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Abstract. This paper studies the constrained multiobjective optimization problem of finding
Pareto critical points of vector-valued functions. The proximal point method considered by Bonnel,
Tusem, and Svaiter [STAM J. Optim., 15 (2005), pp. 953-970] is extended to locally Lipschitz functions
in the finite dimensional multiobjective setting. To this end, a new (scalarization-free) approach for
convergence analysis of the method is proposed where the first-order optimality condition of the
scalarized problem is replaced by a necessary condition for weak Pareto points of a multiobjective
problem. As a consequence, this has allowed us to consider the method without any assumption
of convexity over the constraint sets that determine the vectorial improvement steps. This is very
important for applications; for example, to extend to a dynamic setting the famous compromise
problem in management sciences and game theory.
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1. Introduction. In this paper, we extend the applicability of the exact prox-
imal point method introduced by Bonnel, Iusem, and Svaiter [7] for solving (finite
dimensional) multiobjective optimization problems with nonconvex and closed con-
straints. Our approach solves iteratively multiobjective problems by using a vectorial
optimality condition rather than a first-order optimality condition to scalarized prob-
lems. This has allowed us to increase the range of application of the method to locally
Lipschitz vector-valued functions without any assumption of convexity over the con-
straint sets that determine the vectorial improvement steps. The importance of the
generalization to locally Lipschitz objective functions comes from applications. Our
generalization offers two main advantages. First, it allows us to model the famous
static compromise solution problem where a group of agents tries to minimize the
distances of their current positions to the ideal point of the group (Gearhart [25]). In
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this case, distances are locally Lipschitz vector functions; see, for instance, [45, 46]. In
a broad range of applications (see location theory, utility theory, consumer theory,. . .)
such distance functions are used as objectives. Second, taking advantages of a nice
specificity of the algorithm proposed in Bonnel, Tusem, and Svaiter [7], it allows us
to examine a dynamic version of the compromise problem in the context of human
dynamics in behavioral sciences. This comes from the fact that the algorithm in [7] is
a descent process. Thus, it can model in a crude but precise way a transition that a
group of agents accepts to follow before reaching a compromise solution as an ascent
process, each agent required not to decrease his payoff from one period to the other
one.

The beginning of the story starts with the (scalar) proximal point method in-
troduced in the literature by Moreau [42], Martinet [40], and later popularized by
Rockafellar [47] who performs the proximal point method for the problem of finding
zeros of operators. A brief description of this method can be found in Bonnel, Tusem,
and Svaiter [7]. We also refer to Lemaire [35] who surveys the literature on proximal
point algorithms for real-valued functions up to 1989.

We consider multiobjective (or multicriteria) optimization in the following con-
text. Let R™ be the m-dimensional Euclidean space with the partial order “ < 7
in R™ induced by the Paretian cone R, given by y = 2z (or z = y) if and only if
z —y € R with its associate relation “ <,” given by y < z (or z >~ y) if and only if
z—y € R, where

RY :={zcR™ : z; >0, jcZ}, R :={zxcR™ : ;>0 jcI},

and 7 := {1,...,m}. We recall that the cone R7' is Daniell, i.e., any decreasing
sequence having a lower bound converges to its infimum, and R is correct in the sense
that (cIR7")+R77\I(R}) C R, where cl denotes the closure and [(R7") stands for the
set R N—R7'; see Luc [38]. Given a vector-valued function F': R™ — R™, we analyze
the proximal point method for finding a Pareto critical point of F := (f1,..., fm). A
point x € R™ is a Pareto critical point of F' if there exists a component function f;
of F' for which the Clarke directional derivative of f; at  in the direction of y — x is
nonnegative for all y € R"” with f; : R™ — R and i € Z; see the details of this concept
in section 2.

Two different strategies have been used for solving multiobjective optimization
problems: scalarization techniques (see, for instance, [9, 16, 18, 19, 20, 22, 30, 33]) and
nonscalarization approaches (see [8] for an overview on this subject). In the first case,
for finding a (weak or not) Pareto optimal point of F' (see these concepts in section 2),
the scalarization approach finds a minimizer of the scalar function ((F(-)), for some
scalarization functional ¢ which has the property that a solution of the scalar problem
is a Pareto solution of the vectorial problem. In the second case, multiobjective
optimization algorithms that do not scalarize have been developed and some of these
techniques are extensions of scalar optimization algorithms, e.g., steepest descent
method [21, 29|, projected gradient method [23, 28], subgradient method [2], and
Newton’s method [22], while others borrow heavily from ideas developed in heuristic
optimization; see, e.g., [34, 44] and references therein. For the latter, no convergence
proofs are known.

Our paper extends the work of Bonnel, Iusem, and Svaiter [7] to a nonconvex
setting without using a scalarization method. Thus, it will be useful for the reader to
describe the exact method analyzed in Bonnel, Tusem, and Svaiter [7] who proposed
an extension of the proximal point method to vector optimization, i.e., when other
underlying ordering cones are used instead of the nonnegative orthant R’. They
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actually perform a similar approach for the case of the proximal point method for
scalar functions. They use this method in order to find a weak Pareto optimal (or
weak Pareto) of a map F': X — Y from a real Hilbert space X to a real Banach
space Y containing a closed, convex, and pointed cone C with nonempty interior,
where “pointed” means that C N (—C) = {0} with respect to the partial order “ <¢”
induced by the cone C. In this context, weak Pareto point means a point z € X
such that there exists no y € X satisfying F(y) <¢ F(z). For orders induced by
non-Paretian cones, the problem of finding Pareto points (weak or not) is certainly
not as frequent as the one concerning the pointwise partial order, but, nevertheless,
it is not just an extension of the Paretian case and has its own importance. The
(exact) method analyzed in [7] takes as the (k4 1)th iteration a weak Pareto solution
of Fj, : X — Y defined as

Fr(x) = F(z) + \g||]z — ac”“||2£’C

subject to the constrained set Q = {r € X : F(z) =¢ F(2*)}, where {\z}
is a bounded sequence of positive scalars and ¥ is an exogenously selected vector
belonging to the interior of C such that ||¥|| = 1 for each k > 0. The idea underlying
the convergence results is based on the first-order optimality condition of the scalar
problem

(1) ain g (2),

where ny,(z) = (F(x), 2%) + 2k (e*, 2} ||z —2*||? and {z*} is an exogenous sequence be-
longing to the positive polar cone CT C Y* given by CT = {z € Y* : (y,2) > 0, for
all y € C} such that ||z¥|| = 1 for all k > 0, and Y* is the topological dual space of
Y, where (-,-) : Y x Y* — R is the duality pairing. Thus, z*¥*! is a solution of (1)
and, hence, it satisfies the following inclusion:

(2) 0 € i (z™H) + N (eF, ) (2T — ™),

where . (z) = (F(x), 2%) + 0, (z), O1x denotes the subdifferential of 1/, in the sense
of convex analysis, and dq, (-) is the indicator function, that is, dq, (r) = 0 if z € Qy,
and 0g, (z) = +oo, otherwise. Bonnel, Iusem, and Svaiter [7] establish that any
sequence generated by this algorithm converges (in the weak topology of X) to a
weak Pareto point of F' under the following two assumptions:

(A1) (convexity and lower semicontinuity). F is C-convex with respect to the order
“=e) e, F((1-t)z+ty) <¢ (1—t)F(x)+tF (y) forallz,y € X and t € [0, 1],
and F is positively lower semicontinuous which means that for every z € CT,
the scalar function z — (F(x), z) is lower semicontinuous.

(A2) (completeness). The set (F(2°) — C) N F(X) is C-complete, i.e., for every
sequence {a*} € X with a® = 2°, such that F(a**1) <¢ F(a*) for all k € N,
there exists a € X such that F(a) <¢ F(a*) for all k € N.

Assumption (A1) guarantees that the constrained set {2 is closed and convex for
all k € N. Thus, (2) can be viewed as

ar(ah —a"1) € 9((F (), 2")) (") + Nay (z"),

where o, = A\ (g%, 2¥) and Ngq, (zFF1) stands for the normal cone to € at ¥+ € Oy
in the classical sense of convex analysis. In this approach, convexity of each set
plays an important role. The set € forces the algorithm to be a descent process.
A motivation, in a dynamic context, to consider the constrained set ) is given in
Bento, Cruz Neto, and Soubeyran [4]. They mention that the set €y characterizes a
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vector improvement process where a vectorial minimizing solution z* of the current
proximal problem moves to a next one such that it improves the current solution,
which is essential to justify the process at a behavioral level where a risk averse agent
accepts change only if the change is improving on all aspects (all components of the
vector). If we consider a group of agents, as we do here, this constraint set is even more
important. It imposes that the payoff of each agent of the group does not decrease;
see section 3.1.

Other authors have proposed variants of the algorithm considered by Bonnel,
Tusem, and Svaiter [7] for convex vector or multiobjective problems; see, for instance,
Ceng and Yao [11], Ceng, Mordukhovich, and Yao [12], Choung, Mordukhovich, and
Yao [13], Gregério and Oliveira [31], and Villacorta and Oliveira [52]. Recently, the
R™-quasi-convex case was discussed in Bento, Cruz Neto, and Soubeyran [4] and
Apolindrio, Papa Quiroz, and Oliveira [1]; see the definition of R’'-quasi-convexity on
section 2. In these works, their corresponding algorithms, at the (k + 1)th iteration,
compute a point zFt! satisfying

0 € OC(F(z*1) + ap(z*t — 2%) + Ng, («F+1),

where ¢ : R™ — R is a scalarization function, 9 denotes some subdifferential of ¢, and
{ax} is a sequence of positive real numbers; see section 4 for more details about these
algorithms. In both [1] and [4], convexity of € comes from the R'!’-quasi-convexity
of F.

The aim of this paper is twofold. First, we present an approach (which does not
use a scalarization), for convergence of the proximal point algorithm in (finite dimen-
sional) multiobjective optimization. In [7], the authors use an optimality condition for
the scalarized problem (1), while here we establish convergence results without using
any scalarization method combining the fact that each iteration of the algorithm is a
weak Pareto solution for a constrained multiobjective problem with a necessary condi-
tion for a point to be a weak Pareto solution of a constrained multiobjective problem.
We mention that our approach does not use convexity assumption of the constraint
sets as the previously mentioned works do. As a second contribution, we expand the
application of proximal methods in (finite dimensional) multiobjective optimization
for locally Lipschitz vector-valued functions with nonconvex constraints. We men-
tion that the C-convex case analyzed by Bonnel, Tusem, and Svaiter [7], restricted
to the finite dimensional multiobjective framework, is indeed a particular instance of
our locally Lipschitz case. In light of our approach, the R'-quasi-convex case is also
analyzed and convergence results as proved in [1] and [4] are presented.

As an application, we give a dynamic formulation of the well-known static group
compromise problem to model, in a crude way, how, starting from an initial situation,
a group of agents with interrelated payoffs are able to approach and reach, following
an acceptable transition, a desired end, defined as a compromise solution. This is a
very important problem related to cooperative dynamical games.

This paper is organized as follows. Section 2 introduces some notations as well
as some basic concepts and results in multiobjective optimization. In section 3, we
define the proximal method and state and prove some of its properties. Section 4
is devoted to the convergence analysis of the algorithm. Finally, some remarks and
future works are discussed in section 5.

2. Multiobjective optimization. In this section, we discuss some basic defini-
tions and properties of multiobjective optimization which can be found, for instance,
in Luc [38].
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Given a nonempty set Q C R® and F = (f1,..., fm) : R = R™ a vector-valued
function, a point z* € Q is called a Pareto optimal point (or Pareto point) of F' in
Q) if there exists no other z € Q with F(z) < F(z*) and F(x) # F(z*). A point
x* € Q is called weak Pareto optimal (or weak Pareto) of F' in € if there exists no
x € Q with F(x) < F(z*). This means that for all x € 2 there exists an index
jlx) =7 € {l,...,m} such that Fj(z) — F;(z*) > 0. We call (VP) the problem of
finding a weak Pareto optimal point which we denote by

(3) min, {F(z) : = € Q}.
The set of all weak Pareto points of F' in € is denoted by argmin, {F(z) : = € Q}.

Remark 1. As mentioned in Huang and Yang [32], the vector functions
F() and eF(-) = (efl(')’ s efm(»))

have the same set of weak Pareto points, where e denotes the exponential map valued
at a € R. This result can be easily extended to the Pareto critical setting. Hence,
concerning Pareto critical points, we can assume without loss of generality that £ > 0.

For a vector function F : R™ — R™, we say that
i) F'is R-convex if, for every x,y € R", the following holds:
F(1—-tz+ty) 2 (1—t)F(x) +tF(y) vt € [0,1];
ii) F is R7'-quasi-convex if, for every x,y € R", the following holds:
F((1—t)x +ty) X max{F(z), F(y)} vt € [0,1],

where the maximum is taken componentwise.

We recall now some concepts involving locally Lipschitz functions and nonconvex
constrained sets. The definitions and notation are taken from [17]. A scalar-valued
function f: R™ — R is locally Lipschitz at a point « € R"™ if there exists a neighbor-
hood U of this point and some real number L > 0 such that

lfy) = FW) < Llly—y'll Yy,y €U.

A function f is locally Lipschitz when it is locally Lipschitz at all points of its domain.
Let f : R™ — R be a locally Lipschitz function at x € R™ and let d € R™. The
Clarke directional derivative of f at z in the direction of d, denoted by f°(x,d), is

defined as follows:
f°(z,d) := limsup w

y—x t

t10
We denote the distance function d : R™ — R of a point z € R" to a set C C R" as
(4) do(z) :=inf{||lz —¢c|| : c€C}.

Let  C R™ be a nonempty and closed set. As in [17], we say that a point z € Q is a
Pareto—Clarke critical point (or Pareto critical point) of F in Q if, for any v € To(x),
there exists ¢ € Z such that

() [ (@,0) =0,

where To(z) == {v € R* : d@(z,v) = 0} denotes the set of all tangent vectors
to Q at x. As mentioned in [15, page 11], a vector v belongs to Tq(x) if and only
if it satisfies the following property: for every sequence {z*} in Q converging to x
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and every sequence t, in (0,00) converging to 0, there is a sequence v™ converging
to v such that =™ + ¢,v™ belongs to Q for all n. Having defined a tangent cone,
the likely candidate for the normal cone is the one obtained from Tq(x) by polarity.
Accordingly, we define Nq(z), the normal cone to € at x, as follows:

No(z) ={£eR" : (£,v) <0 YveTo(x)}.

If Q is convex, Nq(z) coincides with the cone of normals in the sense of convex
analysis; see [15, Proposition 2.4.4].
The Clarke subdifferential of f at x, denoted by 0f(z), is defined as follows:

Of (x) :={w eR" : (w,d) < f(z,d) VdeR"};

see Clarke [14]. Given a locally Lipschitz vector-valued function F' : R® — R™,
i.e., all component functions f; : R® — R are locally Lipschitz functions, the Clarke
subdifferential of F' at x € R™, denoted by dF(z), is defined as

OF(z) :={U e R™" . U'd =< F°(x;d) VdecR"},

where F°(z;d) := (ff(z;d), ..., fo(x;d)). It is worth pointing out that an equivalent
definition has appeared, in a more general context, in Thibault [51]. If F' is C-convex
for some ordering cone C, a similar definition can be found in Luc, Tan, and Tinh [39].

Remark 2. Note that if m = 1 in the previous definition of a Pareto critical
point, we retrieve the (classical) definition of critical points for nonsmooth functions:
0 € 9f(x). It is worth noticing that, combining (5) with Clarke [14, Proposition 1.4],
we have the following alternative definition: a point « € R™ is a Pareto critical point
of F'in Q if, for any v € T(x), there exist ¢ € Z and £ € 0f;(z) such that ({,v) > 0.
Thus, if x is not a Pareto critical point of F' in €, then there exists v € T (z) such
that

Uv <0 VU e€OIF(x).

The next result gives a necessary condition for a point to be a Pareto critical
point of a vector-valued function.

LEMMA 1. Let w € RT\{0} and assume that ) is a nonempty and closed set. If
~UTw € Nq(z) for some U € OF (z), then x is a Pareto critical point of F.

Proof. Take x € Q such that —U "w € Ng(z) and let us suppose, by contradiction,
that « is not a Pareto critical point of F. From Remark 2, there exists v € To(z)
such that

Uv < 0.

Since w € R7\{0}, we have (w,Uv) < 0, but this contradicts the fact that —U"w €
Na(z) and (U Tw,v) = (w, Uv). Hence, the desired result is proved. O

Consider the problem (3) of finding a weak Pareto point of a vector-valued func-
tion F' subject to the following constrained set

(6) Q:={xeD: gs(x) <0, seJ},
where D C R™ is a nonempty and closed set, and gs : R™ — R is a locally Lipschitz

function for each s € J :={1,...,p}. The next result presents a necessary condition
for a point z* €  to be a weak Pareto solution of (3).
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THEOREM 1. Let D C R™ be a nonempty and closed set. Assume that the set §2
in (3) is given as in (6), and the functions f;,9s :R" - R, j €I, and s € J, are
locally Lipschitz. If x* € Q is a weak Pareto solution of (3), then there exist real
numbers u; > 0, vy >0, with j €L and s € J, and 7 > 0 such that

Zujﬁfj(a:*) + Z v50gs(xz*) + 70dp (") =0

JET seTJ

with Zuj + sz =1 and wvsgs(z*)=0, seJ.
JET seJ

Proof. The proof follows from Minami [41, Theorem 3.1]. 0

As remarked by Minami [41, Remark 3.1], if D is additionally convex (which we
do not assume), then the cone

{w : w e Tddp(z*), 7 > 0}

is the normal cone in the classical sense of convex analysis. For the nonconvex case,
a formula for the Clarke subdifferential of the distance function (4) can be found in
Burke, Ferris, and Qian [10]. We present a proof just for the sake of clarity.

THEOREM 2. Let C' be a nonempty and closed subset of R™. If x € C, then
ddc(x) € B[0,1] N Ne(w),

where B[0,1] denotes the closed unit ball in R™.

Proof. 1t is known that the distance function, dc(z), is globally Lipschitz with
constant L = 1; see, for instance, [15, Proposition 2.4.1]. From [15, Proposition
2.1.2], we have that a Lipschitz function f of rank L near to x satisfies ||| < L for
every & € Of(z). Thus, ddc(z) C B[0,1]. On the other hand, it follows from [15,
Proposition 2.4.2] that Nc(z) = cl{Ux>0Addc ()}, where cl denotes closure. This
implies that dd¢(x) C Ne(z) and the proof is completed. O

3. The proximal point method. In this section, we prove some facts related
to our approach for convergence of the proximal method for vector-valued functions.
As an application, we show how this method can be a nice tool to solve the famous
compromise solution problem.

3.1. Compromise problem. Let us consider a group of producers i € 7 =
{1,...,m}. The decision variables of the group form the vector € R™ which must
satisfy some constraints * = (z1,...,2,) € D C R™. The objective of each of them
is a “to be increased” payoff (profit, utility), h;(x) € Ry. The vectorial objective
of the group is H(z) € R™, where H(z) = (hi(x),...,hn(x)). Thus, the subset
of feasible vectorial payoffs of the group, i.e., the payoff subspace of the group is
H(D) ={H(z) : = € D} C R™. Each agent wants a payoff as high as possible.

Suppose that the maximum payoff of each agent of the group is bounded above,
ie., h; = sup{hi(z) : x € D} < +oo, i € Z. Then, the vectorial payoff H =
(hi,...,hm) is the ideal (or utopian) vectorial payoff of this group. Usually, the
ideal vectorial payoff is not feasible, which means, H ¢ H(D). Let us consider “to be
decreased” payoffs

[
=

|
=
®
S~—"
%
=
-
m
N

fi(x)
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which refer, in psychology, to unsatisfaction gap functions f;. They measure how
much each individual payoff h;(x) with x € D, fails to reach its maximum (ideal or
utopian) value h;. These vectorial unsatisfaction gaps

F(z) = (fi(@),..., fm(2)) =H - H(z) = 0

generate individual regrets or unsatisfactions with respect to ideal payoffs. The com-
promise solution (with respect to a norm) is some feasible alternative 2* € D which
minimizes the whole unsatisfaction of the group, in other words, it minimizes the
distance between the ideal vectorial payoff H and the payoff subspace H (D). For the
“compromise” problem in multicriteria decision making, see the well known references
Gearhart [25] and Goetzmann, Busing, and Matuschke [26].

Using this (static) compromise model, let us consider a simple group dynamic
model. It includes a starting point, an acceptable transition, and some desired ends.
This simple group dynamics model considers that transitions are acceptable if, each
period, all members of the group improve their payoffs. In the opposite case, some
agents will quit the group or resist change. The desired end of the group Z is to
approach and reach an end point, which itself approaches as much as possible the
ideal point. In a dynamic cooperative setting, all agents of the group will accept
change from the last position z = z* to the next, y = 2**! only if their payoff does
not decrease, i.e., if

(7) hi(z®) < hi(@* ) Vi€ T =  H(z") < H(z").

This defines a cooperative improving dynamic z¢t! € Q(2%), where Q(2*) =
{x € D : H(2*) < H(x)}. The cooperative group dynamic problem is to find a
cooperative improving dynamic x*+! € Q(z*) which approaches and reaches (con-
verges to) a desired end position close enough to the ideal point; see Lewin [36, 37] for
the details of “group dynamics” and “organizational change” management problems
in psychology and management sciences.

3.2. The algorithm. Throughout this paper, we consider D C R" a nonempty
and closed set, and F = (f1,..., fm) : R® = R™ such that each component function
fi: R" -5 R, ¢ € Z, is a locally Lipschitz function. From Remark 1, we can assume
without loss of generality that F' > 0.

Next, we consider the proximal point algorithm for finding a Pareto critical point
of F in D. Let {\x} be a sequence of positive real numbers and let {e¥} C R,
be a sequence such that ||¥|| = 1 for all & > 0. The method generates a sequence
{2¥} C D as follows.

Algorithm 1.

Initialization: Choose z° € D.

Stopping rule: Given z*, if ¥ is a Pareto critical point, then set z*+? = 2* for all
peN.

Iterative step: Take, as next iterate, 21 € D such that

A
(8) 2F*1 ¢ argmin,, {F(x) + 7k||a: — x|k sz e Qk} :

where Q, = {r €D : F(z) < F(z%)}.
We would like to mention that this method finds separate solutions at time and not
the whole solution set. It has been noticed by Fukuda and Grana Drummond [24], and
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Fliege, Grana Drummond, and Svaiter [22] that we can expect to somehow approx-
imate the solution set by just performing this method for different initial points. In
the well-known weighting method, this kind of idea also appears; see Burachik, Kaya,
and Rizvi [9]. More precisely, the method can be performed for different weights in
order to find the solution set, or a reasonable approximation of this set. However, in
some cases, arbitrary choices of the weighting vectors may lead the weighting method
to unbounded problems. The Pareto front, i.e., the objective values of these solutions,
is in general an infinite set. Thus, in practice, only an approximation of the Pareto
front is obtained.

Next, we prove that Algorithm 1 is well defined. To this end, we consider the
concept of completeness as in (A2).

PROPOSITION 1. Algorithm 1 is well defined.

Proof. The starting point z° € D is chosen in the initialization step. Assuming
that the algorithm reached iteration k, we show next that the (k + 1)th iteration
exists. Denote by Fy(z) := F(z) + %Hx — 2%||2¢*. Note that z*¥ € Q, which implies
that Fj(€Qy) is nonempty. It is straightforward to check that Fj(x) > 0 and Fj(Qy)
is closed. Since the cone R’} is Daniell, it follows from [38, Lemma 3.5] that Fj ()
is R7'-complete. Thus, from [38, Theorem 3.3] the set

argmin, {Fi(z) : z € Qi }
is nonempty. a

From now on, {z*}, {\x}, and {¥} denote the sequences considered in Algo-
rithm 1. Next, we explore deeply the structure of the vector problem by using the
necessary condition for a weak Pareto optimal point of a multiobjective problem given
by Theorem 1. The following result will be used in our main convergence results.

PROPOSITION 2. For all k € N, there exist A, € R™*" uF o € R, wk € R™,
and T, € Ry such that

9) AL (WP 4+ 0F) + N L P (28 — 2P e =0,
where
(10) w” € B[0,1]N Np(z*) and ||ju*+v*||; =1 VEeN.

Proof. Tt follows from the definition of the algorithm that z* is a weak Pareto
solution of the problem
ming,{Fr_1(z) : © € Q_1},
where Fj_1(z) = F(z) + 252 ||z — 2%~ 1|25~ 1. Denoting Gj,_1(z) = F(z) — F(z*1),
it is easy to verify, from the locally Lipschitz continuity of F', that all component
functions

(11) (ge=1); (") = f;(-) = fi(a""1) with j € T,
and

Ak—1
(12) (fe—1);() = f; () + 5

are locally Lipschitz functions. Hence, the desired result follows by applying Theo-
rem 1, for each k € N fixed, with g; and f; given by (11) and (12), respectively, and
taking into account that, from Theorem 2, we have

ddp(z*) € B[0,1] N Np(z*) VkeN.

|- =" 1Pt with j € T,
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In this case, A = [af ... al]T, where a¥ € 0f;(z*) with j € Z, u* = (uf,...,u
and vF = (vF, ... 0k)T. 0

rvm

Remark 3. Note that from (10), {u*}, {v*}, and {w*} are bounded sequences.
From Bolte et al. [6, Remark 1] df; is bounded on compact sets. So, we have that
{Ar} is bounded as long as {z*} is bounded because a¥ € df;(z*), j € T. Therefore,
if {\x} and {z*} are bounded sequences, it follows from (9) that {74} is also bounded.

As a consequence of the previous proposition, we obtain the following stopping
rule for Algorithm 1.

COROLLARY 1. Let kg € N be such that u* = 0. Then, z*° is a Pareto critical
point of F.

Proof. If there exists ko € N such that u*® = 0, then from (9), we have
A;—kao + Thow™ = 0.
As 7, > 0 and wk> € Np(x*0), the last equality is equivalent to
—A;ka" € Np(zko).

On the other hand, from the second assertion in (10), we can say that v* € R7"\{0}.
Since Ay, € OF(z*), the desired result follows by using Lemma 1 with U = Ay,
w=v" and z = zo. a

As in [7], the stopping rule in Algorithm 1 can be changed by the following rule,
which is easier to check: after computing z*+1 the algorithm stops if 2**1 = 2% i.e.,
we set FtP = zF for all p > 1. Proposition 2 combined with Lemma 1 allows us
to see that this condition is sufficient getting the stopping rule given in Algorithm 1.
However, even in the convex case, it is possible to note that this rule might fail to
recognize weak Pareto solutions; see [7, Proposition 3.2].

COROLLARY 2. If zFt1 = 2%, then 2* is a Pareto critical point of F.

Remark 4. Note that Algorithm 1 generates an infinite sequence {x*} which re-
mains constant from a Pareto critical point on, i.e., if ¥ is a Pareto critical point,
then 2**P = 2* for all p € N. In view of Corollaries 1 and 2, we can suppose without
loss of generality that u* # 0 and z*+1 # z* for all k € N, respectively.

4. Convergence analysis. As mentioned before, the idea underlying the results
of the scalarization approach is to solve a scalar problem in order to obtain a solution
of the related vectorial problem. In our approach, the main result does not solve a
scalar problem to obtain convergence of the sequence but it uses a necessary condition
for weak Pareto points of a multiobjective problem instead. Hence, it allows us to
analyze convergence properties of proximal methods for both locally Lipschitz vector
and scalar functions with nonconvex constraints.

4.1. Locally Lipschitz case. Before presenting our convergence results let us
go back to our group compromise motivation. The nature of the group dynamic pro-
blem depends heavily on the nature of the objective functions which determine the
properties of the improving sets and other relevant constraints. Objective functions
can be convex or concave, quasi-convex or quasi-concave, difference of convex or con-
cave functions, and, more generally, Lipschitz or locally Lipschitz functions. In the re-
cent variational rationality (VR) approach of human behaviors (see Soubeyran [48, 49,
50]), Lipschitz and locally Lipschitz payoffs are very interesting for two reasons: they
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mean that when inconveniences to change are low, you cannot expect large advantages
to change; there is no free lunch, which is a reasonable hypothesis. Furthermore, these
functions are easy to estimate locally. This helps badly informed agents, who know
their payoff functions only at some given points, to be able to find, at each step, some
improving changes. Lipschitz functions f have concave underestimating functions

y € D— uo(y) = f(zo) — Llly — zo|
for each xg € D.
Next, we prove our main convergence result for the locally Lipschitz case.

THEOREM 3. Suppose that there exist scalars a,b,c € Ry, such that 0 < a <
M <band0<c< 5? for allk e N and j =1,...,m. Then, every cluster point of
{2*}, if any, is a Pareto critical point of F.

Proof. It follows from the definition of the algorithm that z* for each k € N, is
an optimal solution of the problem

Ak—
miny, {F(x) + %Hx —zF2eR T g e le} .

This implies

Ak—

k—1 k E=1..k k=172 k—1

. _F. — — : > 0.

e {F4) = Biat) - 2ok - bk 2 0

Take jo(k) = jo € {1,...,m} as the index where the maximum in the last inequality

is attained. Then, from the lower boundedness assumption of {\z} and {e*}, we have
ac

§||$k — 2" < Fj (@) = F, (a).

Since {F(2*)} is nonincreasing and F' > 0, we obtain that the right-hand side of (13)
converges to 0 as k — +o00. Hence,

(13)

(14) (¥ —2F 1) 5 0ask — +oo.

Now, let & be a cluster point of {2*}, and let {2*'} be a subsequence of {z*} converging
to 2. Applying Proposition 2 for the sequence {z*'}, we have that there exist sequences
{Ap} c R Lk} {vk} C RT {wh} € R™, and {7, } C Ry satisfying

(15) AkTL (uPt + o*) 4 A, _q (R uk (2P — R ot =

Note that {\,} is bounded and {z*'} converges to & and, hence, {z*'} is bounded.
Thus, from Remark 3, we can assume that the sequences {Ay,}, {u*}, {v*}, {wk},
and {7, } are bounded. Without loss of generality, we may assume that Ay, — A,
uP — 4, vM — ©, and 7, — 7 as | — +oo (we will use the same notation for the
index even if we need to extract other subsequences). Since {\g,_1(e¥~1 uFt)} is
bounded, it follows from (14) that Ay, —1 (" =1, ukt) (aF — 2% 1) vanishes as | — +oc.
Therefore, we get, taking the limit in (15) as I — +o00, that

(16) AT+ 7 =0,

where R\ {0} 3 g := 1+ 0, A € OF (&), and @ € Np(&), because dF(-) and Np(-)
are closed. Thus, from (16), we obtain

—ATj e Np(2),
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and this together with Lemma 1, enables us to say that & is a Pareto critical point of
F'. This completes the proof. a

Remark 5. Note that, if Qy = {x € R* : F(x) =< F(2°)} is bounded, then
{z*} is bounded. It is worthwhile to mention that, if we take m = 1 and D = R"®
throughout this work, our method coincides with the one studied in [5] and the exact
version analyzed in [19] for the finite dimensional Euclidean setting with the square
Euclidean norm as the regularization term.

4.2. Quasi-convex case. In this section, we consider Algorithm 1 with the
additional assumptions that F' : R™ — R™ is a R']*-quasi-convex function, D is convex,
and the well-known R7’-completeness assumption on the set (F(z°) — R7) N F(D):

(H): For every sequence {a*} C D, with a® = 2°, such that F(a**!) < F(a¥),
for all k € N, there exists a € D such that

F(a) < F(a®) VEe€N.

The R'’-quasi-convex case was analyzed by Apolindrio, Papa Quiroz, and Oliveira
[1] in the unconstrained framework, i.e., D = R™. They compute the (k 4 1)th itera-
tion as follows:

(1) 0ed (0. + A =P ) (@) 4 N (5,

This case was also studied by Bento, Cruz Neto, and Soubeyran [4]. They consider
the following iterative procedure

A
(18) 2"l € arg m%@n 0, (F(x) + 6, + 7k||x _ $k||26> 7
xER™
where e = (1,...,1) € R™, the scalarization function ¢ : R™ — R is given by

YHy) = maxi<;<m (Y, €;), and {e;} is the canonical base of the space R™.

The convergence analyses of both algorithms (17) and (18) are based on Fejér
monotonicity (see definition below), using the same approach proposed by Bonnel,
Tusem, and Svaiter [7]. In these works, the scalarization plays an important role
in their proofs because the vectorial subproblems are replaced by scalar optimality
conditions using a scalarization function; see [7, Theorem 3.1], [1, Proposition 3.4.1],
and [4, Theorem 4.1].

We emphasize that, as in the previously mentioned works, our convergence anal-
ysis for the R’'-quasi-convex case is also based on the Fejér monotonicity of the se-
quence generated by the algorithm. However, it does not depend on any scalarization
functional.

Before we give the main result of this section, let us recall that a sequence {y*}
is said to be Fejér convergent (or Fejér monotone) to a nonempty set U C R™ if, for
all k e N

Ny =l < [ly* —ull VyeU.

The following result is well known and its proof is elementary.

PROPOSITION 3. Let U C R™ be a nonempty set and {y*} be a Fejér convergent
sequence to U. Then, {y*} is bounded. Moreover, if a cluster point y of {y*} belongs
to U, then {y*} converges to y.

The next theorem shows that for the R’-quasi-convex case we have convergence
of the (whole) sequence to a Pareto critical point.
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THEOREM 4. The sequence {x*} converges to a Pareto critical point of F.

Proof. We divide the proof into five steps.
Step 1 (Fejér convergence). Define E C D as

E={zeD : F(z) < F(z*) VkeN}.
From assumption (H), the set E is nonempty. Now, take an arbitrary point z* € E,
which means that 2* € Q for all k € N. Denote yx11 = Mp(e¥,u*+1). Note that

Yetr1 > 0, for each k € N, because A\, > 0, ¥ € R™, , and uk e R7*\{0} for all k € N.
Since

||ZIJk _ $*||2 _ ||ZIJk _ $k+1||2 + ||$k+l _ $*||2 + 2<$k _ karl’karl _ $*>,
we conclude from (9) that

ok — 2|2 = Jla — 2*H 12 4 a4 — |
2

+ ——(Ap (T P o T 2R )
Ve+1
= flak — P [t
2 m
(19) + Z(uf“ + P TIa T 2P ) o (WP R - ),
T+l i
where af“ € Ofi(z**!) for all k and i = 1,...,m. On the other hand, since F is

R’-quasi-convex and x* € €y and ~y, > 0 for all k, we obtain

(20)

2 m
Z(uf“ +oF Y ak Tt 2P — 2y > 0.
Vh+1

Moreover, w**t! € Np(2*+1), together with 7, > 0, leads to
(21) Tegr (WL 2P — 2%y > 0.
Thus, using (20) and (21) in (19), we have
51— M2 < [t — a2 — [l — )P Wk e N

which means that ||2%+1 — 2*|| < ||#¥ — 2*|| for any 2* € E. In other words, {x*} is
Fejér convergent to F.

Step 2 (the cluster points of {x*} belong to E). Since {2*} is Fejér convergent to
E, it follows from Proposition 3 that {z*} is bounded. Let z* be a cluster point of
{x*}. Tt follows from the definition of the algorithm that F(z**1) < F(z*) for all k.
Thus, from the continuity of F', we can easily conclude that F(z*) < F(z*) for all k,
which means that «* € E.

Step 3 (convergence of the sequence). This step directly follows from Proposition 3
combined with Steps 1 and 2.
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Step 4 (prowimity of consecutive iterates). Assume that {z*} converges to .
From the triangular inequality, we have

(22) ||F Tt — 2] < |2t — &+ ||2* — 2] Yk EN.

Noting that the right-hand side of (22) vanishes as k — +oo because z¥ — & as

k — 400, we conclude
lim |Jz** — 2% = 0.
k— o0
Step 5 (Pareto criticality of the limit point). The proof of this step uses the same
argument as in the proof of Theorem 3 from (15) on. This establishes the result. 0O

Remark 6. It is well known that, under the R’-convexity assumption, the con-
cepts of weak Pareto and Pareto critical are equivalent. In this case, under the
assumption of R’'-convexity, the last theorem ensures that any sequence generated
from Algorithm 1 converges to a weak Pareto point of F' as in [7]. Now, regard-
ing assumption (H), it is standard for ensuring existence of Pareto points for vector
optimization problems and an interesting discussion on existence conditions of such
points can be found in [38, Chapters 2 and 3]. Taking into account that F > 0, if we
suppose that F'(D) is a closed set, then assumption (H) holds. Note that this occurs
naturally when F'(D) is a compact set; for more details, see [38, Lemma 3.5, page 47].
It is worth noting that assumption () is used just to ensure that the set E, defined
in step 1 of the proof of Theorem 4, is a nonempty set. As observed in [7], in the
absence of (H), this could be obtained by considering, for example, that the sequence
{2*} has a cluster point.

5. Final remarks. In this paper, we have proposed a new approach for the
convergence of the proximal point algorithm in finite dimensional multiobjective op-
timization. We proved that our approach can be successfully applied to obtain con-
vergence properties of the proximal method for locally Lipschitz vector-valued maps.
Although this approach can be applied to R7'-quasi-convex vector functions (and, in
particular, R’'-convex vector functions), this new technique seems to be particularly
useful for vector functions which make € in (8) a nonconvex set. To the best of our
knowledge, it was the first time that a possible nonconvex € was considered in the
proximal method (8).

The next steps as future works would be to propose inexact versions of Algorithm
1, as for instance in Ceng and Yao [11] and Durea and Strugariu [19], following
our approach of convergence as well as a dynamic formulation of the well-known
static group compromise problem using the recent VR approach of human behaviors
(Soubeyran [48, 49, 50]). In the VR context, an extension of this paper would examine
the case where inconveniences to change can be identified at a distance, i.e., costs able
to change C(x,y) = C(y,z) and costs able to stay C(x,z) = 0. In the general case
C(z,y) # C(y,x), and C(z,x) > 0 is possible. Hence, future research will examine
the case where the Euclidean norm in (8) is replaced by a “like-distance” as done for
instance in Bento and Soubeyran [3] and Moreno, Oliveira, and Soubeyran [43] for
scalar-valued functions. This is better adapted to applications in behavioral sciences.

Finally let us emphasize two advantages of our approach compared to the one in
[7] and [19)].

Remark 7. Given a nonempty set 2 and a vector-valued function F. Let ( :
R™ — R be a scalar function, here called a scalarization function. One can define a
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scalar optimization problem, corresponding to the vector problem VP as follows:
(23) min{¢(F(x)) : =z € Q}.

Consider the family of scalar-valued functions g, : R™ — R for each z € R} \ {0},
given by

(24) 0=(y) = (y,2).

If the corresponding vector problem (VP) is convex, it follows from [38, Proposition
3.2] that this family is a complete weak scalarization for the corresponding vector
problem, i.e.,

argmin, {F(z) : z € Q} = U argmin{o,(F(z)) : = € Q}.
2€RT\{0}

The scalarization function (24) was used in the convergence analysis of the proximal
methods proposed in [7] for a convex context. However, the authors show that the
solution set of the scalarized problem may be empty. They actually provide an exam-
ple where the solution set of the scalarized problem is nonempty only if z belongs to
a set of measure zero in R?; see [7, Remark 1]. This means that even the convexity
assumption of the vector problem being sufficient to ensure the family given by (24)
is a complete weak scalarization for the vector problem, it does not guarantee that
the scalarized problem is nonempty.

Remark 8. Let g, : R™ — R be a scalarization given by
0-(y) =inf{t e R : y e tz — R},

where z € R, . Such a scalarization is a well-known functional in the vectorial op-
timization literature; see [27, section 3]. A particular instance of this functional was
used in [4] to study the convergence of a proximal-point-type method for multiob-
jective optimization problems in the quasi-convex setting. A more general version of
this scalarization functional was used in [19] for finding a weak Pareto point of an F'
KC-convex, for an ordering cone K by means of the following (exact) proximal method:

A
1 € argmin{oc(F(x)) + 5 lle —2*|I*},

where e € int £ and X is a Hilbert space. However, it is worth mentioning that in
this kind of method, we have the following descent property

0c(F(z1) < g (F(2*)) VkeN

which clearly does not imply the descent property F(z¥*1) < F(2*) as proposed by
[7] whereas the converse implication holds. As mentioned in the introduction the
vectorial improvement F(z*+1) < F(2*) plays an important role in applications.
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