuron are
indicated, with the following conventions: for each rij we have written only
the subscript ij, with 31 being written in boldface, in order to indicate that
a spike is sent out of the system at that step; when a neuron σi, i = 1, 2, 3,
uses no rule, we have written i0, and when it spikes (after being closed for
one step), we write is.

We do not enter into details concerning the paths in this diagram. Anyway,
the transition diagram of a finite SN P system can be interpreted as the
representation of a non-deterministic finite automaton, with C0 being the
initial state, the halting configurations being final states, and each arrow being
marked with 0 if in that transition the output neuron does not send a spike
out, and with 1 if in the respective transition the output neuron spikes; in
this way, we can identify the language generated by the system. In the case
of the finite SN P system Π, the generated language is

L(Π) = (0∗0(11 ∪ 111)∗110)∗0∗(011 ∪ 0(11 ∪ 111)+(0 ∪ 00)1).

5 Some Results

There are several parameters describing the complexity of an SN P system:
number of neurons, number of rules, number of spikes consumed or forgot-
ten by a rule, etc. Here we consider only some of them and we denote by
N2SNPm(rulek, consp, forgq) the family of all sets N2(Π) computed as spec-
ified in Section 3 by SN P systems with at most m ≥ 1 neurons, using at most
k ≥ 1 rules in each neuron, with all spiking rules E/ar → a; t having r ≤ p,
and all forgetting rules as → λ having s ≤ q. When one of the parameters
m, k, p, q is not bounded, it is replaced with ∗. When we work only with SN P
systems whose neurons contain at most s spikes at any step of a computation
(finite systems), then we add the parameter bounds after forgq. (Correspond-
ing families are defined for other definitions of the result of a computation, as
well as for the accepting case, but the results are quite similar, hence we do
not give details here.)

The following results were proved in [32] and extended in [66] to other
ways of defining the result of a computation.

Theorem 1. (i) NFIN = N2SNP1(rule∗, cons1, forg0) = N2SNP2(rule∗,
cons∗, forg∗).

(ii) N2SNP∗(rulek, consp, forgq) = NRE for all k ≥ 2, p ≥ 3, q ≥ 3.
(iii) NREG = N2SNP∗(rulek, consp, forgq, bounds), for all k ≥ 3, q ≥ 3,

p ≥ 3, and s ≥ 3.

Point (ii) was proved in [32] also for the accepting case, and then the
systems used can be required to be deterministic (at most one rule can be
applied in each neuron in each step of the computation).

Let us now pass to mentioning some results about languages generated
by SN P systems, starting with the restricted case of binary strings. We de-
note by L(Π) the set of strings over the alphabet B = {0, 1} describing
the spike trains associated with halting computations in Π; then, we denote
by LSNPm(rulek, consp, forgq) the family of languages L(Π), generated by
SN P systems Π with the complexity bounded by the parameters m, k, p, q
as specified above. When using only systems with at most s spikes in their
neurons (finite), we write LSNPm(rulek, consp, forgq, bounds) for the corre-
sponding family. As usual, a parameter m, k, p, q, s is replaced with ∗ if it is
not bounded.

Theorem 2. (i) There are finite languages (for instance, {0k, 10j}, for any
k ≥ 1, j ≥ 0) which cannot be generated by any SN P system, but for any
L ∈ FIN , L ⊆ B+, we have L{1} ∈ LSNP1(rule∗, cons∗, forg0, bound∗),
and if L = {x1, x2, . . . , xn}, then we also have {0i+3xi | 1 ≤ i ≤ n} ∈
LSNP∗(rule∗, cons1, forg0, bound∗).

(ii) The family of languages generated by finite SN P systems is strictly
included in the family of regular languages over the binary alphabet, but for
any regular language L ⊆ V ∗ there is a finite SN P system Π and a morphism
h : V ∗ −→ B∗ such that L = h−1(L(Π)).

(iii) LSNP∗(rule∗, cons∗, forg∗) ⊂ REC, but for every alphabet V =
{a1, a2, . . . ,ak} there are two symbols b, c not in V , a morphism h1 :
(V ∪ {b, c})∗ −→ B∗, and a projection h2 : (V ∪ {b, c})∗ −→ V ∗ such that
for each language L ⊆ V ∗, L ∈ RE, there is an SN P system Π such that
L = h2(h−1

1 (L(Π))).

These results show that the language generating power of SN P systems
is rather eccentric; on the one hand, finite languages (like {0, 1}) cannot be
generated, on the other hand, we can represent any RE language as the direct
morphic image of an inverse morphic image of a language generated in this
way. This eccentricity is due mainly to the restricted way of generating strings,
with one symbol added in each computation step. This restriction does not
appear in the case of extended spiking rules, of the form E/ac → ap; d: this
time, p ≥ 1 spikes can be produced when consuming c spikes of the neuron (we
assume that c ≥ p). In this case, a language can be generated by associating
the symbol bi with a step when the output neuron sends out i spikes, with an
important decision to take in the case i = 0: we can either consider b0 as a
separate symbol, or we can assume that emitting 0 spikes means inserting λ in
the generated string. Thus, we both obtain strings over arbitrary alphabets,
not only over the binary one, and, in the case where we ignore the steps
when no spike is emitted, a considerable freedom is obtained in the way the
computation proceeds. This latter variant (with λ associated with steps when
no spike exits the system) is considered below.

We denote by LSNePm(rulek, consp, prodq) the family of languages L(Π),
generated by SN P systems Π using extended rules, with at most m neurons,
each neuron having at most k rules, each rule consuming at most p spikes and
producing at most q spikes. Again, the parameters m, k, p, q are replaced by
∗ if they are not bounded.

The next counterparts of the results from Theorem 2 were proved in [10].

Theorem 3. (i) FIN = LSNeP1(rule∗, cons∗, prod∗) and this result is sharp
in the sense that LSNeP2(rule2, cons2, prod2) contains infinite languages.

(ii) LSNeP2(rule∗, cons∗, prod∗) ⊆ REG ⊂ LSNeP3(rule∗, cons∗,
prod∗); the second inclusion is proper, because LSNeP3(rule3, cons4,
prod2) contains non-regular languages; actually, the family LSNeP3(rule3,
cons6, prod4) contains non-semilinear languages.

(iii) RE = LSNeP∗(rule∗, cons∗, prod∗).

6 New Normal Forms

A neuron σi (in the initial configuration of an SN P system) is characterized
by ni, the number of spikes present in it, and by Ri, its associated set of rules.
An SN P system is said to be in the kR-normal form, for some k ≥ 1, if there
are at most k different sets R1, . . . , Rk of rules used in the m neurons of the
system. An SN P system is said to be in the knR-normal form, for some k ≥ 1,



8 L. Pan, Gh. Păun, M.L. Pérez-Jiménez

if there are at most k different pairs (n1, R1), . . . , (nk, Rk) describing the m
neurons of the system.

We denote by NαSNP∗(kβ) the families of all sets Nα(Π) computed by
SN P systems in the kβ-normal form, for α ∈ {2, gen, acc}, β ∈ {R,nR}, and
k ≥ 1, without forgetting rules, but with the spiking rules using the delay
feature (we do not restrict the number of neurons, that is why SNP has the
subscript ∗).

6.1 A 3R-Normal Form Result

We are going now to prove one the new normal form result mentioned in the
Introduction: SN P systems with only three different sets of rules are universal
when generating numbers encoded in the first two spikes of the spike train.

Theorem 4. NRE = N2SNP∗(3R).

Proof. We show thatNRE ⊆ N2SNP∗(3R); the converse inclusion is straight-
forward (or we can invoke for it the Turing-Church thesis). Let us consider a
register machine M = (m,H, l0, lh, I) with the properties specified in Section
2. We construct an SN P system Π which simulates M in the way somewhat
standard already when proving that a class of SN P systems is universal.
Specifically, we construct modules ADD and SUB to simulate the instruc-
tions of M , as well as an output module FIN which provides the result (in the
form of a suitable spike train). Each register r of M will have a neuron r in
Π, and if the register contains the number n, then the associated neuron will
contain 2n spikes.

The modules will be given in a graphical form, indicating their initial
configuration, the synapses, and, for each neuron, the associated set of rules;
all neurons are initially empty, with the exception of the neuron associated
with the initial label, l0, of M , which contains one spike, and with exception
of a few other neurons, as shown in the following figures.

Fig. 3. Module ADD, simulating li : (ADD(r), lj , lk)

We consider the following three sets of rules:

R1 = {a(aa)∗/a→ a; 0, a→ a; 0},
R2 = {a(aa)∗/a3 → a; 0, a→ a; 1},
R3 = {a(aaa)∗/a→ a; 0, a→ a; 1}.

The ADD module used to simulate an addition instruction li :
(ADD(r), lj , lk) is indicated in Figure 3. No rule in R1 can be applied in the
presence of an even number of spikes. If a spike enters the neuron (with the
label) li, then this neuron starts using its rules; initially, this is the case with
neuron l0. Neuron li spikes and one spike is sent to both neuron li1 and neu-
ron li2, which also spike in the next step. In this way, two spikes are sent to
neuron r, and this represents the increment of register r by one. Neuron li2
also sends a spike to neurons li3, li4, and li5. Neurons li3 and li5 spike imme-
diately, while neuron li4 can non-deterministically choose either rule to use as
both of them are enabled by the existence of a single spike – this ensures the
non-deterministic passage to one of the instructions lj or lk..

Assume that σli4 uses the rule a(aa)∗/a→ a; 0. This means that in the next
step σli8 receives two spikes, hence no rule here can be used. Simultaneously,
neurons li6 and li7 receive one spike each, and both of them spike. In this way,
σli9 receives one spike and σli7 continues having one spike. Neuron li9 contains
now a number of spikes of the form 3n + 3, for some n ≥ 0 (initially we had
two spikes here, hence n = 0) and no rule is enabled. In the next step, this
neuron receives one further spike, and the first rule is fired (the number of
spikes is now 3(n+ 1) + 1). All neurons lj and li11, li12 receive one spike. The
last two neurons send back to σli9 one spike each, hence the number of spikes
in this neuron will be again congruent with 2 modulo 3, as at the beginning.
Thus, the neuron associated with the label lj has been activated.

If neuron li4 uses the rule a → a; 1, then σli7 receives two spikes at the
same (after one time unit) time and this branch remains idle, while neurons
li8, li10, li13, li14 behave like neurons li7, li9, li11, li12, and eventually σlk is ac-
tivated and the number of spikes from σli10 returns to the form 3s + 2, for
some s ≥ 0.

The simulation of the ADD instruction is correctly completed.



Spiking Neural P Systems 9

The SUB module used to simulate a subtraction instruction li :
(SUB(r), lj , lk) is shown in Figure 4. Because the reader has the experience
of examining the work of the ADD module, this time we do not write explic-
itly the rules, but the sets R1, R2, R3 as defined above. Like in the case of the
ADD module, the SUB module starts to work when a spike enters the neuron
with the label li. The functioning of each neuron is similar to the previous case
(the rules to be used are chosen in the same way and eventually the neurons
remain with a number of spikes like that in the starting configuration).

The neuron li sends a spike to the neurons li1, and r. If register r is not
empty, then the rule a(aa)∗/a3 → a; 0 of R2 will be applied.

Fig. 4. Module SUB, simulating li : (SUB(r), lj , lk)

Assume that this is the case. This means that σr spikes immediately, hence
σli2 receives two spikes (one from σli1) and is doing nothing, while neuron li3
receives one spike and it fires. A spike is sent to each of the three neurons
li7, li8, and li9. This last neuron will send a spike to σli11 , which will spike,
thus activating the neuron associated with label lj . The two spikes sent by
σli7 , σli8 to σli10 wait here, as no rule is enabled for a number of spikes of the
form 3n+2. In the next step, a spike comes from neuron li11, hence σli10 ends
with a number of spikes which is a multiple of 3, hence no rule is activated.

If the register r is empty, then in σr we have to use the rule a → a; 1.
The neuron li2 receives a spike from σli1 and in the next step it fires, at the
same time with the move of spikes produced at the previous step in σr and
kept there because of the delay. In this moment, all neurons li2, li3, li4, li5,
and li6 contains one spike. Neurons li4, li5, li6 send their spikes to σli10 and
σli11 , but they immediately receive one spike from σli2 . This also happens
with neurons li7, li8, li9, which receive one spike each from σli3 . Neuron li10
spikes and activated lk, sending at the same time one spike to σli11 , thus
completing here the number of spikes to a multiples of three. Similarly, in the
next step, σli10 (resp., σli11) receives three spikes each, from neurons li4, li7, li8
(respectively, li5, li6, li9). The simulation of the SUB instruction is correctly
completed, with the neurons containing numbers of spikes of the same parity
as in the beginning.

The modules have different neurons, precisely identified by the label
of the respective instruction of M . Modules ADD do not interfere. How-
ever, a problem appears with modules SUB: when simulating an instruction
li : (SUB(r), lj , lk), neuron σr send one spike to all neurons ls2, ls3 from mod-
ules associated with instructions ls : (SUB(r), lu, lv) (that is, subtracting from
the same register r). However, no undesired effect appears: the spikes arrive si-
multaneously in neurons ls2, ls3, hence they send one spike to each of the three
neurons “below” them, which, in turn, send their spikes to neurons ls10, ls11;
each of these neurons gets three spikes, hence no rule can be used here, the
spikes are just accumulated (in a number which continues to be a multiple of
3).

Fig. 5. The FIN module

The addition and subtraction modules simulate the computation of M . In
order to produce the number generated by M as the distance between the
first two spikes sent out by the system Π we use the module FIN from Figure
5. It is triggered when M reaches the lh : HALT instruction. At this point
a single spike is sent to neuron 1, and at the same time to σlh1 . Neuron σ1

sends a spike to each neuron lh1, lh2, and out. The output neuron spikes (for
the first time). Neurons σ1 and σlh1 continuously exchange spikes, hence at
each step from now on neuron σ1 contains an odd number of spikes and fires.
Neuron out gets two spikes in each step, one from σ1 and one from σlh2 , hence
nothing happens. When the content of σ1 is exhausted, the rule a→ a; 1 must
be used here. The neuron is closed, the spike of σlh1 is lost, σout receives only
one spike, from σlh2 , and spikes for the second time. The work of the system
continues forever, because of the interchange of spikes between σlh1 and σ1,
but we are interested only in the distance between the first two spikes emitted
by σout, and this distance is equal to the number stored in register 1 in the end
of the computation of M . Consequently, N(M) = N2(Π) and this concludes
the proof. 2

In the previous figures one can see that the set R1 appears in neurons
having zero or one spike (the case of σl0) in the initial configuration, R2 only
with zero spikes, and the set R3 appears in neurons with zero, two, or three
spikes. This means that, if we also consider the number of spikes present in a
neuron in the initial configuration when defining the type of a neuron, then
the previous 3R-normal form becomes a 6nR-normal form.

Corollary 1. NRE = N2SNP (6nR, dley).

When considering the generated number encoded in the number of spikes
present in the output neuron, then several simplifications of the previous con-
structions are possible. First, the module FIN is no longer necessary; moreover,
when a spike is sent to neuron lh, the computation will halt. Because no in-
struction is performed in the register machine after reaching the instruction
lh : HALT, we provide no outgoing synapse for neuron lh, so it does matter
which rules are present in this neuron, no change is implied on the result of
the computation. Then, we only write to register 1, hence to neuron 1 we do
not have to apply SUB operations; this means that we can only add spikes to
this neuron, namely, one at a time, while any rule can be used inside because
no outgoing synapse is present for this neuron. However, always we have the
same number of types of neurons, because three types are necessary in mod-
ules ADD and SUB. (Similarly, we can use for neuron 1 a FIN module which
halves the number of spikes and sends them to another neuron, which leads
back to a construction as above.) The results are again as above (the details
are left to the reader):

Corollary 2. NRE = NgenSNP (3R, dley) = NgenSNP (6nR, dley).

6.2 The Accepting Case

The accepting case brings further simplifications: the ADD instructions are
deterministic (hence only one type of neurons is necessary – see Figure 6, where
R1 is as above), and the FIN module is no longer necessary (we consider the
input given as the number of spikes initially present in neuron σin, without
taking into account this number when defining the types of neurons).

Fig. 6. Module ADD, simulating li : (ADD(r), lj)

However, if we also take into consideration the number of spikes present in
the neurons, then we get the following types: (0, R1), (1, R1), (0, R2), (3, R3),
that is, we have the next result:

Corollary 3. NRE = NaccSNP (3R, dley) = NaccSNP (4nR, dley).

We do not have a construction for module SUB using only two types of
neurons.

There are several open problems and research topics suggested by the
previous results. We conclude by mentioning a few basic ones. Is the result in
Theorem 4 optimal, or a 2R-normal form or even a 1R-normal form result is
valid? Extend this study to other classes of SN P systems, with other types
of rules or with other modes of using the rules.

7 Closing Remarks

This paper is only meant to be an invitation to the study of SN P systems,
that is why only a few basic notions and results were presented, as well as the
technical details from Section 6, meant to be a sample of the way of working
with SN P systems. Many other developments were reported in the literature
– the bibliography which closes this discussion includes all titles known at the
middle of April 2009.

We mention here only two topics of research.
In the initial definition of SN P systems several ingredients are used (delay,

forgetting rules), some of them of a general form (general synapse graph,
general regular expressions). As shown in [25], rather restrictive normal forms
can be found, in the sense that some ingredients can be removed or simplified
without losing the computational completeness. For instance, the forgetting
rules or the delay can be removed, while the outdegree of the synapse graph
can be bounded by 2, and the regular expressions from firing rules can be of
very restricted forms. Further simplifications (normal forms) are possible and
of interest – as also shown in Section 6.

The proofs of all computational completeness results known up to now
in this area are based on simulating register machines. Starting the proofs
from small universal register machines, as those produced in [38], one can find
small universal SN P systems (working in the generating mode, as considered
above, or in the computing mode, i.e., having both an input and an output
neuron and producing a number related to the input number). This idea was
explored in [55] and the results are as follows: there are universal computing
SN P systems with 84 neurons using standard rules and with only 49 neurons
using extended rules. In the generative case, the best results are 79 and 50
neurons, respectively. Several improvements of these results were obtained in
the meantime; see, e.g., [48], [76] [79].

In what concerns topics for further research, many papers in this area
contains open problems, while [58] is explicitly devoted to formulating such
problems and research issues. A comprehensive chapter about SN P systems
appears in [71].

The study of SN P systems is rather recent, but it is already clear that this
area is worth investigating, not only because of the importance of neural com-
puting based on spiking, but also because of the mathematical (computability)
interest and the possible applications. The reader is advised to watch [81] for
future developments in this area.

Acknowledgements

The work of L. Pan was supported by National Natural Science Founda-
tion of China (Grant Nos. 60674106, 30870826, 60703047, and 60803113),
Program for New Century Excellent Talents in University (NCET-05-0612),
Ph.D. Programs Foundation of Ministry of Education of China (20060487014),
Chenguang Program of Wuhan (200750731262), HUST-SRF (2007Z015A),
and Natural Science Foundation of Hubei Province (2008CDB113 and
2008CDB180). The work of the last two authors was supported by Project
TIN2006-13452 of the Ministerio de Educación y Ciencia of Spain and by
Project of Excellence with Investigador de Reconocida Valia, from Junta de
Andalucia, grant P08 – TIC 04200.

Note: The bibliography which follows includes several papers on SN P sys-
tems published first in the proceedings volumes of the Brainstorming Week on
Membrane Computing, with indications of the form “BWMC2007” with the
obvious meaning, then specifying the pages. The four brainstorming volumes
cited in this way are:

1. M.A. Gutiérrez-Naranjo, Gh. Păun, A. Riscos-Núñez, F.J. Romero-
Campero, eds.: Fourth Brainstorming Week on Membrane Computing,
Sevilla, January 30-February 3, 2006, vol. I and II, Fenix Editora, Sevilla,
2006.

2. M.A. Gutiérrez-Naranjo, Gh. Păun, A. Romero-Jiménez, A. Riscos-Núñez,
eds.: Fifth Brainstorming Week on Membrane Computing, Sevilla, Jan-
uary 29-February 2, 2007, Fenix Editora, Sevilla, 2007.

3. D. Diaz-Pernil, C. Graciani, M.A. Gutiérrez-Naranjo, Gh. Păun, I. Pérez-
Hurtado, A. Riscos-Núñez, eds.: Sixth Brainstorming Week on Membrane
Computing, Sevilla, February 4-8, 2008, Fenix Editora, Sevilla, 2008.

4. R Gutérrez-Escudero, M.A. Gutiérrez-Naranjo, Gh. Păun, I. Pérez-
Hurtado, eds.: Seventh Brainstorming Week on Membrane Computing,
Sevilla, February 2-6, 2009, Fenix Editora, Sevilla, 2009.



10 L. Pan, Gh. Păun, M.L. Pérez-Jiménez

References

1. A. Alhazov, R. Freund, M. Oswald, M. Slavkovik: Extended variants of spik-
ing neural P systems generating strings and vectors of non-negative integers.
WMC7, 2006, 88–101, and Membrane Computing, WMC2006, Leiden, Revised,
Selected and Invited Papers, LNCS 4361, Springer, 2006, 123–134.

2. A. Binder, R. Freund, M. Oswald: Extended spiking neural P systems with
astrocytes - variants for modelling the brain. Proc. 13th Intern. Symp. AL and
Robotics, AROB2008, Beppu, Japan, 520–524.

3. A. Binder, R. Freund, M. Oswald, L. Vock: Extended spiking neural P systems
with excitatory and inhibitory astrocytes. Submitted, 2007.

4. M. Cavaliere, E. Egecioglu, O.H. Ibarra, M. Ionescu, Gh. Păun, S. Woodworth:
Asynchronous spiking neural P systems; decidability and undecidability. Proc.
DNA13, LNCS 4848, Springer, 2007.

5. M. Cavaliere, E. Egecioglu, O.H. Ibarra, M. Ionescu, Gh. Păun, S. Woodworth:
Asynchronous spiking neural P systems. Theoretical Computer Sci., 2009.

6. M. Cavaliere, I. Mura: Experiments on the reliability of stochastic spiking neural
P systems. Natural Computing, 7, 4 (2008), 453–470.

7. R. Ceterchi, A.I. Tomescu: Spiking neural P systems – a natural model for
sorting networks. BWMC2008, 93–106.

8. H. Chen, R. Freund, M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez: On string
languages generated by spiking neural P systems. BWMC2006, vol. I, 169–194,
and Fundamenta Informaticae, 75, 1-4 (2007), 141–162.

9. H. Chen, M. Ionescu, T.-O. Ishdorj: On the efficiency of spiking neural P sys-
tems. BWMC2006, vol. I, 195–206, and Proc. 8th Intern. Conf. on Electronics,
Information, and Communication, Ulanbator, Mongolia, June 2006, 49–52.

10. H. Chen, M. Ionescu, T.-O. Ishdorj, A. Păun, Gh. Păun, M.J. Pérez-Jiménez:
Spiking neural P systems with extended rules: Universality and languages. Nat-
ural Computing, 7, 2 (2008), 147–166.

11. H. Chen, M. Ionescu, A. Păun, Gh. Păun, B. Popa: On trace languages gen-
erated by spiking neural P systems. BWMC2006, vol. I, 207–224, and Eighth
International Workshop on Descriptional Complexity of Formal Systems (DCFS
2006), June 21-23, 2006, Las Cruces, New Mexico, USA, 94–105.

12. H. Chen, T.-O. Ishdorj, Gh. Păun: Computing along the axon. BWMC2006,
vol. I, 225–240, and Pre-proceedings BIC-TA, Wuhan, 2006, 60-70, and Progress
in Natural Science, 17, 4 (2007), 418–423.

13. H. Chen, T.-O. Ishdorj, Gh. Păun, M.J. Pérez-Jiménez: Spiking neural P systems
with extended rules. BWMC2006, vol. I, 241–266.

14. H. Chen, T.-O. Ishdorj, Gh. Păun, M.J. Pérez-Jiménez: Handling languages
with spiking neural P systems with extended rules. Romanian J. Information
Sci. and Technology, 9, 3 (2006), 151–162.

15. R. Freund, M. Ionescu, M. Oswald: Extended spiking neural P systems with
decaying spikes and/or total spiking. ACMC/FCT 2007 Workshop, Budapest,
Intern. J. Found. Computer Sci., 19 (2008), 1223–1234.

16. R. Freund, M. Oswald: Spiking neural P systems with inhibitory axons. AROB
Conf., Japan, 2007.

17. R. Freund, M. Oswald: Regular ω-languages defined by extended spiking neural
P systems. Fundamenta Informaticae, 83, 1-2 (2008), 65–73.

18. R. Galli, A. Gritti, L. Bonfanti, A.L. Vescovi: Neural stem cells: an overview.
Circulation Research, 92 (2003), 598–608.



Spiking Neural P Systems 11

19. M. Garcia-Arnau, D. Pérez, A. Rodriguez-Patón, P. Sosik: On the power of
elementary operations in spiking neural P systems. Submitted, 2008.

20. M. Garcia-Arnau, A. Rodriguez-Patón, D. Pérez, P. Sosik: Spiking neural P
systems: Stronger normal forms. BWMC2007, 157–178.

21. W. Gerstner, W Kistler: Spiking Neuron Models. Single Neurons, Populations,
Plasticity. Cambridge Univ. Press, 2002.

22. M.A. Gutiérrez-Naranjo, A. Leporati: Solving numerical NP-complete problems
by spiking neural P systems with pre-computed resources. BWMC2008, 193–
210.

23. M.A. Gutiérrez-Naranjo, A. Leporati: Performing arithmetic operations with
spiking neural P systems. BWMC2009.

24. M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez. A first model for Hebbian learning
with spiking neural P systems. BWMC2008, 211–234.

25. O.H. Ibarra, A. Păun, Gh. Păun, A. Rodriguez-Patón, P. Sosik, S. Woodworth:
Normal forms for spiking neural P systems. BWMC2006, vol. II, 105–136, and
Theoretical Computer Sci., 372, 2-3 (2007), 196–217.

26. O.H. Ibarra, A. Păun, A. Rodriguez-Patón: Sequentiality induced by spike num-
bers in SN P systems. Proc. 14th Intern. Meeting on DNA Computing, Prague,
June 2008, 36–46.

27. O.H. Ibarra, S. Woodworth: Characterizations of some restricted spiking neural
P systems. and Membrane Computing, WMC2006, Leiden, Revised, Selected and
Invited Papers, LNCS 4361, Springer, 2006, 424–442.

28. O.H. Ibarra, S. Woodworth: Spiking neural P systems: some characterizations.
Proc. FCT 2007, Budapest, LNCS 4639, 23–37.

29. O.H. Ibarra, S. Woodworth: Characterizing regular languages by spiking neural
P systems. Intern. J. Found. Computer Sci., 18, 6 (2007), 1247–1256.

30. O.H. Ibarra, S. Woodworth, F. Yu, A. Păun: On spiking neural P systems and
partially blind counter machines. Proc. UC2006, LNCS 4135, Springer, 2006,
113–129.

31. M. Ionescu, A. Păun, Gh. Păun, M.J. Pérez-Jiménez: Computing with spiking
neural P systems: Traces and small universal systems. Proc. DNA12 (C. Mao,
Y. Yokomori, B.-T. Zhang, eds.), Seul, June 2006, 32–42, and DNA Computing.
12th Intern. Meeting on DNA Computing, DNA12, Seoul, Korea, June 2006,
Revised Selected Papers (C. Mao, T. Yokomori, eds.), LNCS 4287, Springer,
2007, 1–16.

32. M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems. Fundamenta
Informaticae, 71, 2-3 (2006), 279–308.

33. M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems with an exhaus-
tive use of rules. Intern. J. Unconventional Computing, 3, 2 (2007), 135–154.

34. M. Ionescu, D. Sburlan: Some applications of spiking neural P systems. Proc.
WMC8, Thessaloniki, June 2007, 383–394, and Computing and Informatics, 27
(2008), 515–528.

35. M. Ionescu, C.I. T̂ırnăucă, C. T̂ırnăucă: Dreams and spiking neural P systems.
Romanian J. Inform. Sci. and Technology, 12 (2009), in press.

36. T.-O. Ishdorj, A. Leporati: Uniform solutions to SAT and 3-SAT by spiking
neural P systems with pre-computed resources. Natural Computing, to appear.

37. T.-O. Ishdorj, A. Leporati, L. Pan, X. Zeng, X. Zhang: Deterministic solutions
to QSAT and Q3SAT by spiking neural P systems with pre-computed resources.
BWMC2009.



12 L. Pan, Gh. Păun, M.L. Pérez-Jiménez

38. I. Korec: Small universal register machines. Theoretical Computer Science, 168
(1996), 267–301.

39. A. Leporati, G. Mauri, C. Zandron, Gh. Păun, M.J. Pérez-Jiménez: Uniform
solutions to SAT and Subset-Sum by spiking neural P systems. Submitted, 2007.

40. A. Leporati, C. Zandron, C. Ferretti, G. Mauri: On the computational power of
spiking neural P systems. BWMC2007, 227–246.

41. A. Leporati, C. Zandron, C. Ferretti, G. Mauri: Solving numerical NP-complete
problems with spiking neural P systems. Proc. WMC8, Thessaloniki, June 2007,
405–424.

42. W. Maass: Computing with spikes. Special Issue on Foundations of Information
Processing of TELEMATIK, 8, 1 (2002), 32–36.

43. W. Maass, C. Bishop, eds.: Pulsed Neural Networks, MIT Press, Cambridge,
1999.

44. V.P. Metta, K. Krithivasan: Spiking neural P systems and Petri nets. Submitted,
2008.

45. J.M. Mingo: Una approximacion al control neural del sueno de ondas lentas
mediante spiking neural P systems. Submitted, 2008.

46. J.M. Mingo: Sleep-awake switch with spiking neural P systems: A basic proposal
and new issues. BWMC2009.

47. M. Minsky: Computation – Finite and Infinite Machines. Prentice Hall, Engle-
wood Cliffs, NJ, 1967.

48. T. Neary: A small universal spiking neural P system. Intern. Workshop. Com-
puting with Biomolecules (E. Csuhaj-Varju et al., eds.), Viena, 2008, 65–74.

49. T. Neary: On the computational complexity of spiking neural P systems. Un-
conventional Computation. 7th Intern. Conf. Vienna, 2008 (C.S. Calude at al.,
eds.), LNCS 5204, 2008, 189–205.

50. A. Obtulowicz: Spiking neural P systems and modularization of complex net-
works from cortical neural network to social networks. BWMC2009.

51. L. Pan, Gh. Păun: New normal forms for spiking neural P systems. BWMC2009.
52. L. Pan, Gh. Păun: Spiking neural P systems with anti-spikes. BWMC2009.
53. L. Pan, Gh. Păun, M.J. Pérez-Jiménez: Spiking neural P systems with neuron

division and budding. BWMC2009.
54. L. Pan, J. Wang, H.J. Hoogeboom: Excitatory and inhibitory neural P systems.

Submitted, 2007.
55. A. Păun, Gh. Păun: Small universal spiking neural P systems. BioSystems, 90,

1 (2007), 48–60.
56. Gh. Păun: Membrane Computing – An Introduction. Springer, Berlin, 2002.
57. Gh. Păun: Languages in membrane computing. Some details for spiking neural

P systems. Proc. 10th DLT Conf. (invited talk), Santa Barbara, USA, 2006,
LNCS 4036, Springer, Berlin, 2006, 20–35.

58. Gh. Păun: Twenty six research topics about spiking neural P systems.
BWMC2007, 263–280.

59. Gh. Păun: A quick overview of membrane computing with some details about
spiking neural P systems. Frontiers of Computer Science in China, 1,1 (2007),
37–49.

60. Gh. Păun: Spiking neural P systems. A tutorial. Bulletin of the EATCS, 91
(Febr. 2007), 145–159.

61. Gh. Păun: Spiking neural P systems. Power and efficiency. Bio-Inspired Model-
ing of Cognitive Tasks, Proc. IWINAC 2007 (J. Mira, J.R. Alvarez, eds.), Mar
Menor, 2007, LNCS 4527, 153–169.



Spiking Neural P Systems 13

62. Gh. Păun: Spiking neural P systems used as acceptors and transducers. CIAA
2007, 12th Conf., Prague, July 2007, LNCS 4783 (J. Holub, J. Zdarek, eds.),
Springer, Berlin, 2007, 1–4.

63. Gh. Păun: Spiking neural P systems with astrocyte-like control. JUCS, 13, 11
(2007), 1707–1721.

64. Gh. Păun, M.J. Pérez-Jiménez: Spiking neural P systems. Recent results, re-
search topics. Submitted, 2007.

65. Gh. Păun, M.J. Pérez-Jiménez: Spiking neural P systems. An overview. Advanc-
ing Artificial Intelligence through Biological Process Applications (A.B. Porto,
A. Pazos, W. Buno, eds.), Medical Information Science Reference, Hershey, New
York, 2008, 60–73.

66. Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg: Spike trains in spiking neural P
systems. Intern. J. Found. Computer Sci., 17, 4 (2006), 975–1002.

67. Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg: Computing morphisms by spiking
neural P systems. Intern. J. Found. Computer Sci., 18, 6 (2007), 1371–1382.

68. Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg: Infinite spike trains in spiking
neural P systems. Manuscript, 2005.

69. Gh. Păun, M.J. Pérez-Jiménez, A. Salomaa: Bounding the indegree of spiking
neural P systems. TUCS Technical Report 773, 2006.

70. Gh. Păun, M.J. Pérez-Jiménez, A. Salomaa: Spiking neural P systems. An early
survey. Intern. J. Found. Computer Sci., 18 (2007), 435–456.

71. Gh. Păun, G. Rozenberg, A. Salomaa, eds.: Handbook of Membrane Computing.
Oxford University Preess, 2009 (in press).

72. D. Ramirez-Martinez, M.A. Gutiérrez-Naranjo: A software tool for dealing with
spiking neural P systems. BWMC2007, 299–314.

73. G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages, 3 volumes.
Springer-Verlag, Berlin, 1997.

74. J. Wan, T.-O. Ishdorj: Revisiting the efficiency of spiking neural P systems.
BWMC2009.

75. X. Zhang, T.-O. Ishdorj, X. Zeng, L. Pan: Solving PSPACE-complete problems
by spiking neural P systems with pre-computed resources. Submitted, 2008.

76. X. Zhang, Y. Jiang, L. Pan: Small universal spiking neural P systems with
exhaustive use of rules. Proc. Third Intern. Conf. on Bio-Inspired Computing.
Theory and Appl., Adelaide, 2008, 117–127.

77. X. Zhang, J. Wang, L. Pan: A note on the generative power of axon P systems.
Intern. J. CCC, 4, 1 (2009), 92–98.

78. X. Zhang, X. Zeng, L. Pan: On string languages generated by SN P systems
with exhaustive use of rules. Natural Computing, 7 (2008), 535–549.

79. X. Zhang, X. Zeng, L. Pan: Smaller universal spiking neural P systems. Funda-
menta Informaticae, 87 (2008), 117–136.

80. X. Zhang, X. Zeng, L. Pan: On string languages generated by asyn-
chronous spiking neural P systems. Theoretical Computer Science, DOI:
10.1016/j.tcs.2008.12.055.

81. The P Systems Website: http://ppage.psystems.eu.


