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Abstract—Today, with 0.18-m technologies mature and stable
enough for mixed-signal design with a large variety of CMOS
compatible optical sensors available and with 0.09-zm technolo-
gies knocking at the door of designers, we can face the design
of integrated systems, instead of just integrated circuits. In fact,
significant progress has been made in the last few years toward the
realization of vision systems on chips (VSoCs). Such VSoCs are
eventually targeted to integrate within a semiconductor substrate
the functions of optical sensing, image processing in space and
time, high-level processing, and the control of actuators. The
consecutive generations of ACE chips define a roadmap toward
flexible VSoCs. These chips consist of arrays of mixed-signal
processing elements (PEs) which operate in accordance with
single instruction multiple data (SIMD) computing architectures
and exhibit the functional features of CNN Universal Machines.
They have been conceived to cover the early stages of the visual
processing path in a fully-parallel manner, and hence more
efficiently than DSP-based systems. Across the different genera-
tions, different improvements and modifications have been made
looking to converge with the newest discoveries of neurobiologists
regarding the behavior of natural retinas. This paper presents
considerations pertaining to the design of a member of the third
generation of ACE chips, namely to the so-called ACE16k chip.
This chip, designed in a 0.35-um standard CMOS technology,
contains about 3.75 million transistors and exhibits peak com-
puting figures of 330 GOPS, 3.6 GOPS/mm? and 82.5 GOPS/W.
Each PE in the array contains a reconfigurable computing kernel
capable of calculating linear convolutions on 3 X 3 neighborhoods
in less than 1.5 us, imagewise Boolean combinations in less
than 200 ns, imagewise arithmetic operations in about 5 us, and
CNN-like temporal evolutions with a time constant of about 0.5 ys.
Unfortunately, the many ideas underlying the design of this chip
cannot be covered in a single paper; hence, this paper is focused
on, first, placing the ACE16k in the ACE chip roadmap and, then,
discussing the most significant modifications of ACE16K versus
its predecessors in the family.

Index Terms—Analog programmable very large-scale integra-
tion (VLSI), early vision chips, silicon retinas.

1. INTRODUCTION

VISION involves extremely complex computational tasks
[1]-[8]. So complex that, despite its huge set of applica-
tions and potential uses, no artificial vision system has been able
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to reach the level of efficiency of natural vision systems up to
date. Indeed, performances of currently available artificial vi-
sion systems are far below those of the smallest insect, despite
the usage of the most sophisticated latest generation computing
devices. Is this paradox due to a lack of industrial or commer-
cial interest? Clearly not, since the number of applications of
artificial vision systems are enormous. Which can be hence the
reason underlying the gap between natural and artificial vision
systems?

Probably, the reason is that conventional signal processing
architectures are not the best suited for vision. In these archi-
tectures, there exists a clear separation between signal acquisi-
tion and signal processing, with the role of analog processing
being restrained to the front-end functions, namely transduc-
tion, signal conditioning and data encoding. The problem is that
images contain a huge amount of data, many of them redun-
dant, i.e., not carrying any information. Hence, does it make any
sense to consume resources in handling, i.e., converting and pro-
cessing, these data? Nature gives us some guesses about that. In
natural vision systems, the front-end device, the retina, does not
only acquire but also pre-processes the visual information [9],
[10], such that the amount of data transmitted through the optic
nerve to the brain gets compressed by a factor around 150.!

A similar compression of information occurs in any vision
processing chain. As the signal climbs through consecutive
levels in the processing path, its dimensionality shrinks
whereas its abstraction increases. Thus, although using serial
digital signal processing is advisable at the upper levels of the
hierarchy, it might not be so adequate for early processing.
Operating with images at the bottom level of the processing
hierarchy implies intensive memory accesses and poses im-
portant constraints on the bandwidth of the communications
between memory and processor. Also, having a chip to sense
the visual information (imager) and another one to process it
(processor), requires high-speed data conversions and trans-
ferences to achieve large frame rates. Using the conventional
Imager-Memory-DSP architecture it is possible to reach
30 FPS, even for large resolution images. However, high-speed
industrial applications requiring ultrafast frame rates? might
turn unfeasible.

ACE chips render ultrafast operation feasible by using mas-
sively parallel analog processing at the early stages, as natural

IThe human eye contains about 150 mill. photoreceptors whilst the optic
nerve contains about 1 mill. fibers.

2In the order of 1000 FPS.
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retinas do. Some reasons supporting this choice are [11]-[13] as
follows.

1) The accuracy required for early processing is moderate or
even low. Actually, the perceptual quality of the images
does not drop significantly in the presence of perturba-
tions (noise, spatial variances, nonlinearities, . . .); even if
these perturbations are as large as 5% of the full scale?.

2) The speed versus power efficiency of moderate-to-low
resolution analog circuits is much larger than that of dig-
ital counterparts. This is relevant since very high speed is
needed to achieve high frame rates for moderately large
images.

3) The area efficiency of analog circuits for mod-
erate-to-low resolution applications is better than
that of digital counterparts.

The chip described in this paper represents the third genera-
tion of ACE chips and has been designed to overcome some lim-
itations of its predecessors, particularly those of the the so-called
ACEA4k chip [5]. Major improvements of ACE16k include the
following.

 Incorporation of digital buses for grayscale data:
ACE16k embeds per-column data converters (arranged
in analog-to-digital (A/D) and digital-to-analog (D/A)
re-configurable pairs) for fully digital interfacing.

* Exact control of the timing for input/output (I/0) ac-
cess: To that purpose, ACE16k does not include the possi-
bility of individual cell selection; instead it incorporates
an autonomous addressing scheme. Also, it employs a
hand-shaking protocol to eliminate timing constraints.

* Better internal organization of the processing cells:
ACEI16k incorporates the so-called ACE-BUS to allow
any functional block within the cell to communicate with
any other.

* Use of nonconventional logic blocks: Particularly, the
four local logic memories (LLMs) of ACE4k have been
replaced by local analog memories (LAMs), and the local
logic unit (LLU) has been designed to operate within re-
duced analog-compatible voltage ranges, instead of within
complete digital voltage ones. Also, dynamic, instead of
static, digital memories are used to store template masks.
Finally, dedicated logic inverters with peak current limita-
tion have been used instead of conventional ones.

* Improvement of the optical interface: ACE16k incorpo-
rates a re-configurable optical input module with the fol-
lowing features:

» User-defined photo-sensing device: The user can
select among a P-Diffusion/N-Well photo-diode, a
N-Well/P-Substrate photo-diode or a P-N-P vertical
photo-transistor.

* User-defined sensing scheme: The user is allowed
to select between normal linear integration modes or
logarithmic compression sensing.

* Incorporation of an address event detection scheme:
to simplify the extraction of information from black and

3The exact number is obviously application dependent.

white (B/W) images. The associated circuitry provides ad-
dresses (instead of images) corresponding to array loca-
tions where activity is detected. This scheme also embeds
the functionality of the global gates—no address is pro-
vided if no active cells exist.

* Improved power consumption management: ACE16k
has four times more cells than ACE4k, and much larger
functional capabilities. However, it switches idle blocks
off and uses scaleddown logic levels to keep the power
consumption moderate—less than 180 W per cell.

ACE16k has been designed in a digital CMOS 0.35-pum
5M-1P technology and contains more than 3.75 million tran-
sistors—85% of them working in analog mode. It can reach
peak computing figures* of 330 GOPS, 3.6 GOPS/mm?, and
82.5 GOPS/W. It provides and accepts 8-bit digitized images
through a 32-bit data bus which works at 120 Mbytes/s

II. ACE16k IN ROAD MAP OF ACE MIXED-SIGNAL
VISION CHIPS

ACE chips consist of an array of identical processing ele-
ments (PE) which execute the same instructions at the same
time. Instructions are executed on data which are locally de-
fined, i.e., at the PE level, while the sequence of instructions
is controlled and timed by a digital controller which is shared
by all the PEs. Typically, for implementation purposes, com-
munications between PEs are restricted to the nearest neighbors.
However, despite such an architectural limitation, ACE chips are
able to implement most early-vision processing tasks [4]-[6],
[13]. Adding the capability of sensing the visual information in
a one-by-one pixel-to-PE correspondence makes these systems
very well suited to implement the front-end stage of VSoCs.
Obviously, processing images whose resolution is larger than
the array size (necessarily limited due to the incorporation of
programmable processing circuitry at pixel level) requires win-
dowing and time multiplexing.

Regarding ACE chip architectures, different questions arise,
which relate to:

1) functions to be incorporated within the PE;

2) complexity of the control unit;

3) interfacing with other hardware and/or equipment.

The answers to these questions are largely dependent of the
intended application. However, due to size, design complexity,
and fabrication costs of these chips, the design of special pur-
pose devices is only advisable if a market niche absorbing mass
production is ensured. Otherwise, the architecture of the PE
must be flexible enough to guarantee the execution of the largest
possible amount of vision algorithms under real-life illumina-
tion conditions. Thus, taking into account that most early vision
processes consist of the application of convolutions masks, and
the combination (either by Boolean operations in the case of
B/W images, or by a local analog arithmetic operator) of their
results in a bifurcated-flow algorithm, the following operators
should be included at the PE level:

4These data correspond to experimental results.
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Fig. 1. Conceptual architecture of ACE16k.

1) multipliers and adders; for the convolution operation;

2) analog registers; to allow for the storage of previous re-
sults at the local level,

3) arithmetic operator and/or binary operator; to combine
previously obtained results;

4) local masks; to allow for the conditional execution of cer-
tain operations at PE level depending on some locally de-
fined value.

5) wide dynamic range optical input; to permit the light-
sensing capability, and, hence, to avoid the bottleneck
existing in data transmission from the sensory to the
processing plane in conventional nonmassively parallel
solutions.

To cope with the objective of covering the largest possible
set of applications, all functions above must be programmable,
including reliable setting of analog parameters, reconfiguration
of topologies and control of internal data-flows. Regarding the
control unit, its roles are:

1) controlling the sequence of operations to be executed on
the array;

2) storing the machine code of the algorithms to be imple-

mented;

3) storing the data which define the internal analog parame-

ters of the array.

4) interfacing the external world using standard protocols;

5) performing high-level signal processing tasks.

Based on, first, the convenience of making the interfacing
completely standard, and, second, the necessity to guarantee ro-
bustness in the control of the analog parameters, the control unit
should be fully digital, with the obvious exception of the blocks
which interchange information (both data and commands) with
the array.

ACE chips have been designed with these guidelines in mind.
Specifically, this is the case of ACE16k [6] whose conceptual ar-
chitecture is depicted in Fig. 1. As already mentioned, ACE16k

represents the third generation of ACE chips. Fig. 2 depicts
the evolution of these chips, where a bifurcation appears at the
time when ACE16k was released. Such bifurcation is related to
the different nature of the behaviors addressed by instances be-
longing to each of the branches. On the one hand, ACEXX chips
are basically conceived to perform spatial image processing on
temporal image flows. On the other hand, CACEXX chips are
designed to emulate the spatial-temporal dynamic evolutions
observed in mammalian retinas [14].

Table I summarizes some main features of the three different
generations of ACEXX chips. It highlights a continuous im-
provement across time. ACE400, the first member of this family,
was designed in 1996 using a standard 0.8-pm technology [4].
It was conceived to operate only on B/W image flows, and in-
cluded reduced programming capability. Special attention was
paid to the optical interface in order to achieve high speed cap-
turing through the incorporation of Darlington-based photocur-
rent amplification.

Four years later, in 2000, the ACE4k chip was released [5].
Together with an increase by a factor of ten in spatial resolution,
this chip incorporated much larger programming capabilities.
Despite the increased complexity and its capability to handle
grayscale images, this chip featured significantly larger PE den-
sity and lower power consumption while basically keeping the
time constant unaltered. These ameliorations were basically the
consequence of major architectural and circuital improvements,
and marginally due to the scaling down of the fabrication tech-
nology—from 0.8 pm to 0.5 pm.

By the end of 2002, the first version ACE16k chip was made
available from the foundry [6]. Improvements of ACE16k
versus ACE4k have already been mentioned in the Introduction
and are summarized in Table II. Details about the architectural
and circuital tricks employed to achieve such significant
enhancements can be found in [13]. In Section III, we basically
discuss the modifications affecting the PE itself. Below, we
give some hints regarding the programming memory and the
I/O interface, whose circuit level details are presented in [6].

Regarding the programming memory of ACE16k, it is similar
to that of ACE4k. However, three main differences exist.

* The instruction memory has been arranged into two blocks
with 64 words of 32 bits each. This division aims to sepa-
rate addresses from definition of operations—something
like defining operations and operators separately. Thus,
and thanks to the use of separate control buses, ACE16k
has a programming memory of 64 x 64 words of 32 bits,
instead of simply 64 words of 48 bits as with ACE4k. Such
an increase in the memory gives the user the possibility of
programming and testing more complex algorithms.

* ACEI16k uses a memory control circuitry which includes
a voltage-controlled oscillator to generate all the timing
signals required for memory management.

* Finally, ACE16k uses hand-shaking protocols, instead of
strobing signals, to control the access to the programming
memory. This overly simplifies control.

A related major modification of ACE16k consists of the
incorporation of self-calibration stages to the analog buffers
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TABLE 1
OVERVIEW OF ACEXX CHIP FEATURES
Feature ACE400 ACE4k ACE16k
Technology @ Supply 0.8um 2M-1P @ 5V | 0.5um 3M-1P @ 3.3V | 0.35um 5M-1P @ 3.3V
Design Style Full Custom Full Custom Full Custom / Standard Cells
Signal Range 2V (Fully-Diff.) 0.6V - 1.4V 0.6V -14V
Weight Range 2V (Fully-Diff.) 2.15V-2.95V 2.15V =295V
Analog Accuracy 7-bit 7.7-bit 8-bit
# Analog Instructions 8 32 32
# Digital Instructions N/A 64 4096
# Memories per PE 4 BW 4 BW & 4 Grey 2 BW & 8 Grey
I/0 Digital Speed 22 x 10 Mbit/s 16 X 10Mbit/s
120MByte/s
1/O Analog Speed N/A 16 x IMSamp/s
Array Size 22 x 20 64 x 64 128 x 128
# Transistors on Chip ~200.000 ~1,000,000 ~3.75 mill.
PE Density (PE/mm?) 27.5 82 180
Computing Power (GOPS)? 15.8 40 330
Speed / Area (GOPS/mm?) 0.98 1 32
Speed / Power (GOP/ Joule) 25 39.5 100

a. For the ACE400 chip, speed figure refers to Boolean Operations per Second (BOPS) whereas for ACE4k and ACE16k it refers to 8-bit equiva-

lent resolution operation, i.e. 8-bit additions or products.

which drive weights and analog references to the cell array.
Although ACE16k uses the same distributed buffer strategy as
ACEA4K, the topology of the buffer includes extra circuitry for
calibration purposes. Fig. 3 shows a simplified block diagram
of the weight generation circuitry in ACE16k, including the
RAM block in which coefficients are digitally stored, the 8-bit
D/A converter (DAC), the two-level buffer structure, and the
calibration circuitry.

Regarding I/O, ACE16k incorporates a fully digital port for
image transferences. Fig. 3 shows a simplified block diagram of

the I/O block in ACE16k. It includes a bank of 128 8-bit A/D con-
verter (ADC) and DAC. Since the data bus is 32 bits wide, each
word transmitted to/from the chip contains information about
four adjacent cells—same row, consecutive columns. Then, and
by justlooking at the way of writing/reading images, the array can
be divided into 32 identical blocks of four adjacent columns.
Data transference uses a two-stage pipeline architecture. In
the input mode, data are sent to an input register of 8 x 128
bits (see Fig. 4). Once filled, this register is transmitted in par-
allel to an internal 8 x 128 register whose outputs (in blocks
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TABLE II
COMPARING ACE16k VERSUS ACE4k
ACE4K ACE16k Scaling Factor
Technology 0.5um 3M-1P ST-0.35m 5M-1P 200 % area scaling
. Full Custom (Analog Core)
Design Style Standard Cells (Dig. 1/0 block)
Signal Range [0.6, 1.4]V (Programmable)
Weight Range [2.15, 2.95]V (Programmable)
# Transistors per
Cell ~180 (172 /198)
Analog Accuracy ~ 7 bits equivalent
# Anal(?g Instruc- 30
tions
# Digital Instruc- 64 Configura- 4096 Configurations (64 x | 64x plus programmable
tions tions 64) configurations
# Memories per 4+ Gray Images on
Pixel 4 Gray +4 B/N 8 Gray Chip
1/0 Digital Speed | 160 Mb/s@B/N 128 MBytes/s@Gray 640 %
Digitized Gray Images
800 %
I/O Analog Speed 16 MS/s 128 MS/s Digitized fmages
# Cells 4096 (64 x 64) 16384 (128 x 128 Array) 400 %
# Transistors ~1.000.000 3,748,170 375%
Cell Density ~82 cells/mm? ~180 cells/mm?2 220 %
Speed (GOPS) 47 300 640 %
Speed / Area
2 1 3.23 323%
(GOPS/mm~)
Speed / Power N
(GOP/J) 395 100 250 %
Power per Cell ~370 WWatts ~180 uWatts 49 %
_ 2" | evel Buf.
v \ Two per Column.
I B
/| i \
== 1 Vo |
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| ¥ e
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Fig. 3. Distributed buffers in ACE16k.

of 8) are permanently connected to a bank of 128 DACs which
operate in parallel. At the same time, the external register is
again being filled with the information about the next row to
be written—avoiding idle periods. At the end of the conversion,
the first module of a double bank of 2 x 128 sample-and-hold
(S&H) circuits acquires the converted data and sends it to the se-
lected row of cells. While the first module of the bank of S&H
sends the analog value to the array, the second module is this
bank is capturing the next row of data which is being converted
by the DACs.

During an output process, the first row is acquired by the first
module of the S&H bank. In the next step, these data are held
and converted while the second module of the S&H bank cap-
tures the second row. At the end of this step, the digital informa-
tion (the result of the conversion of the first row) is sent to the
external register where it is ready to be downloaded during the
third step. In the third step, the content of the first row is read
at the output of the external register, the content of the second
row is being converted and the third row is being captured by
the first module of the S&H bank.
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III. ACE16K VERSUS ACE4K: MODIFICATIONS IN PE
A. ACE-BUS

The PE of ACE4k is designed to allow direct communication
only between closely related blocks. However, ACE16k uses
a new communication scheme, the ACE-BUS. The ACE-BUS
is basically a node of the processing unit (PU), where every
functional block connects its input and output ports. Commu-
nications between blocks always happen in the same way; first,
one functional block (the data source) is configured in output
mode, while a second one (the destination) is configured in input
mode. It overly simplifies the definition of operations and data
movements, and allows for rapid checking of conflictive switch
configurations.

Fig. 5 shows the block diagram of the PU in ACE16k.
Synapses take their inputs from the ACEBUS. They can be
initialized by using either the LAM module contents, the result
of LLU operations, the result of an optical acquisition, or the
result of a passive diffusion realized by using one resistive grid
embedded in the chip. The analog processing core steers the
processed input current (the input current after eliminating all
the offset contributions) to the ACE-BUS; this current can then
be rooted either to the state capacitor or to any of the LAM
modules.

B. Image-Processing Kernel

The synaptic analog multipliers are designed by using the
same one-transistor technique as in ACE4k [13]. They are
driven by voltages at both the signal and the scaling input and
deliver a current at the output. The bank of multipliers, depicted
at the conceptual level in Fig. 6, is driven by three different
pixel values, P4, Pp, and Pc so that the current which flows
into the PE is

Lict =AePpA+b-Pg+c-Poc+z+Iog (1)

where the operator (e ) denotes the convolution product of the
template and the pixel value matrix, and I,g is the offset term
generated by the one-transistor multipliers. This offset term is

eliminated by using a high-accuracy current memory [13], [15].
Fig. 7 shows a conceptual schematic of the PE input block in-
cluding the S3I current memory used for offset cancellation,
based on [15]. The resulting current

Iin=AePpA+b-Pg+c-Pc+z 2)

is either steered to the ACE-BUS, or to the input of a capacitive-
input current comparator [16] whose output is connected to the
ACE-BUS through an analog switch. Then, two situations may
occur.

* A voltage codifying the sign of [;;, (i.e., the sign of the

outcome of the convolution operation) is delivered to the
ACE-BUS

Xmin
Xmax

AePpa+b-Pg+c-Po+2z2>0
AePp+b-Pg+c-Po+2<0.
3

VaceE-BUS = {

In this case, the output is a B/W pixel value.

* The analog current Ij;, is routed to one of the capacitors
associated to the pixels and the output is a grayscale pixel
value.

In any case, the specific pixel capacitor to which the output
of the input block is routed is selected by the user through the
activation of some bits in the digital instruction. By so doing,
the evolution of the PU is described by a state equation whose
actual expression depends on the selected integrating capacitor.
Therefore, different kinds of processing kernels are available.

* Consider, for instance, that you want to execute a Sobel
operator [8]. The convolution matrix is then defined in A;
the image is loaded into P4; the following values are set:

¢ =z =0,and b = —1; and the signal current is routed
to Cp. Hence, the equivalent state equation obtained for
each PU is
dP
Cp=7 =P+ AePs )

whose steady state is Pz = A o P 4, as corresponds to the
desired convolution output.

* Consider now that the capacitor which receives the input
current is C'4 . Then, the cells are dynamically coupled and
CNN spatio-temporal operations are realized.

* Consider finally that the current is routed to C 4; that all
but the central entries of matrix A are null; and that this
central entry is A, = —1. The steady-state solution is
then

Pyr=b-Pg+c-Po+=z (®)]

which corresponds to the realization of grayscale image-
wise arithmetic operations.

Although ACE16k also uses one-transistor synapses and, due
to the similarities between the electrical parameters of 0.5-pm
0.35-um technologies, the same voltage ranges as in ACE4k,
the aspect of synapse transistors have been reduced from 2/20
to 1/20. This keeps the voltage drop across the metal line which
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drives the weight to the cell. After some calculations, the fol-
lowing expression can be obtained:

B (NrOWAc:E4K _1) I
2 cellacrax S
N - W SYNACE4K
% —1 metacE4K

L

_ cellace16K S

N,

TOWACE4K

N,

TOWACE16K

syn v 6
WmetACElGK YIACE16K ( )
where S denotes the aspect of synapse transistors and Wi,
denotes the width of the metal layers driving the weights. Since,
N, = 64 and NV, = 128, (6) becomes

TOWACE4K TOWACE16K

1 L L

cellacE4k S ~ Hcellaceisk S

Z W SYNacrak SYNACE16K * )
metACEaK

WmetACEwK

Since Leenn/Winet is almost invariant from technology to
technology (in the ideal case, both scale as the technology
scaling factor does), the aspect ratio of the synapse transistor
in ACE16k must be reduced by a factor of four in order to
keep the same voltage drop as in ACE4k. However, because
the number of multipliers is two times smaller in ACE16k, the
aspect ratio is reduced only by a factor of two. The reason for
reducing the width is that it does not practically affect the time
constant. The counterpart is a degradation of matching which
is attenuated by hardware.

C. Increasing the Cell Density

Lastly, the PE size is determined by the lines which carry
the weights and control signals: their number, their width and

the minimum separation between them. Obviously, having five
metal layers (ACE16k@0.35-um technology) instead of three
(ACE4k@0.5-um technology) gives some room for decreasing
the cell size. However, the following hold.

» The top metal layer, metal 5, should be used only for power
supply and ground. On the one hand, this layer has the
maximum separation between adjacent lines. On the other
hand, it has the greatest conductivity and hence the max-
imum current driving capability.

* ACEI16k has a much larger number of PE-embedded func-
tions than ACE4k (50 versus 35). Obviously this increases
the number of control lines.

To meet the target of having cell densities larger than 150
cells x mm~2, ACE16k employs an interaction pattern among
cells different from that of ACE4k. As Fig. 6 shows, each PE
contains 12 analog multipliers. Eight of them connect the cell
to its neighbors; the other four provide additional inputs to the
processing block. The multipliers marked with a star in Fig. 6
are double; they consist of the parallel aggregation of two mul-
tipliers. The purpose of this “double strength” is to increase the
robustness in certain operations. From [17], it can be seen that in
most cases, the central element of the template matrices is larger
than the noncentral elements. At the electrical level it means
that the corresponding multipliers have to be driven by quite
different voltages, thus increasing mismatch-induced errors. By
increasing the strength of central multipliers, the difference be-
tween weight voltages, and consequently the overall robustness,
increases.

D. Digital Modules

The PE of ACE4k embeds conventional digital circuitry. This
is not convenient because of the following.

* Level adapters are needed to transform the logic voltage
levels, corresponding to full-scale swings, into levels
compatible with the electrical operation of the PE analog
circuitry.

* Protective measures must be taken to attenuate the im-
pact of the large-power switching noise on the analog cir-
cuitry [18]. Last, this means greater area and penalizes cell
density.
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In the case of ACE16k different measures have been taken to
overcome these drawbacks, the following.

* The four LLMs of ACE4k have been replaced by LAMs.
On the one hand, this eliminates the digital switching noise
introduced by the LLMs. On the other hand, the impact
on the silicon area is not very large because the readout
amplifier is shared with the other LAMS. Finally, voltage
level adapters between the LLMs and multipliers are not
further needed.

In addition to that, having eight instead of four LAM

modules increases significantly the algorithmic capabili-
ties of the chip.
The LLU has been conceived to operate as an independent
module which gets its inputs from the ACE-BUS and
which also drives its output to the same ACE-BUS. This
means a significant difference as compared to ACE4k.
There, the LLU was intrinsically related to the LLM
since its inputs were always taken from two fixed LLMs.
In addition, although the LLU works as an intrinsically
logic device, its inputs and outputs are provided via the
ACE-BUS and have hence analog voltage levels.

Fig. 8 shows the LLU in ACE16k. Its two inputs, OP0 and
OP1 are acquired from the ACE-BUS by using instruction bits
WOP0 and WOP1, while the result of the LLU operation is
written to the ACE-BUS when the bit RLLU is activated. Logic
inverters in the LLU (as well as any other inverter in the cell)
are not conventional CMOS inverters but current-peak limited
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Fig. 9. Inverters and biasing circuitry in the cell in ACE16k.

inverters. They have been designed using an NMOS transistor
connected to a PMOS resistive load as depicted in Fig. 9. The
resistive load is biased by a common biasing circuitry—shared
by all the inverters in the cell. It establishes the quiescent point
of the inverter around the middle of the voltage range for pixels.

E. Multimode Optical Sensor

Light sensing in ACE4k is realized by a parasitic diffusion-to-
substrate diode of the LAM access switches. Thus, sensitivity
is rather low, and cross-talk among the LAM modules arises.
ACEI16k incorporates a multimode optical sensor which has
been conceived to be flexible enough to operate under very
different illumination conditions. Fig. 10 shows its conceptual
schematic, including three main blocks.

¢ The first one, a tri-state readout buffer, controls the com-
munications between the sensor and other blocks in the
PU. Sensor accesses are controlled by the global program-
ming signal ROPT.
The second one is devoted to transforming the photo-gen-
erated charges into a voltage. The user has the possibility
of selecting the photo-transduction mechanism by means
of signals LOG1, LOG2, PCH.
The third block includes the optical sensor itself and two
configuration switches M » used to select one out of the
three available photo-sensors. The selection of the sensor
is carried out by signals DW and WS.

The optical sensor can be configured to operate in three
different linear integration modes [Fig. 11(a)—(c)] and three
different logarithmic compression modes [Fig. 11(d)—(f)]. In
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the integration modes, the sensing procedure is always carried
out in the same way. First of all, M5 4 are turned off by making
LOG1 = LOG2 = 1. Afterwards, switch M3 precharges
the internal node a to a user definable voltage VPCH. Finally,
switch M3 is turned off and the photo-generated current Iy,
charges or discharges (depending on the selected photosensor)
the pixel capacitor Clix. Further details about the ACE16k

F. Cell Layout and Metal Distribution

The layout of the PU in ACE16k differs from that in ACE4k
in various points.

e Metal 1 and metal 2 are used for internal routing, instead
of just metal 1. This helps to increase cell density.
e As already mentioned, the last metal layer, metal 5, is

sensor operation can be found elsewhere [13], [19].

Fig. 12 shows the global block diagram of the ACE16k-PU.
There, the different building blocks can be identified. Control
and configuration signals from the programming memory are in
bold. A detailed description can be found in [13].

employed for power and ground distribution. Therefore,
power and ground lines can be as wide as almost half
the cell height. This increases the quality of these signals:
better uniformity across the array, less noise, lower prob-
ability of error during the fabrication, etc.
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Fig. 12. Functional block diagram of the cell.

* The existence of the ACE-BUS allows for a more orga-
nized layout. Generally speaking, the more involved the
schematic, the more difficult the layout and the lower the
cell density. Hence, the ACE-BUS concept contributes
also to increase the cell density.

* A problem in the physical design of the ACE16k PU is
related to the necessity to make a hole (in all the metal
planes) to allow the light to reach the sensing area. This
hole, located in the middle of the cell, just on top of the
sensing area of the photosensor, reduces by three the
number of available minimum width lines in each plane.

* As in ACE4k, digital instructions are sent to the cell by
using a horizontal bus (metal 3) while weights are com-
municated by a vertical bus of metal 4 lines. Weights that

are connected to double-strength synapses are communi-
cated through double-width lines.

Fig. 13 shows the layout and floor-planning of the PU in
ACEI16k. Cell size in ACE16k is 73.3 x 75.7 pum?. It means
a cell density of 180.2 cells- mm~2. The width of the power
and ground lines has been raised to almost 32 ym—about three
times wider than in ACE4k.

IV. DISCUSSION

Applications of the ACE16k chip can be found in other papers
of this special issue. Overall, these applications demonstrate
that the chip is capable of operating with grayscale images at



RODRIGUEZ-VAZQUEZ et al.: ACE16k: THIRD GENERATION MIXED-SIGNAL SIMD-CNN

861

% A
Synapses Element ° re.a
Limiter Occupation
mt Masks
Current Synapses 20.25
Add. Optical Input Conveyor LAM 21.01
Event
31 20.3
LLU &3 Current Conveyor 10.70
Optical Input Module 9.34
Limiter 7.62
LAM LLU 6.5
Synapses Others 4.28
Fig. 13.  Floor planning of the ACE16k PE and area occupation percentages.
TABLE 1II
FURTHER ACE16k VERSUS ACE4k COMPARISON.
o] ~
o n ~ W
B g 2 3 % | £
® | 29| & a e g <k g
] <IR] e B = s s &
b e B ) 5 e [=] g =
g’ = B 2 o &g 2
S R N
Further| 05 | 64x64 | Bina 01y | 5% 109 | 39.5%10° | Yes
’ Yol g Binary =X =%
This 8 Gray 5 9
chip 0.35 128 x 128 | Analog 4 Binary 330 x 107 | 82.5x 10 Yes

frame-rates larger than 1000 FPS under room illumination con-
ditions. This means a significant improvement as compared to
other ACEXX chips which in turn have been shown to outper-
form other vision chips and architectures [13]. Further insight
about the improvements yielded by ACE16k is provided by the
data in Table III, where we have employed an equation which
combines the number of operations (additions and products), the
time constant of the process, and time constant units to keep set-
tling errors below a given limit. In the particular case of linear
convolutions

(Nadd + Nprod) . Nc
Tconv * (n + 1) : Ln(2)

OPScony = ®)

where N, is the number of elements in the array (128 x 128 in
our case), N,qq the number of additions (8 in 3 x 3 linear con-
volutions), Np,y0q the number of products (9 in 3 X three linear
convolutions), n the resolution for the settling error in an equiv-
alent number of bits, and 7oy the time constant of the process
in (4), about 135 ns for the largest allowed b.

In summary, ACE chips, and specifically, the ACE16k pro-
totype, are practical demonstration vehicles for the following
statements.

» Sensory-processing concurrence is feasible with mixed-
signal standard CMOS circuitry.

* Flexibility and programmability features can be incorpo-
rated by the smart synergy of analog and digital circuits.

* Robustness can be achieved through proper analog design,
and the use of calibration and error-correction techniques.

 Standard interfacing is a must which can be incorporated
through embedded A-D and D-A converters.

These chips demonstrate that flexible analog early vision can
be implemented in practice, and represent the first step toward
the development of VSoCs. However, significant design chal-
lenges still have to be confronted to make true VSoCs capable
of handling 10 000 Frames/s with moderate power consumption
(below 1 W) and a large enough spatial resolution.
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