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Abstract - This paper presents an FPGA face detection 
embedded system. In order achieve acceleration in the face 
detection process a hardware-software codesign technique is 
proposed. The paper describes the face detection acceleration 
mechanism. It also describes the implementation of an IP 
module that allows hardware acceleration. 
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1 Introduction 
 Face detection is an important aspect for biometrics, 
video surveillance and human computer interaction. 
Detection systems require huge computational and memory 
resources due to the complexity of detection algorithms. A 
software detection realization implemented on a low speed, 
low resource, low power SoC (System on Chip) is not 
efficient. Instead a hardware-software codesign approach can 
be used to build hardware accelerators for most 
computational consuming parts of detection algorithms. 

 The main challenge in face detection design is finding 
an acceptable balance between detection accuracy 
(robustness) and operation efficiency (computation cost). 
Heuristics or knowledge-based face detectors, such as color-
based and template-based detectors, use direct knowledge 
about faces and often give fast performance, but they are 
usually less robust with respect to large face variances and 
background interferences. On the contrary, statistical or 
learning-based face detectors, like the neural-network and 
SVM-based detectors make use of powerful pattern 
classification algorithms and provide better performance in 
discriminating face and non-face patterns. However, these 
learning-based algorithms often involve high processing 
complexity, which can be too costly for applications in 
embedded systems. 

 Recently there have been some proposals for face 
detection systems hardware implementations. Thus in [1] a 
dedicated system on FPGA is shown. The system receives the 
image from a camera and stored it in the internal FPGA 
memory. Other realizations are based on GPUs. In [2] they 
proposed face detection acceleration by distributing the 

computation between 4 GPUs. This communication presents 
the design of an embedded face detection system based on 
LEON3 SPARC V8 processor. The embedded face detection 
system implements the popular Viola-Jones object detection 
framework for face-like objects. 

2 Viola-Jones Face Detection Algorithm 
 The face detection technique is based on the face 
detection framework proposed by Viola-Jones [3]. The 
proposed framework is capable of processing images 
extremely rapidly while achieving high detection rates. The 
speed of the face detection framework relies on three 
important key components.  Firstly, the image is transformed 
into “Integral Image” which allows the features used by the 
detector to be computed very quickly. Secondly, the used 
classifier is simple and efficient which is build using the 
AdaBoost learning algorithm [4] to select a small number of 
critical visual features from a very large set of potential 
features. And thirdly, the classifier is formed by combining 
weak classifiers in a “cascade” which allows background 
regions of the image to be quickly discarded while spending 
more computation on promising face-like regions. 

 The detection algorithm requires a preprocessing step 
that calculates the integral image. The integration of the 
image consists of adding for each pixel the values of the 
previous pixels. 
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 The advantage of the integral image is that it allows to 
calculate the sum of any rectangle in constant time as shown 
in Figure 1. 

 The Haar-like features used by the classifier are shown 
in Figure 2. They consist of rectangular areas whose 
processing requires simple arithmetical operations. The 
calculation is based on the sum of the pixels of each 
rectangular region weighed by a weight. The light region is 
interpreted as “add that area” and the dark region as “subtract 
that area”. At all scales, these features form the “raw 
material” that will be used by the detector. The set of 
rectangle features in the image is quite large and 



overcomplete, so to reduce that number applies the AdaBoost 
learning algorithm [4]. The Viola-Jones classifier employs 
AdaBoost at each node in the cascade to learn a high 
detection rate at the cost of low rejection rate multitree 
(mostly multistump) classifier.  

Fig. 1. The sum of the pixels of rectangle D is calculated as 
the following operation on the integral image: ii4+ii1-(ii2+ii3) 

 

Fig. 2. Haar-like features 

 Viola-Jones technique is based on exploring the image 
by means of a window looking for features. This window is 
scaled to find faces of different sizes. The system architecture 
is based on a cascade of detectors according to Figure 3. The 
first stages consist of simple detectors, very fast and low cost, 
that allows to eliminate those windows that do not contain 
faces. In the successive stages the complexity of detectors are 
increased in order to make a more detailed analysis of 
features. A face is detected only if it makes it through the 
entire cascade.  

Fig. 3. Architecture of cascade detectors 

 A threshold is applied to sums and differences of 
rectangular image regions. For the Viola-Jones rejection 
cascade, the weak classifiers that it boosts in each node are 
decision trees that often are only one level deep (i.e., 
“decision stumps”). A decision stump is allowed just one 
decision of the following form: “Is the value v of a particular 
feature f above or below some threshold t”; then, for example, 
a “yes” indicates face and a “no” indicates no face: 
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 The number of Haar-like features that the Viola-Jones 
classifier uses in each weak classifier can be set in training, 
but mostly we use a single feature (i.e., a tree with a single 
split) or at most about three features. Boosting then iteratively 
builds up a classifier as a weighted sum of these kinds of 
weak classifiers. The Viola-Jones classifier uses the 
classification function: 
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 Here, the sign function returns –1 if the number is less 
than zero, 0 if the number equals zero, and 1 if the number is 
positive. On the first pass through the data set, we learn the 
threshold tl of f1 that best classifies the input. Boosting then 
uses the resulting errors to calculate the weighted vote w1. As 
in traditional AdaBoost, each feature vector (data point) is 
also re-weighted low or high according to whether it was 
classified correctly or not in that iteration of the classifier. 
Once a node is learned this way, the surviving data from 
higher up in the cascade is used to train the next node and so 
on. 

3 Hardware-Software Codesign 
 For the Viola-Jones object detection algorithm, an 
implementation in software or hardware or both combined 
still uses a large amount of computational resources and it 
needs a high memory bandwidth. Therefore, this constitutes 
an impediment for building real time object detection 
systems. In order to obtain an accelerated face detector 
hardware-software codesign techniques were used as shown 
in Figure 4. As a result some parts of the face detection 
algorithm that required flexibility were implemented in 
software while other parts that were time critical were 
implemented as hardware accelerators. 

3.1 Accelerating Viola-Jones Face Detection 

 The Viola-Jones face detection framework was 
implemented in OpenCV (Open Source Computer Vision) [5] 
as a full-fledged face recognition application. OpenCV is a 
programming functions library for real time computer vision. 
Taking into consideration that the OpenCV library comes 
with a baseline application for video face detection it was 
decided to use the application source files as starting point in 
developing the video detection application for LEON3 
embedded system. 

 The Haar-like features from OpenCV distribution are 
trained to be applied for a search rectangular window of 
20x20 pixels. For other dimensions of the search window the 
Haar-like features must be scaled correspondingly. The face 
detection system consists of 22 cascade detectors also called 
stages, containing 2135 Haar-like features.  

 The first modification of the OpenCV implementation is 
based in the fact that most of the SoC have no floating point 
support. For it, the resulting application uses integer 
operations instead of floating point operations in order to 
preserve the generality of the application for the embedded 
system world. 

 The OpenCV face detection baseline application 
implements detection in two distinct modes. 
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Mode 1: Face detection by scaling the image. In this mode the 
image is scaled using interpolation until it reaches a 
predefined minimal dimension. Each time the image is scaled, 
the two integral images (normal=∑x and squared=∑x2), 
needed for variance, are recalculated for the scaled image. 
The search window has fixed dimension during the detection 
process.  

 

Fig. 4. Hardware-software codesign for face detection 

 

Fig. 5. Proposed face detection acceleration algorithm 

Mode 2:  Face detection by scaling the classifiers (see Figure 
5). In this mode the integral images (normal=∑x and 
squared=∑x2), needed for variance normalization 
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image. However, the Harr-like features from the classifier are 
scaled progressively until their dimensions are close to the 
dimension of the original window. This mode lacks the 
interpolator used in mode 1. The search window has a 
variable dimension during detection process.  

 In both detection mode the Haar-like features 
components (weights and dimensions) are scaled 
proportionally with the dimensions of search window. That 
means for a search window of dimension WxH, the weight of 
each rectangle forming the Haar-like features are scaled with 
WxH. In the search window, the sum of each applied Haar-
like feature is calculated using: 
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 Area represents the sum of all pixels inside a component 
and I=1,2 or 3 represents the number of components for that 
Haar-like feature. In order to determine the next weight value 
for the stage sum, each HaarFeatureSum is compared with 
each normalized threshold of the respective Haar-like feature 
as:  
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 where J=[1…2135] represents the Haar-like feature 
indexes in a stage and ThresJ

norm=σThresJ
HaarFeature (σ is the 

search window standard deviation). 

 If we do not scale the Haar-like feature weights and 
adjust the variance computation by using the 
formula   )( 222  xxHWadjusted , it results that the number 

of arithmetic operations (division, multiplication) and 
memory accesses are decreased substantially. This will make 
the algorithm perform faster due to a reduced number of 
operations needed for computation of the adjusted variance 
for the search window [6]. 

3.2 Hardware IP for detection acceleration 

 After a careful analysis of the face detection application 
it was found that the software bottleneck resided in the huge 
amount of memory read access, multiplication, and squared 
root operations done by all the search window evaluations. In 
order to detect a face from an image, hundreds of thousands 
of search windows are evaluated and this represents the most 
time consuming part of the application. Therefore it was 
decided to accelerate the evaluation of search windows by 
means an IP module [7]. 



 In order to keep a high degree of flexibly and share the 
hardware resources with the rest of the LEON3 system it was 
decided for the IMSE_OBJECT_DETECTION IP to have 
two operating modes: the free mode in which LEON3 
processor can use the IP core resources (multipliers, shared 
memory, etc) to implement other functionalities, and the face 
detection mode.  

 The IMSE_OBJECT_DETECTION and all internal 
modules components are clocked by the system clock (80 
Mhz). 

 As it was previously mentioned the IP module 
implements the search window algorithm. The software 
application will load the compressed form of Haar-like 
features into the Shared Memory before any detection 
operation. Before starting any detection operation the 
configuration registers (scale, x-y coordinates, image 
dimension, etc.) must be configured with the desired 
configuration values.  

 When the start command is given the face detection 
procedure is fully controlled by the component 
Imse_stage_evaluator_unit (see figure 6). This unit is the 
core engine for accelerating face detection. At the end of the 
detection the component signalize if a face is present, the 
Status register is updated with the detection result and an 
interrupt is generated. 

The Imse_stage_evaluator_unit has a multiple state machine 
control in order to deal with variable memory access 
latencies. Beside the multiple state machine control this unit 
contains the following specialized modules: 

 Haar_feature_rect_calc: This module is used to calculate 
the area of integral rectangles using only the corners data. 

 Haar_feature_scaler: This is a pipelined module for Haar-
like feature scaling and search window address 
computation. 

 Sqrt64_array_pipe16: A 64 bit pipelined SQRT unit that has 
data output latency of 16 clocks. 

 Mul41x33signed: A 41x33 signed multiplier. 

 The Register Bank contains APB bus accessible 
registers that are used for the core configuration and control. 

The APB Slave Interface connects the IP module to the APB 
bus and enables the LEON3 processor to access the registers 
from Register Bank. The AHB Master/Slave Interface is a 
simple DMA interface. 

The IP module has a shared memory based on a dual-port 
RAM with AHB interface. The Shared Memory is used by 
the IP module to store the compressed Haar-like features. 
When the module works in ‘Free Mode’ LEON3 can use the 
Shared Memory as additional RAM memory. 

 

Fig. 6. IMSE_OBJECT_DETECTION IP block diagram 

4 Results 
 The proposed LEON3 face detection system works with 
images (colored or grey) having a resolution smaller than 
10242 pixels. It fully uses the OpenCV cascade of classifiers 
for frontal faces and it can store into the IP Shared Memory 
approximately 2730 Haar-like classifiers. It also works with a 
greater number of Haar-like classifiers but the extra 
classifiers must be store into the program memory and then 
loaded into the Shared Memory at the appropriate moment. 

 The system was implemented on a Xilinx XC5VLX50 
FPGA. The entire LEON3 face detection system uses 6,435 
slices (up to 89% of the device utilization) and 10,962 of flip-
flops (up to 38% of the device utilization). The estimated 
static power consumption (measured with Xpower Analyzer 
from Xilinx) for the LEON3 core is 603 mW. The most 
consuming components are the DDR2 memory controller 
(216 mW), DVI interface (136.06 mW) and the clock 
generators. The LEON3 processor consumes 32.39 mW and 
even though the IMSE_OBJECT_DETECTION IP uses more 
flip flops and has approximately the same amount of logic, its 
power consumption is 6 times less (5.39 mW) than the 
LEON3 processor. 



4.1 Performance  

 Number section and subsection headings consecutively 
in numbers and type them in bold. Use point size 14 for 
section headings and 12 for subsection headings and 10 for 
subsection within a subsection. 

 In order to measure the detection performances of the 
LEON3 embedded detection system three distinct software 
implementations for face detection were compared: 

 Ported OpenCV software for embedded systems. 

 Software accelerated version of the ported software. 

 Hardware + Software accelerated version of the ported 
software. 

 The measured performances metrics are the execution 
time and the number of searched windows performed. 

 For the first two implementations the performances 
were measured for two distinct modes of detection (mode 1 
and mode 2). In Hardware + Software accelerated version 
only the performance of mode 2 (Haar-like features are 
scaled) was measured. For each mode, four different set-up 
parameters were used (setup 1 to 4) for the minimum size 
search window (S) and the scale step (step): 1) S=30x30, 
step=1.2; 2) S=30x30, step=1.1; 3) S=20x20, step=1.2; 4) 
S=20x20, step=1.1. 

 From figure 7 it results that the accelerated face 
detection application is 3-4 times faster than the ported 
OpenCV application for both modes. Using the hardware 
acceleration IP the face detection is 7-9 times faster than the 
ported face detection application running exclusively on 
LEON3 processor core. 

 

Fig. 7. Detection times of three distinct implementations for 
VGA image.  a) Scale Image mode (Mode 1), b) Scale Haar-

like features mode (Mode 2) 

4.2 Detection accuracy 

 In order to analyze the detection accuracy an specific 
software has been developed. Figure 8 shows the test bench 
scheme. The PC based test bench software configures 
LEON3 based detection system and send the test images. 

Then it receives the detection results for further analysis. The 
test setup is based on 2409 frontal face images from the color 
FERET database [8]  

Fig. 8. Testbench system block diagram 

 The accuracy of face detection can be described using 
receiver operating characteristic (ROC), which is a curve 
widely adopted in signal-detection theory. An ROC is 
essentially a scatterplot that shows the relationship between 
the false acceptance rate and the true acceptance rate. The 
false acceptance rate measures the likelihood of a face 
detector to incorrectly accept a background image as a face. 
The true acceptance rate measures the likelihood of a face 
detector to correctly identify a face. In the literature [9] true 
acceptance rate is also referred as face detection rate. 

 The ROC curve of a given face detector shows its 
performance as a trade-off between the false acceptance rate 
and the face detection rate by varying its discrimination 
criterion (e.g. a threshold parameter). Figure 9 shows the 
ROC curves for OpenCV software and the IP module. Both 
have very similar results. There is a small difference between 
the two ROC curves because the data result (i.e detected 
faces) aggregation mechanism is slightly different in the 
analysis tools.  

PC based test 
bench

FPGA

a) b) 



 

a) 

 

b) 

Fig. 9. ROC curves: a) OpenCV face detection software,  
b) IMSE_OBJECT_DETECTION IP based system 

5 Conclusions 
 The LEON3 face detection system is a flexible 
embedded SoC containing sufficient hardware resources to 
make this system capable to run a wide variety of 
applications. One important feature of this system is that it 
contains a dedicated face detection hardware accelerator IP. 
The face detection hardware accelerator IP is built on the 
principle of resource sharing, i.e when the system is 
performing different task tan face detection, the hardware IP 
resources can be used freely by the system. 
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