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Abstract—Fourth-order cascadeX A modulators are very well unconditionally stable [6], designers can focus their efforts on
suited for IC implementation using analog sampled-data circuits the optimization of the circuit performance. On the contrary,

because of their robust, stable operation and their capability to _; _ ; ; i ho
achieve high resolution and wide bandwidth with moderate power single-loop and interpolative high-order modulators need to

consumption. However, their optimum realization requires care- address stability issues during th? desig.n phase [6]..Actually,
ful consideration of their performance degradations due to the most of the reported high-order single-bit and multibitsM
hardware nonidealities. This paper presents a comparative study |C’s have cascade structure. Particularly, several switched-

of the influence of finite op-amp gain and capacitor mismatch on ; ;
the performance of fourth-order cascadeX A modulators real- capacitor (SC) CMOS prototypes have been developed in

ized by means of switched-capacitor circuits. It considers single- différent technologies to obtain: an effective resolution of 16
bit and multibit quantizers and draws a number of comparative  bit at 320 kHz Nyquist band witl = 1,/ =64, andL =3

remarks validated by time-domain behavioral simulations. [7]; 15 bit at 200 kHz withV = 1, M = 16, and L = 6 [8];
Index Terms—Analog—digital, conversion, sigma—delta modu- 15 bit at 160 kHz withV =1, M = 32, and L = 4 [9]; 12 bit
lators, switched capacitor circuits. at 2.1 MHz withN =3, M = 24, and L = 3 [10], 12 bit at

2.2 MHz with N = 3, M = 16, and L = 4 [11], respectively.

A drawback of cascadEAM'’s is their larger sensitivity to
IGMA-DELTA modulators ¥AM use oversamplingto circuit imperfections as compared to single-loop modulators.
educe the in-band power of quantization noise, argbr SC implementation, large op-amp gain must be used to

filtering to shapethis noise and push it out of the bandattenuate the effect of integrator leakage [12]; also, good
Assume the signal band is fixed. One strategy to increasgpacitor matching is required to avoid uncancelled low-order
the resolution ofAM-based converters is to reduce thguantization noise. Although the first problem is partially
density of quantization noise in the signal band, which cajplvable by using SC integrators insensitive to the finite gain
be achieved by either increasing the sampling frequeny, the op-amps [13], [8], the second problem presents still a
equivalently the oversampling ratid4), or by increasing the major limitation—the capacitor mismatch is difficult to control
number of levels ) of the internal quantizer. The othery,e g jts dependence on the technological parameters and
strategy is to improve the filtering; i.e., the orddr) (of the he taprication process. Thus, deep knowledge of the practical
modulator. For practical integrated circuit (IC) design, theﬁﬁnitations of cascade SEAM's, the ways to overcome their
three degrees of freedonm, V, and L) have to be explored .., hacks, and the trade-offs among alternative architectures,

under the constraints imposed by the required resom'ﬁlg'fundamental for optimum circuit design. Unfortunately, this
0

I. INTRODUCTION

bandwidth and the available power budget. For signal ba owledge is not readily available in literature.

up to the audio frequency range, it is common practice : . .
. : . This paper focuses on the comparative analysis of two
use low-order modulatord(= 1 or 2) with 1-bit quantizers _ . . )
widely used fourth-order architectures: a two-stage fourth-

(N = 1) and large oversampling ratios\{ = 256 and
more); in particular, the well-known second-order structur%rder modulator, or 2-2 cascade [14], [15], and a three-stage

[1]-[3]. However, achieving high resolution at frequencies iﬁ)urth-orde_r modulator, or 2-1-1 cascade [16,]' These fourt.h-
the video range and beyond requires high-order modulaté’féier architectures constitute a good praf:tlcal compromise
and/or multibit quantizers to keep the oversampling ratio lof€tWeen performance and power consumption for medium- to
and hence to achieve optimal exploitation of the operatighgh-frequency operation, which renders them worth consid-
speed of the circuitry. ering in detail. On the other hand, other fourth-order cascade

Practical considerations impose also the demand for rob@gghitectures whose first stage is a first-order modulator are not
stable operation, which has resulted in the usecacade considered here due to their already demonstrated disadvan-
structures as the preferred alternative to implement high-ord@ges [6]. The paper is organized as follows. Both architectures
noise shaping functions [4], [5]. Since these structures ai&e analyzed first from an ideal point of view in Section II.
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TABLE |
RELATIONSHIPS BETWEEN ANALOG AND DIGITAL
COEFFICIENTS FOR THE2-2 MODULATOR

Digital/Analog Analog

dy = 1-857/(8,8,83) 8 = &
dy = 8,"/(8,8,83) 8, = 28,8,
84 = 28584

cancellation logic can be expressed as

Y(2)=STF(z)X(2) + NTF(2)E1(2) + NTF5(z)E2(z)

1)
where X (z) andY (z) represent the input and output of the
modulator, respectivelyF: (=) and E>(z) are the respective
guantization noises of the first and second quantizer; and
STF(z) and NTF,(z) (¢ = 1,2) represent the transfer
functions for the signal and the quantization noises. The
following must be met to obtain the behavior of a fourth-order
modulator:

|STF(z)|=1 NITF(2)=0 NTFy(z)~(1—-2z 1%
)

That is, the input signal must be unaltered, the quantization
noise in the first stage cancelled, and a shaping function of
fourth-order must be provided for the quantization noise in the
second stage. In the more general case, the exact expressions
of these transfer functions, as well as the digital scaling

Figs. 1 and 2 show the architectures covered in this papgéefficientsd, to ds, depend on the analog scaling coefficients
Both operate according to the principles of cascade modulghd the transfer functiong;(z) of the digital filters that

tors: each stage in the cascade modulates the quantization ngis€orm the noise cancellation. Considering the filters
of the previous; then, the quantization noise produced by all _2 1
the stages but the last is digitally cancelled out [6]. Thus, the Hi(z) =277 Ha(z)=(1-27") @)
order of the noise shaping function is equal to the number . . . . . . -

: . . : nd imposing (2), yields the relationships among coefficients
of integrators in the chain. Although the need to convenlentx .

. ) . : und in Table I. Thus, (1) becomes

scale the signals in the analog part yields a systematic l0Ss
of resolution, the use of unconditionally stable stages of order Y|oco(2) = X(2)27* + d3(1 — 271 Ea(2). 4)
1 and 2 renders cascade architectures very well suited for the _ _
practical implementation of high-order modulators up to video Similarly, for the 2-1-1 modulator of Fig. 2 using
frequencies [7]-[11]. Hi(z) =2 Hy(z)=(1—21)2

Fig. 1 realizes a fourth-order modulator by cascading two 4 B 13
second-order stages (2-2), while Fig. 2 consists of a cascade Hy(z) =27 Hu()=(1-27") (5)
of one second-stage and two first-order stages (2-1-1). Th@ggains the relations shown in Table II, and the following
architectures are generalizations of those originally pmposéﬁbression for the output:
in [14]-[16]. These works considered predetermined values of
some integrator gains, for instanag, = 1 and g5 = 0 for Yioo1-1(2) = X(2)z7* +d5(1 — 27 1)*Es(2).  (6)
the 2-2 in [15]. Here we assume that the integrator gains

g:, are degrees of freedom. Then, the resolution limits of ; .
each topology may be reached through optimization of the%eets the relations of Table | for the 2-2 architecture (alterna-

coefficients and by taking into account constraints of thtglely' Table I for 2-1-1) and, hen(_:e, satisfies the conditions
hardware implementation. given by (2), leads to anathematicallycorrect modulator.

However, to obtain a practical architecture, other constraints
about the physical implementation must be imposed.
¢ The output range of the integrators, which depends on the
Let us focus first on the 2-2 modulator and assume that the input level and on the integrator gains, must be physically
guantization noise is additive, the modulator output after the achievable for given supply voltage.

Fig. 2. Three-stage fourth-order cascad& modulator (2-1-1).

Il. IDEAL STUDY

‘In principle, any combination of the integrator gains that

A. Digital Cancellation of the Quantization Noise
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TABLE I On the other hand, the finite-differences equation that gov-
RELATIONSHIPS BETWEEN ANALOG AND DIGITAL erns the first-order modulator is
COEFFICIENTS FOR THE2-2-1 MODULATOR
Digital/Analog Analog Ly =1 149X - Y, 1V}) 9)
dy=1-8,7(8,8,83) g =& which may be written as
d| = g3"/ (glgzgg.) gz‘ = 2g1‘g2

Li=lo+Y (i —Ii-1) =lo+g D (X = YieiVi)

g g4 Co k=1 k=1
dzz[l_g g3g JLl_g'?gJ 0 e T =
18283 3 84 :Io+g< )

(10)

nX—w§:n

d3 = g4”/ (81g283g4) k=0

Let us suppose that the first pulse of a sequence of consec-
utive positive pulses is producedat= 0. As stated, the last

X ! Y positive pulse of the sequence is produced for
—( - —>[>—>
Vi+X
= -1 11
=] )
D/A

where|«| denotes the smaller integer larger than or equal to
According to this, forn = n; + 1 a negative pulse is obtained

at the output, which implies that,, +; < 0. Applying (10),
« For each stage, the level of the signal transferred to the

next one, which is a function of the integrator gains in ~T _ Vi+X

Inl—l—l —IO g(VI’ X) e

the former, should not prematurely overload the latter. Vi—X
Unfortunately, formulating both features as functions of =Ih—-gVi+X)20=IL <9V, +X). (12
the values of the integrator gains is not easy, and requires ) _ i _ o~
a detailed analysis of the time-domain operation of the loJ0t€ that in previous calculations, the approximatiai = a;

order modulator stages, which shall be covered in the nd®f @ > 1 was made, which, in our case, is more accurate
section of the paper. the closer the input level is to the reference voltage. If the

calculations are repeated assuming negative input, one reaches
the conclusion

Fig. 3. First-order=A modulator.

B. Time-Domain Behavior of Low-Ordé&A Modulators

Here we use a technique similar to that used in [17] to || < g(V,. + | X])- (13)
determine an upper bound for the integrator output signal of
first- and second-orde AM’s driven by a dc input. Since the Bearing in mind (10) and (13), one may state that for
oversampling makes the input signal vary only slowly duringositive input levels near the reference voltage, the output
the sampling period, this assumption does not constrain tsignal of the integrator evolves following a sawtooth curve,
validity of our results for ac input signals. where the minimum is slightly below zero and the maximum is

Let us first consider the first-ordetAM of Fig. 3. As g(V,.+X). Alternatively, for negative input, the maximum will
shown in [1], by averaging the output sequence, one obtaiparely exceed zero while the minimum will beg(V,. — X).

the input, that is, Thus, in the limit, asX tends towardV,., the range of the
v, —v_g integrator output swindCG.S) will be
X=——V (7
UL U1 08 = +24V,. (14)

whereX is the input level of the modulato¥;. is the reference
voltage (the output levels of the quantizer ar®, and—V;.), Consider now the second-order modulator of Fig. 4. Here,
andv; andv_; are the number of positive and negative pulsegouble integration implies greater difficulties to determine an
respectively, observed at the modulator output in a sequergiation similar to (13), mainly due to the fact that, even
of lengthv; + v_;. Equation (7) can be rewritten as though (7) and (8) are still valid, the number of consecutive
positive (or negative) pulses, even for input close to reference
U1 ‘/7 + X . . . . .
— = —. (8) levels, does not coincide with the integer larger or equal to said
v Ve X expressions. In fact, for given input level, the output sequences
Thus, as expected, in a sequence of arbitrary length and éontain subsequences of positive (or negative) pulses of varied
positive input, the number of positive pulses increases as thagth, in compliance with (7) and (8). In addition, the number
input level approaches the reference voltage. In fact, in a firsft subsequences of different lengths strongly depends on the
order XAM, the number of consecutive positive pulses fanitial conditions of the integrators, as well as on the input
inputs close to the reference levels is given by the integlewel. Fig. 5 shows an example of this through time-domain
larger than or equal to (8). behavioral simulation for an input af.725V,.. Given this
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— FirstInt. - - Second Int.

-0.8

Fig. 4. Second ordeEA modulator. 0 10 20 40 50

) 30
Time (mS)

@
difficulty, in what follows we use an iterative process of fast

convergence to obtain the output ranges of the integrators. T
Let us start with the discrete-time equations of the second- 4 6 6 6 7 5
order XAM 0.0 J
In =ip-1+ gl(X - Yn—l‘/r) b o o ) o o o o
Jp =Jn-1+g2(Ln-1 — 201 Y1 V2) (15) 1553 00 200 300 300 50.0
Time (mS)
which can also be written as ()

k=0

n n—1 . . .
. Fig. 5. (a) Output of both integrators and (b) sequences of consecutive
L, =1+ E (Ik - Ik—l) =Ilh+g | nX -V, E Yy positive pulses at the second-order modulator output.
k=1

pulses. The duration of this sequence, which may differ from

In=dot ; (Jie = Jir) the previous one, obviously depends on the output values of
1 1 the integrators at = ng + 1 which play a role of new initial
=Jo+ g <Z I, — 2.V, Z Yk)- (16) conditions in (18). In any case, these values are known
k=0 k=0 Io=In, + 91 (X +V;)
From the first equality in (16), Jo=Jdn, + 921, +20:V,). (21)

n—1 n—1 n—1k—1 . . .

Fig. 5(a) shows the evolution of the integrator outputs for
Z I =nlo + g1 <X Z b=V, Z Z Yl) X =0.725 andV,. = 1. The corresponding output ranges are
k=0 k=0 k=01=0 defined by the maximum of both curves which, as shown in

n—2
B n(n—1) the figure, coincide with the beginnir{g = 0) of a sequence
=nlo+ 2 nX =gV kz_o(n — k=Y of consecutive positive pulses for the first integrator and with
n> 2 - (17) an intermediate point in the corresponding sequence for the
- second integrator. In this last case, the maximum is reached
With that, the second equality in (16) is when the derivative of (19) is nulled at
nln —1 _ Iy 3 Vi+ X
Jn =Jo + g2ndo + 9192 % X —29192Vr Yo fm = a(V,-X) 2V,-X’ (22)
n—2 H H
Thus, the maximum output levels are given by
+192Ve Y (n—k+ 1Y (18)
k=0 my =1y =1, + (X +V;)
2
Let X be a positive input close to the reference voltage. mo =J,. =Jo+ g2 918V + X)) — 210 . (23)
Starting from an arbitrary condition greater than zero at the 8g1(V, — X)

output of both integrators, a sequence of consecutive positiverhe fact that the output levels of the integrators may
pulses is generated until the output of the second integratobis limited has not yet been considered. For a first-order
less than or equal to zero, thus leading to a negative pulggodulator, if the output swing of the integrator is lower than
This will occur for the first value of: so that the expression in (14), the modulator simply malfunctions (the
nn—1) o n(n+3) average of the output does not equal the input). However,
9 X - 9 V?‘) <0 (19 for the second-order modulator, for certain valuesst less
thanms in (23), sequences of such a duration are produced
condition which is obtained by makind, = 1,k = that its maximum falls below sai@®S, maintaining correct
0,1,---,n—1in (18). Said value of: will be operation of the modulator. This, which is clarified through the
(20) behavioral simulation of Fig. 6, is understood if one takes into
account that, contrary to what occurs in first-order modulators,
whererg is the value (integer or not) for which the equality inthe sequence of consecutive positive (or negative) pulses in a
(19) is met. The negative pulse generated at n, supposes second-order modulator is not unique for each input level.
increments in the output of both integrators that again becomé/Ne can now propose an iterative process to calculate the
positive, thus starting another sequence of consecutive positigguired output swing in the integrators given their gains and

Jo+gondlo + 9192<

ng = LT()J
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TABLE 11l
OpPTIMIZED ANALOG COEFFICIENTS
Coefficient 2-2 2-1-1
21 0.25 0.25
g 0.25 0.25
2 0.5 0.5
A . 82 0.25 0.25
— First Int. : -+ Second Int. ' 83 1 1
034 20 40 50 80 100 g5 0375 0.375
Time (ULS)
g3 0.25 0.25
Fig. 6. Effect of theOS limitation on the integrator output. 2 05 1
7 ; g4’ 0.25 0.25
f i ” . 0.25
N — Simulated 0] £4
""" Calculated . :'
/“ : coefficients:
>k
8 g]=g2=()_5 do = —2 dl 22 dg IO dg 22 (24)

and the output range needed for the integrators is approxi-
mately equal tat+1.2V,. for the 2-2 architecture andtV,. for

e "'g|:0.25, £,=05 the 2-1-1.
0 . . . . Fig. 8(a) shows the SNR curves as a function of the input

0 0.2 0.4 0.6 0.8 1.0
X/v,

r

range referred to the reference voltage (0 €B/.) obtained

_ o through behavioral simulation with/ = 64; similar results

Fig. 7. Output range required in integrators. are obtained for other oversampling ratios (see Section V).

input level. Said process, starting from an arbitr&x§ value, |deal eleme_znts, except _the "”?'ted output ranges of integrators,
were considered for simulation, and the gains of Table IlI

will consecutively use (20)—(23), bearing in mind that th ere used. As shown in the fiaure. there are no important
maximum output range is set. After checking that the nelly used. wn 1 'gure, 'mp

maximum reached (23) is larger than or equalX$, the latter differences between the 2-2 and 2-1-1 topologies, except for

is increased and the process repeated until said maximum d'é:&'t ranges cIo_se to th?‘ referenge volta_ge; Fig. 8(b) shows
not surpassOs. this zone in detail. The difference is explained due to the fact

Fig. 7 compares the results obtained by the algorithm %2; t?;msrecgggesé?ag;r:]n r;h('en Z'tzléoztl)lggg 'Sroa.fne;érd'l%rger
those obtained through behavioral simulation using dynami u w IMum INput Ievet 1S approxi y 0

input. A good fit is seen between both curves. Also, usi wer than that of a first-order modulator, which coincides

the proposed procedure, the computation time is reduced éh V».. Consequently, the overload of the 2-2 modulator is

least 100 times. Note that f@i = 0.25, g» = 0.5, and X/V. produced slightly before that of the 2-1-1 and, ideally, the SNR
close to 0.905 must be slightly larger thah,.. However, for peak is higher by 5 dB in this latter case.
g1 = g2 = 0.5 OS must be, at least, equal &¥..

Il. NONIDEAL EFFECTS

C. Optimization of the Coefficients So far, modulators have been studied from an ideal point
Optimization implies the determination of the analog scalingf view, with the exception of the limitedS of the integra-

coefficients which, fulfilling the relationships of Tables | andors. This section covers a comparison of both architectures
Il, lead to: 1) minimum quantization noise (this means th&egarding their degree of sensitivity to the nonidealities of the
the digital coefficients in expressions (4) and (6) have to Iggectric implementation. These can be classified into two large
as small as possible); 2) physically realizable output rangesasitegories.

integrators; and 3) signal levels in the transition among stages Nonidealities whose impact on modulator performance
that do not prematurely overload the next modulator. These can be modeled as a source of noise at the first integrator
levels aret+V,. for a first-order modulator and approximately  input? These include thermal noise, incomplete settling

+0.9V,. for a second-order modulator [18]. at the integrator output, nonlinear gain, etc. [9]. Since the
The optimization was performed using a statistical pro- extra noise power due to these phenomena depends on

cedure [9], guided by the previous calculatidng obtain the integrators in the first stage, and both the 2-2 and the

the values in Table Ill, which result in the following digital 2-1-1 have a second-order modulators at the first stage,

1Behavioral simulations show that the calculations of the upper bounds of ~ there are no differences between them with regard to these
the integrator outputs, which have been made assuming a DC or low-frequency
input, remain valid for the second stage whose input contains the first stagé The contributions of the remaining integrators in the chain to the total
quantization noise and therefore is not low-frequency. in-band noise is attenuated by the loop filtering.
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ol " ] where fs is the sampling frequency. The frequency-
—22 < independent term in (27) is responsible for the increased
100 ¢ B power of quantization noise, which is calculated as
m 80f
= A fas2 )
z ol | Polw)= [ BUINTP(U 0P df
“ a0} ] —fa/2
2 2 2
20} : ~ “_4_(1_“)7( (28)
0 12 \ M 3M3
B ey 7 where it is assumed that the quantization noise presents a
@ constant power spectral density equal«®/(12fs), where
u is the separation between the levels of the comparator,
130 - - M = f;/fs > 1; and f4 is the Nyquist frequency of the
i input signal.
. 120 Performing a similar analysis for the 2-2 and 2-1-1 modu-
5 lators, after some simplifications, gives the following results
% 110} for the quantization noise power:
2 2,2 6
100 ui |4m*p 1270° 5
Pojg-o = — —d
Q22 =79 [3M3 t gt
90 . 2 6,2 8
i 47 s
-30 -20 -10 0 22 42
Input Level (dB) + 12 dl |: TMT 9O (1 + 2”):| (29)
(b) ud [4ntu? 4x®
Fi i i ; : Pyla-1-1 == =+ = dj
g. 8. (a) SNR as a function of the input level and (b) detail for large inputs. 12 | 3M TM7
. . . . 2 4. 2
nonidealities; consequently, their study is not necessary L2 p Tl
. . 1 =275
in this context. 1% 01\/6[ , ;
* Nonidealities due to integrator leakage and mismatching 1 U3 2 [7? M 1 gl (1 +2u)} (30)
between coefficients. These produce changes in the sig- 12 2 | 7TM7 T 9M®

nal transfer fgnction LTF) and the quantizatipn noisewhich can be further simplified into
transfer function /7F) and, as shown later, introduce

. . . 2 2 8
differences between the architectures studied. o U | AT 7f
Q2 = 45 {3M3 p’ 4 di Vi (1+ 2#)}

A. Integrator Leakage u? [ 4r? 5 i

. i . . . Pgjo-1-1 = — 3 1 td] =

In the ideal analysis, the dc gain of the integrators of Figs. 1 12 |[3M SM°
and 2 has been assumed to be infinite—a feature which is 2 m® 31
impossible to achieve in practical realization due to circuit + a3 9MO (1+2p) (31)

limitations. A consequence of the finite gain is that only a part
of the signal at the integrator output node is added to the n
input; that is, the transfer function in thé-domain is,

ere we have assumed that the step between levels is
identical for all the comparator&; = u; = uz = u) and
. that M is large enough—customary fatAM IC design.

_ gz o= 9 <1 (25) According to (31), the integrator leakage increases the quan-

I-(1—pzt Ade tization noise power as compared to the ideal case—calculated
where A4 represents the dc gain of the integrator (whiciom (31) by makingy, = 0. This increase is caused by the
coincides with that of the operational amplifier in an Sdncorrect cancellation of quantization noise in the first stages,
realization). Using (25) to hierarchically calculate the transf@nd reflects in the onset of termsi—* andM —?, besides the

H[(Z)

functions of a first-order modulator (see Fig. 3) yields ideal one inM~?. Among these error terms, the onefi—*
1 1 comes from the first-order filtering of the noise in the second-
STE(z,p) = 1 — = 1 order modulator at the first stage. Generally, it can be shown
+ “fl :1‘_ H that the output noise power of drth-order> AM subjected to
NTF(z,p) = 1_7—+f‘17 (26) integrator leakage contains an error termyi >*1. Thus, as
1+ pz indicated in (28), a first-order modulator causes the appearance

Thus, the result is, first, an error in the modulator gain andf a noise term inA/~*, which is a consequence of the
second, a change iVT'F. This second result is much morezero-order filtering. Since this term significantly degrades the
explicit if we pass to the frequency domain modulator efficiency for givem, those cascades starting with
2. 9 9 a first-order modulator (1-2-1, 1-1-1-1, and 1-1-2) are of little
INTE(f, )" 2 17+ (1 = w)INTE(£,0)| practical interest—which is why they are not covered here.
=%+ 4(1 — p)sin? <7r i) (27) Equation (31) shows that the effect of the integrator leakage
5 is larger in the 2-1-1 topology than in the 2-2. The onset of the
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-60 Y|2-1-1 IXZ_4 + dg(]. — 63)(1 — 2_1)4E3
SR o 22 Simulated | +di(e; —e3)z Y1 — 2 1)3E,
% + 2-1-1 Simulated + 2(€ﬂ§ —e1— &y — €y, ) (1 — )3E1
@2 -80 — Calculated 1 9
2 +(&‘1 —i—sg{)z (1— z ) FEy. (35)
B 90}
:: Thus, in addition to the ideal quantization noise of the last
= -1007 stage, [see (4) and (6)], the noise of the remaining stages
110 ) ° I appears at the modulator output. Since the shaping functions
10 100 1000 10000 100000 of these new noise contributions have lower order than would
Opamp open-loop gain be ideal, they can dominate the total in-band noise power.
Fig. 9. In-band noise as a function of the op-amp open-loop gain. Calculation of this power under the usual assumption of
M > 1 yields

_ Uy o T ui (o T 5, 4rS
term M —? in the output power of the former can be deduced Polz-2 = 12 dy oM® T 12 <5A S5 05 7—M7>
from previous reasoning taking into account that the second w2 8 w2 o 476
stage in the 2-1-1 is of first order. However, the contribution Pg|s-1-1 = 3 d3 + —1 <631 s + 6% —)

of this term is not measurable for practical valuesidf—the > oM G M MY
term in M —2 dominates for typical ranges a8 (16 to 128). It 2 252 (36)
is seen in Fig. 9, which shows the effect of the op-amp dc gain < TM7
on the noise power in the band féf = 32 andg = 0.25. No where
difference is appreciable between both topologies regarding .
the sensitivity to integrator leakage. ba=eiteg, Op=gy —f1—Eg ey,

(50 =&] —&3. (37)

B. Mismatching Between Coefficients Previous results are valid for any implementation style.

The equalities of Tables | and II, which nominally producéet us focus now on the SC implementation and try to find
the correct cancellation of the quantization noise, are affectegctical design guidelines. Using SC techniques, the analog
by mismatching of the physical components used to impleoefficients are given by capacitor ratios

ment the integrator gains—capacitor ratios in the case of SC C; AC;  AC?
modulators. These mismatches introduce errors in the noise g1 = CO = Agi = gi < c v ) (38)
cancellation. This phenomenon can be modeled by introducm% ‘
error terms in the digital and analog coefficients. Par'ucularIW ereAy; is a random variation of the nominal valgge From
for the case of Table II (38), and assuming that the mismatching in both capacitors are
, statistically independent, the equation of the standard deviation
do =[1-95/(919295)[(1 —20) g1 = (1 —ey) of the analog scalar is
=105 /(919293)1(1 — &1) 95 = 2¢192(1 —e47) Y e\
ac; 7
S/l o= ohosll — ). %9 = 1 ¢ ()« (%) e
=1[941/(91929392)](1 — €3) (32) / '

Note that the member on the right above contains the standard
Similar expressions are obtained for the 2-2 structure. In (3@3viations of the capacitor values. These can in turn be
each epsilon represents the relative error of the digital otalculated using the results in [19] as follows,
analog coefficient, and can be calculated as

n1/2K1 1 Kl 7’LK 1
_Agy Ag Aga  Ags _ Agy One, = \/ /2 <+ CO + —Cge +Kgo (40)
0= e - 9 B 92 B g3 fu T 9
A?’,, A A A All A which assumes that a given capacitadtes divided inton
el = ?/3 _20n 2% 2% £gy = f]l 4 292 unitary capacitors of valu€’,, and whereK;., K., K;,, and
g3 g1 g2 g3 91 g2 K ,, are constants related to the local and global effect of the
e Agi Ag  Agx Ags  Agy edge errors (due to the etching process) and the oxide thickness
° gy g1 g2 g3 G4 variations, respectively. Since these constants are specific of
Agl Agy the fabrication process, the only controllable variables in (40)
Cah = Y + g1 (33) are the unitary capacito€’, and the number of these that

form the capacitof”. Assuming that the capacito€s and C?
in (39) are formed by the connection ef and m, unitary
capacitors, respectively, results in

_ v, 4 _ L —1y4
Y|2-2 =Xz + dl(l 61)(1 z )1E2 . 1 1 Kle, Klo 2ng,
+2(ey —e1 — ey —eg)2 (1= 271) By Tg; =Gi _+E ok + + +2Ky0

+ (e1 + Egi)Z_Q(l — z—l)QEl (34) g; =n7/m7 (41)

Performing analysis in th&-domain with the digital coef-
ficients given in (32) yields the following modulator output:
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Fig. 10. SNR as a function of the input level with mismatching betweepjg 17 SNR as a function of the input level with mismatching between
coefficients (2-2). coefficients (2-1-1).
TABLE IV
SIMULATION DATA AND RESULTS FOR2-2 TOPOLOGY TABLE V
SIMULATION DATA AND RESULTS FOR2-1-1 TOPOLOGY
Oversampling ratio 64
Reference voltages 1.0V Oversampling ratio 64
Unitary capacitance 0.25pF Reference voltages 1.0V
Integrator gains see Table 3 Unitary capacitance 0.25pF
# tosts 30 Integrator gains see Table 3
SNR-peak std. deviation 2.6% # tests 0
Minimum SNR-peak 117dB SNR-peak std. deviation 4.6%
Minimum SNR-peak 115dB

Expression (41) allows calculation of the standard deviation

of each gain, and consequently that of the relative errors apgs of common centroid techniques for the implementation
combinations of these that appear in (33) and (37). HoweveF, canacitors makes it possible to attenuate the global effects
it should be noticed that in (33) some coefficient Va”at'orﬁepresented by the constanks,. and K,,), reducing the
are correlated since the coefficients have the same integrati@fhqard deviation to 0.2%.
capacitor. Consider, for instance, the contributionggfand Fig. 10 shows a group of SNR curves obtained with the
g3 10 &1, the relative error of/;. From (38), one obtains 5.5 topology, assuming that the scaling coefficients present a
i / 2 2 Gaussian distribution around their nominal value with stan-
2 <A93 Agz) _ 2 <AC;3 _ %) = 0?7;2 +-52  dard deviations calculated from (41) considering compensated
Cy Cs Cs Cs global effects (that isK,. = K, = 0). The corresponding
simulation data appear in Table V.
Fig. 11 and Table V present results from the 2-1-1 topology.

been cancelled. This is reasonable singedepends on the Note that the analytic curve for the worst case (thick continu-
ratio ¢!/ /g3, and hence the exact value 6§ does not matter. ous line in Figs. 10 and 11) fits those obtained through statistic
Usir?g (4’11) the worst case value of each relative err§imulation in both architectures. The behavior simulations

ghow that the 2-1-1 architecture is more sensitive to coefficient
smatching and presents a relative standard deviation in the
R peak almost twice that of the 2-2 architecture (for the

gé,’ g3

showing that the deviation in the integration capaci§rhas

and their combinations can be estimated as three times
corresponding standard deviation. To evaluate the analytiCal
expressions, Monte Carlo analysis has been performed througj!:
behavioral simulations assuming that each integrator g&Ains used).

presents a Gaussian distribution around its nominal value with

standard deviation calculated from (41). The technological IV. EXTENSION TO MULTIBIT QUANTIZATION
constants used are an update of those in [19]; the proces
is 1.2 um CMOS n-well double-poly double-metal, and the
updated constants are

i few recent works have proposed to combine cascade ar-

chitectures and multibit quantization in an attempt to attenuate
the error induced by the internal D/A converter nonlinearity
K =58 x 107 #F%? K, =1.932x1076F [10], [11], [20], [21]. The idea is to use a multibit quantizer

K, =1.133 x 1078F K, =4 x 107*. (43 only at the last stage of the cascade, keeping the others
singlebit. Thus, the D/A converter nonlinearity error of this

With these values, for a typical unitary capacitor of 0.25 pRst stage is attenuated by a shaping function, provided by the
and an analog coefficient of 1/2, the standard deviation oéncellation logic, and filtered out by the digital decimator.

the coefficient obtained applying (41) is 2.2%. However, therevious studies for a 2-1 and a 2-2 cascade modulator have
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Fig. 12. Two cascade modulators with dual quantization: (a) Third-order
two-stage (2-1mb) and (b) fourth-order two-stage (2-2mb).
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Fig. 13. Fourth-order three-stage cascade modulator with multibit quantiza- (b)

tion (2-1-1mb). Fig. 15. SNR degradation as a consequence of the (a) integrator weight

] ) _mismatching; and (b) the finite dc-gain of the integrators for a multibit 2-1-1
been presented in [10] and [21], respectively. Here we considescade modulator.

a 2-1-1 multibit architecture and compare its results to that of . L -
the former. bit D/A converter. Note that this latter noise is multiplied

—1y2 i i
Fig. 12(a) and (b) shows the 2-1 and 2-2 cascade multiB¥ (1 —27")" for both architectures. This means that the
modulators. In the presence of nonlinearity of the internal D/&TOrs due to the internal D/A conversion are shaped after

converter, theZ-transform of the modulator outputs are giveﬁhe cangell_atlon stage as second-orde_r errors. _Baged on the
same principle, we propose to use multibit quantization in the

by third-stage of a 2-1-1 architecture (see Fig. 13). After digital
Y(2) 222X (2) +di(l — 2 1) Ea(2) cancellation,
+ dlz_l(l — z—l)QE'D(z) {2-1mb}  (44) Y(z) = Z_4X(Z) +ds(1 — 2_1)4E3(Z)
Y(2) %2—4){(2) +di(1— 2—1)4E2(z) tds(1— Z_l)gED(Z) (46)
+di(1—2"12Ep(z) {2-2mb} (45)

which shows that the D/A errors are attenuated in the signal
where X (z) represents the input signak;(z) is the quan- band by a shaping function one order higher than for the
tization noise of anV-bit quantizer, andF(z) is the noise previous architectures. As a result, better performance is
associated to the nonlinearity of the last stage intertdal obtained using the 2-1-1mb architecture for a given level of
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TABLE VI
COMPARATIVE EVALUATION
22 | 211
SINGLE-BIT CASE

Oversampling ratio 32 64 128 32 64 | 128
Ideal behavior (Sim.) SNR-peak (dB) 95 120 | 156 § 100 | 125 | 162

Required integrator output swing 1.2V, Vi
Non-ideal behavior
(Simulated) SNR-peak Standard deviation (dB) 074 | 24 4.7 1.64 | 4.6 7

Worst Case SNR-peak (dB) 94 117 143 96 115 | 138

Finite open-loop gain sensitivity No practical differences

# unitary capacitors 39 41
Hardware complexity # comparators 2 3

# digital multipliers 2 3

# digital adders 2 3

# digital diferentiators 2 5

EXTENSION TO MULTI-BIT (N=3)

Oversampling ratio 16 32 64 16 32 64
Ideal behavior SNR-peak (dB) 88 113 | 139 92 117 | 144
Non-ideal behavior SNR-peak (dB) with 0.ILSB D/A | 70 84 101 84 105 | 124

non-linearity

nonlinearity in the D/A converter. This is better seen in theseful resolution of the last stage quantizer. Above this limit,

integrated noise power the benefit of finer quantization (that is, lowey,;) in the

I 4 last stage is masked by this uncancelled noise. As a matter

Pojzams =d2 < 1"2’" T + 0% fM5> of example, Fig. 15 shows the half-scale SNR obtained by

) o 2 . behavioral simulation for a 2-1-1mb modulator as a function

Pojzamy = d2 <U’mb T4 o2 m ) of the number of bits of the last quantizer. These simulations

' 12 9M?® 5M>° include typical levels of weight mismatching and finite dc-

P 2 w2, w° , w° 47 gain in the integrators. The curve of Fig. 15(a) corresponds to
QI211mb =3 |\ 5 9378 +op M7 (47) the worst-case obtained in a Monte-Carlo analysis including

. , . mismatching in the integrator weights implemented using a
where u,, is the step between consecutive levels in ety capacitor of 0.5 pF. In Fig. 15(b) a dc-gain of 1000
multibit _quant|zer aanD. represents the power _Of the D/Awas assumed for the integrators. The oversampling ratio was
conversion error. In adt_zhhon_,_the_lowe_r sensitivity of _the 216 in both cases. Note that the curve in Fig. 15(a) saturates
1-1_mb to the D/A nonidealities is F’O'”te‘_’ out in F|_g. 4¢r ¥ > 3 because the uncancelled first stage quantization
Th's. shovys the half—scale.SNR as a function of the integralice qominates the in-band noise power. According to these
nonlinearity (INL) of a 3-bit D/A. results, using a quantizer with more than 3 bit resolution does

. . not make sense in this case.
A. Influence of Other Nonidealities

The results obtained in Section 1l are fully applicable to V. CONCLUSIONS

cascadeX AM’s with multibit quantizers. Thus, taking into Table VI presents a summary of the conclusions derived
account the finite dc-gain and capacitor mismatching, the ifiom this work. Data corresponding to the single-bit case
band power for the 2-1-ImBEAM can be approximated by have been obtained for reference voltagestafV, a unitary

combining (31), (36), and (47) to obtain capacitor of 0.25 pF, anf/ = 32,64, and 128. The minimum
9 3 6 capacitor was of 1 pF so that the minimum number of parallel-
Polo-1-1mp = Ymb d3 T4 o d3 T connected unitary capacitors was four.
12 9M® ™ From the top part of Table VI the following conclusions
w2 - ot q pp g
Zsb 4,2 § - 48) are drawn
+12<“3M3+A5Mo (48)

e The 2-2 single-bit modulator with the integrator gains
where ug, represents the step between the two levels of in Table Il presents slightly lower sensitivity to the
the single-bit quantizers in the first and second stages. The capacitor mismatching than the 2-1-1 single-bit architec-
presence of uncancelled quantization noise from the single-bit ture. In both cases, but especially in the 2-1-1 single-
guantizer, the last term in (48), imposes an upper limit to the bit, the worst case performance must be contemplated
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in the design process. Generally speaking, it can kb~ Fernando Medeiro was born in Higuera de Var-
said that high-order cascade modulators are useful f gas, Spain. He received the Licenciado esidé

| di ling ratios. Otherwise. the hi Electionica degree from the University of Seville,
ow Or_ me 'um_ oversampling s ! g Spain in 1990. He is currently working toward the
matching requirements lead to unpractical designs. = Ph.D. degree in the field of modeling and automated
Both architectures have similar behavior with regard 1 design of SA converters.

the influence of the finite dc-gain.

- Since 1991 he has been working at the Analog
= ) . Design Department of the Spanish Microelectronics
The hardware complexity is slightly lower for the 2-2 A
single-bit architecture. ]

Center. He is also with the Department of Elec-
tronics and Electromagnetism at the University of
Seville, where he is an Assistant Professor. His

The bottom part of Table VI refers to the multibit case. Dat@search interests include mixed-signal integrated circuit design and design
in this case have been obtained for a reference voltagelof automation.
V, and M = 16, 32, and 64. Note that, for givei, the
loss of SNR due to the nonlinear D/A of the 2-2 modulator is
approximately twice that of the 2-1-1.
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