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Abstract. The purpose of this article is to give a new proof of a null controllability result

for a 1D free-boundary problem of the Stefan kind for a heat PDE. We introduce a method

based on local inversion that, in contrast with other previous arguments, does not rely on
any compactness property and can be generalized to higher dimensions.

1. Introduction

1.1. Motivation. Let u0 ∶ [0, L0] ↦ R, the open interval ω0 ⋐ (0, L0) and T > 0 be given. The
main goal in this paper is to find a control v = v(x, t) such that the solution (u, `) to the Stefan
problem

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ut − uxx = v1O in Q`,
u(0, t) = u(`(t), t) = 0 for t ∈ (0, T ),
u(x,0) = u0(x) for x ∈ (0, L0),
`′(t) = − 1

k
ux(`(t), t) for t ∈ (0, T ), (Stefan condition)

`(0) = L0

(1.1)

satisfies
u(x,T ) = 0, x ∈ (0, `(T )). (1.2)

Here and in the sequel, Q` and O respectively denote

Q` = { (x, t) ∶ 0 < x < `(t), 0 < t < T } and O = ω0 × (0, T )
and 1O is the characteristic function of O.

Although this problem has already been considered in [12], it will be re-visited in this paper.
In [12], problem (1.1) is reformulated and solved by introducing a suitable space L of functions
` ∶ [0, T ]↦ R and a fixed-point mapping Λ ∶ L↦ L as follows:

Λ(`) = L0 −
1

k
∫

⋅

0
u`x(`(s), s) ds, (1.3)

where (u`, v`) is a well-chosen minimal energy solution to the null control problem:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ut(x, t) − uxx(x, t) = v(x, t)1O in Q`,
u(0, t) = u(`(t), t) = 0 for t ∈ (0, T ),
u(x,0) = u0(x) for x ∈ (0, L0),
u(x,T ) = 0 for x ∈ (0, `(T )).

(1.4)

The strategy to choose (u`, v`) relies on the Fursikov-Imanuvilov formulation of the null con-
trollability problem for the heat equation, see [18]. The authors prove that, for any small u0,
Λ possesses at least one fixed point in L, say `⋆. To this end, they check that the assump-

tions of Schauder’s Fixed-Point Theorem are satisfied. As a by-product, a solution (`⋆, u`⋆ , v`⋆)
to (1.1)–(1.2) is proved to exist.

Unfortunately, it seems difficult to apply these ideas in a higher dimensional setting. Indeed,
it is not clear at all how can we give a similar definition of Λ and get, again, a continuous
compact mapping (note that Λ is compact in the one-dimensional case, among other reasons,
because the functions in L can be viewed as parametrizations of curves, not surfaces).

For these reasons, with an extension in mind to other more interesting and realistic problems,
we introduce in this paper another strategy that, instead of compactness, relies on local inversion,
that is, completeness and contractivity. More precisely, we will use Liusternik’s Inverse Function
Theorem in Banach spaces.

An interesting by-product of the method used in this paper is that it leads in a natural way
to a convergent iterative algorithm for the computation of null controls. This will be explained
with more detail below, at the end of Section 4.
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The controllability of linear and nonlinear PDEs has been the objective of many papers
the last decades. In the context of the linear and semilinear heat PDEs, the main contributions
have been obtained in [10, 23, 7, 18, 13, 6]. For parabolic free-boundary problems, controllability
questions have been considered only in a few papers; see however [3, 20, 12].

On the other hand, the solution of problems of the kind (1.1)–(1.2) is connected to several
interesting applications. Among others, we can mention solidification processes (see [14, 15])
and also the following:

● The behavior of free surface flows, see [21, 28, 31].
● Fluid-solid interaction and related problems, see [5, 24, 30].
● Tumor growth modelling and other problems from mathematical biology, see [16, 17],

etc.

In the sequel, C denotes a generic positive constant; C0, C1, etc. are other positive (specific)
constants; when it makes sense, the extension by zero in space of any function f is denoted
by f∗.

The main result in this paper is as follows:

Theorem 1.1. The free-boundary system (1.1)–(1.2) is locally null-controllable. More precisely,
given a constant L⋆ such that sup ω0 < L⋆ < L0, there exists ε > 0 such that, if u0 ∈ H1

0(0, L0)
and ∥u0∥H1

0 (0,L0)
< ε, then there exist `, v and u, with

` ∈ C1([0, T ]), L⋆ < inf
t∈[0,T ]

`(t), v ∈ L2(O), u ○Φ−1
` ∈ C0([0, T ];H1

0(0, L0)), 1

that satisfy (1.1) and (1.2).

For the proof, we will first use a suitable change of variables that transforms (1.4) in a
parabolic problem in a fixed cylindrical domain. Then, we will introduce two appropriate Banach
spaces X , Y and a mapping F ∶ D ⊂ X ↦ Y (defined on an appropriate subset D), and we will
rewrite (1.1)–(1.2) as an equation of the form

F (z, `, v) = (0, u0), (z, `, v) ∈D ⊂ X . (1.5)

Finally, we will check that the assumptions of Liusternik’s Theorem are satisfied by F ∶ D ⊂
X ↦ Y and, consequently, for any small u0, (1.1)–(1.2) is solvable.

This paper is organized as follows. In Section 2, we give the details of the announced change
of variables and we recall some previous results. In Section 3, we consider and solve a con-
strained null controllability problem for a linear parabolic system; this will be needed later to
prove that the hypotheses of Liusternik’s Theorem are fulfilled. Section 4 deals with the proof
of Theorem 1.1. In Section 5, we present some additional comments and extensions. Finally,
Section 6 is devoted to recall some technical results.

2. Some previous results

As already mentioned, we will use a suitable change of variables in order to transform the
non-cylindrical problem (1.4) into a cylindrical one.

2.1. Reduction to a fixed cylindrical domain. Let ` ∈ C1([0, T ]) be given. We will con-
struct a diffeomorphism Φ` that maps the set Q` onto QL0 = (0, L0)× (0, T ) and coincides with
the identity on the square [0, L⋆] × [0, T ] for a fixed L⋆ such that sup ω0 < L⋆ < L0; see the
figure below.

Construction of Φ`: Fix a small δ > 0. Given y > L⋆ + 2δ, define g(⋅ , y) as the linear
interpolation of the points (L⋆−δ,L⋆−δ), (L⋆+δ,L⋆+δ), (y−δ,L0−δ), (y+δ,L0+δ). Consider
g(⋅, y) as defined on the whole line by extending the end segments toward infinity.

Specifically,

g(x, y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x, if x ≤ L∗ + δ,
L∗ + δ + (L∗−L0+2δ)(x−L∗−δ)

(L∗+2δ−y)
, if L∗ + δ < x < y − δ,

x − y +L0, if x > y − δ.

1Φ` is a diffeomorphism constructed in subsection 2.1 for any ` ∈ C1([0, T ]).
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On the other hand, let ϕ be a nonnegative even smooth function with compact support
contained in (−δ, δ), which integral on this interval is equal to one: ϕ ∈ C∞(R), ϕ(x) =
ϕ(−x), supp ϕ ⊂ (−δ, δ) and ∫R ϕ(x)dx = 1.

Let us define
H(x, y) = (ϕ ∗ g(⋅, y))(x).

It can be seen that H is a smooth function on R × (L⋆ + 2δ,∞). Note that H(y, y) = L0 and
Hx(y, y) = 1 for every y > L⋆ + 2δ. Moreover,

∇H(x, y) = ((ϕ′ ∗ g(⋅, y))(x) , (ϕ ∗ ∂yg(⋅, y))(x)),

where

∂yg(x, y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, if x ≤ L∗ + δ,
(L∗−L0+2δ)(x−L∗−δ)

(L∗+2δ−y)2
, if L∗ + δ < x < y − δ,

−1, if x > y − δ
(see the figure below).
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(a) Typical plot of g(⋅, y).
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(b) Typical plot of ∂yg(⋅, y).

The desired diffeomorphism is given as follows:

Φ` ∶ Q` ↦ QL0 , Φ`(x, t) = (H(x, `(t)), t).
The change of variables (ξ, t) = Φ`(x, t) transforms (1.4) into

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

M `z = ṽ1O, in QL0 ,
z(0, t) = z(L0, t) = 0, for t ∈ (0, T ),
z(ξ,0) = u0(ξ), for ξ ∈ (0, L0),
z(ξ, T ) = 0, for ξ ∈ (0, L0),

(2.1)

where
M `z = zt + a`zξ − b`zξξ, (2.2)

z = u ○Φ−1
` , ṽ = v ○Φ−1

` and

a`(ξ, t) =Hy(H−1(ξ, `(t)), `(t)) `′(t) − Hxx(H−1(ξ, `(t)), `(t)), (2.3)

b`(ξ, t) =H2
x(H−1(ξ, `(t)), `(t)). (2.4)

Here, H−1 denotes the inverse of H with respect to the first coordinate (i.e. H−1(ξ, y) ∶= (ϕ ∗
g(⋅, y))−1(ξ)).

Observe that a` ∈ C(Q̄) and b` ∈ C1(Q̄) whenever ` ∈ C1[0, T ].
Remark 2.1. Note that a slight modification in the construction of Φ actually permits to
consider also controls acting on noncilindrical domains O.
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2.2. Liusternik’s Inverse Function Theorem. Let us consider the mapping

F(z, v, `) = (M `+L0z − v1O , z(0)) . (2.5)

Note that F(0,0,0) = (0,0).
Later, our approach will be to locally invert this mapping, with the aim to ensure, for any

small initial data u0, the existence of a triplet (z, v, `) such that F(z, v, `) = (0, u0).
To accomplish this goal, we will apply the following local inversion result in Banach spaces,

which is a consequence of the so-called Liusternik-Graves Theorem (see for instance [1]):

Theorem 2.2. Let X and Y be Banach spaces, let D ⊂ X be a non-empty open set and let
F ∶ D ⊂ X ↦ Y be a C1 mapping. Assume that (x̄, ȳ) ∈ D × Y is such that F(x̄) = ȳ and
F ′(x̄) ∶ X ↦ Y is onto. Then, there exists δ > 0 such that, for every y ∈ Y satisfying ∥y− ȳ∥Y < δ,
there exists at least one solution x ∈ X to the equation

F(x) = y, x ∈ X .
Once the inversion is performed, we take (z, v, `) = F−1(0, u0) and, returning to the original

coordinates, we see that the function u(x, t) ∶= z ○Φ`+L0
(x, t) satisfies (1.1). As a matter of fact,

what we can say by now is that the first and third lines of (1.1) are satisfied, but what about
the other ones?

A major issue will be to find suitable Banach spaces X and Y such that, first, the hypotheses
of Theorem 2.2 are fulfilled around (0,0,0) and, second, (z, v, `) ∈ X implies that u satisfies the
remaining lines of (1.1), together with the zero final condition (1.2).

This will be achieved by imposing to the functions in X to satisfy the final null and boundary
conditions together with the Stefan condition. Then, Y will be chosen such that F is well defined
and F ′(0,0,0) is surjective. To get this last property, we need to solve a null controllability
problem for a linear parabolic equation with and additional integral constraint, which requires
the use of an improved Carleman’s inequality, proved in Proposition 3.2.

3. Constrained null controllability of linear parabolic equations

Let us fix u0 ∈H1
0(0, L0) and h ∈ L2(ρ2

0;Q). The goal of this section is to solve the linear null
controllability problem

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ML0z(ξ, t) = v(ξ, t)1O + h(ξ, t) in QL0 ,
z(0, t) = z(L0, t) = 0 for t ∈ (0, T ),
z(ξ,0) = u0(ξ) for ξ ∈ (0, L0),
z(ξ, T ) = 0 for ξ ∈ (0, L0).

(3.1)

with the additional constraint2

∫
T

0
zξ(L0, s) ds = 0. (3.2)

Here ML0 denotes the operator defined by (2.2) when `(t) ≡ L0. That is

ML0 = ∂t + aL0∂ξ − bL0∂ξξ.

It is not difficult to see (from (2.3), (2.4) and the definition of H) that aL0 = 0 and bL0 = 1.
Nevertheless, we maintain the notation given above because most calculations performed below
remain valid if we replace the constant L0 for a fixed function `0 such that `0(0) = L0.

The main tool will be a modified (or improved) Carleman’s estimate that will be established
for the solutions to an adjoint problem. Ideas of this kind seem to have been used for the first
time in [27] and has led since then to the solution of several constrained control problems; see
for example [26, 25].

Let us first introduce some notation. Thus, let us fix a nonnegative function α0 ∈ C2([0, L0])
such that α0(0) = α0(L0) = 0 and ∣α′0(x)∣ > 0 for all x ∈ [0, L0] ∖ ω0. Given λ > 0, let us set

φ(x, t) ∶= e
λα0(x)

m(t) , α̃(x, t) ∶= e2λ∥α0∥∞ − eλα0(x) and α(x, t) ∶= α̃(x)
m(t) ,

where m ∈ C∞([0, T ]) is such that

m(t) =
⎧⎪⎪⎨⎪⎪⎩

T 2/4 for t ∈ [0, T /2],
t(T − t) for t ∈ [T /2, T ].

(3.3)

Then the following well known global Carleman estimate holds (see [18]):

2A justification for the introduction of this constraint is given in Section 4 after the proof of Lemma 4.3.
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Proposition 3.1 (Carleman inequality). There exist positive constants λ̃, s̃ and C (depending

on L⋆, ω0 and T ) such that, for any s ≥ s̃ and λ ≥ λ̃,

∬
QL0

e−2sα[(sφ)−1(∣pt∣2+∣pξξ ∣2)+λ2(sφ)∣pξ ∣2+λ4(sφ)3∣p∣2] dξ dt

≤ C (∬
QL0

e−2sα∣(ML0)∗(p)∣2 dξ dt +∬
O

e−2sα λ4(sφ)3∣p∣2 dξ dt) .
(3.4)

for any p ∈H2,1(QL0) such that p(0, t) = p(L0, t) = 0 for 0 ≤ t ≤ T .

In general, (M `0)∗(p) ∶= −pt − (a`0p)ξ − (b`0p)ξξ corresponds to the formal adjoint of M `0 .

The preceding result remains in force for such operators because of the regularity of a`0 and b`0

mentioned at the end of Subsection 2.1. In our current setting we have (ML0)∗(p) ∶= −pt − pξξ.
From here on we use the following notation for the weight functions in (3.4):

ρ = esα, ρ0 = λ−2esα(sφ)−3/2, ρ1 = λ−1esα(sφ)−1/2, ρ2 = esα(sφ)1/2.

In order to solve the constrained problem (3.1)–(3.2), we will first ignore the integral restric-
tion. Thus, from the results in [18], we know that there exists (z̄, v̄) in L2(ρ2;QL0)×L2(ρ2

0;O)
(that will be fixed from now on and up to the end of this section), such that

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ML0 z̄ = v̄1O + h, in QL0 ,
z̄(0, t) = z̄(L0, t) = 0, for t ∈ (0, T ),
z̄(ξ,0) = u0(ξ), for ξ ∈ (0, L0),

(3.5)

and

∥z̄∥2
L2(ρ2;QL0

)
+ ∥v̄∥2

L2(ρ20;O)
≤ C (∬

Q0

ρ2
0∣h∣2 dξ dt + ∫

L0

0
∣u0∣2 dξ) . (3.6)

Moreover, it is not difficult to see that

η̄2 ∶= (∫
T

0
z̄ξ(L0, s) ds)

2

≤ C (∬
Q0

ρ2
0∣h∣2 dξ dt + ∫

L0

0
∣u0∣2 dξ) . (3.7)

Let us denote by Z(v) the solution (in L2(0, T ;H2(0, L0))) to the problem

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ML0z = v1O in QL0 ,
z(0, t) = z(L0, t) = 0 for t ∈ (0, T ),
z(ξ,0) = 0 for ξ ∈ (0, L0),

(3.8)

and let us introduce the family of admissible controls

Vad = { v ∈ L2(ρ2
0;O) ∶ ∫

T

0
(Z(v))ξ(L0, s) ds = η̄ }.

In terms of the linear (nonlocal) differential operator

N ∶ L2(ρ2
0;O)↦ L2(0, T ), N(v) = (Z(v))ξ(L0, s),

one has

Vad = { v ∈ L2(ρ2
0;O) ∶ ⟨N∗1 , v⟩L2(ρ−20 ;O)×L2(ρ20;O)

= η̄ },
where N∗ ∶ L2(0, T )↦ L2(ρ−2

0 ;O) denotes the adjoint of N and 1 is the unit constant function.
To simplify the notation, we write the previous duality product in the form ⟨⋅, ⋅⟩ρ−20 ×ρ20

. Note

that ⟨w∗, v⟩ρ−20 ×ρ20
coincides with ∬O w∗v dξ dt; in particular, we see that ⟨p, p⟩ρ−20 ×ρ20

is well

defined for any p ∈ C2(Q0).
It is possible to give an explicit expression for the operator N∗. In fact, integrating the

identity

ML0(y)ϕ − y(ML0)∗(ϕ) = (yϕ)t + yϕξξ − yξξϕ,
on QL0 , where y = Z(v) and ϕ is the solution of

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(ML0)∗ϕ = 0 in QL0 ,
ϕ(0, t) = 0 ϕ(L0, t) = h(t) for t ∈ (0, T ),
ϕ(ξ,0) = 0 for ξ ∈ (0, L0),

(3.9)

we obtain

∬
QL0

v ϕ∣O dξdt = −∫
T

0
Z(v)ξ(L0, t) h(t) dt.

In other words, N∗(h) = −ϕ∣O where ϕ is the solution of (3.9).
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Now, let us introduce the space

P0 ∶= {p ∈ C2(Q0) ∶ p(0, t) = p(L0, t) = 0 ∀t ∈ [0, T ] },
endowed with the scalar product

⟪p, p̄⟫ =∬
QL0

ρ−2(ML0)∗(p)(ML0)∗(p̄)dξ dt

+∬
QL0

ρ−2
0 (p − P̂ (ρ−2

0 p∣O)(p̄ − P̂ (ρ−2
0 p̄∣O) 1O dξ dt, (3.10)

where P̂ (q) stands for

P̂ (q) =
⟨N∗1 , q⟩ρ−20 ×ρ20

∥N∗1∥2
L2(ρ−20 )

N∗1.

Clearly, the first integral in (3.10) is finite for p, p̄ ∈ P0. For the well definition of the second

integral, it is enough to note that p ∈ P0 implies that ρ−2
0 p∣O ∈ L2(ρ2

0;O), therefore P̂ (ρ−2
0 p∣O) is

well defined and belongs to L2(ρ−2
0 ;O).

Let us check that ⟪⋅, ⋅⟫ is in fact a scalar product in P0. Suppose that ⟪p, p⟫ = 0 for some
p ∈ P0. Then

{ (ML0)∗(p) = 0, in QL0 ,
p(0, t) = p(L0, t) = 0, for t ∈ (0, T ),

and p = βN∗1 in O, where β =
⟨N∗1 , ρ−20 p∣O⟩

ρ−2
0

×ρ2
0

∥N∗1∥2
L2(ρ−2

0
)

.

It follows from the characterization of N∗ given above that N∗1 = −ϕ̃∣O, where ϕ̃ is the
solution of (3.9) with h(t) ≡ 1. As a consequence,

{ (ML0)∗(p + βϕ̃) = 0, in QL0 ,
p + βϕ̃ = 0, in O.

By unique continuation, which is a direct consequence of Carleman’s inequality (3.4), we have p =
−βϕ̃ in QL0 . Hence, in particular, p(L0, t) = −βϕ̃(L0, t), which implies β = 0 and, consequently,
p = 0.

In the sequel, we will use a well known uniqueness-compactness result. It is the following:

Let X and Y be reflexive Banach spaces and assume that A,B ∈ L(X;Y ), A is
injective and B is compact. Also, assume that one has

∥z∥X ≤ C1(∥Az∥Y + ∥Bz∥Y ) ∀z ∈X. (3.11)

Then, there exists C2 > 0 such that

∥z∥X ≤ C2∥Az∥Y ∀z ∈X.
Indeed, if this were not the case, there would exist z1, z2, . . . in X such that

∥zn∥X = 1 and ∥Azn∥Y < 1

n
∀n ≥ 1.

We can assume that, for some z∗ ∈ X, zn → z∗ weakly in X and Bzn → Bz∗ strongly in Y
as n→ +∞. Since Az∗ = 0, we necessarily have z∗ = 0 and therefore ∥Bzn∥Y → 0.

But we also have from (3.11) that

1 = ∥zn∥X ≤ C1(∥Azn∥Y + ∥Bzn∥Y ) ≤ C1 ( 1

n
+ ∥Bzn∥Y ) ∀n ≥ 1,

whence we arrive to a contradiction.
In the sequel, we will denote by P the completion of P0 for the scalar product ⟪⋅, ⋅⟫:

P ∶= P0
⟪⋅,⋅⟫

.

Proposition 3.2 (Carleman inequality). There exist positive constants λ0, s0 and C (depending
on L0, ω and T ) such that, for any s ≥ s0 and λ ≥ λ0, one has:

I(p) = ∬
QL0

e−2sα[(sφ)−1(∣pt∣2+∣pξξ ∣2)+λ2(sφ)∣pξ ∣2+λ4(sφ)3∣p∣2] dξ dt

≤C(∬
QL0

e−2sα∣(ML0)∗(p)∣2 dξ dt+∬
O

e−2sαλ4(sφ)3∣p−P̂ (ρ−2
0 p∣O)∣2 dξ dt) .

(3.12)

for any p ∈ P.
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Proof. Recall that

P̂ (p) =
⟨N∗1 , p⟩ρ−20 ×ρ20

∥N∗1∥2
L2(ρ−20 )

N∗1 ∀p ∈ P.

The image of P̂ is a one-dimensional vector space; thus, P̂ can be viewed as a compact operator.
On the other hand, in view of the usual Carleman’s estimates (Proposition 3.1), we have

I(p) ≤ C (∬
QL0

ρ−2∣(ML0)∗(p)∣2 dξ dt +∬
O

ρ−2
0 ∣p − P̂ p∣2 dξ dt

+∬
O

ρ−2
0 ∣P̂ p∣2 dξ dt) .

(3.13)

We can rewrite this in the form

I(p) ≤ C (∥Ap∥2
L2(QL0

)×L2(O)
+ ∥Bp∥2

L2(QL0
)
) ,

where the linear operators A and B, are respectively given by

Ap ∶= (ρ−1(ML0)∗(p), ρ−1
0 (p − P̂ p)∣

O
)

and

Bp ∶= ρ−1
0 P̂ p∣

O

for all p ∈ P0.
We thus see that A and B are respectively injective and compact. Hence, the uniqueness-

compactness argument can be applied in this framework. This means that we can write an
inequality similar to (3.13) where the last integral is skipped. In other words, there exists a new
constant C such that

I(p) ≤ C (∬
QL0

ρ−2∣(ML0)∗(p)∣2 dξ dt +∬
O

ρ−2
0 ∣p − P̂ p∣2 dξ dt) .

= C ⟪p, p⟫
(3.14)

for all p ∈ P. �

The main result of this section is the following:

Theorem 3.3. Assume that u0 ∈ H1
0(0, L0) and ρ0h ∈ L2(QL0). Then, there exist v ∈ L2(O)

and z ∈ L2([0, T ];H1
0(0, L0) ∩ H2(0, L0)) such that zt ∈ L2([0, T ];L2(0, L0)) satisfying (3.1)

and (3.2). Furthermore, the following estimate holds:

∥ρz∥2
L2(QL0

)
+ ∥ρ0v∥2

L2(O)
≤ C (∬

Q0

ρ2
0∣h∣2 dξ dt + ∫

L0

0
∣u0∣2dξ) (3.15)

Proof. Let L be the linear form given by

L ∶ P ↦ R, L(q) ∶=∬
O

v̄q dξ dt.

Using Schwarz’s inequality, the estimate (3.6) and the Carleman’s estimate in Proposition (3.2),
we get:

∣L(q)∣ ≤ (∬
Q0

ρ2
0∣v̄∣2 dξ dt)

1/2

(∬
Q0

ρ−2
0 ∣q∣2 dξ dt)

1/2

≤ C (∬
Q0

ρ2
0∣h∣2 dξ dt + ∫

L0

0
∣u0∣2dξ)

1/2

⟪q, q⟫1/2
. (3.16)

Therefore, L ∈ P ′ and, from Lax-Milgram’s Theorem, we deduce the existence of a unique p
satisfying

⟪p, q⟫ = L(q) ∀q ∈ P, p ∈ P.
Then,

∬
Q
(ρ−2(ML0)∗(p)(ML0)∗(q) + ρ−2

0 (p − P̂ (ρ−2
0 p∣O))(q − P̂ (ρ−2

0 q∣O)) 1O)dξ dt

=∬
O

v̄q dξ dt ∀q ∈ P.
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Let us introduce z̃ ∶= ρ−2(ML0)∗(p) and ṽ ∶= (v̄ − ρ−2
0 (p − P̂ (ρ−2

0 p∣O))) 1O. In particular,
⟨N∗1, ṽ⟩ρ−20 ×ρ20

= η̄, that is, ṽ belongs to Vad. Noting that

∬
Q
ρ−2

0 (p − P̂ (ρ−2
0 p∣O))P̂ (ρ−2

0 q∣O) 1O dξ dt = 0,

we see that

∬
Q
z̃ (ML0)∗(q)dξ dt =∬

Q
qṽ1O dξ dt ∀q ∈ P.

Consequently, z̃ is a solution by transposition of

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ML0 z̃(ξ, t) = ṽ(ξ, t)1O in QL0 ,
z̃(0, t) = z̃(L0, t) = 0 for t ∈ (0, T ),
z̃(ξ,0) = 0 for ξ ∈ (0, L0).

(3.17)

Actually, since ṽ ∈ L2(ρ2
0;O), (3.17) possesses a unique weak solution θ satisfying

θ ∈ L2(0, T ;H2(0, L0)), θt ∈ L2(0, T ;L2(0, L0)),
which has to coincide with z̃.

As an additional consequence of (3.16), we also have that

∥ρz̃∥2
L2(QL0

)
+ ∥ρ0(ṽ − v̄)∥2

L2(O)
≤ C (∬

Q0

ρ2
0∣h∣2 dξ dt + ∫

L0

0
∣u0∣2dξ) . (3.18)

The proof of Theorem 3.3 follows from (3.5)–(3.7), (3.17) and (3.18), by taking z = z̄ − z̃ and
v = v̄ − ṽ. �

We will end this section by establishing some important estimates for the state-control pairs
(z, v) that satisfy (3.1).

Lemma 3.4. Suppose that (z, v) ∈ L2(ρ2;QL0)×L2(ρ2
0;O) solves (3.1) with u0 ∈H1

0(0, L0) and
h ∈ L2(ρ2

0;QL0). Then

∥ρ̂zξ∥2
L2(QL0

)
≤ C(∥u0∥2

L2(0,L0)
+ ∥h∥2

L2(ρ20;QL0
)
+ ∥z∥2

L2(ρ2;QL0
)
+ ∥v∥2

L2(ρ20;O)
), (3.19)

∥ρ⋆zt∥2
L2(QL0

)
≤ C(∥u0∥2

H1
0 (0,L0)

+ ∥h∥2
L2(ρ20;QL0

)
+ ∥z∥2

L2(ρ2;QL0
)
+ ∥v∥2

L2(ρ20;O)
), (3.20)

∥ρ⋆zξξ∥2
L2(QL0

)
≤ C(∥u0∥2

H1
0 (0,L0)

+ ∥h∥2
L2(ρ20;QL0

)
+ ∥z∥2

L2(ρ2;QL0
)
+ ∥v∥2

L2(ρ20;O)
), (3.21)

where ρ̂ =mρ and ρ⋆ =m2ρ.

Proof. Let us prove each estimate separately.

● Proof of (3.19): Multiplying the first line of (3.1) by ρ̂2z, and integrating in space, we
have

1

2

d

dt
∫

L0

0
ρ̂2∣z∣2 dξ + ∫

L0

0
b`ρ̂2∣zξ ∣2 dξ = ∫

L0

0
(v1O + h)ρ̂2z dξ + ∫

L0

0
ρ̂ρ̂t∣z∣2 dξ

− 2∫
L0

0
b`ρ̂ρ̂ξzzξ dξ − ∫

L0

0
(b`ξ + a`)ρ̂2zzξ dξ.

The following estimates are obtained by calculating explicitly ρ̂t and ρ̂ξ, and then using Hölder
and Young inequalities:

∫
L0

0
∣ρ̂ρ̂t∣ ∣z∣2 dξ ≤ C ∫

L0

0
ρ2∣z∣2 dξ,

∫
L0

0
∣ρ̂ρ̂ξzzξ ∣dξ ≤ Cβ ∫

L0

0
ρ2∣zξ ∣2 dξ + C

4β
∫

L0

0
ρ2∣z∣2 dξ,

and

∫
L0

0
∣Hρ̂2z∣dξ ≤ Cβ ∫

L0

0
ρ2

0H
2 dξ + C

4β
∫

L0

0
ρ2∣z∣2 dξ,

where β is any positive number and H is any function.
Since a`, b` and b`ξ are bounded and b` is positive and bounded from below, we can choose β

in the previous estimates such that, after integrating in (0, t) for 0 < t < T and taking limits as
t goes to T , we arrive at (3.19).
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● Proof of (3.20): Multiplying the first line of (3.1) by (ρ⋆)2zt and integrating in space,
we have:

∫
L0

0
(ρ⋆)2∣zt∣2 dξ + 1

2

d

dt
∫

L0

0
b`(ρ⋆)2∣zξ ∣2 dξ = ∫

L0

0
(v1O + h)(ρ⋆)2zt dξ − 2∫

L0

0
ρ⋆ρ⋆ξzξzt dξ

+ ∫
L0

0
b`ρ⋆ρ⋆t ∣zξ ∣2 dξ + 1

2
∫

L0

0
b`t(ρ⋆)2∣zξ ∣2 dξ − ∫

L0

0
(b`ξ + a`)(ρ⋆)2ztzξ dξ.

Now, we argue as in the previous paragraph. First, we get

∫
L0

0
∣ρ⋆ρ⋆t ∣ ∣zξ ∣2 dξ ≤ C ∫

L0

0
ρ̂2∣zξ ∣2 dξ, ∫

L0

0
(ρ⋆)2 ∣zξ ∣2 dξ ≤ C ∫

L0

0
ρ̂2∣zξ ∣2 dξ,

∫
L0

0
∣ρ⋆ρ⋆ξzξzt∣dξ ≤ Cβ ∫

L0

0
(ρ⋆)2∣zt∣2 dξ + C

4β
∫

L0

0
ρ̂2∣zξ ∣2 dξ,

and

∫
L0

0
∣(ρ⋆)2ztH ∣dξ ≤ Cβ ∫

L0

0
(ρ⋆)2∣zt∣2 dξ + C

4β
∫

L0

0
ρ2

0H
2 dξ.

Consequently,

∫
L0

0
(ρ⋆)2∣zt∣2 dξ + d

dt
∫

L0

0
b`(ρ⋆)2∣zξ ∣2 dξ ≤ C (∫

L0

0
(v2

1O + h2)(ρ⋆)2 dξ

+ ∫
L0

0
ρ̂2∣zξ ∣2 dξ + ∫

L0

0
(ρ⋆)2∣zξ ∣2 dξ) .

Integrating in time and using (3.19), (3.15) and Poincaré’s inequality, we find that

∫
t

0
∫

L0

0
(ρ⋆)2∣zt∣2 dξds + ∫

L0

0
(ρ⋆)2∣zξ ∣2 dξ

≤ C (∥u0∥2
H1

0 (0,L0)
+ ∥z∥2

L2(ρ2;QL0
)
+ ∥v∥2

L2(ρ20;O)

+∥h∥2
L2(ρ20;QL0

)
+ ∫

t

0
∫

L0

0
(ρ⋆)2∣zξ ∣2 dξds) .

Finally, from Gronwall’s inequality, taking limits as t goes to T , we deduce (3.20).

● Proof of (3.21): Now, let us multiply the first line of (3.1) by −(ρ⋆)2 zξξ and let us
integrate in space. We see that

1

2

d

dt
∫

L0

0
(ρ⋆)2∣zξ ∣2 dξ + ∫

L0

0
b`(ρ⋆)2∣zξξ ∣2 dξ

= −∫
L0

0
(v1O + h)(ρ⋆)2zξξ dξ − 2∫

L0

0
ρ⋆ρ⋆ξzξzt dξ

+ ∫
L0

0
ρ⋆ρ⋆t ∣zξ ∣2 dξ + ∫

L0

0
a`(ρ⋆)2zξzξξ dξ.

Using (3.19) and (3.20) and arguing in a very smilar way, we get:

∫
L0

0
(ρ⋆)2∣zξ ∣2 dξ + ∫

t

0
∫

L0

0
(ρ⋆)2∣zξξ ∣2 dξds

≤ C (∥u0∥2
H1

0 (0,L0)
+ ∥h∥2

L2(ρ20;QL0
)
+ ∫

t

0
∫

L0

0
ρ̂2∣zξ ∣2 dξds) .

Again, from Grönwall’s inequality, (3.21) is easily found. �

We end this section by pointing out that the ideas used throughout it can be adapted to
solve control problems under more general constraints (for instance, a finite number of one-

dimensional restrictions as (3.2)). In fact, the key point here is that P̂ , the projection induced
by the constraints, must to be compact.
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4. Proof of the main result

Let us begin this section by mentioning that in order to prove our main result, equation (1.1)
can be allowed to evolve, during a short time interval, without the influence of the control (i.e
v ≡ 0). Then, from regularity of the Stefan problem, in spite of Theorem 1.1 been stated with
initial data in H1

0(0, L0), to prove this result we can assume, without loss of generality, much
more regularity for the initial data.

Let X be the space of triplets (z, v, `) satisfying:

(i) z ∈ L2(ρ2;QL0) and

a) z(⋅,0) ∈ C2+α
0 ([0, L0]), z ∈ C2+α,1+α/2([L∗, L0] × [0, T ]). 3

b) z(0, t) = z(L0, t) = 0 for t ∈ (0, T ).
c) ML0z ∈ L2(ρ2

0;QL0).
(ii) v ∈ L2(ρ2

0;O).
(iii) ` ∈ C1+α/2([0, T ]) and

a) `(t) = − ∫
t

0 zξ(L0, s) ds.
b) `(T ) = 0.

On the other hand, let us set Y ∶= F ×C2+α
0 ([0, L0]), where

F ∶= {h ∈ L2(ρ2
0;QL0) ∶ h ∈ Cα,α/2([L∗, L0] × [0, T ])}.

It is clear that X and Y are Banach spaces for the norms

∥(z, v, `)∥2
X
∶= ∥ z∥2

L2(ρ2;QL0
)
+ ∥ML0z∥2

L2(ρ20;QL0
)
+ ∥z(⋅,0)∥2

C2+α
0 ([0,L0])

+ ∥z∥2
C2+α,1+α/2([L∗,L0]×[0,T ])

+ ∥v∥2
L2(ρ20;O)

+ ∥`∥2
C1+α/2([0,T ])

,

∥(h,u0)∥2
Y
∶= ∥h∥2

L2(ρ20;QL0
)
+ ∥h∥2

Cα,α/2([L∗,L0]×[0,T ])
+ ∥u0∥2

C2+α
0 ([0,T ])

.

Lemma 4.1. For each n ≥ 0, there exists dn > 0 such that, for any (z, v, `) ∈ X , one has:

∥`m−(n+1/2)∥∞ ≤ dn∥(z, v, `)∥X
(recall the definition of m in (3.3)).

Proof. In view of the embedding of H1(a, b) in C0[a, b], we have

∣`′(t)∣2 ≤ ∣zξ(L0, t)∣2 ≤ C ∫
L0

L∗
(∣zξ(ξ, t)∣2 + ∣zξξ(ξ, t)∣2) dξ. (4.1)

Let us introduce ρ̄(t) ∶= exp{ κ
T−t

}, where κ is chosen such that 0 < 2κ < minx∈[0,L0]
{α̃(x)}

and ρ̄ ≤ ρ1/2. Then

∫
T

0
ρ̄2∣`′(s)∣2ds ≤ C∬

QL0

ρ (∣zξ(ξ, t)∣2 + ∣zξξ(ξ, t)∣2)dξ dt

≤ C(∫
QL0

ρ2m2∣zξ(ξ, t)∣2 dξ dt + ∫
QL0

ρ2m4∣zξξ(ξ, t)∣2 dξ dt)

≤ C∥(z, v, `)∥2
X

(the last inequality comes from the estimates (3.19) and (3.21)).

Since by hypothesis `(T ) = 0, we can write that `(t) = − ∫
T
t `′(s) ds. For each n, there exists

cn > 0 such that (T − t)−n ≤ cnρ̄(t) for all t ∈ [0, T ). Therefore, using Schwarz’s inequality, we
see that

∣`(t)∣ ≤ (∫
T

t
(T − t)−2n∣`′(t)∣2 ds)

1/2

(∫
T

t
(T − t)2n ds)

1/2

≤
√

C c2n
2n + 1

(T − t)n+1/2∥(z, v, `)∥X .

From the definition of m, we also have that

∣`(t)∣ ≤
√

C c2n
2n + 1

(2/T )n+1/2m(t)n+1/2∥(z, v, `)∥X ,

for all t ∈ [T /2, T ]. Finally, using again Schwarz’s inequality and the fact that m is a constant
times T 2/4 in [0, T /2], we conclude that

∣`(t)∣ ≤ 22n+1T −2nm(t)n+1/2∥`′∥∞,
3The Hölder spaces C2+α,1+α/2 are defined in the Appendix (see Section 6).
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for all t ∈ [0, T /2]. �

Let us consider the open set

D ∶= {(z, v, `) ∈ X ∶ `(t) > L⋆ −L0 for all t ∈ [0, T ]}

and define F ∶D ⊂ X → Y by

F(z, v, `) = (M `+L0z − v1O , z(0)) . (4.2)

Remark 4.2. According to item iii) in the definition of X , F is a function of z and v. Never-
theless, for simplicity of notation, we will keep the three variables z, v and ` as arguments of
F .

Lemma 4.3. The mapping F ∶D ⊂ X ↦ Y is well defined.

Proof. Suppose that (h, z0) = F (z, v, `) for some (z, v, `) ∈ X . It is clear, from the definition of

X , that h ∈ Cα,α/2([L∗, L0] × [0, T ]) and z0 ∈ C2+α
0 ([0, L0]). Therefore, it only remains to show

that M `+L0z ∈ L2(ρ2
0;QL0), for which it is enough to verify

(a`+L0 − aL0)zξ ∈ L2(ρ2
0;QL0). (4.3)

(b`+L0 − bL0)zξξ ∈ L2(ρ2
0;QL0). (4.4)

In view of the a priori estimates (3.19), (3.21) and the fact that ∣a`+L0 − aL0 ∣ ≤ c0∣`∣ + c1∣`′∣
and ∣b`+L0 − bL0 ∣ ≤ c2∣`∣, it wil be enough to check that m(t)(∣`(t)∣ + ∣`′(t)∣) and m−1(t)(∣`(t)∣)
are uniformly bounded on [0, T ].

The first assertion is immediately verified and the second one is a consequence of Lemma 4.1.
�

It is exactly at this point that we can see that the constraint (3.2) is needed. In fact, since
m(T ) = 0, we must to impose `(T ) = 0 if we want that m−1(t)(∣`(t)∣) be bounded in [0, T ].
Although, in principle, this can be viewed as a technical restriction, it makes physical sense if
we interpret (1.1) as a model for a semi-infinite one-dimensional block of ice, initially at melting
temperature u = 0 for x ∈ [L0,∞) and u = u0 for x ∈ [0, L0], that we want to drive to temperature
u = 0 for all x ∈ [0,∞) at time T .

Lemma 4.4. The mapping F ∶D ⊂ X → Y is continuously differentiable.

Proof. In view of the results in the previous sections, we see that the derivative of F at any
point (z, v, `) ∈D is given by

F ′(z, v, `)(z̃, ṽ, ˜̀) = (da(`, ˜̀)zξ − db(`, ˜̀)zξξ +ML0+`z̃ − ṽ1O , z̃(0)) ,

for any (z̃, ṽ, ˜̀) in X . The expressions da(`, ˜̀) and db(`, ˜̀) appearing above are respectively
defined in (6.1) and (6.2) and can be written in the form

da(`, ˜̀)(ξ, t) = â(`(t), `′(t), ξ) ⋅ (˜̀(t), ˜̀′(t)) and db(`, ˜̀)(ξ, t) = b̂(`(t), ξ)˜̀(t), (4.5)

where â and b̂ are smooth functions.
Now, we proceed to verify that F ′ ∶ D ⊂ X → L(X ,Y) is a continuous function. To this end,

it is enough to prove that for any (z, v, `) ∈ D , if (zn, vn, `n) → (z, v, `) in X , there exists a
sequence δn → 0 such that

∥(F ′(zn, vn, `n) −F ′(z, v, `))(z̃, ṽ, ˜̀)∥2
Y
≤ δn∥(z̃, ṽ, ˜̀)∥2

X
.

Note that the left hand side of this last inequality corresponds to

∥(hn − h)∥2
L2(ρ20;QL0

)
+ ∥(hn − h)∥2

Cα,α/2([L∗,L0]×[0,T ])
,

where hn = da(`n, ˜̀)zξ−db(`n, ˜̀)zξξ+ML0+`n z̃ and h = da(`, ˜̀)zξ−db(`, ˜̀)zξξ+ML0+`z̃. Therefore,
we have to prove the existence of a sequence δn → 0 such that

∥(hn − h)∥2
L2(ρ20;QL0

)
≤ δn∥(z̃, ṽ, ˜̀)∥2

X
and ∥(hn − h)∥2

Cα,α/2([L∗,L0]×[0,T ])
≤ δn∥(z̃, ṽ, ˜̀)∥2

X
.
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The first inequality follows from the regularity of â and b̂ in (4.5), the a priori estimates
(3.19) and (3.21) and Lemma 4.1, by noting that ∥(hn − h)∥2

L2(ρ20;QL0
)

can be bounded from

above by 6 times

δ1nC1∥˜̀∥2
C1[0,T ]

+ δ2nC2∥˜̀∥2
C1[0,T ]

+ (δ3nC3 + δ4nC4)∥˜̀(t)/
√
m(t)∥2

∞

+ T
2

4
δ5n∥z̃ξ∥2

L2(ρ̂2;QL0
)
+ δ6n∥b̂(L0 + `)∥2

∞
∥z̃ξξ∥2

L2((ρ⋆)2;QL0
)
,

where,

δ1n = sup
(ξ,t)∈QL0

∣â(`n(t), `′n(t), ξ) − â(`(t), `′(t), ξ)∣2 C1 = sup
n∈N

∥(zn)ξ∥2
L2(ρ20;QL0

)

δ2n = ∥(zn − z)ξ∥2
L2(ρ20;QL0

)
C2 = sup

(ξ,t)∈QL0

∣â(`(t), `′(t), ξ)∣2

δ3n = sup
(ξ,t)∈QL0

∣̂b(`n(t), ξ) − b̂(`(t), ξ)∣2 C3 = sup
n∈N

∥(zn)ξξ∥2
L2((ρ⋆)2;QL0

)

δ4n = ∥(zn − z)ξξ∥2
L2((ρ⋆)2;QL0

)
C4 = sup

(ξ,t)∈QL0

∣̂b(`(t), ξ)∣2

δ5n = sup
(ξ,t)∈QL0

∣aL0+`n(ξ, t) − aL0+`(ξ, t)∣ C6 = sup
0≤θ≤1

∥(L0 + `) + θ(` − `n)∥2
∞

δ6n = ∥(` − `n)(t)/
√
m(t)∥2

∞
.

The second inequality can be obtained in a similar way. �

Lemma 4.5. F ′(0,0,0) ∶ X → Y is surjective.

Proof. We have to show that, for every (h,u0) ∈ Y, there exists (z, v, `) ∈ X such that:

(1) ML0z − v1O = h.
(2) z(0) = u0.

Since h ∈ L2(ρ2
0;QL0) and u0 ∈ C2+α

0 ([0, L0]) (in particular to H1
0((0, L0))), and in view of

Theorem 3.3, there exists a pair of functions (z, v) satisfying (a) and (b) above, together with
conditions (i) b), (i) c) and (ii) in the definition of X . Moreover, defining

`(t) = −∫
t

0
z̃ξ(L0, s) ds,

it is also guaranteed by Theorem 3.3 that `(T ) = 0.
The proof of the Hölder regularity of z and ` needed to fulfill the definition of X will be divided

in two steps. First, since u0 ∈ C2+α
0 ([0, L0]) and h ∈ Cα,α/2([L∗, L0] × [0, T ]), Theorem 6.1

implies that z ∈ C2+α,1+α/2([L∗, L0] × [0, T ]). Secondly, applying Theorem 6.2 to the problem

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ML0w(ξ, t) = h(ξ, t) in (L∗, L0) × [0, T ],
w(0, t) = z(L∗, t) w(L0, t) = 0 for t ∈ (0, T ),
w(ξ,0) = u0(ξ) for ξ ∈ (L∗, L0),

we can conclude that z also satisfies condition (i) a) in the definition of X . Finally, the desired
regularity for ` defined above follows from (i) a). �

Remark 4.6. Taking into account the formulation (1.5) of the null controllability problem and
the fact that F ′(0,0,0) is surjective, we can introduce, as in [4], the following quasi-Newton
iterates

(zn+1, vn+1, `n+1) = (zn, vn, `n) − G(F(zn, vn, `n) − (h, z0)), n ≥ 0.

Here, G is an inverse to F ′(0,0,0). It can be proved that, if the starting triplet (z0, v0, `0) is
close enough to (0,0,0), the sequence {(zn, vn, `n)} converges as n→ +∞ to a solution to (1.5).
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5. Some additional comments

Note that, instead of (1.1)–(1.2), we can also consider the following free-boundary system,
where the PDE is semilinear:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut − uxx + f(u) = v1O in Q`,
u(0, t) = u(`(t), t) = 0 for t ∈ (0, T ),
u(x,0) = u0(x) for x ∈ (0, L0),
`′(t) = −1

k
ux(`(t), t) for t ∈ (0, T ),

`(0) = L0,

(5.1)

u(x,T ) = 0, x ∈ (0, `(T )). (5.2)

Thus, if we assume (for instance) that f ∶ R↦ R is globally Lipschitz-continuous and f(0) = 0,
the arguments in Sections 2–4 can be adapted to prove a result similar to Theorem 1.1.

On the other hand, it is completely meaningful to consider a problem similar to (1.1)–(1.2) in
higher dimensions. Thus, Ω0 ⊂ RN be a bounded connected open set, let G ⋐ Ω0 be a non-empty
open subset, let us assume that y0 ∶ Ω0 ↦ R and T > 0 are given and let us consider the system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yt −∆y = v1G for x ∈ Ω(t), t ∈ (0, T ),
y = 0 for x ∈ ∂Ω(t), t ∈ (0, T ),

y(x,0) = y0(x) for x ∈ Ω0,
∂y
∂n

= −V ⋅ n for x ∈ ∂Ω(t), t ∈ (0, T ),
(Stefan condition)

Ω(0) = Ω0 ,

(5.3)

where n = n(x, t) denotes the outward unit normal and V = V (x, t) is the speed at which Ω(t)
expands at the points x ∈ ∂Ω(t). Now, the null controllability problem is to find y, v and
{Ω(t)}t∈[0,T ] such that one has (5.3) and, moreover,

y(x,T ) = 0, x ∈ Ω(T ). (5.4)

In a forthcoming paper, we will use techniques similar to those in the previous sections to
prove a local controllability result for (5.3)–(5.4).

6. Appendix: Some technical results

6.1. Differentiability of M `. Now we proceed to study the applications which make corre-
spond to any ` ∈ C1([0, T ]) the coefficients of the differential operator M `, namely, ` ↦ a` and
`↦ b`. From now on, we will use the notations a` and a(`) indistinctly.

Let us define da(`, ˜̀)(ξ, t) ∶= d
dε
a`+ε

˜̀(ξ, t)∣
ε=0
. Using the chain rule we can see that da(`, ˜̀)(ξ, t)

is equal to

Hy(x(ξ, t), `(t))˜̀′(t) +∇Hy(x(ξ, t), `(t)) ⋅ (Hy(x(ξ, t), `(t)),1)`′(t)˜̀(t)

+∇Hxx(x(ξ, t), `(t)) ⋅ (Hy(x(ξ, t), `(t)),1)˜̀(t), (6.1)

where x(ξ, t) denotes H−1(ξ, `(t)). Analogously, we obtain

db(`, ˜̀)(ξ, t) = 2Hx(x(ξ, t), `(t))∇Hx(x(ξ, t), `(t)) ⋅ (Hy(x(ξ, t), `(t)),1)˜̀(t). (6.2)

Now we proceed to verify that da(`, ˜̀) (resp. daξ(`, ˜̀) and db(`, ˜̀)) is in fact the Gâteaux-

derivative of a (resp. b) at ` along the direction ˜̀. Here, we deal with b` =H2
x(H−1(ξ, `(t)), `(t)).

The other cases can be handled in a similar way.
Let us fix x = H−1(ξ, `(t)), y = `(t), h1 = H−1(ξ, `(t) + ε˜̀(t)) −H−1(ξ, `(t)) and h2 = ε˜̀(t).

Using the Taylor’s first order expansion of H2
x, we obtain:

∣b`+ε˜̀(ξ, t) − b`(ξ, t) −∇H2
x(x, y) ⋅ (h1, h2)∣ ≤ C1∥(h1, h2)∥2,

where C1 can be taken as the supremum of ∥Hess(H2
x)∥ on a fixed domain, says Q`+∣˜̀∣. On the

other hand

∣H−1(ξ, `(t) + ε˜̀(t)) −H−1(ξ, `(t)) −∇H−1(ξ, `(t)) ⋅ (0, ε˜̀(t))∣ ≤ C2∣ε˜̀(t)∣2
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where C2 ∶= sup
(z,w)∈H−1(Q`+∣˜̀∣)

∥Hess(H−1(z,w))∥. Therefore,

∣b`+ε˜̀(ξ, t) − b`(ξ, t) − εdb(`, ˜̀)∣ ≤ ∣b`+ε˜̀(ξ, t) − b`(ξ, t) −∇H2
x(x, y) ⋅ (h1, h2)∣

+∣∇H2
x(x, y) ⋅ (h1 − εHy(x, y)˜̀(t) , 0)∣

and thus

∣b
`+ε˜̀(ξ, t) − b`(ξ, t)

ε
− db(`, ˜̀)∣ ≤ 3Cε∣˜̀(t)∣2,

where we can take

C = C1C2 sup
(x,t)∈Q`+∣˜̀∣

∥∇H2
x(x, t)∥.

6.2. Hölder regularity of parabolic equations. Given a connected open set Ω ⊂ Rn, consider
the cylinder QT = Ω × (0, T ) and denote by ST = {(x, t) ∶ x ∈ ∂Ω, t ∈ [0, T ]} its lateral surface.

Let Cα,α/2(QT ) be, for any α ∈ (0,1], the space of functions u ∶ QT ↦ R such that Dr
tD

s
xu is:

i) Continuous on Ω for 0 ≤ 2r + s ≤ ⌊α⌋.
ii) γ-Hölder continuous in space of index γ = α − ⌊α⌋ for 2r + s = ⌊α⌋.
iii) γ-Hölder continuous in time of index γ = (α − 2r − s)/2 for 0 < α − 2r − s < 2.

Obviously, Cα,α/2(QT ) is a Banach space for the norm

∥ ⋅ ∥Cα,α/2(QT )
= ∑

0≤2r+s≤⌊α⌋

∥Dr
tD

s
xu∥∞ + ∑

2r+s=⌊α⌋

∥Dr
tD

s
xu∥Cα−⌊α⌋

x (QT )

+ ∑
0<α−2r−s<2

∥Dr
tD

s
xu∥C(α−2r−s)/2

x (QT )
,

where ∥ ⋅ ∥∞ denotes the norm of the uniform convergence and

∥u∥Cγx (QT )
= sup

(x,t),(y,t)∈QT

∣u(x, t) − u(y, t)∣
∣x − y∣γ , ∥u∥Cγt (QT )

= sup
(x,s),(x,t)∈QT

∣u(x, s) − u(x, t)∣
∣s − t∣γ .

Consider the differential operator

Lu = ut −
n

∑
i,j=1

ai,j(x, t) uxi,xj +
n

∑
i=1

ai(x, t) uxi + a(x, t)u.

We will say that the problem
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Lu = f(x, t),
u∣
t=0

= φ(x),
u∣
ST

= Φ(x, t).
(6.3)

satisfies the compatibility conditions of order m ≥ 0 if

u(k)(x)∣
x∈S

= ∂
ku

∂tk
∣
t=0

= ∂
kΦ

∂tk
∣
t=0

= Φ(k)(x) for k = 0,⋯,m.

The next two results are classical and well known (see Theorems III.12.2 and IV.5.2 of [22]):

Theorem 6.1. Suppose u ∈ W 2,1
q (QT ) is a generalized solution of Lu = f(x, t). If f and the

coefficients of the operator L belong to Cα,α/2(QT ), then u belongs to C2+α,1+α/2(QT ).

See also the comments in [22], p. 223, below the statement of Theorem III.12.2.

Theorem 6.2. Suppose that α > 0, the coefficients of the operator L belong to Cα,α/2(QT )
and the boundary S is sufficiently regular (more precisely, of class Cα+2). Then, for any f ∈
Cα,α/2(QT ), φ ∈ Cα+2(Ω) and Φ ∈ Cα+2,α/2+1(ST ) satisfying the compatibility conditions of order

⌈α/2⌉, (6.3) possesses exactly one solution in Cα+2,α/2+1(QT ).
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[12] E. Fernández-Cara, J. Ĺımaco, S.B Menezes. On the controllability of a free-boundary problem for the 1D

heat equation. Systems & Control Letters, 87: 29–35, 2016.
[13] Fernández-Cara, E., Zuazua, E., The cost of approximate controllability for heat equations: the linear case,

Adv. Differential Equations, 5(2000), no. 4–6, 465–514.

[14] Friedman, A., Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, N.J.,
1964.

[15] Friedman, A., Variational principles and free-boundary problems, John Wiley & Sons, Inc., New York, 1982.

[16] Friedman, A. (Ed.), Tutorials in mathematical biosciences, III. Cell cycle, proliferation, and cancer, Lecture
Notes in Mathematics, 1872, Mathematical Biosciences Subseries, Springer-Verlag, Berlin, 2006.

[17] Friedman, A., PDE problems arising in mathematical biology, Netw. Heterog. Media 7 (2012), no. 4, 691–
703.

[18] Fursikov, A. V., Imanuvilov, O.Yu., Controllability of evolution equations, Lectures Notes Series, Vol. 34,

National University, RIM, Seoul, South Korea, 1996.
[19] Gupta, S.C., The classical Stefan problem. Basic concepts, modelling and analysis, Elsevier Science B.V.,

Amsterdam, 2003.

[20] Hansen, S.W., Imanuvilov, O.Yu, Exact controllability of a multilayer Rao-Nakra plate with free boundary
conditions, Math. Control Related Fields 1 (2011), no. 2, 189–230.

[21] Hermans, A. J., Water waves and ship hydrodynamics. An introduction, 2nd edition, Springer, Dordrecht,

2011.
[22] O.A. Ladyzenskaja, V.A. Solonnikov, N.N. Ural’ceva. Linear and quasilinear equations of parabolic type.

Translations of Mathematical Monographs, American Mathematical Society, Providence, R.I. 1968.

[23] Lebeau, G., Robbiano, L., Contrôle exact de l’équation de la chaleur, Comm. Partial Differential Equations
20 (1995), no. 1–2, 335–356.

[24] Liu, Y., Takahashi, T., Tucsnak, M., Single input control-llability of a simplified fluid-structure interaction
model, ESAIM Control Optim. Calc. Var. 19 (2013), no. 1, 20–42.

[25] Mercan, M., Nakoulima, O., Control of Stackelberg for a two-stroke problem, Dyn. Contin. Discrete Impuls.

Syst. Ser. B Appl. Algorithms 22 (2015), no. 6, 441–463.
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