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Abstract
This paper presents a systematic analysis of the

harmonic distortion inΣ∆ modulators (Σ∆Ms) imple-
mented with fully-differential switched-current (SI)
circuits. Closed form expressions are derived for the
third-order harmonic distortion in both lowpass and
bandpassΣ∆Ms. For the latter, the third-order intermo-
dulation distortion is also deduced. Time domain
behavioral simulations validate our approach.(*)

1. Introduction

The trend towards the realization of mixed-signal
systems on chip has motivated exploring analog design
techniques compatible with standard, digital CMOS
technologies. This is the case of switched-current cir-
cuits (SI) [1], which during the last ten years have been
used for different analog functions, including filtering
[2] and A/D conversion [3]. Particularly, several SI
Σ∆Ms have been reported, for lowpass signals [4] [5],
as well as for bandpass signals [6].

Performances reported to date for SIΣ∆Ms are
lower than for state-of-the-art SCΣ∆Ms [7]. For
instance, [5] obtains 13-bit for lowpass voice band sig-
nals, while [6] obtains 9-bits for bandpass signals in the
AM bandwidth. Among other reasons, such lower per-
formances are motivated by larger influence of SI
non-idealities, as compared to SC ones, and by incom-
plete modeling of their influence [8][9][10][11]. Par-
ticularly, harmonic distortion is recognized as one of
the most important SI performance-degrading nonli-
nearities.

Error mechanisms responsible for harmonic dis-
tortion include: threshold voltage mismatch, non-linear
finite output-input conductance ratio, charge injection,
and settling error. Their influence on memory cell dis-
tortion has been analysed elsewhere [8][9]. However,
only the charge injection error analysis has been
extended to lowpass SIΣ∆Ms [10]. Based on the har-
monic distortion analysis of SI blocks, this paper
presents closed-form equations for third-order distor-
tion coefficients of SI integrators, resonators and both
lowpass and bandpassΣ∆Ms. The analyses presented
here have been validated by time-domain behavioral
simulations [11] and are illustrated through results per-
taining to the harmonic distortion due to charge injec-
tion and non-linear output-input conductance ratio.

2. Non-linear modeling of the memory cell opera-
tion

Fig.1 shows a simple, second-generation memo
cell. Ideally, the output current is a half-delaye
inverted version of the input†

(1)

According to [1], its main non-idealities are: finite
output-input conductance ratio error (represented

), incomplete settling error ( ), charge injection
error ( ) and thermal noise. In the presence of the
errors, the output current can be generically express
as

(2)

where stands for the offset current at the outpu
is the linear gain error, is the thermal noise con

tribution and  represents the non-linearity.

We will assume that the memory cell reaches th
steady state before the end of the sampling phase a
consequently, settling error will not be considere
Besides, thermal noise and offset current, will not b
included in our analysis because they do not contribu
to the harmonic distortion. Regarding , it will be
expressed as a polynomial function of the input curre

 [8][9]

(3)

where  have different expressions for each error.

Taking into account the above consideration
expression (2) can be simplified into,

(4)

†. We use the notationio,n to representio(nTs), whereTs is the
sampling period.

io n, i i n 1 2⁄–,–=

εg εs
εq

io n, I off 1 ξ1–( )– i i n 1 2⁄–, i th iH i i n 1 2⁄–,( )+ +=

I off
ξ1 i th

iH

εs

iH

i i

iH ξk
k 2=

∞

∑– i i n 1 2⁄–,
k

=

ξk

 Fig. 1: Second-generation current memory cell.
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For illustration purposes, Table 1 shows ,
and when the memory cell is degraded by charge
injection [9], and non-linear output-input conductance
ratio error. For the latter, it has been assumed that the
memory transistor transconductance depends on the
input signal as , with
being the operating-point transconductance. In
Table 1, represents the quiescent excess
overdrive voltage; is the offset introduced by
the charge injected; is the memory switch capac-
itance; is the output conductance and is the
gain of the amplifier stage used either to reduce the out-
put conductance (in regulated-cascode memory cells),
or to increase the input conductance (in folded regu-
lated-cascode memory cells). Note that for
the simple memory cell.

Assuming that the input current of the memory
cell in Fig.1 is a sinusoidal signal of amplitude , the
output current will contain harmonics of the input sig-
nal frequency . The -order harmonic distortion,

, is defined as the ratio of the output signal ampli-
tude at frequency to the linear output amplitude.
For our analysis, we will assume fully-differential
memory cells. Thus, even powers of the input current
in (4) can be considered negligible. On the other hand,
assuming that the third-order harmonic is dominant,
(4) can be simplified into

(5)

In this case, theTotal Harmonic Distortion
( ) is approximately equal to  and given by

(6)

3. Harmonic distortion in fully-differential SI inte-
grators

Fig.2 shows the schematic of a fully-differential
LDI SI integrator. It is composed of two cells, and an
output stage. In the following, it will be assumed that
the operation of the memory cells is described by (5).
Although these memory cells are simple, our analysis
can be extended to enhanced memory cells− cascode,
regulated-cascode or folded regulated-cascode− by
conveniently changing the expressions of  and .

The operation of the integrator is as follows. After
clock phase , which goes on for , the differen-

tial drain current of the memory cell 2, is given by

(7)

where represents the differen

tial drain current of memory cell 1.

After clock phase ,

(8)

Assuming that the output stage (represented
Fig.2 as a simple current mirror) is ideal, the outpu
current of the integrator is given by

(9)

From (7), (8) and (9) it can be derived that the outp
current of the integrator is

(10)

where

(11)

Assuming that and performing a
Taylor series expansion of (10), obtains

(12)

where

(13)

Thus, the analysis of an SI integrator formed b
memory cells with non-linear errors can be accom
plished considering an integrator formed by memo
cells with linear gain errors whose input signal is equ
to (13). The equivalent distortion at the integrator inp
can be estimated by analysing the harmonic content
such an expression.

For this purpose, let assume that the input curre
is a sinusoidal signal of amplitude and frequency
In this case, the output current of the integrator will b
a periodic signal, being the amplitude of its fundame
tal harmonic approximately given by

(14)
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Fig.2. Fully-Differential LDI SI integrator.
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On the other hand, we will suppose that the output
of the integrator can be approximated by its first har-
monic, so that

(15)

where is the sampling period. Substituting (14) and
(15) in (12) and performing a Fourier series expansion,
it can be shown that the third-order harmonic is

(16)

The amplitude of the third-order harmonic at the inte-
grator input derived from (16) is

(17)

The amplitude of the third-order harmonic
referred to the integrator output can be obtained by
multiplying (17) by the module of the integrator trans-
fer function

(18)

The third-order harmonic distortion referred to the
integrator output is calculated by dividing the above
expression by , giving

(19)

The above expression has been derived for the
general case and hence, it can be used to predict the
harmonic distortion in SI fully-differential integrators
due to any error except for the settling.

As an application, let assume that the integrator in
Fig.2 is ideal except for the charge injection error. The
theoretical prediction of the third-order harmonic dis-
tortion for this integrator is computed by substituting
the corresponding expressions of and (see
Table 1)†† in (19).

Fig.3 plots vs. and compares the
theoretical model with time-domain simulations using
the SI behavioral simulator described in [11]. In this
example: , (com-
mom mode signal) , and .
Note that, both the linear and the non-linear gain errors
increase with . Their effects on the harmonic
distortion are well predicted by the model. On the other
hand, the influence of the integrator gain is also consid-
ered by changing the input signal frequency. Several
values of have been applied showing a good agree-
ment with simulations.

4. Harmonic distortion in SI lowpassΣ∆ modula-
tors

Fig.4 shows the block diagram of a second-ord
lowpassΣ∆ modulator (2ndLPΣ∆M) based on LDI
integrators. Modelling the quantizer as an additiv
white noise source [12], thez-domain modulator
output is given by

(20)

where and represent the input and the ou
put of the modulator. In the ideal case, theSignal
Transfer Function ( ) and the quantization
Noise Transfer Function ( ) are respectively
given by

(21)

For our analysis, the following considerations hav
been taken into account:

• The harmonic distortion referred to the modulato
input is equal to the harmonic distortion referred t
the modulator output. This is because the gain

 is unity.

• The harmonic distortion referred to the first inte
grator input is added directly to the input signa
Thus, it is not attenuated in the base band. On t
contrary, the contribution of the second integrato
to the harmonic distortion is attenuated by the ga
of the first integrator. For this reason, only the firs
integrator contribution has to be considered for th
analysis.

Assuming that the transfer function of the firs
integrator is given by (14), it can be shown that th
erroneous signal transfer function of a modulator lik
that shown in Fig.4 is given by

(22)

††. These expressions correspond to a single-ended
memory cell. For the case of fully-differential, has
the same value and .
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On the other hand, obviating the quantization
noise, and assuming that , the expressions for
the first integrator input and output amplitudes are
respectively given by

(23)

(24)

Substituting (24) in (17) and dividing the result by
the amplitude of the modulator input signal

, obtains the third-order harmonic distor-
tion at the modulator output as follows:

(25)

where represents the oversampling
ratio.

The above expression has been validated by time-
domain behavioral simulation. Fig.5 illustrates the har-
monic distortion of the modulator in Fig.4 assuming
that their memory cells are ideal except for the charge
injection error. Fig.5(a) compares the predictions of
(25) with simulations by plotting as a function of
the ratio . In this figure, the DAC reference
current is while the input amplitude
is . Fig. 5(b) shows a simulated output
spectrum for and

%. The predicted data for the third-
order harmonic distortion is dB which
agrees with the simulated data ( dB).

5. Harmonic distortion in SI bandpassΣ∆ modula-
tors

A. Harmonic distortion in SI resonators
Most of bandpassΣ∆ modulators reported in the

literature obtain their architecture by applying th
transformation to the corresponding low
passΣ∆ modulators [12]. As a consequence of th
transformation, the original integrators become reson
tors with a transfer function given by

(26)

The value of depends on the transfer function of th
original integrator. There are many filter structure
which implement (26) [12]. Fig.6 shows the block dia
gram of one based on LDI integrators. This structure
advantageous as compared to the others becaus
remains stable under changes in the loop coefficien

Let assume that the integrators which form the re
onator in Fig.6 are implemented as shown in Fig.2.
the presence of non-linear errors, they can be describ
by (12) and, hence, the difference equations whi
describe the behavior of the resonator are

(27)

(28)

where and are respectively the input and the ou
put of the first integrator in the loop (see Fig.6) whil

and are respectively the input and the output
the resonator.

Solving for in (28), substituting it in (27) and
assuming that , result in the following
difference equation

(29)

where

(30)

Assuming that is a sinusoidal signal of ampli
tude , will be a periodic signal, being the ampli
tude of its fundamental harmonic

(31)
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As for the case of the integrator, the output current
of the resonator can be approximated by its fundamen-
tal harmonic, which can be generically expressed as

(32)

where and is
the phase delay caused by the resonator.

Substituting (32) in (30), and performing a Fourier
series expansion, it can be shown that the third-order
harmonic is

(33)

where , and has been
assumed.

From (33) it can be derived that the amplitude of
the third-order harmonic at the resonator input is

(34)

Following the same procedure as in Section 3, the
third-order harmonic distortion at the resonator output
can be found by multiplying (34) by the resonator gain
and dividing this result by . This gives

(35)

where .

As an application of the previous analysis, let
assume that the resonator in Fig.6 is formed by
fully-differential regulated-folded cascode memory
cells like that shown in Fig.7. Because of the input
feedback loop (which increases the input conduct-
ance), this memory cell exhibits a third-order dynam-
ics. It can be shown that the current source named
(see Fig.7) has to be taken as large as possible in order
to obtain an overdamped settling response. However,
large values of may force some transistors to leave
the saturation region, thus causing a non-linear
dependence of the input voltage on the input signal.
This behavior can be modeled as

(36)

where and are respectively the differentia
input voltage and the differential drain current of eac
memory cell. Coefficients and , which are func
tion of , were extracted from DC nominal HSPICE
simulations. It can be shown that

(37)

where is the output conductance of the memo
cell. Thus, the harmonic distortion of the resonator ca
be calculated by simply substituting (37) in (35).

Fig.8 compares theoretical results with simula
tions by plotting as a function of for differ-
ent values of . Note that, as a consequence
changing both the linear and the non-linear error, t
harmonic distortion does not increase with . This
well predicted by the model. Because of the resona
open loop gain is too high, the input amplitude wa
chosen to be small ( ) in order to keep
memory transistors in the saturation region.

B. Harmonic distortion in SI 4th-order bandpassΣ∆
modulators

Fig.9 shows the block diagram of a fourth-orde
bandpassΣ∆ modulator (4thBPΣ∆M) based on LDI
loop resonators like that shown in Fig.6. Modelling th
quantizer as an additive white noise source a
considering that the integrators are ideal, thez-domain
equations that describe the behavior of the modula
are:

(38)

where and represents respectively th
input and the output of the modulator; and
are the input and the output of the first integrato

and are the input and the output of the firs
resonator.

Only the contribution of the first resonator will be
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considered for the analysis of the distortion. This is
because the contribution of the second resonator is
attenuated by the gain of the first resonator in the signal
band.

From (38), the amplitude of the resonator output
can be written as

(39)

where is the amplitude of the modulator input. Tak-
ing into account the effect of the linear gain error
on the integrators, it can be shown that the above
expression is modified as follows:

(40)

Substituting (40) in (34) and dividing by the
third-order harmonic distortion at the modulator output
is approximately given by

(41)

In bandpass signal processing, the third-order
intermodulation distortion, is more appropriate
for measuring distortion than . Let assume that
the modulator input consists of two sinusoidal signals
of the same amplitude and different frequencies and

. If the memory cells which form the modulator are
degraded by non-linear errors, the modulator output
spectrum presents intermodulation harmonics of the
input signals. Among them, the most significant is

, which is defined as the amplitude of the output
at and related to the linear output
amplitudes at . It can be shown that is
related to  as

(42)

For illustration, Fig.10(a) compares simulation
results to theoretical data by plotting against
for different values of the DAC reference current

. Fig.10(b) shows the output spectrum of the
modulator for and . The
predicted value for is -53dB which agrees with
the simulated value (-51dB).

Conclusions
The impact of main SI errors on the harmonic dis-

tortion in both lowpass and bandpassΣ∆ modulators
has been analysed. Closed form equations for the third-
order harmonic distortion and the third-order intermo-
dulation distortion of their main blocks are also pro-
vided. General expressions are derived which can be
particularized for each SI error. All results are vali-
dated by time-domain behavioral simulations [11].
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Fig. 9: Block diagram of the 4th-order bandpassΣ∆ modulator.
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