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Abstract 

We show that BiFeO3 that is electrically homogeneous, is a good insulator, and has a low 

dielectric constant (the properties desired in its applications) can be produced by flash sintering, 

which is nominally difficult to achieve by conventional and spark plasma sintering processes. 

The flash sintered specimens had a uniform microstructure with a nanometric grain size of ~20 

nm. 
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1. Introduction 

Bismuth iron oxide is a multiferroic material, having applications in data storage and in 

magneto-electric sensors.1-3 Nevertheless, most conventionally prepared materials have high 

leakage current densities that limit their applications. This high leakage current has been 

associated to secondary phases4-7, the generation of oxygen vacancies, the loss of bismuth, or the 

reduction of Fe3+.8-10 Obtaining stoichiometric high-purity and dense pellets of BiFeO3 is quite 

challenging as this compound decomposes at relatively low temperatures producing undesirable 

phases.11-14 Thus, conventional sintering, which requires high temperatures and long treatments, 

often produces non-stoichiometric compounds with high leakage currents. Spark Plasma 

Sintering (SPS)15-22 yields  high-density BiFeO3, but the highly reducing conditions produced by 

the graphite dies cause reduction of the sample and an increase in the electrical conductivity.20-21 

Flash sintering was first applied to 3 mol% yttria-stabilized tetragonal zirconia.23 

Different compounds have been sintered in this way.24-27 In the present work we explore the 

application of flash sintering and its effect on the electrical properties of BiFeO3. We are able to 

sinter BiFeO3, which not only has high density but also is single phase with a nanoscale grain 

size, and has desirable electrical properties, including insulating behavior.  

 

2. Experimental Methods 

In the present work, nanoscale powders of BiFeO3 were synthesized by milling the 

stoichiometric amounts of the single commercial oxides, that is, Fe2O3 (Sigma−Aldrich, St. 

Louis, Missouri, USA, 310050, ≥99% purity) and Bi2O3 (Sigma−Aldrich, St. Louis, Missouri, 
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USA, 223891, 99.9% purity), using a high energy planetary ball mill (Fritsch Pulverisette 7, 

Fritsch GmbH, Idar-Oberstein, Germany) under 7 bar of oxygen pressure.28  

Flash sintering experiments were performed using the standard procedure.23 The powders 

were uniaxially pressed at 500 MPa into dog-bones shaped pellets.  The samples were suspended 

into a tubular furnace by means of two platinum wires attached to the handles of the dog bone. 

The furnace was heated from room temperature at a constant rate of 10 ºC min-1 up to flash event. 

A DC electric field was applied through the two platinum wires using a DC power supply. The 

field was held constant up to the point of the flash event, which was signaled by a non-linear rise 

in conductivity. The voltage control at the power supply was switched to current control when 

the current reached a preset limit. Constant current was held for 15 seconds before the power 

supply to the specimen was switched off. The furnace was then allowed to cool down to room 

temperature. The change in the sample dimensions was monitored with a CCD camera. These 

data were used to measure the linear shrinkage arising from sintering.   

X-ray diffraction patterns were recorded with a PanalyticalX’Pert Pro (Panalytical B.V., 

Almelo, The Netherlands) diffractometer. Sample microstructure was analyzed by scanning 

electron microscopy (SEM) using a Hitachi S-4800 (Hitachi, Ltd., Tokyo, Japan) instrument 

equipped with energy dispersive X-ray spectrometer (EDX). Impedance spectroscopy 

measurements of Au sputter-coated samples were performed, taking into account the blank 

capacitance of the sample holder and the overall pellet geometry, in a Newtons4th Ltd (Leicester, 

United Kingdom) impedance analyzer over the frequency range from 100 Hz to 1 MHz, with AC 

measuring voltage of 0.1 V.  
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3. Results 

 Plots of the power dissipation, which is equal to the product of the electric field and the 

current density, are shown in Fig. 1a. The rise in current under voltage control signals the onset 

of the flash. The peak in the power density occurs when the power supply is switched to current 

control. The plateau thereafter corresponds to the steady state of flash. The sample sinters near 

the power peak. The specimen temperature at the power peak can be calculated from the 

blackbody radiation model;29 these values, which have been derived in the Supporting 

Information, are shown as TBBR in the figure. The shrinkage data are shown in Fig. 1b. The 0 V 

data represent conventional sintering. At 15 V cm–1, the sintering behavior remains the same as 

in conventional sintering. At 50 V cm–1 and above, the sample sinters by the flash mechanism. 

As the field is increased, sintering occurs at a lower temperature, for example, at 150 V cm–1, the 

sample sinters at a furnace temperature of ~400 oC. The diffraction patterns of sintered specimens 

are given in Fig. 1c. The retention of pure BiFeO3 perovskite phase under flash sintering is indeed 

noteworthy. Conventionally sintered BiFeO3 decomposes into secondary phases. 

 

 

 

 

 

Figure 1. a) Power dissipation and (b) linear shrinkage as a function of furnace temperature at constant heating 

rate of 10°C min-1 for different applied fields. Specimen temperatures, TBBR, at the power peak have been 

calculated from the blackbody radiation model. c) X-ray diffraction patterns of the resulting pellets obtained 

from experiments at different applied fields. 0 and 15 V cm-1 patterns resulted very similar, so only the 15 V 

cm-1 is shown. 
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The microstructure of the specimen flashed at 100 V cm–1 and 20 mA mm–2 is shown in 

Fig. 2. The specimen is well sintered with low porosity. A histogram of the grain size distribution 

showing an average grain size of 20±6 nm is also shown in Fig. 2. The chemical composition of 

the sample, as determined by EDX is given in Table S1. There is no loss of bismuth under flash 

sintering conditions. 

 

 

 

 

 

 

Figure 2. SEM micrograph and histogram plot of the grain-size distribution for BiFeO3 (100 V cm-1, 20 mA 

mm-2). 

 

The electrical properties of the specimens were measured by impedance spectroscopy for 

the sample that was flashed at 100 V cm-1, with a current limit of 20 mA mm–2. The measurements 

were done with a frequency range of 100 Hz to 1 MHz at 0.1 V. The impedance plots, giving the 

real and imaginary parts, are given in Fig. 3a, which includes SPS data for comparison. The graph 

highlights the much higher resistance of the flash-sintered sample. The inset in Fig. 3a, giving 

the data for the SPS sample, shows two arcs, one from grain boundaries and the other from grain 

matrix.20-21 In contrast, the flashed sample shows a single arc, suggesting no difference between 

grain boundary and grain matrix resistivity. Arrhenius plots of the conductivity for flash-sintered 

and SPS specimens are shown in Fig. 3b.20-21 The flash sintered specimens are more insulating. 
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The activation energies of flash sintered samples was 1.01 eV; the value for high quality single 

crystals has been reported as 1.3 eV.30 The measurements of conductivity by impedance 

spectroscopy are compared with the change in conductivity of the powder specimen during the 

constant heating rate flash-sintering experiment at a field of 100 V cm-1 in Fig. S1. Surprisingly, 

the conductivity of the porous specimens is higher than the impedance measurements by about 

an order of magnitude, which it is contrary to the expectation that pores and interparticle 

interfaces would lower the conductivity.31 Perhaps the difference is related to nonlinear effects 

under the much higher fields used in the flash experiments than in impedance spectroscopy. 

 

 

 

 

 

 

 

Figure 3. a) Impedance complex plane plots, showing the imaginary part (Z”) vs the real part (Z’) of the 

impedance at 300ºC for FS and SPS BiFeO3. b) Bulk Arrhenius plots for FS and SPS BiFeO3. 

 

The imaginary parts of the modulus, M’’, and the impedance, Z’’ as a function of 

frequency at 300ºC for flash sintered BiFeO3 are plotted in Fig. 4. They represent Debye peaks 

that reflect on the electrical homogeneity of the sample. The ideal RC element with the shape of 

a single Debye peak indicates a homogeneous material.32 In the present case, M’’ and Z’’ show 
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single peaks with a small displacement in their frequency maxima, as shown in Fig. 4a. These 

results show that the flash-sintered sample was electrically homogeneous.   

The capacitance values calculated from the imaginary part of the impedance are shown 

in Fig. 4b.  The permittivity was calculated to be equal to 113; it was obtained by dividing the 

capacity by the permittivity of free space. Capacitance, equal approximately to ~10 pFcm-1, 

remains reasonably constant within the entire frequency range, again confirming that the sample 

was electrically homogeneous.32   

 

 

 

 

 

 

Figure 4. a) Z”/M” spectroscopic plots at 300ºC. b) C’ vs frequency for BiFeO3 flash-sintered sample.  

 

4. Discussion 

It is clear from above results that flash sintering helps to preserve the phase purity and 

compositional fidelity in (complex) ceramic oxides which are otherwise prone to decomposition 

and volatilization. Since sintering requires mass transport, its rate is controlled by the slowest 

diffusing species in the solid state, which may require temperatures where low melting and 

volatile species may be difficult to retain. However, it may be rather simplistic to imagine that 
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lower (furnace) sintering temperatures and shorter sintering time afforded by flash sintering can 

of themselves alleviate this issue. Flash sintering has complexity, and its role in obtaining unusual 

results may not be reduced to rather simple arguments. For example, while in the present case 

flash preserves the phase fidelity, there are examples where metastable phases can form during 

the flash-sintering experiments, for example, in the yttria-stabilized zirconia system,33 and more 

recently, in the alumina-magnesium aluminate system.34 A fuller understanding of how phase 

transitions and composition fidelity are influenced not only by time, temperature, and 

environment, but also by electrical field and current, during flash experiments, is far from 

complete.  

 

5. Conclusions 

Flash sintering enables the processing of BiFeO3 into a pure perovskite, single phase 

structure, which is hard to obtain in conventional sintering as the material is unstable at 

temperatures required for processing. Moreover, high-density nanostructured ceramics with 

narrow grain-size distribution were obtained. The conductivity of flash sintering specimens 

was nearly one order of magnitude lower than samples made by SPS.  
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