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Abstract. Some diseases such as herpes, bovine and human tuberculosis ex-

hibit relapse in which the recovered individuals do not acquit permanent immu-
nity but return to infectious class. Such diseases are modeled by SIRI models.

In this paper, we establish the existence of a unique global positive solution
for a stochastic epidemic model with relapse and jumps. We also investigate

the dynamic properties of the solution around both disease-free and endemic

equilibria points of the deterministic model. Furthermore, we present some
numerical results to support the theoretical work.

1. Introduction and model formulation. Epidemiology is a quantitative disci-
pline that relies on a working knowledge of probability and statistics. Mathematical
modeling is one of the most important themes in epidemiology. It has been widely
used to analyze the spread of infectious diseases [8, 10]. This kind of diseases can
be modeled by SIR models which are useful for studying chickenpox, mumps, or
rubella [2, 3, 30]. In mathematical models we often distinguish between two types:
deterministic and stochastic. Deterministic models are those in which there is no
element of chance or uncertainty. As such, they can be thought to account for the
mean trend of a process only. Stochastic models, on the other hand, account not
only for the mean trend but also for the variance structure around it. For fixed
starting values, a deterministic model will always produce the same result whereas
a stochastic model may produce many different outputs, depending on the actual
values the random variables take. Many infectious diseases, including Hepatitis B
virus (HBV) [28], Hepatitis C virus (HCV) [16], the majority of human tuberculosis
[21], herpes virus, have recurrent episodes such that the diseases are hard to be
radically cured. For instance, Herpes simplex virus type 2 (HSV-2) that is usu-
ally transmitted by close physical or sexual contact, can cause genital herpes [17].
The major morbidity of genital herpes arises from its frequent reactivation rate.
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In one study, within one year after diagnosis, 90% of patients with a documented
first episode of genital HSV-2 infection experience at least 1 relapse [4]. There
have been many mathematical models [23, 25, 34, 39, 41] committed to study the
impacts from relapse on dynamics [6, 37]. Most recently, Liu et al. [25] obtained
global stability for an SEIR epidemic model with age-dependent relapse and latency
by using Volterra-type Lyapunov functions. An epidemic model with relapse, which
incorporates bilinear incidence rate and constant total population, was formulated
by Tudor [32]. This system was extended to include nonlinear incidence functions
by Moreira and Wang [29]. Blower [6] developed a compartmental model for geni-
tal herpes, assuming standard incidence for the disease transmission and constant
recruitment rate. A more general SIRI model, formulated as an integro-differential
system with the fraction P (t) of recovered individuals remaining in the recovered
class, t time units after the recovery expressed in an abstract form has been pro-
posed and analyzed by van den Driessche and Zou [34], certain threshold stability
results being obtained by particularizing P (t). See also van den Driessche et al.
[33] for an analysis of a related SEIRI model. For other works see [26, 40, 13] and
the references therein. A deterministic SIRI disease can be modeled as follows

Ṡ(t) = N − µS(t)− βS(t)I(t),

İ(t) = βS(t)I(t)− (µ+ γ)I(t) + δR(t),

Ṙ(t) = γI(t)− (µ+ δ)R(t), (1.1)

where, N, β, µ, δ, γ are all positive constants, S(t) is the number of the individuals
susceptible to the disease, I(t) denotes the infected members and R(t) represents
the members who have recovered from the infection. In this model, the parameters
have the following features: N is the total number of the susceptible, β is the disease
transmission coefficient, µ represents the natural death rate, γ represents the rate
of recovery from infection and δ is the rate of relapse.
The basic reproduction number [9, 11]

R0 =
Nβ(µ+ δ)

µ2(µ+ γ + δ)
,

has a great importance in epidemiology since it is a threshold quantity which de-
termines whether an epidemic occurs or the disease simply dies out. It can also
be defined as the number of secondary infections caused by a single infective intro-
duced into a population made up entirely of susceptible individuals over the course
of the infection of this single infective. The deterministic model (1.1) has been dis-
cussed by Vargas-De-León in [36]. He showed the following behaviors of solutions
according to the value of the threshold R0.
If R0 ≤ 1, then the model (1.1) has only the disease-free equilibrium

E0 = (
N

µ
, 0, 0),

and moreover, it is globally asymptotically stable, this means that the endemic
disease will not appear.
If R0 > 1, E0 becomes unstable, and therefore there exists a globally asymptotically
stable equilibrium

E∗ = (S∗, I∗, R∗) = (
N

µR0
,
µ

β
(R0 − 1),

µγ

β(µ+ δ)
(R0 − 1)),
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which means that the disease will be persistent ([15], [35]).
In the few past years, authors have been paying a great interest to epidemic models
with a stochastic perturbation [14, 19, 24, 38, 46] and epidemic models with random
perturbation [7]. Tornatore et al. [31] introduced a stochastic SIR epidemic model
with and without distributed time delay, they investigated the stability of disease-
free equilibrium. Gray et al. [12] considered a stochastic SIS epidemic model with a
constant population size and studied the existence of a stationary distribution and
the persistence. Zhao and Jiang [47, 48] were interested in a stochastic SIS model
with vaccination, they presented a threshold value on the extinction and persistence
for the model. Zhou et al. [49] investigated survival and stationary distribution of
a stochastic SIR epidemic model. Lahrouz and Settati discussed necessary and
sufficient conditions for extinction and persistence of a stochastic SIRS system [20]
Lei and Yang [22] proposed a stochastic version of the SIRI epidemic model, they
studied the dynamical behavior of the following stochastic model

dS(t) = [N − µS(t)− βS(t)I(t)]dt+ σ1SdW1(t),
dI(t) = [βS(t)I(t)− (µ+ γ)I(t) + δR(t)]dt+ σ2IdW2(t),
dR(t) = [γI(t)− (µ+ δ)R(t)]dt+ σ3RdW3(t), (1.2)

where Wi(t), i = 1, 2, 3 are independent Brownian motions and σ2
i , i = 1, 2, 3 are

the corresponding intensities of stochastic perturbations. Since both E0 and E∗ do
not represent equilibria points to the model (1.2), the authors showed that for any
initial value (S(0), I(0), R(0))T ∈ R3

+:
If R0 ≤ 1, the global positive solution fluctuates randomly around the disease-free
equilibrium E0,

lim
t→+∞

sup
1
t
E

∫ t

0

[m1(S(r)− N

µ
)2 +m2I(r)2 +m3R(r)2]dr ≤ δ1,

for some positive constants m1,m2,m3 and δ1.
If R0 > 1, the global positive solution fluctuates randomly around the endemic
equilibrium E∗,

lim
t→+∞

sup
1
t
E

∫ t

0

[n1(S(r)− S∗)2 + n2(I(r)− I∗)2 + n3(R(r)−R∗)2]dr ≤ δ2,

for some positive constants n1, n2, n3 and δ2.
Problem (1.2) is a stochastic model driven by white noise only, therefore its solution
is continuous. But when encountered with massive diseases like avian influenza,
such a disturbance may break the continuity of the solution. Thus the importance
of the Lévy noise in the study of the dynamical behavior of the model is of great
significance to the prevention and the control of the disease.
In recent works on dynamics of solution to a stochastic model driven by a Lévy noise,
one can see [42, 43, 44, 45]. In [42], authors studied a stochastic SIRS model driven
by Lévy noise, and investigated the dynamics of the model around the disease-free
and endemic equilibria. However SIRI models present some difficulties compared
to SIR or SIRS models, since the equation on I cannot be written in the form
İ(t) = I(t)h(.) [34]. The aim of the present work is to study SIRI model, using
Lévy noise perturbation to extend the work of [22], which is developed only for
a system with a standard Brownian motion as noise disturbance as we described
above.
In this paper we are interested in extending the models (1.1) and (1.2) to the
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following one, which is driven by Lévy noise,

dS(t) = [N − µS(t)− βS(t)I(t)]dt+ σ1S(t)dW1(t) +
∫
Y

q1(y)S(t−)Ñ(dt, dy),

dI(t) = [(βS(t) + µ+ γ)I(t) + δR(t)]dt+ σ2I(t)dW2(t) +
∫
Y

q2(y)I(t−)Ñ(dt, dy),

dR(t) = [γI(t)− (µ+ δ)R(t)]dt+ σ3R(t)dW3(t) +
∫
Y

q3(y)R(t−)Ñ(dt, dy). (1.3)

On the foundation of the models (1.1) and (1.2), system (1.3) has been linked to a
stochastic perturbation, in which Wi(t) is a standard Brownian motion defined on a
complete probability space (Ω,F ,P) with the filtration (Ft)t≥0, satisfying the usual
conditions, X(t−) is the left limit of X(t), N(dt, dy) is a Poisson counting measure
with the stationary compensator ν(dy)dt, Ñ(dt, dy) = N(dt, dy)− ν(dy)dt and ν is
defined on a measurable subset Y of [0,∞) with ν(Y ) < ∞ and σi ≥ 0 represent
the intensity of Wi(t), qi(y) > −1, i = 1, 2, 3. Our study will be as follows: in the
second section, we investigate the existence and uniqueness of the global positive
solution to model (1.3). The third section is devoted to studying the behavior of
solutions to the system (1.3) around the disease-free equilibrium E0. In the fourth
section we study the behavior of solutions around the endemic equilibrium E∗ and,
in the final part, we present our numerical results supported by real scenarios.

2. Global positive solutions of the system (1.3). In this section using the
same argument as in [43], we will establish the existence of a unique global positive
solution for our stochastic epidemic model with relapse and jumps. In what follows,
we shall impose two standard assumptions, (H1) and (H2), which are essential to
prove the existence and uniqueness of a global positive solution of (1.3).
(H1) For each A > 0 there exists LA > 0 such that∫
Y
|Zi(x1, y)−Zi(x2, y)|2ν(dy) ≤ LA|x1−x2|2 i = 1, 2, 3, with |x1|∨|x2| ≤ A, where

Z1(x, y) = q1(y)x for x = S(t−),
Z2(x, y) = q2(y)x for x = I(t−),
Z3(x, y) = q3(y)x for x = R(t−).

(H2) | log(1+qi(y))| ≤M for qi(y) > −1, i = 1, 2, 3, where M is a positive constant.

The next theorem ensures the existence and uniqueness of a global positive so-
lution.

Theorem 2.1. For any given initial value (S(0), I(0), R(0)) ∈ R3
+, model (1.3) has

a unique global solution (S(t), I(t), R(t)) ∈ R3
+ for all t ≥ 0 a.s.

Proof. By (H1) and the fact that the drift and the diffusion are locally Lipschitz,
for any given initial value (S(0), I(0), R(0)) ∈ R3

+, there is a unique local solution
(S(t), I(t), R(t)) for t ∈ [0, τe) where τe is the explosion time. To show that this
solution is global, we need to show that τe = ∞ a.s. At first, we prove that S(t),
I(t), R(t) do not explode to infinity in a finite time. Let m0 > 0 be sufficiently large
so that S(0), I(0), R(0) lie within the interval [ 1

m0
,m0]. For each integer m ≥ m0,

we define the stopping time:

τm = inf{t ∈ [0, τe)/ S(t) /∈ (
1
m
,m) or I(t) /∈ (

1
m
,m) or R(t) /∈ (

1
m
,m)},
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which is increasing as m ↑ ∞. Set τ∞ = lim
m→∞

τm, whence, τ∞ ≤ τe a.s. If we can

show that τ∞ = ∞ is true, then τe = ∞ and (S(t), I(t), R(t)) ∈ R3
+ a.s. If this

statement is false, then there exist two constants T > 0 and 0 < ε < 1 such that
P(τ∞ ≤ T ) ≥ ε. We consider the following function

G(S(t), I(t), R(t)) = (S − c− c log
S

c
) + (I − 1− log I) + (R− 1− logR),

where c is a positive constant to be determined below. Then by Itô’s formula we
have

dG(S(t), I(t)R(t)) = LGdt+ σ1(S − c)dW1 + σ2(I − 1)dW2 + σ3(R− 1)dW3

+
∫
Y

[q1(y)S − c log(1 + q1(y))]Ñ(dt, dy)

+
∫
Y

[q2(y)I − log(1 + q2(y))]

+
∫
Y

[q3(y)R− log(1 + q3(y))]Ñ(dt, dy), (2.1)

where

LG = (N + 2µ+ γ + δ + cµ)− (µ+ β)S + (cβ − µ)I − µR−N c

S

−δR
I
− γ I

R
+
cσ2

1

2
+
σ2

2

2
+
σ2

3

2

+
∫
Y

[cq1(y)− c log(1 + q1(y)) + q2(y)− log(1 + q2(y))]ν(dy)

+
∫
Y

[q3(y)− log(1 + q3(y))]ν(dy). (2.2)

Choosing c = µ
β , taking into account that x − log(1 + x) ≥ 0, ∀x > −1, and using

(H2) we obtain

LG ≤ N + 2µ+ γ + δ + cµ+
cσ2

1

2
+
σ2

2

2
+
σ2

3

2
+ 3K

′
= K,

where

K
′

= max{
∫
Y

[cq1(y)− c log(1 + q1(y))]ν(dy),
∫
Y

[q2(y)− log(1 + q2(y))]ν(dy),∫
Y

[q3(y)− log(1 + q3(y))]ν(dy)}.

Integrating both sides of (2.1) between 0 and τm ∧ T and taking expectation,

0 ≤ E[G(S(τm ∧ T ), I(τm ∧ T ), R(τm ∧ T ))] ≤ G(S(0), I(0), R(0)) +KT.

Define for each h > 0, V (h) := inf{G(xi), xi ≥ h or xi ≤ 1
h , i = 1, 2, 3},

where x1 = S, x2 = I, x3 = R. We have lim
h→∞

V (h) =∞.

Therefore,

G(S(0), I(0), R(0)) +KT ≥ E[1{τm≤T}G(S(τm, ω), I(τm, ω), R(τm, ω))]
≥ εV (m).
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Letting m→∞, leads to ∞ > G(S(0), I(0), R(0)) +KT =∞ and this is
a contradiction. Hence the model has a unique global solution
(S(t), I(t), R(t)) ∈ R3

+ a.s.

3. The dynamical properties around the disease-free equilibrium. In this
section we are interested in the behavior of the global positive solutions (S(t), I(t), R(t))
around the disease-free equilibrium E0. The study of the dynamical properties of
the solution is investigated in the following theorem. Let

l1 =
2µ(µ+ δ)
µ+ γ + δ

− 2σ2
1 − 6

∫
Y

q21(y)ν(dy),

l2 =
2µ(β − µ)

β
− σ2

2 − 3
∫
Y

q22ν(dy),

l3 = 2µ(
µ+ δ

γ
− µ

β
)− (1 +

2µ
γ

)σ2
3 − (3 +

2µ
γ

)
∫
Y

q23(y)ν(dy),

M1 =
8δ2

β
+ [2σ2

1 + 6
∫
Y

q21(y)ν(dy)](
N

µ
)2.

Theorem 3.1. If R0 ≤ 1 and

µ(µ+ δ)
µ+ γ + δ

> σ2
1 + 3

∫
Y

q21(y)ν(dy),

2µ(β − µ)
β

> σ2
2 + 3

∫
Y

q22(y)ν(dy),

2µ(
µ+ δ

γ
− µ

β
) > (1 +

2µ
γ

)σ2
3 + (3 +

2µ
γ

)
∫
Y

q23(y)ν(dy),

hold true, then for any initial condition (S(0), I(0), R(0)) ∈ R3
+ we have

lim
τ→+∞

sup
1
τ

E{
∫ τ

0

((S(t)− N

µ
)2 + I2(t) +R2(t))dt} ≤ M1

k
,

where k = min{l1, l2, l3}.

Proof. Let m(t) = S(t)− N
µ ; n(t) = I(t); p(t) = R(t), then model (1.3)

becomes

dm(t) = [−µm(t)− βm(t)n(t)− βN
µ
n(t)]dt+ σ1(m(t) +

N

µ
)dW1(t)

+
∫
Y

q1(y)(m(t−) +
N

µ
)Ñ(dt, dy),

dn(t) = [βm(t)n(t)− (µ+ γ − βN
µ

)n(t) + δp(t)]dt+ σ2n(t)dW2(t),

+
∫
Y

q2(y)n(t−)Ñ(dt, dy)

dp(t) = [γn(t)− (µ+ δ)p(t)]dt+ σ3p(t)dW3(t) +
∫
Y

q3(y)p(t−)Ñ(dt, dy).

(3.1)

We consider the following function

G(m(t), n(t), p(t)) = (m(t) + n(t) + p(t))2 + am(t) + bp2(t),
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where a, b are two positive constants to be determined below.
Then by Itô’s formula we obtain

dG(m(t), n(t), p(t)) = LGdt+ 2(m+ n+ p)[σ1(m+
N

µ
)dW1 + σ2dW2 + σ3dW3]

+aσ2ndW2 + 2bσ3p
2dW3

+2(m+ n+ p)
∫
Y

[q1(y)(m+
N

µ
) + q2(y)n+ q3(y)p]Ñ(dt, dy)

+a
∫
Y

q2(y)nÑ(dt, dy) + 2b
∫
Y

q3(y)p2Ñ(dt, dy)

+
∫
Y

[(q1(y)(m+
N

µ
) + q2(y)n+ q3(y)p)2 + b(q3(y)p)2]Ñ(dt, dy),

(3.2)

where

LG = −2(m+ n+ p)(−µm− µn− µp) + a[βmn− (µ+ γ − N

µ
)n+ δp]

+2bp(γn− (µ+ δ)p) + σ2
1(m+

N

µ
)2 + σ2

2n
2 + σ2

3(1 + b)p2

+
∫
Y

[(q1(y)(m+
N

µ
) + q2(y)n+ q3(y)p)2 + b(q3(y)p)2]ν(dy)

= −2µm2 − 2µn2 − [2µ+ 2b(γ + µ)]p2 + (aβ − 4µ)mn+ (2bγ − 4µ)np

−4µmp− a(µ+ γ − βN

µ
)n+ aδp+ σ2

1(m+
N

µ
)2 + σ2

2n
2

+σ2
3(1 + b)p2 +

∫
Y

[(q1(y)(m+
N

µ
) + q2(y)n+ q3(y)p)2 + b(q3(y)p)2]ν(dy)

≤ −2µm2 − 2µn2 − [2µ+ 2b(γ + µ)]p2 + (aβ − 4µ)mn+ (2bγ − 4µ)np

−4µmp− a(1−R0)
µ(µ+ γ + δ)

µ+ δ
n+ aδn+ aδp+ σ2

1(m+
N

µ
)2 + σ2

2n
2 + σ2

3(1 + b)p2

+
∫
Y

[(q1(y)(m+
N

µ
) + q2(y)n+ q3(y)p)2 + b(q3(y)p)2]ν(dy).

Choosing a = 4µ
β , b = 2µ

γ and noticing that −a(1 − R0)µ(µ+γ+δ)
µ+δ n ≤ 0 because

R0 ≤ 1, we derive

LG ≤ −2µm2 − 2µn2 − [2µ+
4µ
γ

(γ + µ)]p2 − 4µmp

+aδn+ aδp+ σ2
1(m+

N

µ
)2 + σ2

2n
2

+σ2
3(1 + b)p2 +

∫
Y

[(q1(y)(m+
N

µ
) + q2(y)n+ q3(y)p)2 + b(q3(y)p)2]ν(dy).
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Using the inequalities 2ab ≤ a2 + b2 and 2ab ≤ a2

ε + ε2b2 with ε = µ+γ+δ
γ and

(a+ b+ c)2 ≤ 3a2 + 3b2 + 3c2 we obtain

LG ≤ −[
2µ(µ+ δ)
µ+ γ + δ

− 2σ2
1 − 6

∫
Y

q21(y)ν(dy)]m2

−[
2µ(β − µ)

β
− σ2

2 − 3
∫
Y

q22ν(dy)]n2

−[2µ(
µ+ δ

γ
− µ

β
)− (1 +

2µ
γ

)σ2
3 + (3 +

2µ
γ

)
∫
Y

q23(y)ν(dy)]p2

+
8δ2

β
+ [2σ2

1 + 6
∫
Y

q21(y)ν(dy)](
N

µ
)2.

Then

LG ≤ −l1m2 − l2n2 − l3p2 +M1.

Integrating both sides of (3.2) between 0 and τ and taking expectation,

0 ≤ E(G(m(τ), n(τ), p(τ))) ≤ G(m(0), n(0), p(0)) +M1τ

+E{
∫ τ

0

(−l1(S(t)− N

µ
)2 − l2I2(t)− l3R2(t))dt}.

Let k = min{l1, l2, l3}, then

E{
∫ τ

0

((S(t)− N

µ
)2 + I2(t) +R2(t))dt} ≤ G(m(0), n(0), p(0)

k
+
M1

k
τ.

Hence, we conclude that

lim
τ→+∞

sup
1
τ

E{
∫ τ

0

((S(t)− N

µ
)2 + I2(t) +R2(t))dt} ≤ M1

k
.

Remark 1. From the last theorem we see that if R0 ≤ 1, the global positive solu-
tions of (1.3) fluctuate randomly around the disease-free equilibrium. The intensity
of those fluctuations is directly related to the values of qi(y) and σi, i = 1, 2, 3,
which state that the smaller the values of qi(y) and σi are, the nearer the solution is
from E0. From an epidemiological point of view, the epidemic will tend to die out,
when the intensity of the stochastic perturbation is small enough. In other words,
small stochastic disturbance can lead to extinction of the disease.

4. The dynamical properties around the endemic equilibrium. Now we
study the behavior of the global positive solution (S(t), I(t), R(t)) of the system



A STOCHASTIC SIRI EPIDEMIC MODEL WITH JUMPS 9

(1.3) around the endemic equilibrium E∗. Let

l1 =
µδ

µ+ γ + δ
− σ2

1 − 3
∫
Y

q21(y)ν(dy),

l2 =
2µ+ γ + δ

µ+ γ + δ
− σ2

2 − 3
∫
Y

q22(y)ν(dy),

l3 =
µ(µ+ δ)

γ
− (1 +

2µ
γ

)σ2
3 − (3 +

2µ
γ

)
∫
Y

q23(y)ν(dy),

M2 = (µ+ γ + δ)(I∗)2 +
µ(µ+ γ + δ)

γ
(S∗)2 +

µ(µ+ γ + δ)
δ

(µ+ δ)2

+σ2
1(S∗)2 + σ2

2(I∗)2 + σ3
1(1 +

2µ
γ

)(R∗)2

+3
∫
Y

[q21(y)(S∗)2 + 3q22(y)(I∗)2 + q23(y)(3 +
2µ
γ

)(R∗)2]ν(dy).

Theorem 4.1. Let (S(t), I(t), R(t)) ∈ R3
+ be the solution of the stochastic model

(1.3) with initial value (S(0), I(0), R(0)) ∈ R3
+. If R0 > 1 and the following condi-

tions
µδ

µ+ γ + δ
> σ2

1 + 3
∫
Y

q21(y)ν(dy),

2µ+ γ + δ

µ+ γ + δ
> σ2

2 + 3
∫
Y

q22(y)ν(dy),

µ(µ+ δ)
γ

> (1 +
2µ
γ

)σ2
3 + (3 +

2µ
γ

)
∫
Y

q23(y)ν(dy),

are fulfilled, then

lim
τ→∞

sup
1
τ

E[
∫ τ

0

{(S − S∗)2 + (I − I∗)2 + (R−R∗)2}dt] ≤ M2

k
,

where (S∗, I∗, R∗) is the endemic equilibrium and k = min{l1, l2, l3}.

Proof. We consider the following function

G(S(t), I(t), R(t)) =
1
2

(S − S∗ + I − I∗ +R−R∗)2 + u(I − I∗) +
1
2
v(R−R∗)2,

where u and v are two positive constants to be determined below.
Using Itô’s formula,

dG = LGdt+ (S − S∗ + I − I∗ +R−R∗)[σ1SdW1 + σ2IdW2 + σ3RdW3]

+uσ2IdW2 + σ3v(R−R∗)RdW3 +
∫
Y

[
1
2

(q1(y)S + q2(y)I + q3(y)R)2]Ñ(dt, dy)

+
∫
Y

[
1
2
v(q3(y)R)2 + uq2I + v(R−R∗)q3(y)R]Ñ(dt, dy)

+(S − S∗ + I − I∗ +R−R∗)
∫
Y

[(q1(y)S + q2(y)I + q3(y)R)]Ñ(dt, dy),

(4.1)
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where

LG = (S − S∗ + I − I∗ +R−R∗)[N − βSI − µS + βSI − (µ+ γ)I + δR

+γI − (µ+ δ)R] + v(R−R∗)[γI − (µ+ δ)R] + σ2
1S

2 + σ2
2I

2

+(1 + v)σ2
3R

2 +
∫
Y

[
1
2

(q1(y)S + q2(y)I + q3(y)R)2]ν(dy)

+
∫
Y

[+uq2(y)I +
1
2
v(q3(y)R)2]ν(dy). (4.2)

Using the fact that

N = µS∗ + βS∗I∗,

βS∗I∗ = (µ+ γ)I∗ − δR∗,
γI∗ = (µ+ δ)R∗,

we deduce

LG = −µ(S − S∗)2 − µ(I − I∗)2 − [µ+ (µ+ δ)v](R−R∗)2

−2µ(S − S∗)(R−R∗) + (uβ − 2µ)(S − S∗)(I − I∗) + (I − I∗)(R−R∗)(γv − 2µ)
+uβ(S − S∗)I∗ + uβ(I − I∗)S∗ − u(µ+ γ)(I − I∗)
+σ2

1S
2 + σ2

2I
2 + (1 + v)σ2

3R
2

+
∫
Y

[
1
2

(q1(y)S + q2(y)I + q3(y)R)2]ν(dy) +
∫
Y

[
1
2
v(q3(y)R)2]ν(dy). (4.3)

Choosing u = 2µ
β v = 2µ

γ , we obtain

LG ≤ −µ(S − S∗)2 − µ(I − I∗)2 − [µ+ (µ+ δ)
2µ
γ

](R−R∗)2

−2µ(S − S∗)(R−R∗) + 2µ(S − S∗)I∗ + 2µ(I − I∗)S∗ − 2µ(µ+ δ)(I − I∗)

+
1
2
σ2

1S
2 +

1
2
σ2

2I
2 +

1
2

(1 + v)σ2
3R

2

+
∫
Y

1
2

(q1(y)S + q2(y)I + q3(y)R)2 +
1
2
v(q3(y)R)2ν(dy).

Using 2ab ≤ a2

ε + εb2, where ε = µ+γ+δ
γ , we get

LG ≤ −(µ− γµ

µ+ γ + δ
)(S − S∗)2 − µ(I − I∗)2 − [µ+

2µ(µ+ δ)
γ

− µ(µ+ γ + δ)
γ

](R−R∗)2

+2µ(S − S∗)I∗ + 2µ(I − I∗)S∗ − 2µ(µ+ δ)(I − I∗) +
1
2
σ2

1S
2 +

1
2
σ2

2I
2

+
1
2

(1 + v)σ2
3R

2 +
∫
Y

1
2

[(q1(y)S + q2(y)I + q3(y)R)2 + v(q3(y)R)2]ν(dy).
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Using the inequalities 2ab ≤ a2

ε + εb2 and 2ab ≤ a2

ε′
+ ε

′
b2, with ε = γ

µ+γ+δ ,
ε

′
= δ

µ+γ+δ and ε
′′

= µ
µ+γ+δ we obtain

LG ≤ −(
µδ

µ+ γ + δ
)(S − S∗)2 − (

2µ+ γ + δ

µ+ γ + δ
(I − I∗)2

−(
µ(µ+ δ)

γ
)(R−R∗)2

+(µ+ γ + δ)(I∗)2 +
µ(µ+ γ + δ)

γ
(S∗)2 +

µ(µ+ γ + δ)
δ

(µ+ δ)2

+
1
2
σ2

1S
2 +

1
2
σ2

2I
2 +

1
2

(1 + v)σ2
3R

2

+
∫
Y

1
2

[(q1(y)S + q2(y)I + q3(y)R)2 + v(q3(y)R)2]ν(dy).

Taking into account now that 2ab ≤ a2 + b2 and (a+ b+ c)2 ≤ 3(a2 + b2 + c2),

LG ≤ −[
µδ

µ+ γ + δ
− σ2

1 − 3
∫
Y

q21(y)ν(dy)](S − S∗)2

−[
2µ+ γ + δ

µ+ γ + δ
− σ2

2 − 3
∫
Y

q22(y)ν(dy)](I − I∗)2

−[
µ(µ+ δ)

γ
− (1 +

2µ
γ

)σ2
3 − (3 +

2µ
γ

)
∫
Y

q23(y)ν(dy)](R−R∗)2

+(µ+ γ + δ)(I∗)2 +
µ(µ+ γ + δ)

γ
(S∗)2 +

µ(µ+ γ + δ)
δ

(µ+ δ)2

+σ2
1(S∗)2 + σ2

2(I∗)2 + σ3
1(1 +

2µ
γ

)(R∗)2

+3
∫
Y

[q21(y)(S∗)2 + 3q22(y)(I∗)2 + q23(y)(3 +
2µ
γ

)(R∗)2]ν(dy).

Integrating both sides of (4.1) between 0 and τ and taking expectation,

0 ≤ E[G(S(τ), I(τ), R(τ))] ≤ G(S(0), I(0), R(0)) + τM2

+E[
∫ τ

0

{−l1(S − S∗)2 − l2(I − I∗)2 − l3(R−R∗)2}dt].

Therefore

E[
∫ τ

0

{l1(S − S∗)2 + l2(I − I∗)2 + l3(R−R∗)2}dt] ≤ G(S(0), I(0), R(0)) + τM2.

Let k = min{l1, l2, l3}. Then

E[
∫ τ

0

{(S − S∗)2 + (I − I∗)2 + (R−R∗)2}dt] ≤ G(S(0), I(0), R(0))
k

+
τM2

k
.

Hence, we finally have

lim
τ→∞

sup
1
τ

E[
∫ τ

0

{(S − S∗)2 + (I − I∗)2 + (R−R∗)2}dt] ≤ M2

k
.

Remark 2. From the previous theorem we conclude that if R0 > 1, the solutions of
(1.3) fluctuate around the endemic equilibrium. The intensity of those fluctuations
is strongly related to the values of qi(y) and σi (i = 1, 2, 3), which means that the
lower the values of qi(y) and σi (i = 1, 2, 3) are, the nearer the solution is from E∗.
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From an epidemiological point view, the disease will tend to be persistent when
the intensity of the stochastic perturbation is small enough. In other words, small
stochastic disturbance can lead to persistence of the disease.

5. Numerical results. Numerical solutions of stochastic differential equations [1,
18] are very important in the study of real examples of epidemics. In this section we
present simulations corresponding to the theoretical results proved in the previous
sections. Around the disease-free equilibria we will consider the following σ1 =
0.04, σ2 = 0.1, σ3 = 0.2 and qi(y) = −kiy

1+y2 , y = 0.5, where k1 = 0.1, k2 = 0.2, k3 =
0.3. Around the endemic equilibria we will choose σ1 = 0.04, σ2 = 0.03, σ3 = 0.02
and qi(y) = −kiy

1+y2 , y = 0.5, where k1 = 0.1, k2 = 0.2, k3 = 0.3.

Example 5.1. This example represents a simulation for transmission dynamics and
elimination potential of zoonotic tuberculosis in Morocco [27]. The average lifespan
of the Moroccan cattle is 6 years which yields to a death rate of µ = 0.167 per year.
From the data on cattle population using least squares the birth rate was estimated
0.177 per year. The cattle to cattle transmission rate of bovine tuberculosis was
estimated from the endemic prevalence in cattle to β = 0.249. We choose δ = 0.1
and γ = 0.2 and get R0 = 0.903 < 1. Then, thanks to Theorem 3.1, solutions of
(1.3) fluctuate around the disease-free equilibrium. Figure 1 is an illustration of the
trajectories of the solutions to models (1.1) and (1.3) using the parameters cited
above.

Figure 1. Trajectories of the solutions to the systems (1.1) and
(1.3) for Moroccan zoonotic tuberculosis with R0 ≤ 1.
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Example 5.2. This example is motivated by bovine tuberculosis in a cattle herd,
with time unit of one year [5]. We consider the following parameters N = µ = 0.1,
γ = δ = 0.5 (equal periods of infection and recovery before relapse) β = 0.6 to
obtain R0 = 3.27. Since R0 > 1, it follows from Theorem 4.1 that solutions of
(1.3) fluctuate around the endemic equilibrium. Figure 2 shows trajectories of the
solutions to (1.1) and (1.3) using these parameters.

Figure 2. Trajectories of the solutions to the systems (1.1) and
(1.3) for bovine tuberculosis [5] with R0 > 1, N = µ = 0.1, β =
0.6 and γ = δ = 0.5.

To get insight on the appropriate intervention strategies to prevent and control
the spread of the disease, we show next the influence of some parameters on the
dynamical behaviors of the stochastic model using sensitivity analysis.

Example 5.3. To determine how changes in relapse rate affect the spread of the
disease, we examine the sensitivity index of the basic reproduction number, R0 with
respect to the relapse parameter δ. The relapse sensitivity parameter is given by

∂R0

∂δ

δ

R0
=

γδ

(µ+ δ)(µ+ γ + δ)
,

which has a positive sign. This means that an increase in the value of the relapse
parameter will lead to an increase in R0 and asymptotically results into persistence
of the disease in the population. The following three figures represent a variation
of the relapse parameter. Let N = 0.4, µ = 0.3, β = 0.8 and γ = 0.2. From Figure
3, we remark that increasing the relapse rate increases the magnitude of infected
individuals.
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Figure 3. Trajectories of the solutions to the systems (1.1) and
(1.3) with various relapse rate δ: 0.14, 0.2, 0.4.

Example 5.4. The recovery sensitivity parameter is given by

∂R0

∂γ

γ

R0
= − γ

µ+ γ + δ
.

The negative sign of the sensitivity index shows that an increase in the value of the
recovery parameter γ will lead to a decrease in R0 and asymptotically results into
extinction of the disease in the population. The next figures illustrate a variation
of the recovery rate, here with N = 0.4, µ = 0.3, β = 0.8 and δ = 0.1. From Figure
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4, we remark that increasing the recovery rate, decreases the magnitude of infected
individuals.

Figure 4. Trajectories of the solutions to the systems (1.1) and
(1.3) with a various recovery rate γ: 0.09, 0.18, 0.22
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Conclusion. The jumps play a significant role in evolution of many real dynamical
processes, including the case of epidemic spreading when encountered with massive
diseases like avian influenza. In this work we have established the existence and the
uniqueness of a global positive solution for a stochastic SIRI epidemic model driven
by Lévy noise and studied its dynamical behavior. Using Lyapunov techniques we
showed that the solution fluctuates around the equilibria under suitable conditions.
Furthermore, we have illustrated from numerical results the changing effect of the
relapse rate and recovery rate on the size of infectious individuals. Increasing the
value of the relapse rate increases the basic reproduction number and, consequently,
the magnitude of the infected individuals in the population. Per contra, increasing
the value of the recovery rate decreases the basic reproduction number and also
the magnitude of the infected individuals. In this way, it is pertinent to conclude
that efforts should be encouraged in order to achieve a disease-free population. In
a future coming work we will focus on stochastic model with vaccination.
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