
FPGA implementation of an embedded face detection
system based on LEON3

L. Acasandrei1 and A. Barriga2

1 IMSE-CNM-CSIC, Seville, Spain
2 IMSE-CNM-CSIC/University of Seville, Seville, Spain

Abstract - This paper presents an FPGA face detection
embedded system. In order achieve acceleration in the face
detection process a hardware-software codesign technique is
proposed. The paper describes the face detection acceleration
mechanism. It also describes the implementation of an IP
module that allows hardware acceleration.

Keywords: Face detection, image processing, embedded
systems, hardware implementation

1 Introduction
 Face detection is an important aspect for biometrics,
video surveillance and human computer interaction.
Detection systems require huge computational and memory
resources due to the complexity of detection algorithms. A
software detection realization implemented on a low speed,
low resource, low power SoC (System on Chip) is not
efficient. Instead a hardware-software codesign approach can
be used to build hardware accelerators for most
computational consuming parts of detection algorithms.

 The main challenge in face detection design is finding
an acceptable balance between detection accuracy
(robustness) and operation efficiency (computation cost).
Heuristics or knowledge-based face detectors, such as color-
based and template-based detectors, use direct knowledge
about faces and often give fast performance, but they are
usually less robust with respect to large face variances and
background interferences. On the contrary, statistical or
learning-based face detectors, like the neural-network and
SVM-based detectors make use of powerful pattern
classification algorithms and provide better performance in
discriminating face and non-face patterns. However, these
learning-based algorithms often involve high processing
complexity, which can be too costly for applications in
embedded systems.

 Recently there have been some proposals for face
detection systems hardware implementations. Thus in [1] a
dedicated system on FPGA is shown. The system receives the
image from a camera and stored it in the internal FPGA
memory. Other realizations are based on GPUs. In [2] they
proposed face detection acceleration by distributing the

computation between 4 GPUs. This communication presents
the design of an embedded face detection system based on
LEON3 SPARC V8 processor. The embedded face detection
system implements the popular Viola-Jones object detection
framework for face-like objects.

2 Viola-Jones Face Detection Algorithm
 The face detection technique is based on the face
detection framework proposed by Viola-Jones [3]. The
proposed framework is capable of processing images
extremely rapidly while achieving high detection rates. The
speed of the face detection framework relies on three
important key components. Firstly, the image is transformed
into “Integral Image” which allows the features used by the
detector to be computed very quickly. Secondly, the used
classifier is simple and efficient which is build using the
AdaBoost learning algorithm [4] to select a small number of
critical visual features from a very large set of potential
features. And thirdly, the classifier is formed by combining
weak classifiers in a “cascade” which allows background
regions of the image to be quickly discarded while spending
more computation on promising face-like regions.

 The detection algorithm requires a preprocessing step
that calculates the integral image. The integration of the
image consists of adding for each pixel the values of the
previous pixels.





yyxx
yxiyxii

','
)','(),(

(1)

 The advantage of the integral image is that it allows to
calculate the sum of any rectangle in constant time as shown
in Figure 1.

 The Haar-like features used by the classifier are shown
in Figure 2. They consist of rectangular areas whose
processing requires simple arithmetical operations. The
calculation is based on the sum of the pixels of each
rectangular region weighed by a weight. The light region is
interpreted as “add that area” and the dark region as “subtract
that area”. At all scales, these features form the “raw
material” that will be used by the detector. The set of
rectangle features in the image is quite large and

overcomplete, so to reduce that number applies the AdaBoost
learning algorithm [4]. The Viola-Jones classifier employs
AdaBoost at each node in the cascade to learn a high
detection rate at the cost of low rejection rate multitree
(mostly multistump) classifier.

Fig. 1. The sum of the pixels of rectangle D is calculated as
the following operation on the integral image: ii4+ii1-(ii2+ii3)

Fig. 2. Haar-like features

 Viola-Jones technique is based on exploring the image
by means of a window looking for features. This window is
scaled to find faces of different sizes. The system architecture
is based on a cascade of detectors according to Figure 3. The
first stages consist of simple detectors, very fast and low cost,
that allows to eliminate those windows that do not contain
faces. In the successive stages the complexity of detectors are
increased in order to make a more detailed analysis of
features. A face is detected only if it makes it through the
entire cascade.

Fig. 3. Architecture of cascade detectors

 A threshold is applied to sums and differences of
rectangular image regions. For the Viola-Jones rejection
cascade, the weak classifiers that it boosts in each node are
decision trees that often are only one level deep (i.e.,
“decision stumps”). A decision stump is allowed just one
decision of the following form: “Is the value v of a particular
feature f above or below some threshold t”; then, for example,
a “yes” indicates face and a “no” indicates no face:









tiv
tiv

if 1
1

(2)

 The number of Haar-like features that the Viola-Jones
classifier uses in each weak classifier can be set in training,
but mostly we use a single feature (i.e., a tree with a single
split) or at most about three features. Boosting then iteratively
builds up a classifier as a weighted sum of these kinds of
weak classifiers. The Viola-Jones classifier uses the
classification function:

)...(nn fwfwfwsignF  2211 (3)

 Here, the sign function returns –1 if the number is less
than zero, 0 if the number equals zero, and 1 if the number is
positive. On the first pass through the data set, we learn the
threshold tl of f1 that best classifies the input. Boosting then
uses the resulting errors to calculate the weighted vote w1. As
in traditional AdaBoost, each feature vector (data point) is
also re-weighted low or high according to whether it was
classified correctly or not in that iteration of the classifier.
Once a node is learned this way, the surviving data from
higher up in the cascade is used to train the next node and so
on.

3 Hardware-Software Codesign
 For the Viola-Jones object detection algorithm, an
implementation in software or hardware or both combined
still uses a large amount of computational resources and it
needs a high memory bandwidth. Therefore, this constitutes
an impediment for building real time object detection
systems. In order to obtain an accelerated face detector
hardware-software codesign techniques were used as shown
in Figure 4. As a result some parts of the face detection
algorithm that required flexibility were implemented in
software while other parts that were time critical were
implemented as hardware accelerators.

3.1 Accelerating Viola-Jones Face Detection

 The Viola-Jones face detection framework was
implemented in OpenCV (Open Source Computer Vision) [5]
as a full-fledged face recognition application. OpenCV is a
programming functions library for real time computer vision.
Taking into consideration that the OpenCV library comes
with a baseline application for video face detection it was
decided to use the application source files as starting point in
developing the video detection application for LEON3
embedded system.

 The Haar-like features from OpenCV distribution are
trained to be applied for a search rectangular window of
20x20 pixels. For other dimensions of the search window the
Haar-like features must be scaled correspondingly. The face
detection system consists of 22 cascade detectors also called
stages, containing 2135 Haar-like features.

 The first modification of the OpenCV implementation is
based in the fact that most of the SoC have no floating point
support. For it, the resulting application uses integer
operations instead of floating point operations in order to
preserve the generality of the application for the embedded
system world.

 The OpenCV face detection baseline application
implements detection in two distinct modes.

A B

DC
ii1 ii2

ii3 ii4

D1 D2 D3 DN

Mode 1: Face detection by scaling the image. In this mode the
image is scaled using interpolation until it reaches a
predefined minimal dimension. Each time the image is scaled,
the two integral images (normal=∑x and squared=∑x2),
needed for variance, are recalculated for the scaled image.
The search window has fixed dimension during the detection
process.

Fig. 4. Hardware-software codesign for face detection

Fig. 5. Proposed face detection acceleration algorithm

Mode 2: Face detection by scaling the classifiers (see Figure
5). In this mode the integral images (normal=∑x and
squared=∑x2), needed for variance normalization

22
2















HW

x

HW

x
 , are calculated only once for the original

image. However, the Harr-like features from the classifier are
scaled progressively until their dimensions are close to the
dimension of the original window. This mode lacks the
interpolator used in mode 1. The search window has a
variable dimension during detection process.

 In both detection mode the Haar-like features
components (weights and dimensions) are scaled
proportionally with the dimensions of search window. That
means for a search window of dimension WxH, the weight of
each rectangle forming the Haar-like features are scaled with
WxH. In the search window, the sum of each applied Haar-
like feature is calculated using:





3

1I

scaled
II

Sum WeightAreaeHaarFeatur

(4)

 Area represents the sum of all pixels inside a component
and I=1,2 or 3 represents the number of components for that
Haar-like feature. In order to determine the next weight value
for the stage sum, each HaarFeatureSum is compared with
each normalized threshold of the respective Haar-like feature
as:









norm
J

Sum
J

Weight
J

norm
J

Sum
J

Weight
J

ThreseHaarFeaturifStageStageSum

ThreseHaarFeaturifStageStageSum
StageSum

,

,
1

2

(5)

 where J=[1…2135] represents the Haar-like feature
indexes in a stage and ThresJ

norm=σThresJ
HaarFeature (σ is the

search window standard deviation).

 If we do not scale the Haar-like feature weights and
adjust the variance computation by using the
formula  )(222  xxHWadjusted , it results that the number

of arithmetic operations (division, multiplication) and
memory accesses are decreased substantially. This will make
the algorithm perform faster due to a reduced number of
operations needed for computation of the adjusted variance
for the search window [6].

3.2 Hardware IP for detection acceleration

 After a careful analysis of the face detection application
it was found that the software bottleneck resided in the huge
amount of memory read access, multiplication, and squared
root operations done by all the search window evaluations. In
order to detect a face from an image, hundreds of thousands
of search windows are evaluated and this represents the most
time consuming part of the application. Therefore it was
decided to accelerate the evaluation of search windows by
means an IP module [7].

 In order to keep a high degree of flexibly and share the
hardware resources with the rest of the LEON3 system it was
decided for the IMSE_OBJECT_DETECTION IP to have
two operating modes: the free mode in which LEON3
processor can use the IP core resources (multipliers, shared
memory, etc) to implement other functionalities, and the face
detection mode.

 The IMSE_OBJECT_DETECTION and all internal
modules components are clocked by the system clock (80
Mhz).

 As it was previously mentioned the IP module
implements the search window algorithm. The software
application will load the compressed form of Haar-like
features into the Shared Memory before any detection
operation. Before starting any detection operation the
configuration registers (scale, x-y coordinates, image
dimension, etc.) must be configured with the desired
configuration values.

 When the start command is given the face detection
procedure is fully controlled by the component
Imse_stage_evaluator_unit (see figure 6). This unit is the
core engine for accelerating face detection. At the end of the
detection the component signalize if a face is present, the
Status register is updated with the detection result and an
interrupt is generated.

The Imse_stage_evaluator_unit has a multiple state machine
control in order to deal with variable memory access
latencies. Beside the multiple state machine control this unit
contains the following specialized modules:

 Haar_feature_rect_calc: This module is used to calculate
the area of integral rectangles using only the corners data.

 Haar_feature_scaler: This is a pipelined module for Haar-
like feature scaling and search window address
computation.

 Sqrt64_array_pipe16: A 64 bit pipelined SQRT unit that has
data output latency of 16 clocks.

 Mul41x33signed: A 41x33 signed multiplier.

 The Register Bank contains APB bus accessible
registers that are used for the core configuration and control.

The APB Slave Interface connects the IP module to the APB
bus and enables the LEON3 processor to access the registers
from Register Bank. The AHB Master/Slave Interface is a
simple DMA interface.

The IP module has a shared memory based on a dual-port
RAM with AHB interface. The Shared Memory is used by
the IP module to store the compressed Haar-like features.
When the module works in ‘Free Mode’ LEON3 can use the
Shared Memory as additional RAM memory.

Fig. 6. IMSE_OBJECT_DETECTION IP block diagram

4 Results
 The proposed LEON3 face detection system works with
images (colored or grey) having a resolution smaller than
10242 pixels. It fully uses the OpenCV cascade of classifiers
for frontal faces and it can store into the IP Shared Memory
approximately 2730 Haar-like classifiers. It also works with a
greater number of Haar-like classifiers but the extra
classifiers must be store into the program memory and then
loaded into the Shared Memory at the appropriate moment.

 The system was implemented on a Xilinx XC5VLX50
FPGA. The entire LEON3 face detection system uses 6,435
slices (up to 89% of the device utilization) and 10,962 of flip-
flops (up to 38% of the device utilization). The estimated
static power consumption (measured with Xpower Analyzer
from Xilinx) for the LEON3 core is 603 mW. The most
consuming components are the DDR2 memory controller
(216 mW), DVI interface (136.06 mW) and the clock
generators. The LEON3 processor consumes 32.39 mW and
even though the IMSE_OBJECT_DETECTION IP uses more
flip flops and has approximately the same amount of logic, its
power consumption is 6 times less (5.39 mW) than the
LEON3 processor.

4.1 Performance

 Number section and subsection headings consecutively
in numbers and type them in bold. Use point size 14 for
section headings and 12 for subsection headings and 10 for
subsection within a subsection.

 In order to measure the detection performances of the
LEON3 embedded detection system three distinct software
implementations for face detection were compared:

 Ported OpenCV software for embedded systems.

 Software accelerated version of the ported software.

 Hardware + Software accelerated version of the ported
software.

 The measured performances metrics are the execution
time and the number of searched windows performed.

 For the first two implementations the performances
were measured for two distinct modes of detection (mode 1
and mode 2). In Hardware + Software accelerated version
only the performance of mode 2 (Haar-like features are
scaled) was measured. For each mode, four different set-up
parameters were used (setup 1 to 4) for the minimum size
search window (S) and the scale step (step): 1) S=30x30,
step=1.2; 2) S=30x30, step=1.1; 3) S=20x20, step=1.2; 4)
S=20x20, step=1.1.

 From figure 7 it results that the accelerated face
detection application is 3-4 times faster than the ported
OpenCV application for both modes. Using the hardware
acceleration IP the face detection is 7-9 times faster than the
ported face detection application running exclusively on
LEON3 processor core.

Fig. 7. Detection times of three distinct implementations for
VGA image. a) Scale Image mode (Mode 1), b) Scale Haar-

like features mode (Mode 2)

4.2 Detection accuracy

 In order to analyze the detection accuracy an specific
software has been developed. Figure 8 shows the test bench
scheme. The PC based test bench software configures
LEON3 based detection system and send the test images.

Then it receives the detection results for further analysis. The
test setup is based on 2409 frontal face images from the color
FERET database [8]

Fig. 8. Testbench system block diagram

 The accuracy of face detection can be described using
receiver operating characteristic (ROC), which is a curve
widely adopted in signal-detection theory. An ROC is
essentially a scatterplot that shows the relationship between
the false acceptance rate and the true acceptance rate. The
false acceptance rate measures the likelihood of a face
detector to incorrectly accept a background image as a face.
The true acceptance rate measures the likelihood of a face
detector to correctly identify a face. In the literature [9] true
acceptance rate is also referred as face detection rate.

 The ROC curve of a given face detector shows its
performance as a trade-off between the false acceptance rate
and the face detection rate by varying its discrimination
criterion (e.g. a threshold parameter). Figure 9 shows the
ROC curves for OpenCV software and the IP module. Both
have very similar results. There is a small difference between
the two ROC curves because the data result (i.e detected
faces) aggregation mechanism is slightly different in the
analysis tools.

PC based test
bench

FPGA

a) b)

a)

b)

Fig. 9. ROC curves: a) OpenCV face detection software,
b) IMSE_OBJECT_DETECTION IP based system

5 Conclusions
 The LEON3 face detection system is a flexible
embedded SoC containing sufficient hardware resources to
make this system capable to run a wide variety of
applications. One important feature of this system is that it
contains a dedicated face detection hardware accelerator IP.
The face detection hardware accelerator IP is built on the
principle of resource sharing, i.e when the system is
performing different task tan face detection, the hardware IP
resources can be used freely by the system.

6 Aknowledgments
 This work was supported in part by the European
Community under the MOBY-DIC Project FP7-IST-248858,
by Spanish Ministerio de Ciencia y Tecnología under the
Project TEC2011-24319, and by Junta de Andalucía under
the Project P08-TIC-03674.Co-financed by FEDER

7 References
[1] J. Cho, S. Mirzaei, J. Oberg, and R. Kastner, “Fgpa-
based face detection system using haar classifiers,” in FPGA
’09: Proceeding of the ACM/SIGDA international
symposium on Field programmable gate arrays. New York,
NY, USA: ACM, pp. 103–112, 2009.

[2] D. Hefenbrock, J. Oberg, N.T.N. Thanh, R. Kastner,
S.B. Baden, “Accelerating Viola-Jones Face Detection to
FPGA-Level using GPUs”, Proc. IEEE Annual International

Symposium on Field-Programmable Custom Computing
Machines, 2010.

[3] P. Viola, M.J. Jones, “Robust Real-Time Face
Detection”, International Journal of Computer Vision, v.57
n.2, pp.137-154, May 2004.

[4] R.E. Schapire, Y. Freund, P. Bartlett, W.S. Lee,
“Boosting the Margin: A New Explanation for the
Effectiveness of Voting Methods”, The Annals of Statistics,
pp. 1651-1686, 1998.

[5] OpenCV: http://sourceforge.net/projects/opencvlibrary/

[6] L. Acasandrei, A. Barriga: “Accelerating Viola-Jones
Face Detection for Embedded and SoC Environments”, Fifth
ACM/IEEE International Conference on Distributed Smart
Cameras (ICDSC’2011), Ghent, Belgium, Aug. 2011.

[7] L. Acasandrei: “Embedded Face Detection System
Implemented on LEON3 Microprocessor”, Master Thesis,
Univ. Seville, 2011.

[8] P.J. Phillips, H. Wechsler, J. Huang, P. Rauss, "The
FERET database and evaluation procedure for face
recognition algorithms," Image and Vision Computing J, Vol.
16, No. 5, pp. 295-306, 1998.

[9] M. Yang, D. Kriegman, and N. Ahuja. “Detecting faces
in images: a survey”, IEEE Trans. on PAMI, 24(1), p. 34-58,
Jan 2002.

