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Abstract—In this work we present a technique to characterize
common mode chokes at high frequencies that only requires a
measurement which can be performed with a spectrum ana-
lyzer with tracking generator. This technique is based upon a
theoretical modal analysis of the common mode choke as a four-
ports device. This analysis demonstrates that the transmission
coefficient measured for one of the windings of the common
mode choke while the other winding is open-circuited will
always show two minimums which are associated with resonances
involving currents flowing respectively in common mode and in
differential mode in the common mode choke. Therefore, the
response at high frequencies of the common mode choke to both
a common mode and a differential mode stimulus can be foreseen
from the measurement of this transmission coefficient. Moreover,
from the analytical expressions obtained for the frequencies of
resonance of the common mode choke in that configuration,
we develop a method for obtaining the capacitive, resistive and
inductive parameters of a circuit model of the common-mode
choke. To validate the proposed technique different commercial
common-mode chokes have been measured and the predicted
performance of the model has been compared with measured
responses. We have verified that in all the cases the measured
transmission coefficient exhibits the resonant behavior predicted
by the theoretical analysis. We have checked that in most cases the
method designed for extracting the high frequency parameters of
the circuit model of the common mode choke yields an accurate
model of the device up to frequencies as high as 30-50 MHz. An
exception are common mode chokes made of materials with an
extreme variation of their properties with regards to frequency,
such as nanocrystalline materials.

Index Terms—Electromagnetic Compatibility, Electromagnetic
Interference, Filtering, Circuit Modeling

I. INTRODUCTION

Urrent trends toward increase of switching frequencies

and power density of power converters make electro-
magnetic interference (EMI) problems an increasingly critical
issue [1], [2]. In this context, proper design and characteri-
zation of EMI filters over a wide range of frequencies can
greatly help to keep noise emissions under control while at
the same time preventing designed over-specification. This is
specially important in applications where strict requirements of
size and weight are combined with stringent electromagnetic
compatibility (EMC) regulations, as for example in aero and
avionics engineering [3].
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Common mode chokes (CMC) are a key component of EMI
filters intended mainly for common mode (CM) current sup-
pression [2], [4], [5]. A CMC relies on the high inductance pre-
sented to CM currents by two magnetically coupled windings
on a core made from materials with high permeability. High-
frequency differential mode (DM) noise is also attenuated to
some extent by the leakage inductance of the CMC [6]. These
effects should be incorporated in the circuit model of the filter
for predicting the conducted emission of the equipment and
for improving the design of the filter. However, in practice
the performance of a CMC is significantly undermined by
parasitic effects at high frequencies [7]. In fact, a simple circuit
model of the CMC based solely upon inductive components
typically exhibits very poor accuracy at frequencies above
several hundreds of kilohertz up to a few megahertz [2].
Therefore, a method for obtaining an accurate model of the
CMC which accounts for resistive and capacitive parasitics is
of paramount importance for avoiding a time-consuming trial
and error process in the design of an EMI filter.

In general, CMCs are difficult to characterize because a
CMC is a device with four terminals whose response de-
pends on the connection, the type of noise (CM or DM)
flowing through it and the frequency-dependent permeability
of the core material [8], [9]. Despite that, and due to the
interesting nature of the problem, many different techniques
have been reported in order to provide a model of a CMC
which can perform well at high frequencies. Most of these
techniques require inputs such as windings, core geometries
and permeability of the core. From those data they calculate
parasitic elements by using analytical expressions [10]-[12]
or by solving a 3-D electromagnetic model of the CMC with
numerical techniques [1], [13]. This makes these techniques
very useful for CMC design. However, these techniques are
not always easy to use for characterization and/or selection
of those CMCs already available. This is due to the fact
that for commercial CMCs construction data and other basic
data, such as properties of the core, are seldom available
from vendors or respective datasheets. Moreover, for some
presentations of CMCs ( for example sealed components
and/or shielded filters) even basic data such as the number
of turns and length of wire are difficult to ascertain. An
alternative approach to characterize commercial CMCs is to
model the CMC from measurements, as proposed in [14]-
[17]. These techniques require the performance of impedance
measurements of the CMC with different connection schemes.
The curves obtained are then fitted to those of a corresponding
physical or behavioral circuit. In general these techniques can
be used to characterize CMCs with very complex behaviors
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Circuit model of a common mode choke.

Fig. 1.

[17]. However, the measurement of impedances (magnitude
and phase) require the use of sophisticated equipment such
as Vector Network Analyzers (VNAs) or impedance analyzers
that have to be carefully calibrated to eliminate the effects of
connectors and cables. Also, some decisions have to be taken
in some cases on impedance curves and/or manual adjustments
made to eliminate negative circuit elements and obtain valid
solutions [16].

In this work we present a technique to extract the parasitic
elements of a CMC from simple measurements that can be
carried out with a Spectrum Analyzer (SA) with Tracking
Generator (TG). By performing a modal analysis on a circuit
model of the CMC that incorporates the parasitic elements we
study the physical significance of the frequencies of resonance
which appear when measuring the coefficient of transmission
of one of the windings of the CMC while the other is open-
circuit. We demonstrate that for this particular and simple-to-
implement configuration of the CMC, the transmission coeffi-
cient always exhibits two minimums (zero in transmission in
the ideal lossless case) which are related to the two frequencies
of resonance of the CMC respectively corresponding to CM
and DM excitations of the two windings of the CMC. This
permits a quick and easy prediction of the performance of a
given CMC or even a comparison of performances between
several CMCs. This can be a great help to speed up the process
of design or re-design of a practical EMI filter. Moreover,
we show that the analytical expressions obtained for these
frequencies of resonance allows for development of a simple
approach to determine the parasitic elements of the CMC from
the measured transmission coefficient of the said configuration
of the CMC. The accuracy of the circuit model obtained by this
technique is checked by comparing the predicted attenuation
by the model of the CMC for CM and DM currents with
measured attenuations. This comparison is performed here for
a wide sample of different commercial CMCs to determine
the effective scope of the method.
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Fig. 2. Experimental setups for measuring a CMC with a spectrum analyzer
(SA) with tracking generator (TG).

II. ANALYSIS

Fig.1 shows a lumped-element circuit model of a CMC.
The model includes two equal magnetically coupled windings
that determine the low-frequency response of the choke. Also,
parasitic self-capacitances of windings (C;) and capacitances
between windings (C,,) have been added to account for the
electrical couplings that determine the high-frequency beha-
vior of the CMC [5], [11], [12]. In this model, losses within the
magnetic material are accounted for by resistors (R.) placed
in parallel with the coupled inductors.

Usually CMCs are characterized by measuring their res-
ponse to CM and DM excitations. This can be easily achieved
by using an spectrum analyzer with TG, as shown in Fig.2
[15]. In Fig.2(a) it can be observed that connected in CM
approximately equal currents are expected to enter at nodes
1 and 2, whereas equal currents with phases at +180 are
expected to flow through these nodes when the CMC is
excited in the DM configuration of Fig.2(b). The purpose
of the resistive dispatchers (RD) present in the CM setup
is to avoid impedance discontinuity caused by the splitting
lines. Fig.2(c) shows an alternative setup where one of the
windings of the CMC is connected between the TG and the
SA while the other winding is left open-circuit. We will refer
to this configuration as Open-Circuit (OC). Note that the OC
setup does not require the use of the high-frequency baluns
(transformers) or resistive dispatchers that are necessary for
the CM and DM connections. However, in this connection the
CMC is driven simultaneously in both CM and DM. Therefore
at first glance the OC setup does not seem as useful as the
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other connections for the study and characterization of a CMC.

The connections shown in Fig.2 allow the measuring of the
magnitude of the transmission coefficient, So1, in respect to
frequency. To analyze the effect at different frequencies of
each parameter of the circuit model of Fig.1 in the response of
the CMC for each configuration in Fig.2 and also to determine
the impact of these parameters on the frequencies of resonance
that appear in each setup it would be useful to obtain analytical
expressions for So; in each case.

In general, symmetric two-port networks, such as CMCs,
admit an analysis based upon decomposition on even (CM)
and odd (DM) responses. The response to a general excitation
can then be calculated by using the superposition principle.
However, this convenient analysis can not be straightforwardly
applied here due to the presence of parasitic capacitances.
It should be noted that for the CM setup of Fig.2(a), under
the criteria that currents entering a node are positive, we can
assume that I; = —I3 and Iy = —I5 and therefore the
two pairs of terminals 1-3 and 2-4 can be regarded as the
two ports of the symmetric network [18]. On the contrary,
in the DM configuration (Fig.2(b)) nodes 1-3 and 2-4 do not
satisfy the port condition at high frequencies, since the effect
of the capacitors C, is not negligible. Therefore, a simple
two-ports model can not be used to analyze the response
of the CMC for all the configurations of interest over a
wide range of frequencies. To overcome this difficulty, in this
section we instead propose an analysis that treats the CMC
as a four-ports network and that decomposes any excitation
at the four ports of the CMC in four modes that are the
eigenvectors that diagonalize the admittance matrix of the
system. This formulation will permit the obtaining of closed-
form expressions for Sa1(w) for any configuration of a CMC
modeled with a reciprocal and symmetrical circuit as that in
Fig.1.

When considered as a four-ports network, the circuit in
Fig.1 can be characterized by an admittance matrix that relates
currents and voltages (referred to ground) in the four ports:

L Yiu Y12 Yz Yuu W1
Ly | _ | Yi2 Yu Y Yis Va )
I3 Yis Yiu Y Yo V3
Iy Yiu Yiz Yo Y Vy

Where symmetry considerations allow us to assume that
Y12 = Y34, Y13 = Yo, and Yi4 = Ya3. The eigenvectors of the
matrix [Y] are [V] excitations (modes) that create equal current
responses in the four nodes of the circuit (i.e., that diagonalize
the matrix). The constant of proportionality between currents
and voltages for each mode is the eigenvector (admittance) of
that particular eigenvalue (mode). In this highly-symmetrical
case the four eigenvalues of [Y] can be identified by simple
inspection. A general voltage excitation can then be expressed
as the sum of four eigenvectors or modes in the following
form:

i 1 1 1 1
Vol 1 -1 1 -1
v |~ Ve 1 +W 1 +Vu 1 +Vb . 2)
Vi 1 -1 -1 1
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Fig. 3. Circuit model of the common mode choke equivalent to that of Fig.1
but modified to explicitly show the planes of symmetry V and H.

The system of linear equations posed by (2) allow us to
calculate the amplitudes of these four modes for a general
excitation at the four ports of the CMC:

Ve = (Vi + Vot Vi + Vi) 3)
W= 1=Vt Vi — Vi) )
Vo= 3G+ Vo~ Vs~ V) ©)
Vo= 3 (i~ Vo~ Vs + V) ©)

These four modes allow us to express any excitation as a
sum of its C, H, V and D components, and the response of
the system can be expressed in terms of the admittances of
these modes. The next step of our analysis is to calculate the
admittances of these four modes.

To calculate the admittances of the four modes in (2) it
is useful to note that these modes represent different com-
binations of even and odd excitations with respect to two
perpendicular planes of symmetry that can be depicted in
the circuit of the CMC in Fig.1. These planes of symmetry
are referred to as horizontal (H) and vertical (V) planes and
they are represented in Fig.3. Note that in this figure the
elements of the circuit model has been split into two elements
connected in series to identify the planes of symmetry. For
each mode, the H and V planes in Fig.3 can be considered
as either a magnetic wall (open circuit) or an electric wall
(ground). Therefore, each mode has a very simple equivalent
circuit from which the admittance of the mode can be obtained.
The equivalent circuit of each mode along with the calculated
admittances are represented in Table I. As shown in that table,
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for mode C we have Yo = 0. However, it must be pointed out
that in practice at each terminal of the CMC there may be
a parasitic capacitance to ground that we have disregarded.
This is a reasonable approximation validated by the results
shown in section IV. This approximation is expected to
remain valid as long as strong electric coupling of the CMC
to nearby grounded conductors is avoided when performing
measurements of the CMC in the different configurations of
Fig.2.

Once the admittances of the four modes are known, the
Sa1(w) coefficient for each configuration of Fig.2 can be most
easily calculated by identifying the modes that are excited in
each particular connection of the CMC. The formula obtained
for So1(w) will allow us to calculate the frequencies of
resonance expected for the CM, DM and OC connections in
terms of the parameters of the circuits that model the CMC.
To simplify the calculation of the frequencies of resonance we
will assume a lossless case (R. = 00). Also, resistances R
and Ry in Fig.2 are taken to be equal: R, = Ry = R = 50¢,
which is commonly true.

A. Connected in CM

The CM connection of Fig.2(a) introduces a magnetic wall
boundary condition along the plane of symmetry H of the
CMC (see Fig.3). With this condition, Table I shows that
only C and H modes can be excited. However, since we are
disregarding parasitic capacitance to ground, Yo = 0, only
currents that are associated to the H mode appear. These
currents flow horizontally in the scheme of Fig.3, hence the
H name for this mode. The S5; coefficient can therefore be

expressed as:

1T 2RYy +1
For the lossless case the transmission coefficient of (7) gives
zero at a frequency such that Yy = 0. This leads to the
following equation for this frequency of resonance:

@)

1
WoM = —F——x 8
oM AUESTI (8)
In the general lossy case this resonance will lead to Yy =

2/R. and a minimum for |S$M|.

Summing up, the CM configuration excites the H mode
which forces currents to flow in common mode through the
CMC. This causes the equivalent inductance of each winding
to be L+ M. At wcy this inductance resonates with the self-
capacitance of the windings C;, which results in a minimum
of transmission in the CM configuration.

B. Connected in DM

The DM connection shown in Fig.2(b) forces an electric
wall condition on the H plane of symmetry of the CMC. This
condition rules out C and H modes, allowing only V and D
modes to exist. The Sa; coefficient for this connection can
then be obtained by using the superposition principle and can
be expressed as:

2T RYp+2 RYy+2

(€))
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From (9) it is clear that in the lossless case SPM = 0 requires
Yy = Yp. From the expressions of the mode admittances in
Table I it follows that this zero condition will be satisfied at
the following frequency:

1

M e =an

Therefore, the DM excitation excites the D mode which is the
only mode that forces DM currents to flow in the CMC. This
causes the equivalent inductance of each winding to be L — M.
However, note that due to the existence of C,,, a V mode
is also excited. Equation (9) shows that this V mode causes
the transmission coefficient to decrease. It also modifies the
resonance condition from Yp = 0 to Yp = Y5,. This removes
the contribution of the capacitances (', to this resonance, thus
slightly increasing the frequency of resonance for the DM
setup above that of the D mode alone.

(10)

C. Connected in OC

The condition for the OC connection (Fig.2(c)) is Io =
I, = 0. It can be demonstrated that this condition can be
satisfied only if modes H and D are excited by the same current
|Ip| = |Iul, while mode V is not excited. This means that for
the OC configuration the CMC is driven simultaneously in
CM (H mode) and in DM (corresponding to the D mode),
both with the same current which is equal to one half of the
current that enters terminal 1 (and leaves terminal 3). In fact,
from (2) it can be seen that V3 — V5 = 2(Vig+Vp). This means
that the D and the H modes can be considered as connected
in series, presenting a net admittance:

 YaYp
C Yp+ Yy

Consequently, the S5; coefficient measured with this arrange-
ment can be expressed as:

Y

Yoc

21
2RYoc +1

This equation reveals that when the CMC is connected in the
OC configuration the S3; curve should exhibit two zeros (or
minimums in a lossy case): the first zero at a lower frequency
which corresponds to Yy = 0 and the second one at a higher
frequency that corresponds to the condition Yp = 0. These
two frequencies of resonance are:

1

Ct(L+M)
1

V(G + Cy) (L — M)

Physically this means that the CMC excited in the OC con-
figuration resonates with currents flowing in CM (inductance
L+ M in parallel with C}) at a lower frequency given by (13).
It also resonates at the higher frequency (14) with currents
flowing in DM (inductance L — M in parallel with C; + C,).

The relationship between the response of the CMC in the
OC configuration and its response to CM and DM currents
can be illustrated with an example. With this aim in Fig.4
we represent the magnitude and phase of S3; measured for

12)

woCct = = WcM (13)

wogc2 = < WpM (14)
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Mode | H Plane V Plane Admittance
C magnetic | magnetic Yo=0
\% electric magnetic Yv = jw2Cy
H magnetic electric Yy =2 (ijt + m + %)
D electric electric Yp =2 (jw(Ct + Cw) + ﬁ —+ %)

TABLE I
EQUIVALENT CIRCUITS AND ADMITTANCES OF THE FOUR MODES OF THE CMC TREATED AS A FOUR-PORTS DEVICE. FOR EACH MODE, TYPE OF
SYMMETRY (ELECTRIC OR MAGNETIC) OF THE PLANES OF SYMMETRY H AND V REPRESENTED IN FIG.3 ARE INDICATED.

an actual CMC, described in the caption. We represent results
for the three configurations (CM, DM and OC) of Fig.2. From
Fig.4 it can be observed that the output of the CM and OC
configurations are similar at low frequencies both in magnitude
and phase. This can be understood because at low frequencies
Yp =~ 2/jw(L—M) > Yy =~ 2/jw(L+ M) and consequently
from (11) Yoc ~ Yg. Therefore, S9C in (12) becomes
similar to SSM ~ 2RYy (7). In other words, although in
the OC configuration both a D mode and an H mode are
excited with the same current, at low frequencies the output
voltage is dominated by that corresponding to the H mode (CM
currents in the CMC) because the admittance of this mode is
much lower. The first minimum of the OC curve in Fig.4(a)
is therefore the resonance of the H mode, and coincides
with that of the CM curve. After this first minimum Yx
becomes capacitive (phase 90°) and its magnitude increases
with frequency, whereas Yp remains inductive and decreases
with frequency (with phase -90°). When the magnitudes of
these two impedance become equal resonance occurs and
ideally |S9C| = 1. This corresponds to the maximum that
can be observed in the OC curve in Fig.4(a) at approximately
1MHz. Note that at this maximum the CMC behaves as a short
circuit and therefore the phase of S?lc is zero (i.e. resistive).
After this peak of the OC curve, Yp, that is associated with
DM currents flowing through the CMC, becomes dominant
in (12), and the phase of the OC curve becomes inductive
again. At higher frequencies the OC curve presents a second
minimum. This second minimum corresponds to the frequency
of resonance of the D mode (14) and results in another change
from an inductive to a capacitive phase in the corresponding
curve of Fig.4(b), as expected. Note that this resonance occurs
at a frequency slightly lower than that of the DM configuration.
As explained in our previous analysis, this is associated with
the fact that in the DM configuration the V mode is excited

along with the desired D mode, and this results in a slight
increase of the frequency of resonance of the DM setup (10)
due to the influence of the parasitic capacitances C,,. Finally,
note that at sufficiently high frequencies the already capacitive
admittances shown by the CMC in the different configurations
become so high that the corresponding So; coefficients are
progressively dominated by the source and load impedances
of the circuit, which are resistive.

Summing up, the OC response of a CMC is dominated
by the CM response of the CMC at low frequencies and by
the DM response at high frequencies, in such a way that the
transmission coefficient for the OC connection of the CMC
presents two frequencies of resonance (minimums of trans-
mission) associated respectively with CM and DM excitations
of the CMC. This implies that measurements in a simple OC
setup, which does not require auxiliary circuits as baluns or
resistive dispatchers, can provide very valuable information
about the behavior of the CMC with respect to CM and
DM noise at different frequencies. Moreover, because closed-
form expressions have been obtained for the frequencies of
resonance of the CMC (13-14), the measured frequencies of
resonance can be used to calculate the parameters of the high-
frequency model of the CMC, as described in the next section.

Interestingly, the fact that the effect of the coupling between
two L-C rings is to split the frequency of resonance of each
one of the rings into two frequencies of resonance associated
with the so-called even and odd excitations of the inductors
(corresponding to CM and DM excitations of the CMC)has
been well studied in the field of the design of RF/microwave
narrow-band bandpass filters [19]. In this sense, the pair of
coupled windings that make up a CMC can be regarded
at sufficiently high frequency as a pair of synchronously
tuned coupled-resonator circuits presenting both electric and
magnetic coupling between them. However, because of the

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. -, NO. -, MONTH 2017

20
— [}
% I
= 30} i
) I
I
—40 “ I
L7
Lr
—5() || =— OC setup 1
wennr CM setup ','
== DM setup
_60 -
10" 10" 10! 10
Frequency (MHz)
(a) Magnitude
100
(O setup ’Q\
sewsi M setup 2irea,, ] *
DM setup e H
50 A
] .
I %
o ] B
Y I
2 i
g I
5 1
2 1
]
i
=50 ]
]
il P —— -"!
=100 2
107 10" 10! 10°
Frequency (MHz)
(b) Phase
Fig. 4.  Magnitude an phase of S for the CMC Wiirth Elecktronik

7446121007 (6.8 mH), listed in Table II and in Table III, when measured
using the three configurations of Fig.2.

particular way in which those resonant rings are excited in
microwave filters the theory of synchronously tuned coupled-
resonator circuits has been developed by considering a pair
of coupled L-C rings as a two-ports device. By contrast, the
four-ports formulation presented here for CMCs allows us to
deal with the particularities of the configurations in Fig.2. For
example, as we have seen, this formulation helps to explain
the difference between the frequencies of resonance measured
in the DM and OC connections of the CMC.

III. DESCRIPTION OF THE METHOD

The analysis expounded in the previous section relates the
excitation of a CMC using the CM, DM and OC configurations
of Fig.2 with the excitation of the four modes of a symmetrical
four-ports network. That analysis shows that the admittances of
modes D and H correspond to two similar but separate parallel
RLC circuits and that these admittances are excited in series
in the OC configuration, while D mode is not excited in the
CM setup and H mode is not excited in the DM setup. Based
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upon this analysis, Fig.5 shows an alternative and equivalent
model of the CMC that explicitly shows the contribution of
the admittances of the modes H and D by separating the model
of the CMC in two different blocks. Each block includes two
coupled inductances with opposite ideal coupling coefficients
(+1 and -1). The block with & = 1 (CM block in Fig.5) is
short-circuited by DM currents whereas the block with £k = —1
(referred to as DM block) is short-circuited by CM currents.
This alternative model is in principle equivalent to that of
Fig.1 but it presents several advantages. Firstly, it explicitly
shows the parameters that affect CM and DM currents in the
CMC. For instance, it shows that the capacitances C',, have
no effect on CM currents and that L+ M affects CM currents
but the inductance acting against DM currents is L — M.
Also, the model in Fig.5 makes it easier to understand the
response of the CMC when excited in the OC configuration
as the response of the connection of two LCR blocks (CM
and DM blocks) in series. An additional advantage of the use
of two separate blocks to model the CMC is that it makes it
easier to take into account the frequency-dependent behavior
of the inductive and resistive parameters of the CMC [5], [8]
in the model. In fact, note that this model allows us to assign
different values to the parallel resistances in each block. This
way Rcwm in Fig.5 accounts for the lossy behavior of the CMC
at the (low-frequency) CM resonance and Rpy accounts for
the lossy behavior of the CMC at the (high-frequency) DM
resonance. Additionally, the circuit in Fig.5 suggest that, since
the inductance of the choke is expected to vary with frequency,
it would be a better strategy to treat L + M and L — M as
two separate and independent parameters in instead of looking
for a mutual coupling M between the inductances L valid
throughout the frequency range.

It should be pointed out that a similar model based on CM
and DM blocks is also proposed in [17] as a behavioral model
for CMCs, although only inductive parameters are separated
in the blocks used in [17]. The theoretical analysis presented
in section II explains the good performance of the behavioral
model proposed in that work. However, note that in this work
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Fig. 6. Scheme of the proposed method for calculating the parameters of
the model of the CMC.

the circuit elements have a physical interpretation. Also, and
in accordance with that, our method makes use of an entirely
different approach, based on simpler measurements, to obtain
the parameters of the model, as will be seen.

The enhanced model of the CMC represented in Fig.5 along
with the analytical expressions obtained for the frequencies
of resonance of the CMC in the OC configuration (13,14)
make it possible to design a method to obtain the parasitic
elements that determine the high-frequency response of the
CMC exclusively from |S9C| as measured.

Firstly, the resistances Rcy and Rpy in Fig.5 can be
obtained from the magnitude of S (w) measured at the two
frequencies of resonance, woc1 and wocs, as:

Rom = 4R % 10!55:" (woc1)|/20
~ 4R x 10!52° (wocz2)|/20

5)

Rpm (16)

Where the magnitudes of Sy; are expressed in decibels and
Rcwm, Rpv > R = 5090 is assumed (which is true in most
practical cases).

The rest of the parameters of the model in Fig.5, namely L+
M, L—M, Cy and C,, can be obtained in an iterative process
whose flow chart is shown in Fig.6. In that approach, the initial
values of L+ M and C, have to be provided. The inductance
L + M can be approximated as two times the inductance of
the windings, which can usually be found on the datasheet
of the CMC. The value of C, is usually in the order of a
few picofarads, therefore any value in that order of magnitude
can be postulated as initial value. The capacitance C; can be
calculated from L+ M and wocy by using (13). Then, L — M
can be obtained from C\,, C; and woc2 by using (14). Once
the parameters have been calculated, the estimated OC curve
over the range of frequencies measured can be readily obtained
using (12) and the expressions for Yy and Yp provided in
Table 1. Then, a curve-fitting algorithm [20] can be used to
iterate the process and find the set of parameters that best fit the
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measured OC curve. Once a final set of parameters is found,
the CM and DM responses of the CMC can be predicted by
using (7) and (9) with the modal admittances in Table I. An
interesting feature of this method is that all the calculations are
performed by using analytical expressions. As a consequence
the curve-fitting process is quite fast, with typical calculation
times below 1 second.

It is worth pointing out that, in principle, the curve-fitting
algorithm could be designed in such a way that all the four
parameters L — M, L 4+ M, C,, and C} are treated as input
parameters and therefore the OC curve can be fitted without
enforcing a particular relationship between them. However,
by forcing (13) and (14) the physical role of the parameters is
preserved, hence avoiding results that imply negative elements
which can cause simulation problems [16].

Another interesting characteristic of the approach described
in Fig.5 is that it allows us to obtain the model of the
CMC exclusively from the measurement of the the OC curve.
Alternatively, if a LCR-meter is available it is also possible
to obtain L + M from the measurement at low frequency
of the input inductance of one winding with the secondary
winding being open-circuit (which yields L) which provides
L(1 — k%) ~ 2(L — M). Also C,, can be estimated by
directly measuring the capacitance between the windings, i.e.
between the even and the odd terminals in Fig.1, which is
2C,,. With these input parameters and the magnitude of the
Sé)lc coefficient at the two frequencies of resonance, woc1
and woce, it is possible to calculate the rest of the parameters
Ry, R2, Cy and L — M following the steps explained above.
This alternative approach dispenses with the curve fitting
process and works well in many cases. However, it requires
additional (although simple) measurements and suffers from
a lack of adaptability and flexibility when compared with
the previously described iterative procedure. This can be a
serious drawback when dealing with some CMCs exhibiting
a significant dependence on the frequency of their inductive
parameters, as we will see in section IV.

As a final remark, it must be highlighted that in the method
described in this section the leakage inductance of the CMC
(L — M) is calculated from the resonance at the higher fre-
quency (wocz) of the OC curve. Although in principle, L — M
could also be estimated from the inductance measurements
performed with the LCR-meter. However, a LCR-meter typi-
cally measures at relatively low frequencies (between 15kHz
and 200kHz for the particular LCR meter used in this work!).
Due to the variation of the inductance with the frequency
shown by most CMCs this may lead to significant errors in
the estimation of L — M at high frequencies. By calculating
L — M from wpco we estimate the impact of L — M in the
attenuation exhibited by the CMC at high frequencies, that is
precisely where this effect is most noticeable.

IV. RESULTS

As a first step to validate our analysis we checked that
commercial CMCs measured in the OC configuration in
Fig.2(c) exhibit the resonant behavior as predicted by the

! Atlas LCR40 model from Peak Electronic Design Ltd
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[ Manufacturer [ Part number [ Inductance (mH) |
SCHAFFNER RN112-4-02 0.7
TDK B82722A2302N001 1.2
TDK B82725A2103N001 1.8
TDK B82726S2163N030 2.0
KEMET SC-02-30G 3.0
SCHAFFNER RN102-1-02 3.0
SCHAFFNER RN102-0.6-02-4M4 4.4
WURTH ELEKTRONIK 7446121007 6.8
WURTH ELEKTRONIK 7448011008 8.0
EMIKON FHE - 05 - 1055 10
WURTH ELEKTRONIK 744866103 10
WURTH ELEKTRONIK 7446631010 10
KEMET SCF20 - 05 - 1100 11
SCHAFFNER RN102-0.3-02-12M 12
KEMET SU9V-R0O1180 18
MURATA PLA10AN2230R4D2 22
SCHAFFNER RN102-0.3-02-22M 22
WURTH ELEKTRONIK 7446630047 47

TABLE II

CMCS ANALYZED IN THIS WORK IN ORDER OF INCREASING INDUCTANCE.

modal analysis of section II. We measured a range of CMCs
from various manufacturers and with different inductances
(listed in Table II) and we have found no exceptions to
that behavior. A typical example of this is shown in Fig.4.
Although additional resonances can be observed in a few cases
when approaching frequencies in the order of 100MHz [17],
the CM and DM resonances always appear below 30-50MHz.

It must also be checked whether in general our approach
is able to provide an useful circuit model of a CMC in
a sufficiently broad frequency range. To do that we have
measured a broad sample of different CMCs. The list of Table
IT lists CMCs from different manufacturers covering a broad
range of nominal inductances and with cores made up of dif-
ferent materials (iron powder, ferrite and nanocrystalline). For
these commercial CMCs we have obtained the high-frequency
parameters from |S$C| measured in the OC configuration
of Fig.2(c) (OC curves) following the procedure described
in section III. Then, to study the usefulness of the circuit
model obtained for the CMC, we have compared the actual
performance of the CMCs when measured in the CM and DM
setups of Fig.2(a) and Fig.2(b) with the responses predicted by
the model of the CMC of Fig.5 for these configurations. All
the |S21| curves have been measured with a Rhode&Schwarz
ZND VNA? over a frequency range (100KHz-30MHz) that
covers the range of measurement for conducted emissions in
many regulations [21]-[23].

Following the strategy of validation mentioned above, we
have obtained good results in most cases. As an example,
Fig.7 compares measured and calculated |S2;| curves for
the KEMET SC-02-30G CMC (3 mH) listed in Table III.
Note that the OC curve at low frequencies coincides with
the CM curve, as expected from the explanation provided
in section III. Moreover, both curves and also the DM curve
are well approximated by the high-frequency model with the
parameters provided by our method, that are given in Table
I1I.

As another example, Fig.8 shows results for a sealed

2Note that since only magnitudes of S2; are needed, a spectrum analyzer
can be used to the same end.
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Fig. 7. Measured and approximated |S21| curves for the CMC shown in the
upper figure and listed as KEMET SC-02-30G (3mH) in Table III.

CMC of almost 7mH (WURTH ELEKTRONIK 7446121007
in Table III). This CMC has slightly lower frequencies of
resonance, and once again both the CM and the DM curves
are correctly approximated up to frequencies in the order of a
few tens of MHz by the high-frequency model of Fig.5 with
the parameters obtained by our method, which are shown in
Table III.

A CMC with different construction (sectional windings) is
analyzed in Fig.9. This corresponds to the CMC listed as
KEMET SU9V-R01180 in Table III. A good agreement can
be observed in Fig.9 between measured results and curves
calculated with the parameters obtained from the OC curve of
the CMC. Note that in this case the intra winding capacitance
C} provided by our method (shown in Table III) is higher
than those of the previous CMCs. This is probably due to
the multilayer windings used in that CMC. This high C%,
along with the higher inductance of the CMC, accounts for
the relatively low frequencies of resonance of this CMC. In
fact, note that, taking into account that L + M =~ 2L, the
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Manufacturer and part number fat(a{‘}ilt L+M@mH) | L—M@H) | Co®F) | C:oF) | R Q) | Ra k)
KEMET SC-02-30G 3 7.19 6.69 0.90 2.54 343 17.5
WURTH ELEKTRONIK 7446121007 6.8 16.9 12.8 535 5.56 40.9 20.6
KEMET SU9V-R01180 18 63.4 167 120 13.0 273 423
MURATA PLA10AN2230R4D2B 2 722 192 0.16 3.40 759 59.2
WURTH ELEKTRONIK 7448011008 8 3.47 8.75 027 176 239 112
TABLE TII

DESCRIPTION AND PARAMETERS EXTRACTED FROM CMCS CHARACTERIZED IN THIS WORK.
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Fig. 8. Measured and approximated |S21| curves for the CMC shown in the
upper figure and listed as WURTH ELEKTRONIK 7446121007 (6.8 mH) in
Table III.

L 4+ M = 63.4mH CM inductance obtained for this CMC
corresponds to an L much higher than the value of 18mH
(measured at 1 kHz) specified in the datasheet. This example
emphasizes the importance of an adequate characterization to
estimate the actual response of CMCs at high frequencies.
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Fig. 9. Measured and approximated |S21| curves for the CMC shown in the
upper figure and listed as KEMET SU9V-R01180 (18 mH) in Table III.

The example discussed above illustrate the fact that, in
general, the permeability of the core of most CMCs varies
with frequency, resulting in a change of the inductances and
resistances required to model the CMC. However, note that
the response of the CMC to the CM excitation above the
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Fig. 10. Measured and approximated |S21| curves for the CMC shown in
the upper figure and listed as MURATA PLA10AN2230R4D2B (22mH) in
Table III.

frequency of resonance of the CM, wcy, is dominated by
the intra-winding capacitances C}. Therefore, a change in
the inductance of the CMC has no effect in the CM curve
above that frequency. The same effect occurs for the DM
curve. However, since the DM resonance occurs at much
higher frequencies (wpasr > we ), the DM curve is strongly
influenced by the inductance of the core in a much wider
range of frequencies and, consequently, the DM curve is in
general much more difficult to match with a simple circuit
model. To illustrate this, Fig.10 shows results for the CMC
listed as MURATA PLA10AN2230R4D2B (22mH) in Table
III. From results in Fig.10 it can be seen that in this case the
CM response of the CMC is perfectly approximated but the
DM curve has a slight deviation in the frequency of resonance
with respect to the measured curve. In fact, a slight mismatch
of DM curves at high frequencies can also observed in the
DM curves of Fig.7(b).

From the analysis of the previous results and also of the
results obtained for all the CMCs in Table II we can conclude
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Fig. 11. EMI filter constructed with two 47nF-Cy-capacitors, one 470nF-
Cx-capacitor and the CMC labeled as KEMET SC-02-30G in Table III

—20

[Sy|(dB)

.
—120) || == Measured ", g
mmsm Pspice =

Pspice;:No CMC parasitics
~140 : b

10" 10" 10' 10°
Frequency (MHz)

(a) Common Mode

|y, |(dB)

. .
— Measured ) -‘" e '\. ," “!
~100}| ™= = Measured + shield | * \_ "
mam  Pspice |“,'
sessr Pspice;No CMC
=120 ?
107 10° 10! 10°

Frequency (MHz)
(b) Differential Mode

Fig. 12. Measured and approximated |S21| curves for the EMI filter shown
and described in Fig.11.

that in general our method provides an accurate model of the
CMC for a CM excitation (CM curve) and a good or fair
approximation of the DM response of the CMC. To study
the actual improvement provided by the high-frequency model
obtained for the CMCs in prediction of the CM and DM
noise emissions of a system, it is illustrative to measure the
attenuation of a practical EMI filter mounting a CMC. To this
end, we have constructed an EMI filter following a classical
scheme with two thin-film Y-capacitors and one X-capacitor
placed on both sides of a CMC [2], [4]. As for the CMC we
have used the KEMET SC-02-30G model already analyzed
in Fig.7 and whose parasitic elements are shown in Table
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III. A picture of that filter is shown in Fig.11. For this filter,
we have measured the transmission coefficient, | Sz, for CM
and DM noise. To this end we have used the CM and DM
connections of Fig.2, where terminals labeled in that figure as
1 and 2 (input) correspond to the connectors shown at the left
side of the filter in Fig.11 and terminals labeled as 3 and 4
(output) correspond to connectors shown at the right side in
Fig.11. Results are shown in Fig.12. In those graphs we have
also included the |S51| curves provided by Pspice by using a
circuit model of the filter that includes the equivalent series
resistances (ESR) and equivalent series inductances (ESL) of
the capacitors. We have measured those parasitics obtaining
approximately 12nH and 40 m{? for each capacitor [24]. The
dotted curve in Fig.12(a) corresponds to the attenuation of
CM noise predicted with this circuit model with no parasitic
capacitance C; included in the model of the CMC. It can be
observed that above 1MHz the predicted attenuation is much
higher than that actually measured for the filter. However, by
including the model of the CMC obtained with our method
the [S21| curve provided by the circuit model matches the
measured curve very closely . The measured and predicted
attenuation of DM noise provided by the filter is shown in
Fig.12(b). The dotted line in Fig.12(b) is obtained with a
model of the filter that disregards the effect of the CMC. The
two resonance peaks appearing in that curve are associated
with the series LC resonances of the Cx and Cy capacitors.
By comparing this curve with the two experimental curves
included in the same figure, it is clear that the effect of the
high-frequency parameters of the CMC cannot be ignored. In
fact, Fig.12(b) shows that when the leakage inductance L — M
and parasitic capacitances C} and C', of the CMC are included
in the model of the filter the predicted attenuation of the DM
is much closer to that actually measured. We have obtained
similar results, both for the CM and DM attenuations, by
substituting other CMCs in the same filter. It is interesting to
note that in the DM case the coincidence between experimental
and simulated data is not as close as that obtained for the CM
curves of Fig.12(a). This effect has been previously noticed
by other authors [16], and attributed to the effects of coupling
between the capacitors and the CMC [25]. We have checked
this by manually inserting two Scmx5cm squares of copper
tape (not grounded) between the CMC and the capacitors.
The measured curve in this configuration is represented by
an additional line, labeled as measured+-shield, in Fig.12(b).
That curve shows that the magnetic shielding provided by the
metallic sheets causes the attenuation of the filter to increase
by almost 10dB in the 2-40MHz frequency range, getting
closer to the attenuation predicted by our circuit model, thus
confirming that the mismatch between calculated an measured
attenuation is due to the mentioned mutual coupling effect. It
is appropriate to clarify that this effect is much weaker in the
CM case due to the fact that the Cx capacitor is not active for
CM excitation and also to the different spatial distribution of
the stray magnetic fields created by the CMC under CM and
DM excitations.

Summing up, results for the attenuation of a real EMI filter
show that the high-frequency model of the CMC described
above can greatly improve the accuracy in the prediction of
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Fig. 13.  Measured and approximated |Sz1| curves for the nanocrystalline
CMC shown in the upper figure and listed as WURTH ELEKTRONIK
7448011008 (8 mH) in Table III.

performance of the filter. Also, they show that, at least for
typical placement of components, DM noise is very sensitive
to mutual coupling between components. In these conditions,
the implementation of a more complex approach and circuit
model to increase the accuracy of the model of the CMC for
the DM noise could be ineffectual unless the impact of mutual
couplings is also considered in the analysis [26]. Also, effects
as capacitive coupling to filter chassis could have some impact
on shielded filters.

Results analyzed so far show that in general the method
proposed here provide a good approximation of the CM
attenuation of a CMC along with a good to fair approximation
of the DM response of the CMC. This could be very useful to
predict the actual performance of EMI filters, specially when
the simplicity of the measurement technique and procedure
for extraction of the parameters of the circuit model are
considered. However, the method of characterization of CMCs
proposed here can fail or provide only approximate results
in some cases where the permeability of the core of the
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CMC presents a rapid rate of variation with frequency, as
for example happens with nanocrystalline material [5], [12],
[27]. For example, Fig.13 shows the results obtained with
a nanocrystalline CMC of 8 mH (WURTH ELEKTRONIK
7448011008 in Table III). The gray dashed line in Fig.13(a)
is the OC curve obtained by a circuit model whose parameters
have been extracted departing from the measurements per-
formed with an LCR meter following the alternative procedure
described in section III. Whereas for most CMCs analyzed
this curve usually matches the measured curves very closely,
in this case however it can be observed that the OC curve
fails to approximate the measured OC curve. However, when
the initial parameters are allowed to change by performing a
curve-fitting of the measured curve, following the process in
Fig.6, a better (although still not accurate) approximation is
obtained. This is represented by the dotted line in Fig.13(a).
The parameters of Table III for this CMC correspond to
this fitted curve. An inspection of these parameters, reveals
that approximating the experimental OC curve requires a
significant reduction of the the CM inductance (L + M) of
the CMC with respect to the nominal value. This is explained
by the abrupt decrease of the permeability of the core with the
frequency commonly encountered in nanocrystalline materials
[12], [27]. This rapid rate of variation of the permeability of
the core causes that the CM and DM curves of this CMC
can only be approximately fitted, as shown by Fig.13(b).
However, it is important to highlight that even in a case like
this one, where an accurate circuit model of the CMC cannot
be obtained with our method, the theoretical analysis presented
here is still useful in the sense that it allows for a quick
qualitative prediction of the expected performance of the CMC
throughout the entire frequency range from a simple inspection
of the measured OC curve. In case a more accurate circuit
model of the CMC is required, this would make it necessary
to try a more complex circuit model accompanied by a more
complicated procedure of extraction of parameters [16], [17].

V. CONCLUSION

This work investigates the response of a common mode
choke to an excitation applied to one winding while the other
winding is open circuited (OC connection). We present a
modal analysis of the CMC that allows us to demonstrate
that the response of the CMC when excited in this OC
configuration conveys valuable information about both the CM
and the DM attenuation provided by the CMC.

In this way, a quick measurement performed with a very
simple setup makes it possible to anticipate the expected
performance of a CMC both for CM and DM currents. This
information can greatly speed up the design or re-design
process of an EMI filter.

Moreover, the analysis presented in this work provides ana-
lytical expressions for the transmission coefficients of the dif-
ferent connection configurations of the CMC and closed-form
expressions for their frequencies of resonance. This permits
the identification and calculation of the main parameters that
determine the high-frequency behavior of a CMC. From these
parameters, the expected attenuation provided by the CMC
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for both CM and DM currents can be readily obtained. Note
that in contrast with methods requiring impedance (amplitude
and phase) measurements by using several configurations,
the method proposed here to characterize CMCs requires
simple measurements, performed with simpler equipment (an
spectrum analyzer with tracking generator). Also, note that
the measurement of frequencies of resonance is not affected
by the attenuation and phase shift introduced by cables and
connectors, therefore the careful calibration usually required
to perform impedance measurements is not required.

The method presented here can be valuable tool in the
sense that it allows, for example, to expedite the choice of
the more appropriate CMC when several CMCs are available
or to analyze the suitability of a particular CMC to suppress
noise emissions that are above the limits in a certain frequency
range. Note that this not necessarily require to construct a
circuit model of the CMC. Moreover, by providing a method
for readily estimating the parasitic that undermine the per-
formance of a real CMC at high frequencies, this method
allows the engineer to improve the accuracy of a circuit model
intended to determine noise emissions of a power converter.
In this sense, the characterization of the CMC is a particularly
challenging and necessary step to obtain a complete model of
the system.

The method has been validated by characterization and
comparison of measured against predicted results for many
different CMCs within an ample range of inductances and
made up of different materials. From the analysis of those
results we conclude that in general the proposed method is able
to provide a very good approximation for the CM response
of the CMC and a good to fair approximation of the DM
attenuation over a sufficiently wide frequency range. We have
checked that the level of accuracy provided by the method
allows one to effectively improve the high-frequency model
of a typical EMI filter.

As for the limitations of the method, we have shown
that, although the approach proposed here is designed to
partially capture the intrinsic frequency-dependent behavior of
the magnetic materials commonly used in CMCs, it can find it
difficult to provide accurate high-frequency models of CMCs
with cores showing an abrupt decrease of permeability with
frequency, as it occurs for instance with some nanocrystalline
materials. However, note that even for those difficult cases,
the inspection of the OC curve in light of the theoretical
analysis presented in this work is still a valuable source of
information to assess the expected performance of the CMC
at high frequencies. Also, our method assumes that the CMC is
perfectly symmetric. Despite this fact, it is interesting to note
that that the simple OC measurement described here could
be employed to readily detect asymmetries of the CMC by
measuring the attenuation provided by the CMC in the OC
configuration from both windings.

Form the point of view of modeling of CMCs, the technique
presented in this work bridges the gap between simple model-
ing of CMCs from inductance provided by the datasheet and
much more sophisticated approaches providing high-frequency
models of CMCs. In contrast with our method, those methods
are able to account for frequency-dependent inductances and,
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due to the use of more complex models for the CMC with
a higher number of parasitic elements, in some cases higher-
order resonances appearing for some CMCs above several tens
of MHz can be incorporated into the model [17]. In return,
those techniques require the following of much more complex
and time-consuming processes involving many measurements
with different connections of the CMC and/or the use of
advanced numerical techniques. The results shown in this work
demonstrate that in many cases a sufficiently accurate model
can be obtained with a much simpler technique.
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