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Abstract 

 

A new approach to the kinetics of magnesium hydride dehydrogenation is considered. A 

model able to predict the dehydrogenation under different experimental conditions has 

been proposed. A new combined kinetic analysis method, which considers the 

thermodynamic of the process according to the microreversibility principle, has been 

used for performing the kinetic analysis of data obtained under different thermal 

schedules at hydrogen pressures ranging from high vacuum up to 20 bar.   

The kinetic analysis shows that the dehydrogenation mechanism of magnesium hydride 

depends on the experimental conditions. Thus, the reaction follows a first order kinetics, 

equivalent to an Avarmi-Erofeev kinetic model with an Avrami coefficient equal to 1, 

when carried out under high vacuum, while a mechanism of tridimensional growth of 

nuclei previously formed (A3) is followed under hydrogen pressure. An explanation of 

the change of mechanism is given. It has been shown that the activation energy is closed 

to the Mg-H bond breaking energy independently of the hydrogen pressure surrounding 

the sample, which suggests that the breaking of this bond would be the rate limiting step 

of the process. The reliability of the calculated kinetic parameters is tested by 

comparing simulated and experimental curves. 
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1. Introduction 
 

Magnesium hydride is a material of the most interest for a number of technical 

applications, mainly as hydrogen storage material for PEM fuel cells, due to its large 

reversible storage capacity (7.6 mass%) of high purity hydrogen [1-5], and as a thermal 

energy storage system in thermosolar plants due to the high enthalpy of the 

hydrogenation-dehydrogenation reactions [6-10]. Moreover, magnesium has a relatively 

high abundance in earth. For any of these two applications, the kinetics of the 

dehydrogenation-hydrogenation reactions is of paramount importance. It has been 

reported in literature that the dehydrogenation reaction is a very sensitive process that 

depends on a number of parameters such as thermal history of the sample (for example, 

activation cycles of hydrogenation-dehydrogenation) [4],  structural defects in the 

sample produced by mechanical milling [11], presence of additives with or without 

catalytic effect [12-16], gas pressure [17-18], etc. Moreover it has been shown in 

literature that the influence of the transport of hydrogen through the Mg/MgH2 bed on 

the kinetics of hydrogenation/dehydrogenation reactions must be considered when 

either large or compacted samples are being processed [18-20]. This is not the case of 

this work, in which very small amounts of powder samples will be used for minimizing 

the influence of gas transport phenomena on the forward reaction. 

A deep knowledge of the kinetics of absorption and desorption processes in 

noncatalyzed MgH2-based materials is crucial for future applications both as heat 

storage or hydrogen storage material and is of the most interest to better understand the 

behavior of milled and catalyzed MgH2. 

A very large number of studies of absorption and desorption of hydrogen in MgH2 and 

related compounds have been performed employing either volumetric analysis under 

isothermal conditions or thermogravimetry (TG) and differential scanning calorimetry 

(DSC) at linear rising temperature under a flow of hydrogen or an inert gas [11, 17-18, 

21-28]. However, in most of the cases the hydrogen pressure has not been carefully 

controlled and, provided that the dehydrogenation of MgH2 is reversible, the 

uncontrolled gradients of hydrogen pressure generated during the reaction could lead to 

unrealistic kinetic models and false kinetic parameters. Moreover, in many cases the 

kinetic analysis has been carried out by previously assuming a given kinetic model for 

fitting the experimental data, but it is known, firstly, that a same set of experimental 

data can be simultaneously fitted by a number of kinetic models and, secondly, that the 
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activation energy is strongly dependent on the kinetic model previously assumed [29-

33]. A proper kinetic analysis of reversible thermal decomposition reactions under a 

given constant pressure of the gas self-generated in the reaction would imply to consider 

the thermodynamic of the process by taking into account the microreversibility principle 

[26, 30, 34-35]. On the other hand, it would be advisable to associate the 

microreversibility principle with methods of kinetic analysis that would allow 

determining both the kinetic parameters and the kinetic model obeyed by the reaction 

without any previous assumption on the kinetic model. 

The objective of this work is the study of the dehydrogenation kinetics of magnesium 

hydride at pressures ranging from high vacuum up to 20 bars of hydrogen in order to get 

a unified reaction mechanism that would allow predicting the kinetic behavior of the 

dehydrogenation of magnesium hydride as a function of the hydrogen pressure. 

 

2. Experimental 

 

Commercially available magnesium hydride purchased from Aldrich (product number 

683043, with average particle size of 50 μm) was used for performing the study. In all 

cases, the powders were weighted inside a glove-box, taken out of it and immediately 

placed in the corresponding instrument in order to minimize the exposition of the 

samples to the air. 

Thermogravimetric measurements were performed using a high sensitivity (2 × 10-7 g) 

CI Electronics thermobalance and a fast response furnace connected to a high-vacuum 

system (rotary and turbomolecular pumps) that is able to reduce pressure to ~5 × 10-5 

mbar. A set of calibration weights where used to calibrate the mass output of the 

themobalance, while the temperature calibration was performed using hydrous calcium 

oxalate heated at 10 K min-1. The experiments were performed at ~5 × 10-5 mbar in 

conventional linear heating rate conditions, at 0.2 K min-1, 0.5 K min-1 and 1 K min-1. 

The steady-state of the system was reached after outgassing overnight at room 

temperature and full pumping rate. A quadrupole mass spectrometer (Prism, Pfeiffer) 

was employed to perform the evolved gas analysis. A shutoff valve allows carrying out 

the experiments either under high vacuum or in a gas flow. Typical sample size was ~85 

mg, which was placed in alumina pan. 

Differential scanning calorimetry (DSC) experiments were performed under 10 bar and 

20 bar of hydrogen pressure on a pressure DSC system (Q20P, TA Instruments, 
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Crawley, UK) that provides heat flow measurements on pressure sensitive materials. 

The pressure cell employs standard heat flux DSC technology and incorporates pressure 

control valves, a pressure gauge, and over-pressure protection. The system was 

connected to a mass flow controller and a pressure controller in order to carry out the 

experiments under 50 cm3 min-1 hydrogen flow and at constant pressure. The heat flow 

and temperature calibration were carried out employing standard sapphire discs and 

indium. The metal was heated through its melting transition and the calculated heat of 

fusion compared to the theoretical value. Moreover, the recorded melting point of this 

standard is compared to the known melting point and the difference is calculated for 

temperature calibration. The DSC experiments were carried out in open alumina pans at 

different heating rates, β: 1 K min-1, 2.5 K min-1, 5 K min-1 and 7.5 K min-1. Typical 

sample size was ~5 mg. Before performing the experiments, the system was outgassed 

using a rotary valve during 20 min, to prevent sample oxidation. The experimental DSC 

curves were normalized in such a way that the total area enclosed corresponds to full 

conversion (i.e; α = 1). Thus, the values of dα/dT at a given temperature are equal to the 

value of the ordinate (y axis) at this temperature and the corresponding value of dα/dt is 

obtained through the expression dα/dt = β(dα/dT). The α-T plots were obtained by 

numerical integration of the normalized DSC plots. 

X-ray diffraction patterns were recorded in vacuum in a Philips X’Pert Pro 

diffractometer working at 45 kV and 40 mA, using CuKα radiation and equipped with 

an X’Celerator detector and a graphite diffracted beam monochromator.  

 

3. Theoretical 

 

The dehydrogenation of magnesium hydride takes place according to the following 

reversible reaction: 

 

ଶܪ݃ܯ			                                             	 ←→ 	݃ܯ	 ൅	ܪଶ            (1) 

 

According to the microreversibility principle, in a reversible reaction the mechanism in 

one direction is exactly the reverse of the mechanism in the other direction. This 

principle has been employed by different authors to study the influence of product gas 
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pressure on reversible reactions, leading to the following expression for the reaction rate 

[26, 30, 34-37]:  
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where α is the reacted fraction calculated normalizing the mass loss in 

thermogravimetry or integrating and normalizing the DSC curves, A is the 

preexponential factor, E the activation energy, f(α) the kinetic model followed by the 

reaction, p the pressure of the gas generated in the reaction (which is maintained 

constant in our experiments) and p* is the equilibrium pressure of the gas (hydrogen in 

our case). If the reaction is carried out under high vacuum in such a way that the 

pressure p is extremely low with regard to the equilibrium pressure, the term p/p* would 

be close to zero and equation (2a) becomes: 
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The equilibrium pressure in equation (2a) would be determined as a function of the 

temperature from the Van’t Hoff equation: 
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where p* is the equilibrium pressure at the absolute temperature T, p0 is the atmospheric 

pressure, H and S are the enthalpy and entropy of hydride formation and R is the 

universal gas constant.   

 

3.1. Model free methods 

 

Friedman isoconversional method allows determining the activation energy as a 

function of α without considering the kinetic model of the process [38-39]. Thus, 

equation (2a) can be rearranged in logarithmic form as follows: 

 



7 
 

																	݈݊ ൬
ߙ݀
ݐ݀
൰ െ ln ൬1 െ	

݌
݌ ∗

൰ ൌ ݈݊ሾ݂ܣሺߙሻሿ െ
ܧ
ܴܶ

																			ሺ4ܽሻ 

 

If we are far from equilibrium like in the experiments conducted under high vacuum we 

get from equation (2b): 
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The activation energy at a constant α is calculated from the slope of the plot of the left-

hand side of either equation (4a) or (4b) against the inverse of temperature at a given 

value of α. 

 

3.2. Combined kinetic analysis 

 

The combined kinetic analysis is a method for obtaining both the kinetic model and the 

kinetic parameters associated to a process from the simultaneous analysis of a set of 

data obtained under different thermal schedules without previously assuming neither of 

the kinetic parameters or the kinetic model of the process [40-41]. The modified Sestak-

Berggren equation, i.e. ݂ሺߙሻ ൌ ܿ	ሺ1 െ ௠ߙሻ௡ߙ , has been considered for this purpose. 

This is because this empirical equation behaves like an umbrella that fit all the kinetic 

equations proposed in literature for describing solid state reactions, including deviations 

from ideal models [40, 42-43].  Thus, the equation of Sestak–Berggren simplifies 

considerably the kinetic analysis, allowing the discrimination of the kinetic model in a 

second step with the help of master plots. 

The equation for the combined kinetic analysis is obtained rearranging the equation (2a) 

in logarithmic form after replacing the f(α) function by the Sestak-Berggren equation: 
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when far from equilibrium (i.e.; p/p* = 0). The set of experimental data, corresponding 

to different heating schedules, is substituted either into equation (5a) or (5b) and the 

left-hand side of the equations is plotted versus the inverse of temperature. The Pearson 

linear correlation coefficient is set as an objective function for optimization, and the 

values of the parameters n and m that provide the best linear fit to the plot are 

determined. The values of E and ln(cA) are calculated from the slope and intercept 

respectively. 

 

4. Results and discussion 

 

4.1. Kinetics of magnesium hydride dehydrogenation in vacuum. 

 

Figure 1 presents the XRD pattern of the as received magnesium hydride recorded in 

vacuum at room temperature in the 2θ range from 25° to 50°. The Rietveld refinement 

of the XRD profile shows that the sample is constituted by a mixture of 86% of MgH2 

and 14 % of metallic magnesium. The lattice parameters determined from the Rietveld 

method are a = 0.4518(4) and c = 0.3019(3) that are in excellent agreement with the 

values reported for the tetragonal β-MgH2 phase according to the powder diffraction file 

JCPDS 12-0697. These results suggest that the sample is constituted by quasi-

stoichiometric MgH2 and unreacted magnesium. It is noteworthy to point out that it has 

been theoretically demonstrated in literature that the β-MgH2 phase is capable of 

accommodating only very small concentrations of hydrogen vacancies that are mainly 

isolated rather than forming clusters [44]. It has been suggested that the formation of 

non-stoichiometric magnesium hydride is restricted to nanometric particles, although 

structural evidence has not been reported until now [3, 22, 45]. On the other hand, it is 

known that, for bulk micron sized particles a shell of magnesium hydride is formed, 

which prevents the hydrogenation of the remaining metal core after the maximum 

hydrogenation of magnesium is achieved [3, 45-47]. Thus, it can be considered that the 

percentage of magnesium present in the sample is not coming from the partial 

decomposition of MgH2 during the storage under inert atmosphere but it corresponds to 

unreacted metal. Therefore, it is reasonable to perform the kinetic analysis in the overall 

reacted fraction range, considering that α = 0 for the starting sample and α = 1 for the 

completely dehydrogenated material. 
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Figure 1. XRD pattern of the as received magnesium hydride recorded in vacuum at room temperature. 
 

 

The kinetics of MgH2 dehydrogenation was first studied by thermogravimetry under 

high vacuum to prevent oxidation at the time to approach to zero the ratio p/p* in order 

to obtain directly the activation energy of the forward reaction (1) from equation (4b) 

and to perform the combined kinetic analysis by means of equation (5b). Experiments 

were performed at low heating rates with a double purpose: firstly, to reduce the 

decomposition temperatures in order to avoid Mg sublimation and secondly, to 

minimize the influence of heat and mass transfer phenomena on the forward reaction.  

Figure 2 shows the mass loss and the rate of mass loss profiles for the thermal 

dehydrogenation of magnesium hydride recorded under ~5 × 10-5 mbar at 0.2 K min-1, 

and the corresponding evolution of the H2 signals registered by mass spectrometry as a 

function of temperature. It is clear from Figure 2a that hydrogen is released in a single 

process and the mass loss is 6.5%, what indicates that the starting sample is constituted 

by 86% of MgH2, which confirms the result previously obtained from the XRD analysis 

by the Rietveld method. Figure 2b confirms that H2 is evolved in a single stage, as 

observed in the thermogravimetric trace. 
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Figure 2. (a) Integral TG (mass loss) and differential TG curves for the thermal dehydrogenation of 
magnesium hydride recorded under ~5 × 10-5 mbar at 0.2 K min-1. (b) Corresponding H2 signals 
registered by mass spectrometry as a function of temperature. 

 

 

Figure 3 presents the thermogravimetric curves recorded at 0.2 K min-1, 0.5 K min-1 and 

1 K min-1. Mass losses have been normalized to turn it into reacted fractions. 

Nevertheless, an overall mass loss equal to 6.5% was obtained in the whole set of 

experiments shown in Figure 3. The shape of the α-T plots included in this figure 

supports that the dehydrogenation of MgH2 occurs through a single step. The fact that 

some authors have observed more than one step perhaps would be explained 

considering the contamination of their samples with Mg(OH)2 coming from a certain 

hydrolysis of the hydride [17, 21]. Thus, the thermal decomposition of MgH2 and 

Mg(OH)2 could be overlapping.  

The apparent activation energy of MgH2 dehydrogenation as a function of the reacted 

fraction was calculated by means of the Friedman isoconversional method described in 

section 3.1, analyzing simultaneously all experimental curves included in Figure 3 at 

different α values by means of equation (4b), provided that p/p* is close to zero. In fact, 
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the values of p* in the range of temperatures at which the dehydrogenations of MgH2 

are recorded in Figure 3 are higher than 30 mbar according with the equilibrium data 

reported by Zhou et al. [48-49], what means that the values of p/p* are lower than 10-6 

all over the decomposition range.  

Table 1 presents the evolution of the apparent activation energy with conversion, which 

remains approximately constant during the whole process, averaging 111±7 kJ mol-1. 

These results support that magnesium hydride dehydrogenation would take place 

through a single step that can be described by a unique kinetic triplet. The apparent 

monotonous decrease of activation energy as α increases would be understood taking 

into account that the weight of the determination of this parameter from conventional 

Friedman method rests on the heating rate and, therefore, systematic small variations of 

the heating rate with the temperature would lead to monotonous variation of the 

activation energy. This uncertainty would be further avoided using the combined kinetic 

analysis methods that lead to statistically significant data because very large number of 

α-T points, coming from sets of α-T plots obtained under different heating schedules is 

simultaneously processed. 

 

 

 

 

    

      

 

 

 

 
  

 

Figure 3. Experimental curves (dotted lines) corresponding to the thermal dehydrogenation of magnesium 
hydride under high vacuum registered at 0.2, 0.5 and 1 K min-1. The curves reconstructed using the 
kinetic parameters obtained from the analysis are plotted as solid lines. 
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Table 1. Activation energy values as a function of α, obtained from the Friedman isoconversional analysis 
of the experimental curves shown in Figure 3. 
 

 

 

 

 

 

 

 

 

 

 

 

In order to determine the kinetic model and the pre-exponential factor, the experimental 

curves in Figure 3 were also analyzed using the combined kinetic analysis methodology, 

described in Section 3.2. Figure 4a includes the plot of the left-had side of equation (5b) 

versus the inverse of temperature. The optimization procedure shows that experimental 

curves in Figure 3 are fitted simultaneously into a single straight line when n and m take 

the values 0.94 and 0 respectively. The slope of the plot leads to an apparent activation 

energy value of 109 ± 1 kJ mol-1, in good agreement with the value obtained from the 

isoconversional method, and the intercept to a preexponential factor of cA = 1.1 (± 0.2) 

× 1011 min-1. The f(α) function deduced from the analysis, f(α) = (1-α)0.94, suggests that 

the process is driven by a first-order (F1) kinetic function. This result is demonstrated 

by the comparison with the master plots reported in literature for the different kinetic 

models proposed for describing solid state reactions (Figure 4b) [50]. The functions are 

normalized at f(0.5) to better distinguish the different plots. It is clear that the calculated 

f(α) function and the theoretical curve corresponding to first-order kinetics match 

closely. It must be emphasized that the thermal decomposition of MgH2 is a 

heterogeneous reaction and, therefore, the term (1-α) cannot be interpreted like a direct 

representation of the concentration of the unreacted fraction in the kinetic equation. The 

finding of a F1 kinetic model would be explained by assuming mechanisms that imply 

the formation and growth of nuclei described by an Avrami-Erofeev kinetic model with 

an Avrami coefficient equal to 1 (A1), what leads to a kinetic equation formally 

identical to the F1 kinetic equation [51-54]. Other alternative explanation would be 

α r E / kJ mol-1 

0.1 0.994 120 ± 9 
0.2 0.996 118 ± 8 
0.3 0.996 117 ± 5 
0.4 0.997 112 ± 3 
0.5 0.997 109 ± 4 
0.6 0.997 109 ± 4 
0.7 0.995 107 ± 6 
0.8 0.994 104 ± 8 
0.9 0.993 100 ± 10 

Mean Ea value: 111±7 kJ mol-1 
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feasible if we take into account that it has been shown in a recent review that all the 

MgH2 samples available in the market are not homogeneous in size but they exhibit a 

large log-normal particle size distribution (PSD) [3]. Thus, the F1 kinetic equation 

would be representative of a reaction mechanism in which the reaction rate is controlled 

by the advance of the interface. This is because it has been reported in literature that the 

reactions following this mechanism move to an apparent F1 kinetic model as far as the 

particle size distribution is broadened, without altering the value of the real activation 

energy obtained from isoconversional methods [43]. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. (a) Combined kinetic analysis plot of the experimental curves presented in Figure 3. (b) 
Comparison of the f(α) functions (lines) normalized at α = 0.5 corresponding to some of the ideal kinetic 
models with the f(α) function resulting from the combined analysis, f(α) = (1-α)0.94 (dots). 

 

 

The original experimental curves were reconstructed by simulating a set of curves using 

the kinetic parameters resulting from the above analysis. The simulations were 

performed by integrating the general kinetic equation and considering the heating 

conditions used in the different experiments, and using fourth-order numerical 
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integration Runge-Kutta method. It is clear in Figure 3 that simulated and experimental 

curves match closely, proving the validity of the kinetic parameters obtained from the 

combined kinetic analysis.  

Figure 4b shows that the comparison of the experimental master plots obtained from the 

simultaneous kinetic analysis of the whole set of thermogravimetric curves recorded 

under different heating schedules with the theoretical master plots corresponding to 

different kinetic models clearly allows discriminating the real kinetic model obeyed by 

the reaction. However, it is noteworthy emphasizing that, contrarily, the shape analysis 

of a single thermogravimetric curve does not allow discriminating the actual kinetic 

model. Thus, Fernández and Sánchez have shown that the analysis of individual α-T 

plots obtained for the dehydrogenation of MgH2 would be compatible with a first order 

and a diffusion kinetic model [18]. Similarly, Criado and Morales have shown, from the 

analysis of simulated α-T plots, that it is impossible to discriminate between first order, 

diffusion and Avrami-Erofeev kinetic models from a single thermogravimetric curve 

obtained at a constant heating rate [55-56]. 

 

4.2. Kinetics of magnesium hydride dehydrogenation under hydrogen pressure. 

 

The use of magnesium hydride for hydrogen storage or energy storage applications 

would necessarily take place under hydrogen pressure conditions rather than in high 

vacuum. Therefore, it is of the most interest to determine the effect of hydrogen 

pressure on magnesium hydride dehydrogenation kinetics. 

The kinetics of this process was studied by DSC under 10 bar and 20 bar of constant 

hydrogen pressure during the entire experiment as described in the experimental section. 

The experimental curves were recorded under linear heating rate conditions at 1 K min-

1, 2.5 K min-1, 5 K min-1 and 7.5 K min-1. Figure 5a presents the as obtained DSC traces 

for thermal dehydrogenation of MgH2 under 10 bar of hydrogen at the four heating rates 

employed. It can be observed that the temperature of dehydrogenation increases more 

than 250 K with regards to the experiments performed under high vacuum. All curves 

show a single peak, which supports again that the dehydrogenation of MgH2 occurs 

through a single step as previously proposed in section 4.1. Similar curves were 

obtained at 20 bar although they are moved at higher temperatures as figure 5b shows.  

The enthalpy of MgH2 dehydrogenation can be calculated integrating the peak above the 

baseline. The enthalpy obtained from the DSC plots was 63.5 kJ mol-1 and 
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consequently, if we consider that the percentage of MgH2 in the sample previously 

determined was equal to 86%, it results that the enthalpy obtained for the 

dehydrogenation of this compound is ∆H = 73.8 kJ/mol, in good agreement with the 

thermodynamic data reported in literature [57-59]. This value of ∆H has been used in 

equation (3) for calculating the equilibrium pressures as a function of the temperature 

demanded by equations (4a) and (5a).  A value of ∆S = 130 J K-1mol-1 has been taken 

for the entropy change associated to the forward dehydrogenation reaction according 

with equation (1). The value of ∆S is dominated by the entropy of hydrogen gas 

liberated during the reaction and it is considered constant for the dehydrogenation of all 

the metallic hydrides [57, 59-60]. The values of p* here calculated as a function of the 

temperature show a good agreement with those previously reported by Zhou et al. [49]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. DSC experimental curves for thermal dehydrogenation of magnesium hydride, registered at 
different hydrogen pressures: a) 10 bar; b) 20 bar. 

 
 

Figure 6 shows the temperature dependences of the pressure correction term (1-p/p*) for 

experiments recorded at 2.5 K min-1 heating rate and under 10 bar and 20 bar of 
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hydrogen pressure, in the temperature range where the reaction takes place. The values 

of p* were calculated employing equation (3). From the data included in Figure 6 and 

equation (2a), it is clear that hydrogen pressure has the effect of decreasing the reaction 

rate and, therefore, the corresponding DSC curves should shift to higher temperatures, 

as observed experimentally in Figure 5b. Thus, the hydrogen pressure around the 

sample has an important influence on the value of the apparent activation energy and the 

influence of this parameter must be taken into account according to equation (2a) in 

order to get the real activation energy, E. If the pressure term were neglected, the 

calculated value of activation energy would be erroneous. This behavior has been 

suggested for CaCO3 decomposition under CO2 pressure. While calcium carbonate 

decomposition in vacuum leads to reasonable values of apparent activation energy, 

decomposition under uncontrolled atmosphere of CO2 gave misleading values of the 

activation energy and even would lead to an apparent dependence of the activation 

energy of the reacted fraction α [34]. 

This is demonstrated if the isoconversional method is applied to the dα/dt-T plots shown 

in Figure 7, obtained after normalizing the DSC curves presented in Figure 5 as 

described in the experimental section. Thus, equation 4b, without accounting for (1-

p/p*), was employed for the calculations, and the activation energy values obtained are 

presented in Table 2. The mean activation energy for MgH2 dehydrogenation under 10 

bar is 203 ± 8 kJ mol-1 if calculated without considering the pressure term, which is 92 

kJ mol-1 higher than the value calculated from the experiments carried out under high 

vacuum. Moreover, a change from 226 kJ mol-1 for α = 0.1 to 195 kJ mol-1 for α = 0.6 is 

observed, that corresponds to a variation of 31 kJ mol-1. This change in activation 

energy is higher than the expected experimental error. For MgH2 dehydrogenation under 

20 bar the mean activation energy is even higher if calculated without considering the 

pressure term (271 kJ mol-1) and a high deviation in the activation energy of 40 kJ mol-1 

is obtained between the maximum and minimum values of α. Therefore, an increase in 

activation energy is obtained as a function of pressure if the pressure term (1-p/p*) is 

not considered in the calculations, and variable activation energies with α. 
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Figure 6. Temperature dependence of the pressure correction term (1-p/p*) at pressures of 10 bar and 20 
bar. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Normalized dα/dt plots for the dehydrogenation of magnesium hydride, calculated from the 
DSC traces shown in figure 5 (dotted lines). a) Hydrogen pressure of 10 bars; b) hydrogen pressure of 20 
bars. The curves reconstructed using the kinetic parameters obtained from the kinetic analysis are plotted 
as solid lines. 
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Table 2. Activation energy values as a function of α, obtained from the Friedman isoconversional analysis 
of the experimental curves shown in Figure 7 without accounting for the pressure term (1-p/p*). 
 

 

 

 

 

 

 

 

 

 

 

Table 3 shows the activation energies obtained by the isoconversional method from the 

experimental curves included in Figure 7 according to equation (4a), namely 

considering the pressure term. The activation energies are reasonably constant during 

the entire processes and, therefore, magnesium hydride dehydrogenation under 10 bar 

and 20 bar of hydrogen pressure can be described as a single reaction with activation 

energies averaging 124±7 kJ mol-1 and 127±4 kJ mol-1 respectively. These activation 

energies match inside the error range attained. Hence, when the pressure term is taken 

into account, the activation energy obtained is practically constant between 10 and 20 

bars and just slightly higher than that calculated for magnesium hydride 

dehydrogenation under high vacuum. 

 

 

Table 3. Activation energy values as a function of α, obtained from the Friedman isoconversional analysis 
of the experimental curves shown in Figure 7 accounting for the pressure term (1-p/p*). 
 

 

 

 

 

 

 

 

 

 

   dehydrogenation at 10 bar 

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

r 0.996 0.996 0.997 0.998 0.997 0.998 0.998 0.998 0.999 

E  

(kJ mol-1) 
226 ± 9 208 ± 8 201 ± 9 197 ± 7 195 ± 6 195 ± 6 197 ± 5 201 ± 8 208 ± 11 

    dehydrogenation at 20 bar 

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

r 0.970 0.991 0.994 0.994 0.994 0.995 0.996 0.997 0.996 

E  

(kJ mol-1) 
292 ± 11 291 ± 9 283 ± 7 275 ± 8 268 ± 7 263 ± 6 259 ± 8 255 ± 8 252 ± 10 

   dehydrogenation at 10 bar 

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

r 0.995 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.997 

E  

(kJ mol-1) 
131 ± 11 123 ± 6 119 ± 5 118 ± 7 118 ± 5 120 ± 5 125 ± 4 127 ± 7 135 ± 12 

    dehydrogenation at 20 bar 

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

r 0.968 0.991 0.993 0.994 0.994 0.995 0.996 0.997 0.996 

E  

(kJ mol-1) 
121 ± 7 128 ± 4 129 ± 5 127 ± 3 126 ± 3 125 ± 3 126 ± 4 128 ± 5 131 ± 8 
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The combined kinetic analysis, described in Section 3.2, was applied to the curves 

registered under 10 bar and 20 bar of H2 separately. Figure 8 shows the plots of the left 

hand side of equation 5a, using each set of experimental data, versus the reverse of 

temperature. The entire conversion range can be reasonably fitted to the model for both 

experiments under 10 bar and 20 bar. The values obtained for n and m from the 

optimization procedure are n = 0.881 and m = 0.864 at 10 bar and n = 0.83 and m = 

0.745 at 20 bar of hydrogen pressure. The slopes of the plots lead to activation energy 

values of 124 ± 2 kJ mol−1 and 121 ± 4 kJ mol−1 for 10 bar and 20 bar, respectively, 

while the intercepts yield to values of cA of 5.4 (±1.5) × 109 min−1 and 2.9 (±0.8) × 109 

min−1. The value of c cannot be discriminated but a combined cA is obtained instead. 

The activation energy values are in good agreement with those calculated by the 

isoconversional analysis (Table 3), which demonstrates the reliability of the values 

obtained.  

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Combined kinetic analysis plots of the experimental curves presented in Figure 7, recorded in 
10 bar and 20 bar of hydrogen pressure.  

 

 

Comparison with the theoretical kinetic functions is needed to determine the kinetic 

model followed by the reaction. In figure 9, the conversion functions estimated by the 

combined kinetic analysis are plotted together with the most commonly used kinetic 

models, such as nucleation and growth, first order and diffusion. The comparison 

evidences that the calculated f(α) functions obtained for MgH2 dehydrogenation under 

10 bar and 20 bar match the master plot corresponding to the A3 Avrami-Erofeev 
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kinetic model. It is noteworthy remark that these results have been obtained without any 

previous assumption about the kinetic models or the activation energies. From a 

physical point of view, this model implies the instant formation of tridimensional nuclei 

followed by the growth of these nuclei [61].  

In the same way as was done in the previous section for MgH2 dehydrogenation under 

high vacuum, the kinetic parameters calculated by the kinetic analysis were used for 

reconstructing the experimental curves numerically, integrating the general kinetic 

equation and considering the heating conditions used in the different experiments. Then, 

the curves were differentiated with respect to time and the resulting dα/dt curves are 

included in Figure 7. The kinetic parameters are validated by the close match between 

the simulated dα/dt-T curves and the experimental ones. 

 

 

 

 

 

 

                                    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. Comparison of the f(α) functions (lines) normalized at α = 0.5 corresponding to some of the 
ideal kinetic models with the f(α) functions resulting from the combined analysis of MgH2 
dehydrogenation in (a) 10 bar of hydrogen pressure and (b) 20 bar of hydrogen pressure. 
 

 



21 
 

The dehydrogenation mechanism is modified by the experimental conditions in which 

the experiments are performed. Thus, a change from first-order driven process 

(equivalent to A1) in high vacuum to an A3 nucleation mechanism in hydrogen pressure 

is observed. This change of mechanism would be explained taking into account the 

large increase of the decomposition temperature imposed by the equilibrium 

displacement under hydrogen pressure. This noticeably increase of the decomposition 

temperature of the hydride would promote the growth of the potential nucleus forming 

sites, until collapsing in nuclei of tridimensional shape. Thus, once that the equilibrium 

temperature for the dehydrogenation of MgH2 under a given hydrogen pressure is 

overpassed, the dehydrogenation reaction takes place through the tridimensional growth 

of the nuclei previously formed.  

On the other hand, it is noteworthy to point out that the difference between the 

activation energies obtained under high vacuum and under hydrogen pressure is only 

about a 12%. The fact that the activation energy of the forward reaction obtained under 

hydrogen pressure thoroughly agree with the value of 127 kJ mol-1 reported for the Mg-

H bond energy suggests that the breaking of this bond is the rate limiting step of 

magnesium hydride thermal dehydrogenation [62]. The extra energy stored as lattice 

defects on the starting sample would account for the slightly lower activation energy 

obtained for the dehydrogenation of MgH2 under high vacuum.  

Finally, the fact that activation energies closed to 120 kJ mol-1 were determined for the 

dehydrogenation kinetics under isothermal conditions using as raw materials MgH2 

samples supplied by different manufacturers, as shown in a recent review [3], would 

suggest that the Mg-H bond-breaking could be the rate limiting step of the reaction as 

we have proposed. This would be true in spite that different kinetic models were 

assumed for determining the activation energies collected in the Varin et al. review [3]. 

It has been demonstrated in a recent paper that the same activation energy is obtained 

from a set of isothermal data, whatever would be the kinetic model previously assumed, 

which is not true if kinetic data obtained from rising temperature experiments are 

concerned [63]. 

 

5. Conclusions 

 

Kinetics of MgH2 dehydrogenation has been studied in three different experimental 

conditions. The kinetic analysis has been performed using model-free isoconversional 
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analysis that provides the value of the activation energy as a function of the reaction 

fraction, and the combined kinetic analysis procedure that allows obtaining all the 

kinetic parameters avoiding any kind of assumption about the kinetic model obeyed by 

the reaction, and therefore the risk of model-fitting the experimental data with an 

erroneous kinetic model. The reliability of the calculated kinetic parameters has been 

tested by comparing simulated and experimental curves. 

Interestingly, results obtained show that dehydrogenation mechanism of MgH2 depends 

on the experimental conditions used to carry out the reaction. Thus, if the reaction is 

performed under high vacuum, it follows a first order kinetics, equivalent to an Avrami-

Erofeev kinetic model with an Avrami coefficient equal to 1, while a tridimensional 

growth of nuclei previously formed (A3) is followed when the experiment is carried out 

under 10 bar or 20 bar of hydrogen pressure. A unified theory that explains this 

behavior is given. The activation energy of the reaction is less influenced by the 

experimental conditions, and the values obtained agree with the value reported for Mg-

H bond energy, which suggests that the breaking of this bond could be the rate limiting 

step of the MgH2 thermal dehydrogenation. 
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