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Abstract. The I-mode is a plasma regime obtained when the usual L-H power threshold

is high, e.g. with unfavourable ion ∇B direction. It is characterised by the development

of a temperature pedestal while the density remains roughly as in the L-mode. This leads

to a confinement improvement above the L-mode level which can sometimes reach H-mode

values. This regime, already obtained in the ASDEX Upgrade tokamak about two decades ago,

has been studied again since 2009 taking advantage of the development of new diagnostics

and heating possibilities. The I-mode in ASDEX Upgrade has been achieved with different

heating methods such as NBI, ECRH and ICRF. The I-mode properties, power threshold,

pedestal characteristics and confinement, are independent of the heating method. The power

required at the L-I transition exhibits an offset linear density dependence but, in contrast to

the L-H threshold, depends weakly on the magnetic field. The L-I transition seems to be

mainly determined by the edge pressure gradient and the comparison between ECRH and NBI

induced L-I transitions suggests that the ion channel plays a key role. The I-mode often evolves

gradually over a few confinement times until the transition to H-mode which offers a very

interesting situation to study the transport reduction and its link with the pedestal formation.

Exploratory discharges in which n=2 magnetic perturbations have been applied indicate that

these can lead to an increase of the I-mode power threshold by flattening the edge pressure

at fixed heating input power: more heating power is necessary to restore the required edge

pressure gradient. Finally, the confinement properties of the I-mode are discussed in detail.
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1. Introduction

The H-mode threshold power, Pthres, is well-known to be low when the ion ∇B drift is

towards the X-point, while it is about two times higher when this drift is directed away from

the X-point. The latter case is often named unfavourable configuration in contrast to the

former considered as favourable because good confinement is easily achieved at low power.

In addition, as also well-known, Pthres is about two times higher in hydrogen compared to

deuterium in both configurations. These high Pthres cases provide conditions to study L-

modes over a wider range of heating power than in the usual favourable cases. Earlier

investigations at ASDEX Upgrade, [1, 2], revealed that in these scenarios, including hydrogen

in the favourable direction, the power degradation of the confinement time was much weaker

than τE ∝ P−0.7 predicted by confinement scalings used at that time for the L-mode and H-

mode, [3] and [4] respectively. Such plasmas exhibit improved confinement at high heating

power, but did not feature the classical transition to H-mode and were named ”Improved L-

modes”. The weak power degradation was found to be caused by an increase of the edge

temperatures with a concomitant steepening of the edge gradients, building a temperature

pedestal similar to that of the H-mode, but the density profile almost did not change, the edge

density profile remained very similar to that of the L-mode, [5]. Thus, these plasmas exhibit

an edge transport barrier for heat but not for particle transport. The transition to H-mode in

which particle transport is also reduced was achieved at powers which are about two times

above the usual power threshold. The studies on the Improved L-mode at ASDEX Upgrade

have not been continued beyond 1996, mainly due to technical restrictions on the possibilities

to operate with the unfavourable ion ∇B drift.

During the last years, the Improved L-mode has been extensively studied in Alcator C-Mod

and this mode is now labelled ”I-mode”, [6, 7, 8, 9]. Therefore, we also use the label I-mode

throughout this paper. It should be underlined that I-mode should not be confused with I-

phase which is a plasma behaviour observed prior to the L-H transition, under the favourable

threshold conditions, characterised by limit cycle oscillations attributed to the modulation of

the turbulence level through a predator-prey mechanism between turbulence and self-induced

zonal flows (ZFs) and/or geodesic acoustic modes (GAMs), see e.g. [10, 11] for ASDEX

Upgrade.

In Alcator C-Mod, the transition from L to I mode is generally accompanied by the appearance

of the weakly coherent mode (WCM) at about 300 kHz, located radially at the very edge of
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the plasma, in the steep gradient region of the temperature pedestal, [7, 8, 12]. The WCM

is seen in the density fluctuations measured by reflectometry and in the electron temperature

fluctuations. More recently it has been shown that, in parallel to the WCM, a GAM also

develops at about 10 kHz and that WCM, GAM and turbulence are non-linearly coupled,

[13]. This phenomenology is also observed in ASDEX Upgrade, [14]. Due to the formation

of the temperature pedestal the radial electric field well (Er) at the plasma edge deepens, its

minimum becomes more negative. The level of the turbulence fluctuations decreases during

the development of the I-mode which probably explains the formation of the pedestal. But it

is not clarified yet whether the transition to I-mode and the correlated heat transport reduction

is caused by the WCM-GAM impact on turbulence, or by the radial electric field, or by a

combination of all these effects. At Alcator C-Mod, the observed lack of transport reduction

in the particle channel is attributed to the presence of the WCM.

Stimulated by the I-mode studies performed at Alcator C-Mod we restarted I-mode

investigations at ASDEX Upgrade in 2009. This was justified by the extension of the

experimental and diagnostic possibilities since our last Improved L-mode studies which date

back to 1996. The new experimental capabilities include in particular the availability of

enough electron heating power through the electron cyclotron resonance heating (ECRH)

system to reach the I-mode and therefore to investigate pure electron heating versus mixed ion-

electron provided by neutral beam injection (NBI). On the diagnostic side, the installation and

upgrade of the core and edge active Charge Exchange Recombination Spectroscopy (CXRS)

diagnostics provide detailed Ti and rotation profiles. Further, Doppler reflectometry, also

named back-scattering reflectometry, has been installed, which provides measurements of

turbulence and perpendicular propagation velocity of density fluctuations, as discussed in

more detail below.

The I-mode combines the advantage of good confinement without the drawback of the ELMs

whose power load in the divertor is a serious issue for future tokamak reactors. However, it is

reached at a heating power which is generally above the H-mode threshold in the favourable

configuration also foreseen for ITER, and might therefore not be accessible in ITER, as the

available heating power might not be sufficient. In addition, as will be shown below, the

I-mode often evolves slowly over several confinement times, even at constant input power

and therefore in an uncontrolled manner, until a transition to H-mode occurs. This lack of

control on the plasma regime might be quite problematic for a fusion reactor. However, even
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if the I-mode may not be considered presently as a promising scenario for ITER, it should

be emphasised that the development of the I-mode temperature pedestal, together with the

decoupling of heat and particle transport channels, as well as the transition from this state to

H-mode, extend the possibilities of investigating pedestal physics and transport reduction to

conditions which are different from the usual H-mode and might yield a deeper understanding

of these mechanisms.

This is the main motivation of the present work in which we describe and discuss the

experimental results obtained on the I-mode in ASDEX Upgrade since 2009. The paper is

structured as follows. In the next section the experimental conditions and the most important

diagnostics used for the present work are presented. In section 3 we describe the main

experimental characteristics of the I-mode discharges under different conditions, in particular

comparison between ECRH and NBI. In section 4 we discuss the properties of the I-mode

pedestal. Section 5 is dedicated to the features of the L-I and I-H transitions, while the

confinement properties are discussed in section 6. The paper is completed by the summary

and conclusion.

2. Experimental conditions and diagnostics

ASDEX Upgrade is a divertor tokamak of nominal major radius R = 1.65m and minor radius

a = 0.5m, while the usual plasmas have an elongation of about 1.6. The device is equipped

with NBI, ECRH, as well as heating possibilities in the ion cyclotron resonance frequency

range (ICRF) whereby the hydrogen minority scheme is the standard heating method. The

experiments presented here were carried out in deuterium.

The NBI at 60 kV has been used, up to two beams with heating power of 2.5 MW each. The

ECRH was deposited in the central part of the plasma, ρpol < 0.25, where ρpol is the square

root of the normalised poloidal flux. This normalised flux radius will be used throughout the

paper. The ECRH scheme was X2 which provides 100% absorption in the electron channel

with a narrow deposition profile [15]. The system provides up to 3.2 MW since the 2011

campaign, allowing to explore the L-I transition and the I-mode with pure electron heating up

to the transition into H-mode.

As mentioned above, the I-mode usually appears when enough power is applied in

configurations with high H-mode power threshold, in most of the cases with the ion ∇B

drift directed away from the X-point. At ASDEX Upgrade, the unfavourable ion ∇B drift is
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obtained either in the usual lower single null configuration with “reversed” BT polarity, here

referred to as (LSNrev), or in the upper single null (USN) with the usual BT polarity. The

possibility of reversing BT only (not plasma current) in LSN, used in our older experiments,

is not possible any longer since 1996. In fact, for the LSNrev, the plasma current must also be

reversed and the NBI is then in the counter direction which causes strong impurity production,

high radiative power and non-steady discharges. This is inadequate for confinement purposes

and the I-mode studies in this configuration were carried out with ECRH as main heating.

The advantage of LSNrev is a good pumping capability and therefore access to lower density

than in USN as there are no pumps in the upper divertor. Thus, comparison between the two

configurations can only be made at medium and high density. I-modes could be produced

indifferently with NBI, ECRH or ICRH, whereas the discharges presented here were carried

out with NBI or ECRH, or a combination of the two. The results reported in this article

have been obtained during the last years and are based on the following series of I-mode

experiments in deuterium with the unfavourable ion ∇B drift:

• 2009 campaign: a couple of discharges in the LSNrev configuration with ECRH which

demonstrated the possibility of achieving I-modes with this heating method. This was

the restart of I-mode studies at ASDEX Upgrade;

• 2011 campaign: several discharges in USN with NBI, ECRH and ICRH to investigate

the access and confinement properties of the I-mode. In addition, a few discharges in the

LSNrev configuration with ECRH were carried out which extend the operational window

to lower densities. The charge exchange diagnostics were extended and upgraded (see

below);

• 2012-2013 campaign: I-mode discharges in USN in which density fluctuations and radial

electric field in the plasma edge were measured with the Doppler reflectometry and

charge exchange diagnostics. Some discharges in LSNrev were conducted for the I-mode

identity comparison with Alcator C-Mod as a contribution to the ITPA Joint Experiment

TC-18, [16].

The plasma facing components were tungsten in all the discharges presented here, while

the original Improved L-mode studies were carried out with the carbon wall. This indicates

that the I-mode can be obtained independently of the plasma facing component material.
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ASDEX Upgrade is equipped with all standard diagnostics of a present-day tokamak. In

this paragraph we provide information on the diagnostics which are essential for our results.

The electron density is measured in the plasma core with a five channel DCN interferometer.

In the following we present time traces from the DCN line-averaged densities, one of them is

labelled “core” as it corresponds to a line of sight which passes close to the plasma axis,

while the other is labelled “edge” and represents a line of sight whose tangency radius

is generally close to the ρpol ≈ 0.85 flux surface, the diagnostic and geometry details are

provided in [17]. The edge density measurement from the lithium beam diagnostic, [18],

is combined with the interferometer in the Integrated Data Analysis (IDA) to provide a full

density profile, ne, [19]. The electron temperature measurement is provided by a 60 channel

electron cyclotron emission heterodyne radiometer (ECE diagnostic). As well-known, the

ECE diagnostic delivers the radiation temperature, Trad , which is not necessarily the actual

local electron temperature, Te, if the optical thickness is not high enough. Large differences

between Trad and Te, whereby Trad is larger than Te, arise in particular at the edge of the

plasma where the gradients are large and the optical depth no sufficient. For this reason, a

method based on the forward modelling of the ECE radiation transport has been developed

and implemented in the IDA framework which provides, also at the plasma edge, the actual

electron temperature deduced from the ECE signals, as described in detail in [20]. In this

analysis, the electron temperature data from the ECE diagnostic and the density data from

the Li-beam are treated in a combined way yielding consistent and reliable profiles for Te

and ne, consequently also for the electron pressure, pe. The example illustrated in figure 1

shows profiles of Trad (ECE points) and Te (lines) at the plasma edge for different phases of a

discharges which will be discussed later: low power L-mode, L-mode with higher power and

following I-mode at the same input power. At low temperature the difference between Trad

and Te is small but it clearly increases as the temperature increases and the difference between

Trad and Te at the plasma edge becomes significant for ρpol > 0.97 such that the actual Te edge

gradient is much steeper than that derived from Trad . The electron temperature yielded by this

method will be used throughout this paper and the Te profiles will always be represented by

lines which result from the IDA analysis and not by the ECE data points. Similarly, we will

also use the IDA ne and pe data.

The ion temperature, Ti, and plasma rotation are measured with the CXRS diagnostic

using NBI beam Nr. 3 as neutral source. The capabilities of these measurements have been
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Figure 1. Comparison of the radiation temperature from ECE and the actual thermal

temperature provided by the IDA analysis for three phases in the same discharge: low

power L-mode, L and I modes with almost the same power.

significantly improved since 2011 by an upgrade of the core system, which has a toroidal

viewing geometry, [21], and by the installation of two edge systems with viewing cords in the

toroidal and poloidal directions, [22] . The upgrade of the core system provides Ti with a 4 ms

time resolution on 25 radial channels whereas the edge systems have a time resolution of 1.9

ms and eight radial channels each. Therefore, complete Ti and toroidal rotation profiles, vtor,

can be measured with a high time resolution. In addition, at the edge the poloidal rotation,

vpol, is also measured. In discharges without NBI, e.g. heated by ECRH only, Ti and rotation

can be measured using short NBI blips yielding excellent data, as described in [21].

It has been known for a long time that the edge radial electric field profile can be deduced

from the ion force balance, [23, 24], using the data from the CXRS diagnostics, see [25] for

ASDEX Upgrade and references therein for other devices. For ion species I the equation

reads:

Er =
1

nIZIe

∂pI

∂r
−vpol,IBtor +vtor,IBpol (1)

where pI is the pressure, nI the density, ZI the ion charge and e is the elementary charge.

In the last two terms vxBy are the ion velocities and magnetic fields in the poloidal or toroidal

directions. The first term is often named diamagnetic contribution.

Due to the limited number of radial points of the edge CXRS diagnostic until the end of the
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2013 campaign, the obtention of a full Er profile required a shift of the radial plasma position

of about 1 cm which lasts about 200 ms, if the NBI is turned on continuously. In ECRH heated

discharges the measurement is only possible during the NBI blips and the time resolution is

much longer as several blips separated by at least 100ms each are required for the same plasma

conditions whereas the outer position of the plasma is scanned. The Er profile deduced from

this diagnostic is named ECXRS
r and is available since 2009. A first ECXRS

r profile for I-mode

in ASDEX Upgrade was reported in [25].

The characteristic instabilities of the I-Mode, WCM and GAM, are, as in Alcator C-

Mod, measured in ASDEX Upgrade with reflectometry and magnetic probes. Temperature

fluctuations are not measured. In addition to the usual reflectometers, [26, 27], so-called

Doppler reflectometers are also available at ASDEX Upgrade which provide the perpendicular

rotation of the plasma from which the radial electric field can be deduced, [28, 29]. We

label this quantity EDR
r . These profiles agree generally with those deduced from the CXRS

diagnostic within the uncertainties of the two diagnostics, see [25] for ASDEX Upgrade. For

the measurement of the Er profile, the Doppler reflectometry method requires a frequency scan

of the probing micro-wave beam which takes about 100ms, which limits the time resolution.

The L-I transition can be identified by the increase of the edge temperature, whereby Te is

better suited than Ti, and by the appearance of the WCM and GAM. The confinement time

also follows which confirms the identification of the transition. The reflectometer was not

measuring in all the older discharges such that the occurrence of the WCM is not always

available, but the other criteria are sufficient to identify the L-I transition. The accuracy of

determination of the L-I transition in time can sometimes reach ± 50ms which, however, is

sufficiently short for the analyses presented below because the discharges vary slowly around

the L-I transition.

Finally, throughout this paper, we characterise the total heating power by the usual loss power

defined as Ploss = Pheat −dW/dt, where Pheat is the sum of all the heating powers taking into

account the respective absorptions and fast ion losses for NBI, while W is the plasma energy.

For the energy confinement time we use the thermal confinement time whereby the fast ion

contribution to the plasma energy is subtracted. This quantity is used to calculate the H-

mode enhancement factor H98y,2 according to the commonly used ITER confinement scaling

IPB98(y,2), [30]. For simplicity we write H98 throughout the paper.
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3. I-mode main properties: NBI and ECRH comparison

In the following we illustrate by a few examples the main properties of the I-modes obtained

in the configurations LSNrev and USN, which both have the ion ∇B drift away from the

X-point.

3.1. I-mode with ECRH

The first example deals with two ECRH-heated discharges from 2009 in LSNrev configuration

with the same controlled parameters but developing the I-mode in different ways. These were

carried out to explore, for the first time as proof of principle, the possibilities to obtain the

I-mode with ECRH. The absolute values of plasma current (Ip = 1 MA) and magnetic field

(BT = 2.5 T), yielding an edge safety factor q95 ≈ 4.5, are in the usual range for ASDEX

Upgrade. The line-averaged density, n̄e ≈ 4×1019m−3, is in the medium range for the device.

A few time traces for each discharge are shown in figure 2.

The ECRH power is increased in three steps up to about 2.2 MW and then decreased,

using exactly the same timing and power for the two discharges, as shown in panel (a). During

the first ECRH power step (1.5 - 2.0 s) the confinement factor H98 (panel e) remains constant

at about 0.45, as expected in the L-mode. During the second ECRH step, 2.0 - 3.0 s, the two

discharges behave differently. While shot 25875 is in steady state after the initial changes

following the ECRH power step, shot 25874 exhibits a gradual confinement improvement,

which starts at about 2.3 s as reflected by an increase of the edge electron temperature (panel

c), plasma energy (panel d) and H98 factor (panel e). The latter reaches about 0.75 while the

other discharge remains at H98 ≈ 0.5. Discharge 25874 goes into the I-mode whereby the

L-I transition takes place at about 2.3s with Ploss ≈ 2MW. The slow evolution is typical of

the I-mode evolution in ASDEX Upgrade. The confinement improvement develops gradually

over ≈ 300ms which corresponds to about three confinement times. Due to the slow change,

the time point at which this evolution starts cannot be determined with very high accuracy:

in contrast to the L-H transition, the L-I transition is not abrupt and determining the time at

which it occurs and the corresponding parameters suffer from uncertainties. In the present

case, due to the lack of reflectometry measurement the WCM cannot be used to identify

the L-I transition but the appearance of the GAM at 2.3s is consistent with the increase

of the edge Te. However, if, as in the case of 25874, the L-I transition occurs in phases
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Figure 2. Comparison of two I-mode discharges with ECRH in the LSNrev

configuration: panel (a): PECRH , Ploss and main plasma radiative power; (b) core

and edge line-integrated densities; (c) pedestal Te at ρpol ≈ 0.97; (d) plasma energy;

(e) enhancement factor H98. The vertical dashed lines indicate the respective L-I

transitions, the grey bars the time interval for the profile analysis, plotted in the next

three figures.

during which the parameters such as power and density do not change quickly, the plasma

parameters representative for the L-I transition can be obtained with a sufficient accuracy to

be meaningful, see sections 4 and 5. A further observation is that both core and edge densities

do not change for discharge 25875 which remains in the L-mode, while, in discharge 25874,

the edge density increases by about 5% after the L-I transition, showing that particle transport

is not completely insensitive to the L-I transition. The time constant of the density increase is

similar to that of the pedestal temperature.

The edge density profiles for L and I mode at about 2.9 s are shown in figure 3. With the

occurrence of the I-mode the density increases slightly in the radial region 0.85< ρpol < 0.98.

It is unlikely that this change is due to an increase of the particle source because the line-

averaged core density is feedback-controlled such that the gas fuelling is reduced as the
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in discharges 25874 and 25875 respectively.

density starts to increase after the L-I transition. After about 100ms the gas flux through

the valve has been reduced by about 50% and remains at this lower level. In the L-mode

discharge the fuelling is constant until the next ERCH step at 3.0s. Therefore, at least in the

plasma edge, a slight reduction of particle transport probably occurs after the L-I transition.

Whether this is due to a reduction of the particle diffusion or an increase of the pinch cannot

be determined. It should be underlined, however, that the typical signatures of a transition

to H-mode are not detected in the usual monitors, such as Dα in divertor, indicating that the

transport reduction is indeed small and slow.

The fact that discharge 25875 does not transition to I-mode during the second ECRH step is

attributed to the somewhat higher radiation losses (see panel a) caused by a small impurity

event at the end of the current ramp-up. It will be shown in section 5 that during the second

ECRH power step these shots were very close to the L-I power threshold which is Ploss ≈ 2

MW at n̄e ≈ 4×1019m−3. However, discharge 25875 goes into I-mode when the third ECRH

power step is turned on, as clearly indicated by the stronger increase of temperature, plasma

energy and H98 compared to 25874. The time of the L-I transition for shot 25875 is identified

by the appearance of the GAM at about 3.03s, 30ms after the start of the third ECRH step.

This is consistent with the hypothesis that the higher radiation losses of about 100 kW should

be compensated by somewhat more heating power. During the steady-state phase of the third
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ECRH step, both discharges exhibit exactly the same values, including edge density. At this

somewhat higher heating power the I-mode reaches H98 ≈ 0.8. Thus, it should be noted that

in both L and I mode H98 increases with heating power. Finally, it is worth underlying that

after the reduction of the ECRH power back to 1.5 MW at 4s, both discharges remain in the

I-mode at the confinement level of H98 ≈ 0.7 At this time the radiation power is the same in

the two discharges. This phase is terminated by the reduction of the ECRH power at 4.55 s

and the ramp down of the discharges which starts at 4.6s. Therefore the I-mode of discharge

26874 was maintained with H98 ≥ 0.7 during more than 2s, which corresponds to about 20

confinement times. With H98 ≈ 0.8 during the highest power step, the confinement time is

significantly above the L-mode level, but somewhat below that of the H-mode, as will be

shown quantitatively in comparison with other discharges in a next section. In contrast to

other discharges which will be discussed below, no transition from I to H mode occurred in

these discharges because the heating power was not sufficient to induce it.

As these discharges are from 2009, before the upgrade of the CXRS system and with ECRH

only, no Ti measurement is available, but this pair offers during the second ECRH power step

a nice and rare comparison of the Te profiles in L and I mode at almost the same heating power

over a few confinement times. The Te core profiles measured at the end of the second ECRH

power step (2.9s), I-mode for 25874 and L-mode for 25875, as well as those taken at the end

of time interval with maximum ECRH power (3.9s), both in I-mode, are shown in figure 4.

The time intervals are indicated by grey bars in figure 2. Of course the core temperatures

increase with the ECRH power, but a main contribution is caused by the formation of the

I-mode pedestal.

The electron temperature pedestal is illustrated in more detail by a zoom in the edge

region presented in figure 5. With its top at ρpol ≈ 0.97, it is similar to that observed in our

older discharges, [5], and to the Alcator C-Mod results, e.g. [6, 8]. The temperature at the top

of the pedestal is significantly higher than in the L-mode and it increases with ECRH power,

which corresponds to an increase of the pedestal pressure gradient.

As some diagnostics, in particular the Ti measurement, were not available at the time of

these experiments we do not discuss them in more detail. A more complete analysis of the

I-mode properties and a comparison between NBI and ECRH heated I-modes is provided in

the next sections.
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3.2. Comparison of I-modes induced by ECRH or NBI

During the 2011-2013 campaigns we investigated I-modes produced with ECRH and NBI in

the USN configuration. As indicated above, complete profiles of Ti were provided by the core

and edge CXRS diagnostics, whereby NBI blips were used for the ECRH heated discharges.
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Two examples of such discharges are shown in figure 6 where the left panels show the NBI

case and the right ones that with ECRH.
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Figure 6. Time traces of two I-mode discharges NBI (left) and ECRH (right) in USN

configuration, campaign 2011. Panel (a): heating powers; Panel (b) core and edge

interferometry channels and ELM and L-H monitor; Panel (c): edge Te and Ti taken

at ρpol = 0.97; Panel (d) plasma energy; Panel (e) normalised confinement time H98.

The panels show time traces of the same quantities for each discharge. In both cases

the auxiliary heating power is constant before the L-I transition and during the I-mode. Both

discharges went from I to H mode at constant input power, an interesting feature discussed

in more detail below. The times of the L-I and I-H transitions are indicated in the figure by

vertical lines. The NBI-heated case is discharge 26905 illustrated in the left column of plots.

The plasma is heated with beam Nr. 3, delivering 2.5 MW and allowing Ti to be measured

continuously in time. The ECRH power of about 0.6 MW is turned on before the NBI to

prevent possible tungsten accumulation. The heating power Ploss is then about 3 MW. An

inwards-outwards scan of the outer plasma position by about 1cm was performed between

3.8s and 4.1s to increase the radial coverage and resolution of the edge CXRS system, which

yielded the Er profile for the I-mode reported in [25].
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The ECRH-heated example is discharge 26874, illustrated in the right plot column. It has two

steps of ECRH power, 1.3 and 1.8 MW, yielding Ploss ≈ 2.3 MW during the second ECRH

step, which is somewhat lower than in the discharge with NBI. We applied NBI blips from

beam Nr. 3 for the CXRS measurements.

In contrast to the discharges discussed in the previous subsection, the I-mode in these two

discharges is not stationary and ends in both cases with a transition to H-mode, clearly

indicated by the sudden increase of the edge density and the sharp drop of the L-H monitor

(see panels b). The L-H monitor is one channel of the AXUV diode bolometer cameras, [31],

which looks at the USN X-point region. Its geometry is better suited than our Dα measurement

in the upper part of the machine. This H-mode is ELM-free because the heating power is close

to the power threshold. As we already pointed out in our previous work, [5], the I-H transition

exhibits the following features: the transition, not preceded by dithering or I-phase, is abrupt

as indicated by the fast drop in the Dα and AXUV signals, as well as by the strong edge

density increase. The absence of I-phase before the I-H transition seems to be very general

but not necessarily universal. In contrast, I-phases are observed at the end of the H-mode, as

also reported in [11]. It should be underlined that the increase of the pedestal temperature at

the I-H transition is very weak, in agreement with the fact that the temperature pedestal was

already formed during the I-mode and also because the density increases strongly. Further, it

is worth noticing that no type-III ELMs occur after the I-H transition which is attributed to the

low collisionality induced by the I-mode pedestal. This is not necessarily a general feature,

but observed very often in our study and is coherent with the absence of I-phase. The increase

of H98 after the I-H transition is small, in agreement with the fact that its value is already close

to unity before the I-H transition.

Coming back to the I-mode in these two discharges: After the L-I transition, the I-mode

temperature pedestal develops (panel c), leading to an improvement of global confinement, as

reflected by the plasma energy and H98 factor (panels d and e). Just before the I-H transition

H98 reaches about 1 in both cases. It must be underlined that the evolution of the I-mode

occurs over about three confinement times and is therefore slow. It is also important to note

that the I-mode temperature pedestal builds up similarly for both Te and Ti, which remain

equal as shown in panels c for the pedestal values and will be further documented below

by the profiles. It is also essential to underline that the enhancement of the pedestal occurs

while Ploss decreases which is due to the dW/dt contribution and, to a lesser extent, to a
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slight decrease of the Ohmic power. Therefore, the I-H transition occurs at values of Ploss

which are lower than that of the L-I transition. The density also increases slowly which

is mainly due to the poor pumping in the USN configuration, whereby a slight increase

of particle confinement is not excluded, as pointed out above. Further features should be

emphasised. The fluctuations visible on the L-H monitor (in particular for discharge 26905)

which becomes strong about 100 ms before the I-H transition, were also observed in our earlier

experiments, [5], and will be discussed in a next section. The low frequency oscillations on

the pedestal temperatures for discharge 26905 are caused by the sawtooth heat pulses. There

are indications that the sawtooth pulse at about 3.8 s triggers the L-I transition for discharge

26905, a well-known effect for the L-H transition and also reported for the L-I transition in

Alcator C-Mod, [8, 9, 13]. For the ECRH-heated discharge the L-I transition seems to be

induced by the NBI blip at 1.8s.
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Figure 7. Comparison of the Te and Ti profiles, taken just before the L-I and I-H

transitions for discharges 26905 (NBI) and 26874 (ECRH). The transition time points

are indicated in Figure 6.

In the following we compare the temperature profiles for these two discharges, starting

with the core temperatures in figure 7, left the NBI-heated case, right the ECRH case. With

NBI heating the Te and Ti profiles are close to each other over the whole radius. In contrast,

with ECRH, due to the dominant electron heating, Te is much higher than Ti in the plasma

core, with central Te of about 3 keV and 1.5 keV for Ti. These profiles, including the quite
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flat Ti, are typical for ECRH-heated ASDEX Upgrade plasmas, see e.g. [21]. Due to the

collisional energy exchange, in this case from the electron to the ion heat channel, the Te and

Ti profiles converge towards the same values at the plasma edge, such that the pedestal values

are comparable in the NBI and ECRH cases. As compared to the 2009 I-mode with ECRH

(previous sub-section), the increase of the core temperatures from L to I mode is smaller

which is attributed to the fact that the density increases during the I-mode.

The surface-integrated electron and ion heat fluxes, respectively Qe and Qi, deduced from the

power balance analysis taken at the L-I transition for these two discharges are shown in figure

8. The temperature profiles plotted in figure 7 are used and yield the lines for Qe and Qi. The

error bars are mainly due to the uncertainties on the electron-ion collisional energy transfer

and significantly increase towards the edge due to the strong increase of the collisionality and

to the reduction of the difference Te −Ti with respect to the experimental uncertainties on the

temperatures. They become very large for ρpol > 0.9 where the analysis is then meaningless

and we did plot the results in this part of the plasma. As expected, in the central of the

plasma, the electron and ion heat fluxes for the two discharges are very different: much higher

electron heat flux and lower ion heat flux for the ECRH-heated discharge. However, due to

the collisional energy exchange which plays a key role in the ECRH-heated discharge, Qe, but

in particular Qi converge respectively towards the same value at the plasma edge in these two

discharges. In other words, at the radial position of the top of the pedestal which forms at the

time of the L-I transition the ion heat fluxes are the same independently of the heating method.

This probably explains the similarities between the NBI and ECRH heated discharges in this

density range. This can be very different at lower density where the heat channels are much

less coupled, even at the plasma edge, as discussed in a next section.

We now compare in figure 9 the pedestal temperature profiles in L, I and H modes, for

NBI on the left and for ECRH on the right. The Te and Ti profiles are indeed very similar in

the edge, independently of the heating method. No temperature pedestal can be recognised in

the L-mode, but it appears clearly in the I-mode which is a characteristic of this regime. The

pedestal top is here also at ρpol ≈ 0.97, for both Te and Ti. We remind here that Te (lines in

the plots) is provided by the IDA procedure described in section 2. As already mentioned, the

temperature pedestal in the H-mode is only slightly above the value reached before the I-H

transition. The gradient of Te seems to steepen somewhat in the H-mode, which suggests a

further enhancement of the edge transport barrier for the heat. A similar effect for Ti cannot be
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Figure 8. Comparison of the surface-integrated heat fluxes for the electron and ion

channels taken just before the L-I transition for discharges 26905 (NBI) and 26874

(ECRH). The transition time points are indicated in Figure 6.
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Figure 9. Profiles of Te (lines) and Ti (data points) in the pedestal region for discharges

26905 (NBI, left panel) and 26874 (ECRH, right panel). For L and I modes the data

are taken just before the L-I and I-H transitions. The H-mode profiles are taken 100

ms after the I-H transition.

excluded but the steep gradient region of the Ti pedestal is not measured sufficiently well. In

particular we cannot exclude either that the pedestal gradient of Ti, in the region ρpol > 0.97,

might be somewhat flatter than that of Te, see e.g. figure 9 left panel. Due to the somewhat

lower heating power in the ECRH case the pedestal top temperatures are a bit lower with
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ECRH than with NBI, but the relative changes from L to I and H modes are similar.

0

1

2

3

4

5

6

7

0.8 0.85 0.9 0.95 1 1.05

L-mode

I-mode

H-mode

n
e

[1
0

1
9

m
-3

]

ρ
pol

26905

0

1

2

3

4

5

6

7

0.8 0.85 0.9 0.95 1 1.05

L-mode

I-mode

H-mode

n
e

[1
0

1
9

m
-3

]

ρ
pol

26874

Figure 10. Density profiles in the pedestal region for discharges 26905 (NBI, left panel)

and 26874 (ECRH, right panel). For L and I modes the data are taken just before the

L-I and I-H transitions. The H-mode profiles are taken 100 ms after the I-H transition.

The pedestal density profiles are illustrated in figure 10. The small density increase which

occurs during the I-mode is clearly seen. The pedestal shape does not change significantly

between L and I mode, although, in the ECRH case a weak peaking around the pedestal top in

the I-mode, reminiscent of the effect exhibited in figure 3, is not excluded. In contrast, after

the transition to H-mode, the density pedestal is much clearer with the characteristic very

steep gradient. This change of the density profile is very similar for NBI and ECRH heated

discharges.

The combined effects of the changes in electron temperature and density is reflected in the

electron pressure, plot in figure 11 for the pedestal region. Here also the NBI case is displayed

in the left part of the figure, the ECRH one in the right one. In addition to the pressure

profile, we plotted the pressure gradient in the lower panels. The pressure profile exhibits, as

expected, a significant increase from L to I and from I to H mode, whereby both the pressure

at the pedestal top and the edge gradient increase. The increase from I to H mode is mainly

due to the formation of the strong density pedestal. The pressure gradient exhibits a clear

well whose minimum, ∇pe,min, is getting strongly more negative from L-to-I-to-H mode. The

radial position of ∇pe,min and of the pedestal top exhibit a trend to be slightly shifted inwards

in the evolution from L to H mode. These features are exhibited by both NBI and ECRH
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heated discharges without significant differences. The minimum of the pressure gradient will

be used in the next sections.
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Figure 11. Edge electron pressure profiles (upper plots) and electron pressure gradient

(lower plots) for the L, I, and H time points of the previous figures; left NBI case, right

ECRH case. A vertical line has been added in each plot to guide the eye in relating

the position of ∇pe,min to the pressure profile.

Summarising this section, we have shown that the I-mode can also be achieved with pure

electron heating and compared NBI and ECRH cases. As in Alcator C-Mod, the I-mode has

also been achieved with ICRH, but we do not show examples of them because they suffer

from the lack of Ti measurement. The occurrence of the I-mode does not depend on how the

unfavourable magnetic configuration is created, LSNrev or USN, both yield I-modes. In all

the cases, the characteristic I-mode temperature pedestal develops while the change in density

is small. In the density range studied here 3.5 < n̄e < 6×1019m−3, Te and Ti are equal within

the error bars in the edge region, independently of the heating method. This is different at

lower density where the collisional energy exchange might be too weak to bring the profiles
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together at the edge for ECRH-heated cases and a situation with T
ped

e >> T
ped

i can occur, as

discussed in section 5.

4. Fluctuations and radial electric field in the I-mode

As indicated in the introduction, two instabilities appear at the L-I transition, WCM and GAM,

[13, 14], and it is not clear to which extend they contribute to the transition to I-mode. In

addition, it is widely accepted that the radial electric field at the plasma edge plays a key role

in the formation and sustainment of the H-mode edge transport barrier through ∇Er which

induces a sheared E ×B flow and stabilises the turbulence, [32]. The perpendicular velocity

flow shear induced by E×B is proportional to ∇Er/B. Whether this effect contributes to the L-

I transition is not clarified yet and is discussed in section 5. Nevertheless, it is an experimental

observation that in the narrow region at the very edge of the plasma, the Er profile exhibits a

clear well with a negative minimum, Er,min, which is often used to characterise the Er well,

justified by the fact that the well width varies little.

The edge Er is essentially induced by the main ions according to neoclassical theory, [33], as

assessed experimentally, see e.g. [6, 25]. The Er well is weakly pronounced in L-mode, much

deeper in H-modes and takes intermediate values just before the L-H transition, [34, 35]. In

the I-mode, the development of the temperature pedestal leads to a deeper edge Er well, as

compared to the preceding L-mode and Er,min lies between the L-mode and H-mode values for

the corresponding plasma conditions, [6, 25, 36, 37, 38]. Finally, as shown for Alcator C-Mod

in [8, 12, 9], and also observed in ASDEX Upgrade, [14, 37, 38], the transport reduction in

the I-mode pedestal is correlated with a decrease of the turbulence level in the radial region

of the steep pedestal gradient. The respective contributions of Er, WCM and GAM to the

transport reduction are not clarified in the present work, but in the next two sections we report

experimental observations which might contribute to the understanding.

For this purpose we discuss now a series of NBI-induced I-modes from the 2012-2013

campaign (shots 29737 - 29746). They are very similar to the NBI-heated discharge 26905

of figure 7: same plasma current, magnetic field and USN magnetic configuration, about

the same density and heating power. They also exhibit the slow development of the I-mode

pedestal which ends with a transition to H-mode. They differ somewhat from each other

through small changes in density and heating power, which have been slightly varied on

purpose to increase the duration of the I-mode. This mainly alters the time of L-I transition,
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the development of the I-mode pedestal and the time of the I-H transition. All the required

measurements are available for these discharges, in particular: reflectometry to identify the

WCM, Doppler reflectometry for Er and turbulence measurement, CXRS for Ti and partially

Er. One of these discharges is illustrated in figure 12 by a selection of time traces.
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Figure 12. Time evolution of an NBI-induced I-mode in USN. Panel (a): powers; panel

(b): core and edge density, as well as L-H monitor (AXUV signal in upper divertor);

panel (c): pedestal top values of Te and Ti, taken at ρpol ≈ 0.97; panel (d): Te and Ti

pedestal (steep) gradients, taken at ρpol ≈ 0.99; panel (e): minimum of the electron

pressure gradient; panel (f): the three contributions to the measurement of ECXRS
r

calculated for the CXRS channel at ρpol ≈ 0.99; panel (g): ECXRS
r at ρpol ≈ 0.99

(from panel (f)) and EDR
r points.

As shown in panel (a), the ECRH was first turned on with 0.75 MW, the plasma remains

in L-mode. Later the NBI source 3 is turned on with about 2 MW yielding Ploss ≈ 2.8 MW.

The L-I transition, triggered by the arrival of a sawtooth pulse at the plasma edge, takes place

at about 2.25 s and the I-mode pedestal develops gradually until the transition to H-mode at
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2.66 s, both times are indicated in the figure by vertical dashed lines. The I-H transition is

followed by two type-III ELMs before the EM-free phase, one of the rare occurrences of type-

III ELMs just after the I-H transition. As in the discharge discussed in the previous section, a

moderate slow density increase occurs (panel b). The development of the temperature pedestal

is clearly indicated by the slow increase of Te and Ti at the pedestal top (panel c), and by the

steepening of the edge ∇Te and ∇Ti in panel (d). The oscillations on the signal in panels

(c) and (d) are caused by the sawtooth crash pulses. As already indicated above and shown

in panel (e), the electron pressure gradient also steepens and its minimum value drops from

-30 kPa/m in the L-mode with ECRH only, down to -80 kPa/m at the L-I transition to reach

-160 kPa/m at the end of the I-mode, just before the I-H transition, it further decreases in H-

mode. In panel (f) and (g) we analyse the edge radial electric field. As mentioned in section

3, Er can be deduced from the ion force balance, Eq. 1 applied here to B5+ measured by the

edge CXRS poloidal and toroidal systems. In panel (f) we plot the time traces of the three

contributions to Er: from poloidal and toroidal velocities, vpolBtor and vtorBpol respectively,

as well as from the diamagnetic term, ∇pi/(Znie) with Z=5 for boron. These quantities are

taken at ρpol ≈ 0.99 which is the position of one CXRS channel close to the position of Er,min

as will be shown later. The ion pressure gradient is calculated using a neighbour channel at

ρpol ≈ 0.98. As already indicated for the H-mode in [25], here also the CXRS measurement

of the Er well using this impurity is dominated by the contribution of the poloidal velocity,

while the diamagnetic and vtorBpol contributions almost cancel each other. In panel (g) of

figure 12 we indicate the value of ECXRS
r at ρpol ≈ 0.99 calculated with these values and the

minimum of EDR
r yielded by the Doppler reflectometry. Note that EDR

r cannot be estimated

after the I-H transition because the level of fluctuations is very low and results in a loss of the

back-scattered signal. Due to the frequency sweep required to scan the radial position, EDR
r,min

is only measured every 100 ms, during each frequency scan, and the exact time indicated in

the legend depends on the actual radial position of this minimum. These two measurements

indicate that the Er well becomes more negative from L to H mode during the I-mode. The

L-I transition occurs for Er,min ≈−6 kV/m. During the I-mode Er,min becomes more negative

and the I-H transition occurs for Er,min ≈ −18 kV/m. In the H-mode Er,min becomes clearly

much more negative.

The Doppler reflectometry yields the Er profiles shown in figure 13, where we also report

for each of the EDR
r,min time points the corresponding value of ECXRS

r at ρpol ≈ 0.99, (identical
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Figure 13. EDR
r profiles from the Doppler reflectometry for discharge 29741, the time

intervals for each profile are indicated in the legend. The Er values from the CXRS

channel closest to EDR
r,min are also shown, whereby the time points, which are indicated

in the legend, are chosen such that they correspond to those of EDR
r,min in each frequency

sweep.

to that of panel (g)). The EDR
r profile is quite flat in the L-mode with ECRH only and the

minimum poorly determined. In the scan 2.2 - 2.3s, during which the L-I transition occurs,

EDR
r,min is well defined, at ρpol ≈ 0.996. An inwards radial shift of EDR

r,min is clearly visible in

the following time intervals which is then close to ρpol = 0.99 at the end of the I-mode, and

therefore close to the CXRS measurement. This indicates that the two diagnostics yield very

similar values and that the somewhat less negative value of ECXRS
r in the L-mode and at the

beginning of the I-mode is due to the radial location of the channel. The relative uncertainties

of the position are indicated by the error bars in figure 13. The absolute uncertainties for the

two diagnostics are larger, due to those in the equilibrium and in addition to those on the den-

sity profile for the Doppler reflectometry. Due to this and because we do not have a complete

profile from the CXRS diagnostics, we cannot exclude that a complete ECXRS
r profile might

yield a somewhat more negative Er,min located at ρpol > 0.99.

A further interesting aspect in this discharge series is related to the fluctuations observed to-
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wards the end of the I-mode, already pointed out in the previous section. The L-H monitor

plotted in panel (b) of figure 12 exhibits an increase of the fluctuations, also observed in

the original improved L-mode experiments, but not understood, [5]. In discharge 27943 of

the present series, the Doppler reflectometry was operated at a fixed frequency chosen such

that the measurement was located close to the radial position of EDR
r,min. This setting enabled

us to measure continuously the turbulence behaviour at almost the same radial position as

the density variation is small. This analysis indicates that the density fluctuations exhibit an

increasingly more intermittent character as the I-mode pedestal develops: there are longer

phases with a low fluctuation level ending with a strong, very short (3 to 10 µs) burst of large

fluctuations, [37, 38]. It should be emphasised that the bursts are much too fast to be ELMs

and that their occurrence is very erratic. As the pedestal increases, the time interval between

the bursts is getting longer and their amplitude larger. The peaks observed in the L-H monitor

and in Dα are caused by these turbulence bursts which seem to release energy and particle

from the pedestal which then flow into the divertor region. The spikes measured by the L-

H monitor are longer in time than the turbulence bursts measured by the reflectometer most

likely due to the time constant of the edge/divertor physics mechanisms which lead to the

emitted light. The origin of these turbulence bursts may be linked to the development of the

pedestal temperature gradient as discussed in detail in [37]. Very recent more detailed mea-

surements of Er and turbulence are reported in [38].

In this experimental series, we also performed two exploratory shots in which we applied

3D magnetic perturbations (MPs) with toroidal mode number n=2, otherwise used for ELM

mitigation, [39, 40]. In one of them (29746) the perturbation was “resonant”, i.e. the

perturbation was essentially parallel to the field lines at the plasma edge, in the other case

(29745) the perturbation was “non-resonant”.

The time traces of some relevant parameters are plotted in figure 14. The MPs were

turned on during the low power L-mode phase, therefore long before the L-I transition. The

reference discharge without MPs is 29741, figure 12, in which the L-I transition occurred

about 150 ms after applying the NBI power and the I-mode pedestal developed over more

than 300 ms, followed by the transition to H-mode. In the discharge with the non-resonant

configuration (left panels of figure 14), the L-I transition already occurs 75 ms after the

application of the NBI, the I-mode developed quickly over 95ms until the I-H transition
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Figure 14. The two discharges with non-resonant and resonant magnetic

perturbations, left and right panels respectively. Note the different time intervals. In

both cases the MPS were turned on at 1.5s, reached the required current after 100ms

and remained at this value until they were turned off at 3.2s which also takes 100ms

back to zero. Panel (a): heating powers. Panel (b): core and edge line-averaged-

densities. Panel (c): pedestal temperatures. Panel (d): confinement enhancement

factor. Panel (e): minimum of ∇pe at the plasma edge, ρpol ≈ 0.99. The L-I and I-H

transitions are indicated by the vertical dashed lines.

occurs. This is faster than in the reference discharge. At the I-H transition pedestal and

confinement values are very similar to those measured at the I-H transition in the absence

of MPs. Therefore, the non-resonant magnetic perturbation seems to slightly favour the

occurrence and the development of the I-mode and does not hamper the occurrence the I-H

transition. The respective values of Ploss are about 10% lower than in the reference discharge.

In contrast, the resonant n=2 perturbation prevents the L-I transition to occur during the first

NBI power step as shown in the right panels of figure 14. Indeed, this discharge remains in

a steady L-mode with H98 ≈ 0.6 for one second after the NBI has been turned on, despite

Ploss ≈ 3.4 MW, which is 0.8 MW higher than PL−I in the reference discharge. The transitions

to I-mode and then H-mode occur when the NBI is ramped up. The I-mode is very short
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because the power is increased, a clear transition to H-mode seems to occur at 3.27 s, indicated

in the figure, followed quickly by ELMs. The occurrence of the ELMs is possibly due to the

higher heating power, whereby the MPs might also play a role. The phase before this time,

starting at 3.215 s, which also exhibits spikes on the LH monitor is not identified. It might be

the I-mode, the spikes being the fluctuations mentioned above and related with the intermittent

character of turbulence, or it might be a weak H-mode, but this is questionable because edge

temperatures and density do not increase. Clearly, further I-mode experiments using the MPs

should be performed.

5. Properties of the L-I and I-H transitions

In this section we present analyses of the L-I and I-H transitions, based on the discharges

performed since 2009. They are similar to the examples presented in the previous section,

whereas the density and to some extent the magnetic field have been varied. The magnetic

configurations are either LSNrev or USN, as specified in some of the plots. We found no

difference between the two configurations, as shown below. In most of the cases, the power

has been varied during the discharge such that we collected data in L, I and H mode. The L-I

transition is identified as described in section 2. The I-H transition is easily and accurately

identified by the abrupt drop in the divertor signals and by the strong increase of the edge

density

5.1. Overview of the L-I power threshold

As reported for ASDEX Upgrade, [41], and Alcator C-Mod, [9], the heating power required

to induce the L-I transition, PL−I, increases with the line-averaged density. This is illustrated

in figure 15 for the data of the present work.

As shown in figure 15 panel (a), PL−I clearly increases with the core line-averaged

density, following an offset linear dependence, illustrated by the dashed line which

corresponds to a least square fit. Such density dependence is also observed in Alcator C-

Mod, [16]. The offset is strongly reduced when PL−I is plotted versus the edge line-averaged

density, as show in panel (b) of figure 15. This is in agreement with the hypothesis that the

physics mechanism of the L-I transition acts at the plasma edge. Two data points around

n̄e ≈ 2.5×1019m−3, marked as “ECRH low ne” in these two plots, exhibit high PL−I values

which are attributed to the dominant electron heating, as discussed in the next subsection.
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Figure 15. Density dependence of the power required to induce the L-I transition:

upper plot core line-averaged density, lower plot edge line-averaged density. The

different magnetic field values and configurations are indicated by different symbols.

The two points with resonant and non-resonant magnetic perturbations are at BT = 2.5

T.

These points were not included in the fits.

In these plots we indicate three values of the magnetic field, as well as data obtained in the

LSNrev and USN configurations. We remind here that for both configurations the ion ∇B

drift is away from the active X-point. The good alignment of all the points indicates that PL−I
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does not depend on the position of the X-point, bottom or top of the machine, as long as the

ion ∇B drift is away from the active X-point. As in ASDEX Upgrade the geometry of the

upper and lower divertor are very different, this suggests that the divertor conditions do not

play a dominant role in the L-I transition. Figure 15 also shows that the points at different

magnetic field values are rather well aligned, indicating that the magnetic field dependence

of PL−I is weak, in the rather limited range (1.95 - 2.5 T) available here. From this limited

dataset and taking the experimental uncertainties into account, we estimate the BT dependence

to lie between B0.15
T and B0.45

T . A more accurate assessment would require a wider range in

BT values. We also note that no significant dependence of PL−I upon Ip is found in our

narrow range 0.8 - 1.0 MA. The weak BT dependence is in agreement with the recent findings

in Alcator C-Mod carried out on a much wider range of magnetic field, [16]. This is in

contrast to the L-H transition, for which, as well known, PL−H is proportional to B0.8
T , [42].

This suggests that at least some elements of the physics mechanism of the L-I transition are

different from those of the L-H transition, which is possibly linked to the difference reaction

of particle transport in the two transitions.

The points from the two discharges in which the MPs have been applied, as described

above, are also reported in figure 15, but not included in the fit. For the non-resonant case

which somewhat favours the transition to I-mode, PL−I is at the lower boundary of the other

values. In contrast, the resonant perturbation clearly hampers the occurrence of the I-mode,

as reflected by a significant increase of PL−I . The effect of the magnetic perturbations on the

I-mode is in contrast to our results on their impact on the L-H transition in the favourable

configuration, reported in [43, 44]. Indeed, the application of magnetic perturbations with

n=2, as those used in the present work, was found to increase the L-H power threshold

significantly only above a density of about 6 × 1019m−3, which is higher than that used

here. This might also reflect differences in the transition physics. It should, however, also

be underlined that PL−I being about two times higher than PL−H in the density range of these

experiments, the values of the plasma parameters, e.g. rotation and collisionality, which affect

the action of the magnetic perturbations on the plasma, were different for the L-H and L-I

transitions.

In order to also place our results on PL−I in the context of the H-mode power threshold, in

figure 16 we compare PL−I with the power at the transition from I to H-mode, PI−H , and with

the usual L-H threshold power in the favourable configuration LSNfav, PL−H . These points for
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Figure 16. Density dependence of the power required for the L-I, I-H and L-H

transitions for two magnetic field values, according to the symbols indicated in the

legend. The points with MPs are not displayed.

PL−H , taken from the set of discharges at a plasma current of 1 MA reported in [44], exhibit

the well-known non-monotonic density dependence with a minimum at n̄e ≈ 4× 1019m−3,

discussed in detail in [44, 45]. This minimum separates the so-called low and high density

branches of the H-mode threshold. In the high density branch PL−I is clearly higher than

PL−H which reflects the well-known property that the L-H transition power is higher in the

unfavourable configuration, see e.g. [46] and references therein. As indicated in the previous

section, the I-mode pedestal often evolves with time at constant input power and the I-H

transition can occur at a power which is below PL−I due to the reduction of the Ohmic power

and to the dW/dt correction. This is clearly shown by the PI−H points in the high density

branch, for both magnetic field values. The scatter in PI−H is large because it depends on the

rapidity of the time evolution of the I-mode which is linked with the heating power itself. If

the applied power is significantly above PL−I , the I-mode evolves quickly and PI−H is rather

high, whereas if the heating power is just above PL−I , the time evolution of the I-mode is

slow, the pedestal has time to develop and the conditions for the I-H transition, e.g. Er well

deep enough and step pressure gradient are reached at lower power. In contrast, towards low

density, PL−I crosses the low density branch of PL−H for NBI while it is higher with ECRH,

as indicated by two points labelled “ECRH low ne”. This suggests that, at sufficiently low
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density, it might be possible to access the I-mode with about the same installed heating power

as required for the H-mode, but it remains to demonstrate experimentally that the density can

be then increased keeping the I-mode with an adequate increase of the heating power but

without triggering the transition to H-mode.

5.2. Heating method and edge ion heat flux at the L-I transition

The increase of PL−H towards low density has been interpreted in ASDEX Upgrade by the

fact that the neoclassical edge radial electric field well plays a key role in the L-H transition

physics, [35, 47]. As the Er well is mainly driven by the main ions pressure gradient,

[33, 48], the ion heat flux at the plasma edge, Qi,edge, is expected to play a key role, as indeed

demonstrated experimentally, [45, 49]. It has been shown that Qi,edge at the L-H transition

increases linearly with density, Q
L−H, f it
i,edge = aLH n̄e, in MW and 1019m−3, the coefficient aLH

being equal to 0.18 and 0.45 in deuterium and hydrogen respectively. Thus the increase

of PL−H as density is reduced in the low density branch is attributed to the fact that more

heating power is required to reach the value of Qi,edge necessary for the L-H transition because

the collisional electron-ion energy exchange diminishes towards low density. This effect is

particularly strong when ECRH is used.
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Figure 17. PL−I and Qi,edge versus density for L-I transitions with NBI and ECRH.

Following the same argumentation, one may tentatively explain the two high values of
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PL−I with ECRH at low density by the fact the L-I transition also requires a minimum edge

ion heat flux. The results are shown in figure 17 which displays PL−I and Qi,edge at the L-I

transition versus density for cases with NBI and ECRH. We find no difference in PL−I between

ECRH and NBI for densities above ≈ 3.3× 1019m−3, which is in line with the fact that the

ion heat fluxes at the plasma edge are every similar for both heating methods, as shown in

figure 8. In contrast, below 3.3×1019m−3 PL−I is very high for ECRH, but aligned with the

other points when NBI is used. The power balance analysis allows to separate the electron

and ion channels up to the edge if the coupling is not too high, n̄e < 5.5× 1019m−3 in the

present cases. The Qi,edge values at the L-I transition plotted in figure 17 versus density are

well aligned, including those corresponding to the two high PL−I values with ECRH. A linear

fit yields Q
L−I, f it
i,edge = 0.3n̄e in MW and 1019m−3. In contrast to PL−I , the density dependence

of Qi,edge has a negligible off-set. This is qualitatively very similar to the results found for

the L-H transition, whereby the slope value of 0.3 is higher than aLH for the L-H transition

in deuterium, which is in agreement with PL−I > PL−H , but lower than aLH in hydrogen for

which PL−H is indeed higher than PL−I in deuterium, see [49] for comparison.
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Figure 18. Electron and ion temperature profiles at the L-I transition induced with NBI

or ECRH for the lowest density points of figure 17

This is confirmed by the electron and ion edge profiles plotted in figure 18 at the L-I

transition for the lowest density with NBI and ECRH. For the NBI case Ti ≈ Te, but with

ECRH only the Ti profile is very close to that with NBI, while Te is much higher and the edge
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gradient steeper. This is similar to what we observed below the usual L-H threshold in the

low density branch with ECRH, [35].

It should be underlined that, as shown by figure 16, the increase of the threshold power

with ECRH in the low density branch is stronger for the L-I transition than for the usual

L-H transition. This can be explained as follows: QL−I
i,edge being higher than QL−H

i,edge more

ECRH power is required for the L-I transition than for the L-H transition. As the electron-ion

collisional coupling, pe,i ∝ neni(Te−Ti)T
−3/2

e , saturates with increasing Te, as illustrated with

experimental data in [45, 49], the ECRH power necessary to establish the value of Qi,edge for

the L-I transition increases strongly non-linearly compared to the ratio QL−I
i,edge/QL−H

i,edge.

It should be underlined that in Alcator C-Mod, where the L-I transition is achieved with

ICRH which is an efficient electron heating, PL−I also seems to increase strongly towards low

density, [16] figure 15.

5.3. Edge data at the L-I transition

The actual physics mechanism causing the L-I transition is not identified yet. As mentioned

above, the L-I transition is correlated with the appearance of the WCM and GAM, both located

at the very edge of the plasma, close to the minimum of the pressure gradient or, almost

equivalently of the radial electric field, [13, 14]. It is not clear whether the heat transport

reduction which induces the formation of the temperature pedestal is due to one of these

two instabilities, or to their non-linear interaction, or rather to the perpendicular flow shear

similarly to the L-H transition. With the aim of providing some experimental elements on this

question, we investigated the electron data yielded by the IDA analysis.

We analyse the minimum of the pressure gradient, ∇pe,min, at the L-I transition, plotted

in figure 19 versus heating power with different symbols for ECRH and NBI. As indicated in

section 3 the radial location of ∇pe,min is at the very edge, in the range ρpol ≈ 0.98− 0.99.

The NBI cases suggest a decrease with Ploss and it should be underlined that the two points for

which the magnetic perturbations were applied are well aligned with the others. This shows

that the magnetic perturbations influence the L-I transition by their impact on the pressure

gradient. In contrast, the ECRH points exhibit a strong scatter and no trend.

In figure 20 we plot the same data as a function of density. There also, the NBI points

are rather well aligned and ∇pe,min becomes more negative as density increases. In contrast

to the previous figure, the ECRH points exhibit a somewhat clearer pattern whereby the most
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Figure 19. ∇pe,min versus Ploss at the L-I transition for the cases indicated in the legend.
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Figure 20. ∇pe,min versus density at the L-I transition for the cases indicated in the

legend.

negative values are found towards low densities. This is in agreement with the decoupling

of the electron and ion channels at low density with ECRH and the fact that a Te pedestal

develops before the L-I transition which yields a high pressure gradient reflected by negative

values of ∇pe,min at the L-I transition. Together with our results on the edge ion heat, figure
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17, the analysis of ∇pe,min and the differences between NBI and ECRH induced L-I transitions

at low density strongly suggest that the ion channel plays a key role in the physics mechanism,

of the L-I transition.

We have so far very few profiles of Er for the L-I transition but they all yield a value for Er,min

between -6 and -10 kV/m. With this dataset it is not possible to conclude on the dependence

of Er,min at the L-I transition on density or magnetic field. The values of Er,min at the I-

H transition are more negative, in the range -18 to -24 kV/m. For ASDEX Upgrade it has

been shown in [35] that Er,min is close to -15 kV/m for the usual L-H transition at the same

magnetic field value of 2.5T. Our present results suggest that Er,min at the L-I transition might

be somewhat less negative than at the usual L-H transition and somewhat more negative at

the I-H transition, newer more detailed measurements are reported in [38]. Whatever the

reasons for this difference are, this leaves room for other turbulence reduction mechanisms

than ∇Er. As pointed out in [50], one possibility is the magnetic shear which is influenced

by the bootstrap current at the plasma edge. The latter is indeed linked with the pressure

gradient which would be in agreement with our analysis which shows the importance of the

pressure gradient in the L-I transition and explains the fact that PL−I depends weakly on the

magnetic field. As the turbulence stabilisation by ∇Er and magnetic shear affect different

turbulence size scales, this might be consistent with the strong reduction of particle transport

at the I-H transition when ∇Er is steep enough. As both bootstrap current and Er well depend

on the pressure gradient, disentangling the two effects requires dedicated experiments with

accurate measurements of all the required quantities in magnetic field scans in the favourable

and unfavourable magnetic configurations. This could be the subject of further dedicated

investigations. It should be noted that during the I-mode, from the L-I to I-H transitions, βpol

increases from 0.33 to 0.5 while the internal inductance, li, decreases from 1.42 to 1.33 due

to the broadening of the current profile. The Shafranov shift is only weakly increased, by

less than 1cm, and the triangularity at the plasma edge by about 5%. Therefore the changes

in equilibrium are small and most probably not a main contributor to the observed changes

in the turbulence properties. It should also be mentioned that the maximum value of βN in

our I-modes was 1.2 which is rather low, such that the turbulence is expected to be mainly

electrostatic.
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6. I-mode confinement properties

In this section we present the confinement properties of the I-mode, as well as those of the

L and H modes for the corresponding discharges. We characterise the confinement by the

widely used H98 enhancement factor. In these discharges, the H-mode which develops after

the I-mode is often ELM-free, which means that density and radiation losses increase strongly,

leading to a loss of the H-mode after about 300ms if the heating power is not increased to

produce ELMs. The H-mode data presented below are taken 100 ms after the I-H transition,

where the radiation losses are still moderate, and they generally exhibit a rather high value

of H98. Therefore, they are not necessarily representative of all the H-modes in ASDEX

Upgrade, but serve as comparison to the I-mode data. We find no dependence of confinement

on magnetic field in the range of our dataset. The most interesting dependences are illustrated

in the following.
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Figure 21. Density dependence of the normalised confinement, H98 for the different

plasma regimes indicated in the legend.

We start with the dependence of H98 upon density illustrated in figure 21 which shows

well the confinement range for each regime and indicates that the separation between regimes

is clear. As expected, the L-mode points exhibit the lowest confinement and H-modes the

highest, while the I-mode confinement lies in-between. The H98 values at the L-I transition

increase somewhat with density and are in the range 0.5 - 0.7. These points build the upper

boundary of the L-mode data which are indeed all below. The I-mode covers a range from the
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L-I values up to H98 ≈ 1 at the I-H transition. The I-mode range exhibits overall an increase

of confinement with density, despite the fact that H98 includes a n̄−0.41
e density dependence

which reduces this trend. Further, it seems that the range of H98 of the I-mode, between the L-

I and I-H transitions, widens towards higher values as density increases. We verified that this

is not due to the range in magnetic field. The H-mode points suggest a decrease of H98 with

density which is often observed and attributed to the n̄−0.41
e dependence of H98. The density

range of the I-mode data points in this figure corresponds roughly to a range in Greenwald

factor between 0.2 and 0.5. So far we did not try to increase the density in the I-mode and this

upper value can certainly be pushed to higher values with gas puffing.

It is very instructive to investigate the dependence of confinement versus loss power, figure

22 which shows H98 versus Ploss. The confinement at the L-I transition increases with heating

power which is probably correlated with the density as PL−I increases with density. The power

dependence shown in figure 22 exhibits a turn around for H98 ≈ 0.7 and Ploss ≈ 3.2 MW. The

I-mode points with higher confinement are roughly correlated with a decrease of Ploss. This

is due to the spontaneous evolution of the I-mode discussed above and underlined in the plot

by the n̄e −Ploss trajectory for the NBI-heated discharge 26905 which is overlaid on the data

points. The L, I and H phases are indicated. This behaviour shows that the spontaneous

evolution of the I-mode until the H-mode transition, at fixed auxiliary power, occurs for H98

above 0.7-0.8. As the L-I transition occurs at higher values of H98 and power for higher

density, the spontaneous evolution of the I-mode might be unavoidable above a certain density

in ASDEX Upgrade. However, the actual physics reason for the spontaneous evolution is

not identified yet. As suggested by the NBI/ECRH comparison in figure 6, the spontaneous

evolution also occurs in ECRH-heated cases. However, a possible role of the NBI blips which

induce an increase of the edge pressure at each pulse cannot be excluded. Similarly, the

sawtooth pulses, which are strong with NBI, could also play a role, see figure 6. The possible

impact of the toroidal rotation induced by NBI is less probable as it is known to increase the

L-H threshold, [51, 45]. The uncontrolled evolution is always correlated with an increase of

the density, whereby we do not know yet what is cause and consequence. Obviously further

investigations are necessary to better understand and control this phenomenon which must be

avoided in a future fusion reactor.

To investigate this impact of this behaviour on the confinement properties in more details,

we consider two subsets of the database built as follows. We define as “steady” the I-modes
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Figure 22. Power dependence of the normalised confinement, H98 for the different

plasma regimes indicated in the legend.

which reach steady state after the L-I transition at fixed input heating power and Ploss. Defined

as “non-steady” I-modes are those which evolve until the transition to H-mode despite fixed

input power, as for instance those illustrated in figures 6 and 12. In these cases, pedestal

and confinement increase in spite of the fact that the input power is kept constant and while

Ploss decreases. The L-modes are always steady at fixed heating power. I-modes in which

variations of heating power do not allow us to define them as steady or not are not included.

The confinement properties of the three classes, for Ip = 1 MA only, are summarised in

figure 23, in panel (a) for the global confinement time, τE , and in panel (b) for the H98 factor.

The plots indicate that the power dependence of τE and H98 depends on whether the I-modes

are steady or not. The L-modes exhibit a usual power degradation with τE ∝ P−0.63
loss which is in

agreement with the L-mode confinement scaling [52]. For the steady I-modes the confinement

time degrades as τE ∝ P−0.43
loss which is weaker than that predicted by the L and H confinement

scalings. This is in agreement with the previous ASDEX Upgrade results on the Improved

L-mode, [2], and with those from Alcator C-Mod, [53]. In contrast, with τE ∝ P−1.3
loss the

power degradation of the non-steady I-modes is much stronger than any confinement scaling.

This is due to the fact already mentioned above that in these discharges the pedestal evolves

spontaneously leading to a higher plasma energy while Ploss decreases. In the plots of figure

23 the time evolution of the non-steady I-modes goes from the right to the left and in the
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Figure 23. Confinement power degradation of the steady and non-steady I-modes, as

well as L-modes. All points are from discharges at 1MA and 2.5T. Panel a: global

energy confinement time. The lines are power law fits to the respective data sets and

the power dependence is indicated. Panel b: H98 for the same data points. The lines

are fit to the data.

upper left corner τE = W/Ploss is high because the plasma energy increases thanks to the

higher pedestal pressure while simultaneously Ploss decreases. This strong power degradation

should not be interpreted in the usual way because the confinement time is not directly and

solely linked to the heating power, but rather induced by the self-amplifying development

of the pedestal. In addition, the high confinement points at low power cannot be reached
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directly with the corresponding value of Ploss because the latter is below the L-I transition

threshold. The large scatter in both τE and H98 for the non-steady points is due to the fact that

the confinement time power degradation is not solely determined by Ploss.
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Figure 24. Power dependence of the I-mode confinement, H98, with NBI or ECRH for

the confinement phases indicated by the symbols.
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Figure 25. Density dependence of the I-mode, H98, with NBI or ECRH for the

confinement phases indicated by the symbols.

As we used NBI or ECRH to obtain the I-mode, it is also instructive to investigate the
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possible impact of the heating method on the confinement properties. This is illustrated in the

figures 24 and 25 again plotting H98 versus Ploss and n̄e for the L-I, I and I-H points. These

two plots indicate that confinement in the I-mode does not depend significantly on the heating

method, except for the three points at very low density and with ECRH, labelled “ECRH

low ne”. Note in particular in figure 24 that they are at high heating power but have poor

confinement: In such cases the high electron contribution to the total plasma energy cannot

compensate the low ion fraction. Apart from these cases and as discussed in section 3, the heat

fluxes at the pedestal do not depend on the heating method which yields very similar pedestal

value for a given heating power and density. In addition, deeper in the plasma core the higher

electron temperature with ECRH can compensate for the lower ion temperature, such that

the plasma energy is roughly independent of the heating method under the conditions of our

experiments at n̄e > 3.0×1019m−3.

The behaviour of the pedestal is a crucial element in the I-mode. We use here the electron

data at the pedestal top whereby an overview is provided by plotting T
ped

e versus n
ped
e in

figure 26. The values of T
ped

e during the I-mode reach about 800 eV at low density which is

about a factor of two higher than the values at the L-I transition: this quantifies the pedestal

development induced by the I-mode. At low density the maximum value of T
ped

e was not

limited by the I-H transition. The highest T
ped

e values at low density (n
ped
e < 2.5×1019m−3)

correspond to ECRH-heated I-modes. At somewhat higher density (n
ped
e > 3×1019m−3) the

enhancement of the pedestal in the I-mode is limited by the I-H transition and the excursion

in T
ped

e is somewhat smaller than at lower density. The H-mode points exhibit higher ne,ped

values due to the density increase after the I-H transition and the increase of T
ped

e is moderate

as already pointed out above.

The pedestal pressure is an important quantity in confinement studies. We document

its behaviour with heating power, using here the electron pressure at the pedestal top, p
ped
e ,

as shown in figure 27. The pedestal top pressure increases somewhat with heating power in

L-mode and at the L-I transition. The increase during the I-mode, even for decreasing Ploss

as discussed for H98, appears clearly: the highest values of pe,ped do not correspond to the

highest heating powers. As expected, the highest values of pe,ped are reached in the H-mode

where p
ped
e seems to saturate and be rather independent of heating power.

It is well-known that the global confinement time is generally correlated with the pedestal

top pressure, see [54, 55, 56] for ASDEX Upgrade. The data plotted in figure 28 indicate
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Figure 27. Pedestal electron pressure versus Ploss for the different confinement regimes

indicated by the symbols.

indeed a strong correlation between H98 and p
ped
e for the L-mode and I-mode points up

to the I-H transition. The correlation is particularly clear for the I-mode (including L-I

and I-H) which extends over the widest range in H98. This confirms quantitatively that the

improvement of the confinement time in the I-mode is mainly determined by the enhancement
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of the pedestal. The low density I-modes with ECRH exhibit high values of p
ped
e but low

confinement in comparison to the other points, in agreement with the explanation given above

that the ion contribution is small. In contrast to the increase of H98 with pe,ped in I-mode, a

saturation occurs for the H-mode points, in agreement with the fact that H98 better describes

the H-mode confinement: the pedestal is directly linked to the heating power.
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Figure 28. Correlation between H98 and pedestal top pressure for the different

confinement regimes indicated by the symbols.

7. Summary and conclusions

The I-mode is achieved above a certain threshold in heating power if the H-mode is avoided

by choosing conditions in which the ion ∇B drift is away from the active x-point. This regime

reaches higher confinement than the L-mode thanks to the formation of a temperature pedestal

while the density profile almost does not change. This makes it interesting to study from at

least two points of view: i) transition physics, transport reduction and pedestal formation; ii)

potentiality as regime in a fusion reactor.

The I-mode has been achieved in ASDEX Upgrade with NBI, ECRH and ICRF. No noticeable

differences in the power threshold and confinement properties were found, except at very low

density with ECRH where the decoupling between the electron and ion heat channels leads

to an increase of the required ECRH power at the L-I transition as compared to NBI under

similar conditions. In ASDEX Upgrade the I-mode is only achieved for the unfavourable ion
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∇B drift because a high H-mode threshold is required for the I-mode to develop. However,

the properties of the I-mode do not depend on whether the high threshold is caused by revers-

ing the magnetic field direction in the lower single magnetic configuration or operating in the

upper single configuration. The I-mode could be obtained in a similar way independently of

the wall material, carbon or tungsten, and with open or closed divertor configurations. The

I-mode can be steady over several confinement times at a confinement level with H98 ≤ 0.8,

which requires the adequate, low enough, heating power. If the heating power is somewhat

higher the normalised confinement increases beyond 0.8, the temperature pedestal further de-

velops spontaneously and a transition to H-mode occurs inevitably whereby H98 is close to

unity at this transition. As the L-H power threshold increases with the magnetic field, this

limitation might be less severe at higher BT values, as already indicated by results in C-Mod.

With ECRH, Te is higher than Ti in the plasma core, as compared to NBI cases, but the two

temperatures are very similar at the I-mode pedestal, except with ECRH at low density where

Te is higher than Ti up to the edge. This is consistent with the fact that the L-I power threshold

does not depend on the heating method, except at very low density with ECRH. The L-I tran-

sition seems to require a minimum ion pressure gradient at the plasma edge or a deep enough

Er well. The L-I transition is systematically correlated with the appearance of the WCM and

GAM but their possible contribution to transport reduction is not clarified yet.

Our comparison between ECRH and NBI triggered L-I transitions suggests that the ion chan-

nel plays a key role. This has a strong analogy with the results on the L-H transition in ASDEX

Upgrade and then suggests that Er might be part of the physics mechanism, as known from

the H-mode studies. However, the fact that the L-I transition depends weakly on the magnetic

field value might be in contradiction with the E ×B shear stabilisation hypothesis as single

cause. Further investigations with a wider range of magnetic field values and accurate Er

measurements will be required to address this important physics question.

The development of the pedestal after the L-I transition leads to a steeper edge pressure gra-

dient and to a more negative Er well. This ultimately causes a transition to H-mode with

the usual strong reduction of the particle transport. During the I-mode evolution the over-

all turbulence level at the edge decreases significantly and in ASDEX Upgrade the turbulence

becomes more intermittent. Comparative studies between devices on this topic might be inter-

esting. Overall, the I-mode provides an excellent field of investigations to better understand

the physics of transport reduction and pedestal formation in comparison with the H-mode
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studies.

Thanks to its good confinement properties, without ELMs and with L-mode particle transport,

the I-mode might be considered as a potential regime for future fusion reactors. However, to

assess its potentiality, future studies, including multi-machine comparisons as carried out in

the frame of the ITPA, should probably address at least the following topics:

1. So far the I-mode has only been obtained robustly in the unfavourable ∇B ion drift config-

uration to prevent the occurrence of the H-mode and requires a higher heating power than the

usual transition to H-mode. Further studies will be needed to assess whether this situation is

compatible with the presently envisaged future reactors.

2. The I-mode has not yet been investigated at densities above half of the Greenwald limit.

Exploring the behaviour of the I-mode towards the density limit is probably necessary. Such

studies are envisaged for the forthcoming experimental campaign in ASDEX Upgrade. It is

in particular proposed to transition to I-mode at low density for which the power threshold is

low and then, once in the I-mode, to simultaneously increase density (with gas puffing) and

heating power, remaining in the I-mode with good confinement, but avoiding the H-mode.

3. The I-mode features good confinement but rather modest βN values, while efficient fusion

reactors should probably operate at higher βN than reached so far in I-modes. Further experi-

mental studies are desirable to investigate to which extent βN can be increased in the I-mode.

4. The spontaneous uncontrolled non-steady improvement of the I-mode provides a better

confinement but also leads to a transition into H-mode with large ELMs, as often observed in

ASDEX Upgrade. Such a behaviour could be a serious issue for future fusion reactors and

it is not clarified yet to which extent this development can be controlled or even avoided. To

address this question, it will be important to understand the underlying physics mechanisms.

Further, the possibilities of controlling the plasma energy and/or the pedestal development

with an adequate feed-back on the heating power should also be explored. We have shown

that the use of magnetic perturbations could contribute to this goal and this will be pursued.

Further studies on these topics are envisaged for the next ASDEX Upgrade experimental cam-

paign.

Overall, the I-mode features good confinement, absence of ELMs and no strong reduction of

particle transport which are positive properties in view of its application to future fusion re-

actors but some issues should be addressed to better assess its actual potentiality for efficient

and reliable operation. Due to their different operational features, the I-mode and H-mode
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possibly impose different specific technical requirements on a future fusion device.
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