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Abstract. A predator prey model with nonlinear harvesting (Holling type-II) with both constant
and distributed delay is considered. The boundeness of solutions is proved and some sufficient
conditions ensuring the persistence of the two populations are established. Also, a detailed
study of the bifurcation of positive equilibria is provided. All the results are illustrated by some
numerical simulations.
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1. Introduction. In [1] the authors propose a predator prey model to study the impact of harvest-
ing on a two species community. In particular the attention is focused on predator harvesting due
to its importance in controlling the predator population and to prevent the extinction of the prey
species. The published literature suggests that a nonlinear harvesting (see for example [3, 4, 5, 6, 7])
is capable describing complex behaviours. Moreover, the choice of nonlinear harvesting (with a func-
tional response known as Holling type-II) is also motivated by the fact that nonlinear harvesting
function exhibits saturation effects with respect to both the stock abundance and the effort-level of
harvesting.
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This preserves positivity of solutions and prevents blow up phenomena, that is, the model be-
comes more realistic. In fact, in [1] a detailed stability and bifurcation analysis of the following
system is carried out:











u̇(t) = u(t) [1 − u(t) − v(t)] ,

v̇(t) = ρv(t)

[

u(t) − α − η

ε + v(t)

]

.
(1)

In [2] the authors consider an extended version of the model taking into account diffusion in order
to describe individual motions within their habitats. This is motivated by an increasing interest in
the literature (for example [8, 10, 11, 12]). They consider the following model with and without
time delay:











ut = d1∆u + u(t) [1 − u(t − τ) − v(t)] ,

vt = d2∆v + ρv(t)

[

u(t) − α − η

ε + v(t)

]

.
(2)

Introducing time delay in the model is fully justified as can be seen in the previous literature (see for
example [16]). Moreover, it is now admitted that diffusion stabilises pattern formation while time
delay may destabilize. The model (2) has been extensively studied in [2] where some conditions
ensuring Turing and Hopf bifurcations are provided. Moreover, numerical simulations show the
formation of many different spatial patterns (such as spots, strips, mixture of spots and strips,
spiral, patchy structure, chaos...) which are affected and transformed in presence of time delay.
Motivated by both works [1] and [2], in this paper we come back to the finite dimensional model
and consider a delayed version of the original model in Section 2. In Section 3 we introduce the
model with distributed delay and in Section 4 we study persistence of the system and boundedness
of solutions. Section 5 is devoted to the analysis of stability for positive equilibria and the problem
of bifurcations, while, in Section 6, some remarks for future investigation are included.

2. The model. In this section we consider the case of constant delay; in other words, we analyse
the following model:











u̇(t) = u(t) [1 − u(t − τ) − v(t)] ,

v̇(t) = ρv(t)

[

u(t) − α − η

ε + v(t)

]

,
(3)

where u and v denote population biomass of prey and predator, respectively, τ is the time delay, and
all parameters ρ, α, η, ε are positive. In the previous model, a Holling type II response is considered
for the population of predators.
The positive equilibria of model (3) are the same as those of the model without delay. They are
the solutions of system

u = α +
η

ε + v
, u + v = 1,

where u > 0 and v > 0.
The analysis of the number of positive equilibria, when τ = 0, has been carried on in [1], where the
authors showed that the number of these equilibria depends on the expression of η + αε − ε. In
fact, they proved the following result:

Theorem 1. The sufficient conditions ensuring the existence of positive steady states, for the

zero-delay case, can be classified into four cases:
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1. Let η + αε > ε, with α + ε < 1 and (α + ε − 1)2 > 4(η + αε − ε). Then, system (3) possesses

two positive equilibria (u∗
±, v∗±), where

u∗
± = 1 − v∗± v∗± =

1 − ε − α ±
√

(α + ε − 1)2 − 4(η + αε − ε)

2
.

The point (u∗
−, v∗−) is a saddle point, while (u∗

+, v∗+) is locally asymptotically stable if ρ <

[(1 − v∗+)(ε + v∗+)2]/(ηv∗+).
2. Let η+αε > ε, with α+ε < 1 and (α+ε−1)2 = 4(η+αε−ε). Then, system (3) has a unique

positive equilibrium (ū, v̄), which is a saddle point, where ū = 1 − v̄ and v̄ = (1 − ε − α)/2.
3. Let η + αε = ε, with α + ε < 1. Then, system (3) possesses a unique positive equilibrium

(u∗
+, v∗+) which is also a saddle point.

4. Let η + αε < ε. Then, system (3) has a unique positive equilibrium (u∗
+, v∗+), which is locally

asymptotically stable whenever ρ < [(1 − v∗+)(ε + v∗+)2]/(ηv∗+).

Now we analyse the system with a constant delay. Let (u∗, v∗) be an equilibrium of (3). which
is locally asymptotically stable in the zero-delay case. Translating this point to the origin, the
linearization of the resulting system of (3) at this point possesses a characteristic equation given by

λ2 + aλ + b + (c + dλ)e−λτ = 0, (4)

where

a = −ρv∗(u∗ − α)2

η
, b = ρu∗v∗, c = au∗, d = u∗.

By Rouche’s Theorem [13] and the continuity with respect to τ , the existence of roots of Eq. (4)
with positive real parts guarantees the existence of purely imaginary roots and viceversa. From
this, we shall be able to find conditions for all eigenvalues to have negative real parts. Let λ(τ) =
β(τ) + iω(τ), with β and ω real. As the equilibrium (u∗, v∗) is stable, we have β(0) < 0. By
continuity, if τ > 0 is sufficiently small, we still have β(τ) < 0 and (u∗, v∗) is still stable. The
change of stability will occur at some values of τ for which β(τ) = 0 and ω(τ) 6= 0, i.e. λ(τ) is
purely imaginary. Let λ = iω (ω > 0) be a root of (4). Then

−ω2 + iaω + b + (c + idω)e−iωτ = 0.

Equating the real and imaginary parts of both sides, we have

ω2 − b = c cosωτ + dω sin ωτ, aω = c sinωτ − dω cosωτ. (5)

Squaring and adding Eqs. (5) we obtain

ω4 + Aω2 + B = 0, (6)

where

A = a2 − 2b − d2, B = b2 − c2.

Then, it is not difficult to prove the following result:

Lemma 2. The number of positive roots of (6) depends on the relationship between A and B as

follows.

1) If A ≥ 0 and B ≥ 0 or A < 0 and A2 < 4B, then Eq. (6) does not have positive roots.
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2) If A < 0 and A2 = 4B or B < 0 or A < 0 and B = 0, then Eq. (6) has one positive root ω0,
given by

ω0 =

√

−A +
√

A2 − 4B

2
. (7)

3) If A < 0, B > 0 and A2 > 4B, then Eq. (6) has two positive roots ω±, ω− < ω+, and given

by

ω± =

√

−A ±
√

A2 − 4B

2
. (8)

Solving Eqs. (5) in τ , we obtain

sin ωτ =

[

ac +
(

ω2 − b
)

d
]

ω

c2 + d2ω2
, cosωτ =

(c − ad)ω2 − bc

c2 + d2ω2
,

and, as a consequence, we obtain the critical values, denoted by τ
(k)
j , k ∈ {0,±} , j = 0, 1, 2, ..., at

which Eq. (4) has a pair of purely imaginary roots λ = ±iωk. Namely,

τ
(k)
j =



















1

ωk

cos−1

{

(c − ad)ω2
k − bc

c2 + d2ω2
k

}

+
2jπ

ωk

, if M ≥ 0,

2(j + 1)π

ωk

− 1

ωk

cos−1

{

(c − ad) ω2
k − bc

c2 + d2ω2
k

}

, if M < 0,

(9)

with M = ac +
(

ω2 − b
)

d.

Let λ (τ) be a root of (5) near τ = τ
(k)
j (k ∈ {0,±}) satisfying Re(λ(τ

(k)
j )) = 0 and Im(λ(τ

(k)
j )) =

ωk. For this complex root, we have the following results.

Proposition 3. λ = iωk is a simple root of (5) and
[

dRe(λ)

dτ

]

τ=τ
(0)
j

,ω=ω0

> 0,

[

dRe(λ)

dτ

]

τ=τ
(+)
j

,ω=ω+

> 0

and
[

dRe(λ)

dτ

]

τ=τ
(−)
j

,ω=ω−

< 0.

Proof. Differentiating Eq. (5) with respect to τ yields
(

dλ

dτ

)−1

=
(2λ + a)eλτ + d

λ(dλ + c)
− τ

λ
. (10)

Thanks to (6) we deduce eλτ = − (c + dλ) /
(

λ2 + aλ + b
)

. Combining this with Eq. (10) leads to

sign

[

dRe(λ)

dτ

]

λ=iωk

= sign

[

Re

(

dλ

dτ

)−1
]

λ=iωk

= sign
(

2ω2
k + A

)

.

Consequently, 2ω2
k + A > 0 if ωk = ω0, and

2ω2
k + A = ±

√

A2 − 4B ≷ 0

if ωk = ω±.
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The previous result indicates that, as τ increases, there is only crossing of the imaginary axis in
the following ways:

⋄ from left to right if τ = τ
(0)
j ,

⋄ from left to right whenever τ assumes a value corresponding to τ
(+)
j ,

⋄ from right to left for values of τ corresponding to τ
(−)
j .

From the above discussion and the Hopf bifurcation theorem of FDEs [14], we obtain the following
results on the stability of the positive equilibrium of system (3).

Theorem 4. Let τ
(k)
j (j = 0, 1, 2, ...) be defined as in (9) and the equilibrium (u∗, v∗) of system (3)

be locally asymptotically stable in case of non-delayed system.

1) The fixed point (u∗, v∗) is locally asymptotically stable for all τ ≥ 0 if one of the following

conditions is fulfilled:

i) a2 − 2b − d2 ≥ 0 and b2 − c2 ≥ 0,

ii) a2 − 2b − d2 < 0 and
(

a2 − 2b − d2
)2

< 4
(

b2 − c2
)

.

2) The equilibrium (u∗, v∗) is locally asymptotically stable for τ ∈ [0, τ
(0)
0 ) and unstable for

τ > τ
(0)
0 if one of the following conditions is fulfilled:

i) a2 − 2b − d2 < 0 and
(

a2 − 2b − d2
)2

= 4
(

b2 − c2
)

;

ii) b2 − c2 < 0;
iii) a2 − 2b − d2 < 0 and b2 − c2 = 0.

Furthermore, system (3) undergoes a Hopf bifurcation at (u∗, v∗) for τ = τ
(0)
0 .

3) The equilibrium (u∗, v∗) is locally asymptotically stable for τ ∈ [0, τ
(+)
0 ), its stability change a

finite number of times for τ > τ
(+)
0 ) and eventually it becomes unstable for τ > τ

(0)
0 ) if

a2 − 2b − d2 < 0, b2 − c2 > 0 and
(

a2 − 2b − d2
)2

> 4
(

b2 − c2
)

.

System (3) may undergoes a Hopf bifurcation at (u∗, v∗) for those values of τ = τ
(±)
j (j =

0, 1, 2, ...) for which a stability switch occurs.

In the following lines we illustrate the case 3), that is, if a2−2b−d2 < 0, b2− c2 > 0. In the first
simulation τ = 2 and the fixed point is locally asymptotically stable (see figure 1), in the second
one there is a stability switch, the fixed point is unstable and a stable limit cycle appears (see figure
2).
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Figure 1. The solution u and v for τ = 2, the fixed point (u∗, v∗) ≈ (0.31, 0.68)
is locally asymptotically stable.
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Figure 2. The solution u and v in the plane, for τ = 5, the fixed point (in red)
(u∗, v∗) ≈ (0.31, 0.68) is unstable. A stable limit cycle appears, the time series of
u and v appears periodic.
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3. Model with distributed delays: introduction. In the present section, we consider a differ-
ent version of model (3) obtained by introducing distributed delays



















u̇(t) = u(t)

[

1 −
t
∫

−∞

u(r)g(t − r)dr − v(t)

]

,

v̇(t) = ρv(t)

[

u(t) − α − η

ε + v(t)

]

,

(11)

where g(·) is a gamma distribution, i.e.

g(u) =
(m

T

)m um−1e−
m
T

u

(m − 1)!
, (12)

with m a positive integer, that determines the shape of the weight function, and T ≥ 0 a parameter
associated with the mean time delay of the distribution. We will consider only the cases of the
so-called weak kernel function (m = 1), i.e. the importance of events in the past simply decreases
exponentially the further one looks into the past, and strong generic function (m = 2), i.e. a
particular time in the past is more important than any other. To this end, we define the new
variables

x(t) =

t
∫

−∞

u(r)
1

T
e−

1
T

(t−r)dr,

and

z(t) =

t
∫

−∞

u(r)

(

2

T

)2

(t − r)e−
2
T

(t−r)dr, y(t) =

t
∫

−∞

u(r)

(

2

T

)

e−
2
T

(t−r)dr,

then using the linear chain trick technique [15], system (11) can be transformed into the following
equivalent system without delay























u̇(t) = u(t) [1 − x(t) − v(t)] ,

ẋ(t) =
1

T
[u(t) − x(t)] ,

v̇(t) = ρv(t)

[

u(t) − α − η

ε + v(t)

]

,

(m = 1) (13)

and






































u̇(t) = u(t) [1 − z(t) − v(t)] ,

ż(t) =
2

T
[y(t) − z(t)] ,

ẏ(t) =
2

T
[u(t) − y(t)] ,

v̇(t) = ρv(t)

[

u(t) − α − η

ε + v(t)

]

.

(m = 2) (14)

In the next sections we investigate the persistence together with the boundness of solutions and
stability of positive equilibria of systems (13) and (14).

4. Model with distributed delays: persistence. For the sake of clarity in our presentation,
we analyse in details only the case m = 1, since the same arguments work for the case m = 2.
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4.1. Case m = 1. We start by studying the dynamics on the boundary of R
3
+.

The plane u = 0 is invariant and the dynamics is described by














ẋ = − 1

T
x(t),

v̇ = ρv(t)

[

−α − η

ε + v(t)

]

.

We have two fixed points: (0,0) and (0,−ε − η/α), which is negative and, as a consequence, is
outside ∂R

3
+.

We observe that

v̇ < −αρv.

Thus all solution on the plane u = 0 satisfy

x(t), v(t) → 0.

The plane v = 0 is invariant and the system restricted to it becomes






u̇ = u(1 − x),

ẋ =
1

T
(u − x).

We have two fixed points (0, 0) and (1, 1), and linearisation provides the following Jacobian matrix

J(u, x) =





1 − x −u

1

T
− 1

T



 ,

whose determinant and trace are respectively

|J | = − 1

T
(1 − x − u), T r(J) = 1 − 1

T
− x.

We conclude that (0, 0) is unstable with its stable manifold being the x axis, while the point (1, 1)
is stable.
If T < 1, by the Bendixon Criterion we exclude the existence of periodic orbits in the whole positive
quadrant of v = 0. In particular, if T < 1 a periodic orbit may lie across the line x = 1 − 1/T ,
however we can exclude the existence of a limit cycle in a box with center the fixed point (1,1) with
side 2/T .
If T ≥ 1 we can construct the simple Dulac fuction

Φ(u, x) =
1

u
.

In fact we have

∂

∂u

[

u(1 − x)

u

]

+
∂

∂x

[

1

T

(u − x)

u

]

=
1

T

∂

∂x

[

1 − x

u

]

= − 1

T

1

u
,

and the function 1/u does not change sign in the set {(u, x, v) ∈ R
3 : v = 0, x > 0, u > 0}. Then,

by Dulac’s theorem, there are no periodic orbits in the same set.

In the following lines we will prove that solutions are bounded in this set. By the equation it
is easy to exclude that one or both u and x monotonically diverges, then we will show that orbits
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cannot spiral away around point (1,1) (see figure 3 below).
(1) Suppose that

lim sup x(t) = +∞, lim sup u(t) < D,

where D is a positive constant. Then there exists a sequence tn → ∞ such that

x(tn) → ∞, ẋ(tn) > 0, x(tn) > 1, ∀n.

From the second equation of the system we have

ẋ(tn) <
1

T
[D − x(tn)], ∀n,

then by properties of tn there exists N > 0 such that

ẋ(tn) < 0, ∀n > N,

and this is a contradiction.
(2) Suppose that

lim sup u(t) = +∞, lim sup x(t) < D < +∞.

Then there exists a sequence tn → ∞ such that

u(tn) → +∞, x(tn) < D, ∀n.

Then, from the second equation we have

ẋ(tn) >
1

T
[u(tn) − D],

from which ẋ(tn) → ∞, which is a contradiction.
(3) The remaining case, that is

lim sup x(t) = lim supu(t) = +∞,

can be excluded using the same reasonings.
The plane x = 0 is not invariant, we observe that in the set

{(u, x, v) ∈ R
3 : x = 0, v > 0, u > 0}

the vector field points inward R
3
+, then no invariant sets are contained in x = 0.

The axes

if the solutions start on the u axis (x = v = 0) then solutions go inside the plane v = 0;
if the solutions start on the x axis (u = v = 0) then x → 0 since the x axis is invariant;
if the solutions start on the v axis (u = x = 0) then v → 0, since the v axis is invariant.
Now we pass to study the fixed points of system (13):

(0, 0, 0), (1, 1, 0), (u∗, x∗, v∗),

where the last fixed point is solution of the system














x + v = 1,

u = x,

u = α +
η

ε + v
.
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1 2
u

1

2

x

The vector Field

Figure 3. The vector field for v = 0 and u, x ≥ 0.

The functional Jacobian of the system is

J =















1 − x − v −u −u

1

T
− 1

T
0

ρv 0 ρ(u − α) − ρηε

(ε + v)2















.

For the origin we have

J(O) =











1 0 0

1

T
− 1

T
0

0 0 −ρα − ρη

ε











.

The eigenvalues are

λ1 = 1, λ2 = − 1

T
, λ3 = −ρ

(

α +
η

ε

)

,

then the fixed point is unstable with its stable manifold entirely contained in the invariant plane
u = 0.
For the other boundary fixed point we have

J(1, 1, 0) =











0 −1 −1

1

T
− 1

T
0

0 0 ρ
(

1 − α − η

ε

)
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with eigenvalues

λ1,2 =
1

2T

[

−1 ±
√

1 − 4T
]

, λ3 = ρ
(

1 − α − η

ε

)

.

Then if
1 − α − η

ε
> 0, (15)

the fixed point (1, 1, 0) is unstable with stable manifold contained in the invariant plane v = 0.
If condition (15) is fulfilled, then all the boundary fixed points are unstable. Moreover, the only
invariant sets contained in the boundary of R

3
+ are those fixed points.

Since no cycles are possible connecting the invariant sets of ∂R
3
+, and all the stable manifolds of

the invariant sets are entirely contained in ∂R
3
+, we obtain the following result (see [9]) where we

establish a sufficient condition ensuring the existence of at least one positive equilibrium:

Theorem 5. If condition (15) is fulfilled then the system is persistent.

In fact, this sufficient condition implies more as will be proved in the next result.

Proposition 6. If condition (15) is fulfilled then there exists a unique interior fixed point.

Proof. We have

v∗,1,2 =

1 − α − ε ±
√

(1 − α − ε)2 + 4ε
(

1 − α − η

ε

)

2
.

Then, by (15), these points are always real, v∗1 is positive, while v∗2 is negative. For simplicity we
set v∗ = v∗1 . The other coordinate satisfies

u∗ = 1 − v∗ =
1 + α + ε −

√

(1 − α − ε)2 + 4ε
(

1 − α − η

ε

)

2
.

Then u∗ is positive if

1 + α + ε >

√

(1 − α − ε)2 + 4ε
(

1 − α − η

ε

)

:=
√

h.

Observe that h can be rewritten in the following way

h = (1 + α + ε)2 − 4α − 4αε − 4η.

Then, u∗ is positive and, as a consequence, x∗ = u∗ is also positive.

In the next section we will study in detail the stability of this fixed point while we end this section
by proving the boundedness of solutions.

Theorem 7. The solutions starting in the closed positive orthant of system (13) are bounded.

Proof. Suppose by contradiction that

lim sup
t→∞

u(t) = +∞.

Then there exists a sequence tn → +∞ such that u(tn) is increasing with

u̇(tn) = 0.

In other words at each tn the function u(t) attains a local maximum. Then, by the first equation
of the system

1 − x(tn) − v(tn) = 0
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and as a consequence
x(tn), v(tn) ≤ 1, for all n.

From the second equation of the system

ẋ(tn) =
1

T
[u(tn) − x(tn)] ≥ 1

T
[u(tn) − 1],

since u(tn) is increasing, there exists N ∈ N such that

u(tn) > 1, ∀n ≥ N

Moreover, passing to the limit

lim
n→∞

ẋ(tn) ≥ lim
n→∞

1

T
[u(tn) − 1] = +∞,

whence x(tn) → ∞, and this is a contradiction. Then u is bounded. We set

uM = sup
t≥0

u(t).

From the second equation of the system we have

ẋ(t) ≤ 1

T
[uM − x],

from which
x(t) ≤ x(0)e−

1
T

t + uM [1 − e−
1
T

t] = uM + e−
1
T

t[x(0) − uM ].

From the previous inequality we conclude that x(t) is bounded and, if

x(0) ≤ uM ,

then
xM := sup

t≥0
x(t) ≤ uM .

Suppose now that
lim sup

t→∞

v(t) = +∞.

Then there exists a sequence tn → ∞ such that v(tn) is increasing and

v′(tn) > 0, v(tn) > 1, ∀n.

We observe that,by the third equation of the system, we have

v̇(tn) = ρv(tn)

[

u(tn) − α − η

ε + v(tn)

]

.

We can exclude that u(tn) → 0: for if u(tn) → 0 there exists N ∈ N such that

u(tn) < α, for n > N,

and we have v̇(tn) < 0 for n > N , that is not compatible with the hypothesis that v → ∞.
From the first equation of the system we can write

u̇(tn) ≤ u(tn)[1 − v(tn)].

Then, passing to the limits,

lim
n→∞

u̇(tn) ≤ lim
n→∞

u(tn)[1 − v(tn)] = −∞,

from which there exists N ∈ N such that

u(tn) < α, ∀n > N.
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From the third equation of the system it follows that

v̇(tn) ≤ ρv(tn)[u(tn) − α] ≤ 0, for all n > N,

which is a contradiction. Then v is bounded and we set

vM = sup
t≥0

v(t).

The quantity vM satisfies

ũ − α − η

ε + vM

= 0,

where ũ is the value attained by v when it attains the value vM . As a consequence, we obtain the
lower bound

vM ≥ η

uM − α
− ε.

Note that, from the third equation of the system it follows that

v̇ ≤ ρv

[

uM − α − η

ε + v

]

.

Since the system is persistent we deduce the following lower bound for uM

uM ≥ α +
η

ε
.

4.2. Case m=2. We have previously noted that the same arguments of the previous subsection
work for this case. We have again only two boundary fixed points

O = (0, 0, 0, 0), P = (1, 1, 1, 0).

The analysis of the stability of O is the same as in the case m = 1, in particular it is unstable and
its three dimensional stable manifold is contained in R

4
+.

For P = (1, 1, 1, 0) the Jacobian matrix is

J(1, 1, 1, 0) =









0 −1 0 −1
0 − 2

T
2
T

0
2
T

0 − 2
T

0
0 0 0 ρ

(

1 − α − η

ε

)









.

Then, an eigenvalue is given by

λ1 = ρ
(

1 − α − η

ε

)

.

Thus we must have again (as for m = 1) that

1 − α − η

ε
> 0. (16)

This is a sufficient condition for persistence as in the case m = 1.
The remaining eigenvalues are the roots of the following polynomial

P (λ) = λ3 + 2cλ2 + c2λ + c2,

where we have set c = 2/T . We observe that

P (0) = c2 > 0, lim
λ→−∞

P (λ) = −∞ P ′(λ) = 3λ2 + 4cλ + c2,
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and the roots of P ′(λ) are both negative, namely

−c and − c

3
.

This means that P (λ) is increasing for λ > 0 and therefore it has no positive root and at least one
negative root.
We observe that if

P (− c

3
) < 0, that is c >

27

4
,

the polynomial P (λ) has three negative roots and, as a consequence the above condition, (16)
becomes also necessary for the persistence of the system. When c < 27/4 we have a pair of complex
eigenvalues and we must look at the sign of the real part. If λ2 = h is the real negative root of
P (λ), then the real part of the remaining eigenvalues is −(2c+h). Then condition (16) is necessary
if

2c + h > 0, that is, if P (−2c) < 0,

which means c > 1/2. Thus, when c < 1/2, condition (16) is not necessary for the instability of P ,
however, as in the case m = 1, it ensures the existence of one positive equilibrium (u∗, z∗, y∗, v∗).

5. Model with distributed delays: stability and bifurcation of the positive equilibrium.

In this section we analyse the stability of the positive equilibrium for the model with distributed
delay with m = 1 and m = 2. In particular we prove the existence of Hopf Bifurcation and study
its stability.

5.1. Case m = 1. For simplicity we perform a change of variable in order that the positive equilib-
rium (u∗, x∗, v∗) of (13) is shifted to the origin. The characteristic equation of the linearised system
of (13) (after the change of variable) at the origin is

λ3 + a1λ
2 + a2λ + a3 = 0, (17)

where

a1 = a1(T ) =
1

T
− b, a2 = a2(T ) =

1

T
(u∗ − b) + ρu∗v∗,

a3 = a3(T ) =
1

T
u∗(ρv∗ − b), b =

ρηv∗

(ε + v∗)
2 .

By the Routh-Hurwitz criterion, the necessary and sufficient conditions for Eq. (17) to have negative
real parts are

a1 > 0, a3 > 0 and a1a2 > a3.

Hence, we must have

T <
1

b
, ρv∗ − b > 0 and (ρbu∗v∗)T

2 − b2T − (u∗ − b) < 0. (18)

respectively. First, notice that

ρv∗ − b > 0 ⇔ (ε + v∗)
2

> η.

Then, define

ϕ(T ) = (ρbu∗v∗)T
2 − b2T − (u∗ − b).

The inequality ϕ(T ) < 0 is solved by

T ∗
1 =

b2 −
√

∆

2ρbu∗v∗
< T <

b2 +
√

∆

2ρbu∗v∗
= T ∗

2 , (19)
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with

∆ = b4 + 4ρbu∗v∗(u∗ − b). (20)

If

u∗ − b =
u∗ (ε + v∗)

2 − ρηv∗

(ε + v∗)
2 > 0, (21)

i.e. u∗ (ε + v∗)
2 − ρηv∗ > 0, then we have ∆ > 0 and T ∗

2 < 1/b. Therefore, condition (18) reduces

to T ∗
1 < T < T ∗

2 and (ε + v∗)
2

> η. If u∗ − b ≤ 0, then the condition ∆ > 0 means

η3 (ρv∗)
2 − 4ηu∗ (ε + v∗)

4 (ρv∗) + 4u2
∗ (ε + v∗)

6 > 0,

namely

ρ <
2u∗ (ε + v∗)

3
[

ε + v∗ −
√

∆̃
]

η2v∗
= M, (22)

and

ρ >
2u∗ (ε + v∗)

3
[

ε + v∗ +
√

∆̃
]

η2v∗
= N, (23)

where

∆̃ = (ε + v∗)
2 − η > 0,

since (ε + v∗)
2

> η.
In conclusion, we have the following result.

Lemma 8. Let T ∗
1 , T ∗

2 and M, N be defined as in (20) and (22),(23), respectively. A positive

equilibrium (u∗, x∗, v∗) of (13) is locally asymptotically stable if

ρ <
u∗ (ε + v∗)

2

ηv∗
and η < (ε + v∗)

2
, T ∗

1 < T < T ∗
2 ,

or

ρ ≥ u∗ (ε + v∗)
2

ηv∗
, ρ < M, ρ > N and η < (ε + v∗)

2 , T ∗
1 < T < T ∗

2 .

When T = T∗, where T∗ = T ∗
1 , T ∗

2 the characteristic equation (17) reduces to

λ3 + a1λ
2 + a2λ + a1a2 = 0,

which can be rewritten as

(λ + a1)
(

λ2 + a2

)

= 0.

Thus, we have a pair of purely imaginary roots λ1,2 = ±iω∗, where ω∗ =
√

(u∗ − b)/T∗ + ρu∗v∗ > 0,
and a real root λ3 = −(1 − bT∗)/T∗ < 0. According to the Hopf bifurcation theorem, we need to
verify that λ = iω∗ is a simple root of (17) and the transversality condition holds. Differentiating
(17) with respect to T , we obtain

dλ

dT
= −a′

1(T )λ2 + a′
2(T )λ + a′

3(T )

3λ2 + 2a1(T )λ + a2(T )
, (24)

where

a′
1 = − 1

T 2
, a′

2 = − 1

T 2
(u∗ − b), a′

3 = − 1

T 2
u∗(ρv∗ − b).
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If λ = iω∗ is a multiple root of (17), then one has −a′
1(T∗)ω

2
∗ + ia′

2(T∗)ω∗ + a′
3(T∗) = 0, leading

to the contradiction ω∗ = 0. Recalling that ω∗ =
√

a2(T∗), after some calculations, it follows from
(24) that

Re

[

dλ

dT

]

λ=iω∗

=
−a1(T∗)a

′
2(T∗) − a′

1(T∗)a2(T∗) + a′
3(T∗)

2 [a2(T∗) + a2
1(T∗)]

> 0,

where

−a1(T∗)a
′
2(T∗) − a′

1(T∗)a2(T∗) + a′
3(T∗) =

2

T 3
∗

(u∗ − b) +
b2

T 2
∗

.

A positive sign in the previous expression corresponds to crossings of the imaginary axis from right
to left, and a negative sign implies crossings from left to right. Notice that the sign is positive if
u∗ − b ≥ 0, while it can assume any value otherwise. Recalling that if u∗ − b > 0 (resp. u∗ − b ≤ 0)
there is stability for T ∗

1 < T < T ∗
2 (resp. 0 < T < T ∗

2 ), we arrive at the following conclusion.

Theorem 9. An equilibrium point (u∗, x∗, v∗) of (13) undergoes a Hopf bifurcation at (u∗, x∗, v∗)
when T = T ∗

2 .

5.2. Numerical simulations. We consider the following values of the parameters

ε = α =
1

5
, η = ρ = 0.1

Then the fixed point and the critical value of T are respectively:

(u∗, x∗, v∗) ≈ (0.31, 0.31, 0.68), T ∗
2 ≈ 40.45

If T < T ∗
2 , we deduce from Lemma 8 that the fixed point (u∗, x∗, v∗) is stable, while from Theorem

9 we observe a Hopf bifurcation at T = T ∗
2 .

We consider two cases: T = 40 and T = 40.5. In the first case (see figure 4) the fixed point is
locally asymptotically stable and the solutions converge to it. In figure 5 we represent the second
case, where a stable limit cycle appears and the fixed point becomes unstable.
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0.9

1.0

v

Figure 4. The time series of u and v for T = 40. The solution converges slowly
to the asymptotically stable fixed point (u∗, x∗, v∗).
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Figure 5. The solution for T = 40.5, a stable limit cycle appears. The fixed point
(u∗, x∗, v∗) (in red) is unstable. The time series of u, ,v approach the limit cycle.
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5.3. Case m = 2. In this section we consider the case m = 2. The characteristic equation is now
given by

λ4 + a1λ
3 + a2λ

2 + a3λ + a4 = 0, (25)

where

a1 = a1(T ) =
4

T
− M, a2 = a2(T ) =

4

T 2
− 4

T
M + ρu∗v∗,

a3 = a3(T ) =
4

T 2
(u∗ − M) +

4

T
ρu∗v∗, a4 = a4(T ) =

4

T 2
u∗(ρv∗ − M),

and

M =
ρηv∗

(ε + v∗)
2 =

ρv∗(u∗ − α)2

η
.

By the Routh-Hurwitz criterion we have that the positive equilibrium (u∗, y∗, z∗, v∗) of (14) is
locally asymptotically stable if

a1 > 0, a3 > 0, a4 > 0 and a1a2a3 > a2
3 + a2

1a4.

In particular, it follows a2 > 0. A direct calculation shows that it must hold

T <
4

M
, T >

M − u∗

ρu∗v∗
, (ε + v∗)

2
> η

and

ϕ(T ) = (ρ2u2
∗v

2
∗M)T 4 + u∗M

[

ρv∗(u∗ − 4M) − M2
]

T 3

+
[

ρu∗v∗ (u∗ + 2M) + M2 (u∗ + M)
]

T 2

+ 4
[

(u∗ − M)u∗ − 4M2
]

T − 16(M − u∗) < 0.

The ϕ(T ) = 0 locus partitions the plane into a stable region and unstable region, and it is called
the partition curve. Assume that there exists T = T∗ such that ϕ(T∗) = 0, that is

a1a2a3 − a2
3 − a2

1a4 = 0,

when T = T∗. On the partition curve, the characteristic equation (25) can be factored as follows
(

a1λ
2 + a3

) (

a1λ
2 + a2

1λ + a1a2 − a3

)

= 0.

Its solutions are

λ1,2 = ±i

√

a3

a1
,

which are clearly purely imaginary, and

λ3,4 =
−a2

1 ±
√

a4
1 − 4a1 (a1a2 − a3)

2a1
,

whose real part is different from zero.
Next, we select the delay T as the bifurcation parameter and consider the roots of the charac-

teristic equation (25) as continuous functions of T. Plugging λ = λ(T ) into (25), and differentiating
it with respect to T , we obtain

(

4λ3 + 3a1λ
2 + 2a2λ + a3

) dλ

dT
= −

(

a′
1λ

3 + a′
2λ

2 + a′
3λ + a′

4

)

, (26)

i.e.
dλ

dT
= − a′

1λ
3 + a′

2λ
2 + a′

3λ + a′
4

4λ3 + 3a1λ2 + 2a2λ + a3
,
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where

a′
1 = − 4

T 2
, a′

2 = − 8

T 3
+

4

T 2
M, a′

3 = − 8

T 3
(u∗ − M) − 4

T 2
ρu∗v∗, a′

4 = − 8

T 3
u∗(ρv∗ − M).

At λ = iω∗, ω∗ = ω(T∗) > 0, the real part of the derivative is obtained as

Re

(

dλ

dT

)

λ=iω∗

= − a1ϕ
′(T∗)

2
[

a2
1a3 + ω2

∗ (a1a2 − 2a3)
2
] ,

where
ϕ′(T∗) = a′

1a2a3 + a1a
′
2a3 + a1a2a

′
3 − 2a3a

′
3 − 2a1a

′
1a4 − a2

1a
′
4,

with all the aj and a′
j (j = 1, 2, 3, 4) evaluated at T = T∗. Since

sign

{

Re

(

dλ

dT

)

λ=iω∗

}

= sign {−ϕ′(T∗)} ,

we can conclude that there is a crossing of the imaginary axis at T = T∗ from the left half plane to
the right half plane if ϕ′(T∗) < 0, and from right to left as T increases if ϕ′(T∗) > 0.
Summarizing all the previous analysis, we have the following result.

Theorem 10. Assume that the equilibrium point S∗ of (5) is locally asymptotically stable and

λ = iω∗ is a simple root of (25), where ω∗ = ω(T∗) > 0 and T = T∗ is such that ϕ(T∗) = 0. Then a

Hopf bifurcation occurs at S∗ as T passes through T∗ when ϕ′(T∗) < 0.

5.4. Numerical simulations. We fix the parameters as follows:

ε =
1

4
, α =

1

50
, η =

1

5
, ρ = 1.

The fixed point is
(u∗, z∗, y∗, v∗) ≈ (0.21, 0.21, 0.21, 0.79).

The function ϕ has only one positive and one negative zero at 2.13505 and
-1.32525 respectively. Then we have T∗ = 2.13505. In the following simulation we start with
T = 1.5 < T∗, for which the fixed point (u∗, z∗, y∗, v∗) is locally asymptotically stable (see figure 6)
and let us increase it to values greater than the critical one. We observe that for T = 2, a stable
limit cycle appears (se figure 7) and then for the values T = 2.5, 3.132, 3.2 we observe an increasing
period for the limit cycle (see figures 7, 9 and 10) until reaching a possible chaotic attractor for
T = 4 (see figure 11).
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Figure 6. For T = 1.5 < T∗ the fixed point (u∗, z∗, y∗, v∗) is locally asymptotically stable.
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Figure 7. For T = 2.5 > T∗ the fixed point (u∗, z∗, y∗, v∗) is unstable and a stable
limit cycle appears. In the figures it is represented the limit cycle together with
the time series of u and v respectively.
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Figure 8. For T = 3 > T∗ the fixed point (u∗, z∗, y∗, v∗) is unstable and a stable
limit cycle appears. In the figures it is represented the limit cycle together with
the time series of u and v respectively.
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Figure 9. For T = 3.132 > T∗ we observe a limit cycle with three periods. In the
figures it is represented the limit cycle together with the time series of u and v
respectively.
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Figure 10. For T = 3.2 > T∗ we observe a limit cycle with four periods. In the
figures it is represented the limit cycle together with the time series of u and v
respectively.
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Figure 11. For T = 4 > T∗ we observe a possible chaotic attractor which is
represented together with the time series of u and v respectively.
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6. Concluding remarks. We have observed an interesting phenomenon: the choice of the param-
eter m seems to be important for the dynamical behaviour of the system. For m = 1 the numerical
simulations suggest two possibilities (in the case of persistence), that is, attracting fixed point or
attracting limit cycle (periodic orbit) generated by Hopf-Bifurcation. On the other side, for m = 2,
we have observed a richer dynamics. In fact, cycles with increasing periods have been detected by
the simulations with the possibility that a chaotic attractor may exist. We consider interesting for
further research to investigate the dependence on m and to carry out an exhaustive analysis of all
possible bifurcations which may arise for m ≥ 2. Another interesting target for research is to study
the existence and dimension of the (possible) chaotic attractor observed in the simulations.
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