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Abstract

Plasma physics plays a fundamental role in fusion technology research. However, the

main equations governing the plasma dynamics, Navier-Stokes coupled with Maxwell

equations, have challenges such as non-linearity and multiple coupling among all the

evolving properties. Thus, any analytical study has been reduced to linearized models,

which can not properly reproduce the plasma behavior. These simple analytical models

cannot fully reproduce an important and current drawback in fusion devices, i.e.,

plasma instabilities in tokamaks. Instabilities represent a non-negligible contribution

to the loss of plasma confinement. Consequently, they limit the fusion energy release

and also represent a source of material damage.

Understanding, predicting and, eventually, mitigating these instabilities is an open

research line within the plasma and fusion community. Accordingly, these instability

studies should be carried out from both experimental and theoretical points of view,

obtaining, in the theoretical approach, analytical results from equations and finally,

solving numerically the plasma dynamics. This approach is followed in this work in

order to study one particular type of instability, Toroidal Alfvén Eigenmode, TAE,

giving a physical and mathematical background of its origin and carrying out several

numerical simulations of the plasma dynamics. To study these instabilities, a realistic

geometry has been developed during this work. The properties of the simulated losses

are studied and correlated with the detection of the TAE instabilities inside the plasma.
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Chapter 1

Introduction

The recent evolution of new technologies has led the human beings to be more and

more dependent on energy. Nowadays, this increasing need of electric power is leading

the world to the research of new sources of energy, that can both supply enough power

to support these new technologies and completely substitute the non-renewable power

sources. One of the main concerns of this research is the constant increment of emission

of gases which are producing the green-house effect and would definitively lead the

world to a non-return point.

One of the most promising fields in order to solve such important issues was found

when investigating the physics of the stars: how can stars produce such amount of

energy? The astronomers and the astrophysicists studied these celestial objects for

years until they found the answer: gravitational nuclear fusion. Nuclear fusion is

a well-established process1: in a Sun-like star, the main source of power is the p-p

chain in which 4 protons fuse (by means of both nuclear interactions) to produce an

α particle. This mechanism seems to be adequate for the problem stated: the fuel is

hydrogen and the residuals are helium particles, in contrast to those of non-renewable

sources.

Nonetheless, this first approach of exactly reproducing the mechanism of the Sun

on Earth is not the best one. First of all, p+ + p+ → 2H + e− + ν̄e process is dominated
1There are, however, remaining open questions, but the main mechanism is well understood.
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by the weak force and its half-life is of the order of 1010 years. Therefore, it is quite

unlikely to happen in a hypothetical reactor. The large densities, temperatures and the

strength of the gravitational force in the Sun’s core are the catalyst of such an unlikely

process. This issue then led the fusion researchers to look for a new point of view.

(a) Cross-sections for candidates fusion reac-
tants [1].

n + 14.1 MeV

He + 3.5 MeV
4

H
3H

2

(b) Kinematics of the D-T reaction
[From Wykis, Wikipedia].

Fig. 1.1 Candidate nuclear reactions for a fusion device: cross-sections and kinematics
of the D-T reaction.

The best candidate for nuclear fusion is the D-T reaction: as shown in figure 1.1a,

it has a large cross-section over a wide energy range. Apart from that, from this figure

one can also conclude that D-T has also the minimum temperature for the maximum

cross-section. Dealing with this kind of reactions always implies high temperatures

(billions of degrees), so it is necessary to stand against a new drawback. There is

no material that can support and control this high temperature without melting:

increasing the temperature, matter reaches the fourth state, the plasma state.

This plasma state is precisely the motivation of the present project, and in particular,

study the instabilities that produce a degradation in the plasma confinement. In the

second chapter, the fundamentals of plasma physics are presented, briefly describing

the main model of plasma physics, magnetohydrodynamics (MHD) and its implications



3

for modeling and instabilities in a reactor. The main issue the MHD model carries is

the complexity and non-linearity of the equations, so numerical methods are required.

The third chapter is dedicated to a description of a numerical approach in order to

solve this model, MEGA [2], which includes all this complexity in the model and

also introduces the effect of energetic particles, appearing within the plasma (the

fusion-born α particles among many others). This simulation code represents an

important approach to study the instabilities induced either by the MHD-plasma,

energetic particles or their coupling. Up to now, the resolution of the model equations

has been carried out without taking into account a realistic geometry for the integration

domain.

The object of this work is, therefore, to study the inclusion of a realistic 3D wall in

the simulation code. In the fourth chapter the implementation is discussed and the

results obtained from several simulations are presented both for benchmark studies

and data analysis. A synthetic diagnostic for the fast-ion loss detector (FILD)[3–5],

as a part of the realistic wall, has been implemented enabling the analysis of the

velocity-space of the simulated losses, which will be compared to experimental data

from ASDEX Upgrade experiment2.

2Max Planck Institute for Plasma Physics, Garching





Chapter 2

Plasma physics

In this chapter, the fundamentals of plasma physics are briefly introduced. First

of all, the fluid model of the plasma and the typical motion of particles within a

general magnetic field are discussed. From those concepts, the tokamak principles are

introduced, describing its main characteristics. Finally, the issue of the instabilities is

presented along with a more detailed discussion about one important kind of instabilities,

which is the motivation of the present work.

2.1 Statistical description of a plasma: the fluid

model

The plasma state can be characterized by two properties:

• Quasi-neutrality: despite the fact that the plasma is composed by charged

particles, it can be shown [6] that if the characteristic length of the system is

much larger than the Debye length, λD, the plasma can be considered as an

'almost 'neutral system:

λD =
√
ϵ0KBTe
e2n0

where kBTe is the electron temperature, given in energy units.
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• Collective effects: the most important interactions in a plasma are produced

by the plasma as a collective system rather than by one-to-one interactions. This

condition is met if in a Debye volume (λ3
D) there are enough particles.

For an appropriate description of the plasma, the fact that in a plasma ions and

electrons are separated needs to be taken into account1. This leads to interactions

between the charged particles and the electromagnetic fields (either externally applied,

or due to Coulomb collisions). Like in any many-body problem, the statistical approach

has to be used, obtaining the Boltzmann equation for the distribution function2:

∂fs
∂t

+ v⃗ · ∇⃗rfs + qs
ms

[
E⃗ + v⃗ × B⃗

]
· ∇⃗vfs =

(
∂fs
∂t

)
C

(2.1)

Here E⃗ and B⃗ are the long-range electric and magnetic fields, and the equation

determines the evolution of the distribution function of a specie s, whose mass and charge

are ms and qs, having a velocity v⃗. The short-range interactions, i.e., the Coulomb

collisions between particles are grouped into the collision operation,
(
∂fs

∂t

)
C

. From

this equation the Particle-in-Cell (PIC) method is derived, which will be introduced in

Chapter 3.

The general solution of (2.1) is computationally quite expensive, so further simpli-

fications are needed. It is possible to represent the plasma by three moments of the

Boltzmann equation, i.e., the plasma can be described as a fluid. This will eventually

lead to the Navier-Stokes equations coupled with the Maxwell equations, since the fluid

consists on charged particles. There are different levels of approximation, depending on

how many interacting fluids are considered. In the present work, the one-fluid approach

is used [6]. The plasma is characterized by its density (zero-th moment), the linear

momentum (the first moment) and the energy (the second moment), whose evolution

in time can be obtained by integrating (2.1) in the velocity-space:
1The typical temperatures in the core of fusion plasmas are kBTe ≈ 10 keV, whilst the typical

ionization energies are of the order of 10 eV.
2Since a plasma can be considered as a Hamiltonian system, Liouville theorem applies.
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∂ρ

∂t
+ ∇⃗ · (ρv⃗) = 0 (2.2)

ρ
dv⃗

dt
= ρE⃗ + J⃗ × B⃗ − ∇⃗ · P (2.3)

me

nee2
dJ⃗

dt
= E⃗ + v⃗ × B⃗ − 1

en
∇⃗ · P − ηJ⃗ (2.4)

where ρ and v⃗ are the mass density and the velocity of that fluid and P is the

pressure tensor. Note that this set of equations is not closed. There is need for a

closure equation that relates the pressure with the rest of the parameters. For a scalar

pressure, the closure can be expressed as:

d

dt
(ρp−γ) = 0 Isentropic equation (2.5)

where γ is the adiabatic constant, usually taken as γ = 5/3, i.e., plasma is considered

to behave like an ideal gas. The pressure tensor is latter discussed in Chapter 3.

The obtained equations are the magnetohydrodynamic (MHD) model for the

plasma, which provides a good enough approximation for the plasma behavior. Here,

a common concept in fluid mechanics must be introduced, the advective derivative:

d

dt
≡ ∂

∂t
+ v⃗ · ∇⃗ (2.6)

Further approximations can be performed in order to simplify the previous set

of equations, leading to different level of approximations. In particular, the resistive

model can be simply derived from (2.2)-(2.5) under three simple considerations:

1. The inertia of the electrons is negligible compared to the rest of the species, so

left-hand side of equation (2.4) can be disregarded.

2. Quasi-neutrality applies and the displacement current, J⃗D = ∂tϵ0E⃗, can be

neglected in comparison to the ohmic current.
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3. The Larmor radius is small enough to remove the pressure term from equation

(2.4).

With this approximations, the resistive MHD is described by:

∂ρm
∂t

+ ∇⃗ · (ρmv⃗) = 0 Continuity equation (2.7)

ρm
∂v⃗

∂t
= J⃗ × B⃗ − ∇⃗p Momentum equation (2.8)

E⃗ + v⃗ × B⃗ = ηJ⃗ Ohm's law (2.9)
d

dt

(
pρ−γ

m

)
= 0 Closure relation (2.10)

∇⃗ × E⃗ = −∂B⃗

∂t
Faraday's law (2.11)

∇⃗ × B⃗ = µ0J⃗ Ampere's law (2.12)

where ρm is the matter density and η is the resistivity of the plasma.

Under the consideration of neglecting one-to-one interactions against collective

effects, resistivity can also be disregarded, thus obtaining ideal MHD.

2.2 Particles drift: the need for a tokamak

2.2.1 Drift-kinetic theory

In the previous section, we have discussed the behavior of the plasma as a whole.

Despite the collective nature of the plasma, the corrections due to particle motion can

have a significant effect. In general, the plasma is usually embedded in a magnetic

field, so they will follow the Lorentz force F⃗mag = qv⃗ × B⃗. Within this magnetic field,

the general motion of any charged particle is a helix following the magnetic field line

(see figure 2.1) with a certain radius given by Rc = mv⊥
|q|B , where perpendicular here

refers to the orthogonality to the magnetic field.

The general motion can be decomposed into two parts: the parallel motion(parallel

to the magnetic field) and the perpendicular one, which causes the gyromotion, i.e.,
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the gyration around the magnetic field lines. Under a more general situation, the force

includes also an electric force and other non-electromagnetic forces.

F⃗ = qv⃗ × B⃗ + qE⃗ + F⃗non−em

Magnetic field line

Electron

R c

Fig. 2.1 Electron following a mag-
netic field line.

The solution of the whole equation would yield

the time evolution of the mechanical state,(r⃗, v⃗, t),

of the corresponding particle. The solution of the

complete equation (even numerically) can be com-

putationally quite expensive so simplified models

are required. The most descriptive approach is the

drift-kinetic model: the guiding center of the

particle is considered instead of the total motion.

When the particle is submerged in a homogeneous

electromagnetic field this will follow a helical motion (as seen in 2.1) . Averaging over

a period of this motion (hereon, gyromotion) the perpendicular component of the

acceleration, ˙⃗v⊥, net value is zero, so:

0 =
〈
m ˙⃗v⊥

〉
= q(E⃗⊥ + ⟨v⃗⊥⟩ × B⃗) ⇒ ⟨v⃗⊥⟩ = E⃗⊥ × B⃗

B2 (2.13)

In this case, the motion of the guiding center, in an electromagnetic field, is obtained.

Consequently, the total perpendicular velocity can be expressed as two terms, the drift

velocity (⟨v⃗⊥⟩) plus a certain perturbation (v⃗′
⊥).

v⃗⊥ = ⟨v⃗⊥⟩ + v⃗′
⊥

m
d(⟨v⃗⊥⟩ + v⃗′

⊥)
dt

= m
dv⃗⊥

dt
= q(E⃗⊥ + ⟨v⃗⊥⟩ × B⃗ + v⃗′

⊥ × B⃗) = qv⃗′
⊥ × B⃗

where the value from (2.13) has been used to simplify the previous identity.
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Hence, the perturbation corresponds to a circular motion around the guiding center.

This same process can be followed in order to obtain drift equations for many other

forces when they are combined with magnetic fields. This approach is the drift-kinetic

theory.

Following the same procedure, the equation of motion can be also averaged to

obtain the drift associated to joint action of the magnetic field and any further external

force, F⃗ (gravitational, centrifugal due to the bending of the magnetic fields...):

v⃗F = F⃗ × B⃗

qB2 (2.14)

If the force does not depend on the charge, this magnetic drift will be different for

ions and electrons. This general procedure can be extended to introduce another drifts

(whose derivation is in Appendix A.1):

v⃗∇B = − m

2B2 · v
2

q

(
B⃗ × ∇⃗B

)
known as grad-B drift (2.15)

ve = −∇⃗p× B⃗

qnB2 diamagnetic drift (2.16)

2.2.2 The magnetic dipole moment

The motion of a charged particle within a magnetic field is composed by the motion of

its guiding center (which can be studied using the drift-kinetic theory) plus a circular

motion around it. This circular motion can be understood as a circular electric current,

so it is possible to define a magnetic dipole moment:

∥µ⃗∥ = |q|ωc
2π · 2Rc = Ekin,⊥

B

where ωc and Rc are the cyclotron frequency and radius (see figure 2.1), respectively.

The last equality is derived from the fact that the total kinetic energy can be decomposed

in a kinetic part depending on the velocity parallel to the magnetic field and its



2.2 Tokamak 11

perpendicular part, which is related to the dipole moment. An important property of

this moment can be derived using the adiabatic invariance theorem:

J =
∮
mvxdx =

∮
mv2

xdt =
∫ 2π/ωc

0
mv2

⊥ sin2(ωct+ φ)dt = πm2
⊥

ωc
= 2πm

|q|
µ

where sin appearing corresponds to a generic circular motion, whose frequency is the

Larmor frequency.

If we consider a time-dependent magnetic field that varies slower enough than the

gyro-period, then the action (J) and, consequently, the magnetic dipole moment are

adiabatic invariants. If the variation of the external parameters, i.e., the magnetic

field is slow enough, these quantities can be considered as constants of motion.

2.2.3 The need for a tokamak

Confinement of charged particles is only ensured in the perpendicular plane to the

magnetic field lines due to the circular motion around them, but not in the parallel

direction. The confinement in this parallel direction can be obtained by properly

bending the magnetic field lines such that they are closed within a certain device, like

a torus (as shown in figure 2.2).

B

Fig. 2.2 Closed field lines system

In closed field lines systems, there are some important properties:

1. Since the coils are more concentrated on one side than on the other, the magnetic

field in the inner part (High-field side(HFS)) is much stronger than in the
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v
+

v
-

(a) ∇⃗B-drift

vElectric

field

ExB

(b) E⃗ × B⃗-drift towards LFS

Fig. 2.3 Drifts in a purely toroidal-symmetric system.

outer part (Low-field side(LFS)). This leads to a gradient in the magnetic

field intensity and, thus, to a drift effect, as shown in figures 2.3). This drift

will produce a charge separation (in figure 2.3a, ions will move upwards, while

electrons move downward).

2. This charge separation will produce an electric field between the upper and

bottom parts, thus causing a E⃗ × B⃗ drift towards the LFS (2.3b).

In theses systems, particles confinement is not good enough, but the introduction

of 3D magnetic configuration will eventually inhibit these drifts and the losses:

• TOKAMAK CONCEPT: here, the poloidal field is produced by an inductively

driven plasma current leading to a toroidal geometry. This current is induced by

a transformer which uses the plasma as a secondary coil.

• STELLARATOR CONCEPT: both magnetic field components are produced

by helically wound external coils, thus leading to a 3D configuration.

In this work, the tokamak approach is presented. In general, modern tokamaks

have not the shape of a circular torus, but a more elongated cross section such that they

can be more compact. In figure 2.4 the general structure of a tokamak is presented,

showing different parts:
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(a) Schematics of a tokamak (b) Poloidal cross section of ASDEX Upgrade

Fig. 2.4 Main physical features of a circular Tokamak [From IPP Database].

1. D-coils: due to the elongated cross-section of tokamak, D-shaped coils rather

than cicular coils are used.

2. Vertical coils: control vertical position of the plasma and are also used for plasma

shaping.

3. OH coil: this coil is used as the primary coil in a transformer where the secondary

coil is the plasma itself and heats it through ohmic heating. It is also used to

induce the current in the plasma.

Another important part, not shown in that figure, is Neutral Beam Injector,

NBI which injects a neutral particles with a high kinetic energy in order to heat the

plasma. The mechanism to create this neutral injection is accelerating charged particles

and then re-neutralizing them such that they do not suffer from magnetic forces until

they reach the plasma and start heating it.

The induced current will create a poloidal magnetic field (which is conventionally

less intense than the imposed toroidal field in tokamaks). The combination of both

field components leads the magnetic field line to twist and follow helical-like paths.
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These magnetic flux surfaces are either closed or opened (see figure 2.4b). The last

closed flux surface (LCFS) is also known as separatrix and separates the confined

plasma from open field lines. This separatrix also has a singular point: the X-point.

The singularity consists on the crossing of two magnetic field lines (of the poloidal

component) leading to a vanishing poloidal magnetic field in that point.

Another important parameter is the safety factor, q:

q = ∆φ
2π ≈ rBϕ

RBθ

(2.17)

where ∆φ is the change of the toroidal angle when a magnetic field line travels a full

poloidal loop and R is the major radius. The second expression is usually used for the

safety factor.

Following the drift-kinetic theory, it becomes clear that the motion of single particles

within the plasma depends on their velocity parallel to the magnetic field, due to a

gradient in the magnetic field. If their parallel speed is not high enough there will be

some point in which the magnetic field becomes so high that a magnetic mirror force

appears which causes the particles to be reflected at the mirror positions (in blue in

fig. 2.5): they are called trapped particles and their orbits are known as banana

orbits. Other particles will be able to overcome this force (in black in fig. 2.5): these

are called passing particles and their orbits, potato orbits.

2.3 Toroidal Alfvén Eigenmodes

Magnetohydrodynamics instabilities that are due to the non-linearity of the MHD

equations can degrade the confinement. In the present work, instabilities that can

be induced by the existence of fast-ions (supra-thermal particles, like fusion-born α

particles or particles injected by NBI) are studied. These are called Toroidal Alfvén

eigenmodes, (TAE) [6, 7].

Within MHD framework, it is possible to study whether a certain perturbation

from the equilibrium, is stable or not. The simplest analytical approach to study the
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Fig. 2.5 Motion of particles within tokamaks. The black line represents passing particles
and the blue, trapped particles. [J. Gonzalez-Martin]

stability is to linearize the equations (Derived in appendix A.1.) and then use the

Fourier transform technique in the time coordinate. A compact way of writing the

momentum equation is:

ρ
∂2ξ⃗

∂t2
= F⃗ (ξ⃗)

where, F⃗ (ξ) is the force operator (by analogy with Newtonian case) and ξ⃗ represents

a plasma displacement, with respect to the equilibrium situation. Using the convection

of denoting by subindex 0 the equilibrium values and by subindex 1 the perturbation

around the equilibrium, the force operator can be rewritten as:

F⃗ ≈ J⃗1 × B⃗0 + J⃗0 × B⃗1 − ∇⃗p1

By combining properly the linearized equations the force operator can be rewritten

only in terms of the equilibrium values [6]:
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F⃗ (ξ⃗) = ∇⃗
[
ξ⃗ · ∇⃗p0 + γp0∇⃗ · ξ⃗

]
+ 1
µ0

{
∇⃗ × ∇⃗ ×

(
ξ⃗ × B⃗0

)
× B⃗0 + (∇⃗ × B⃗0) ×

(
∇⃗ × (ξ⃗ × B⃗0)

)}
(2.18)

In this linearized form it is possible to make a Fourier analysis in time so we can

find an eigenvalue equation for the frequency [7]:

− ρ0ω
2ξ⃗ = F⃗ (ξ⃗) (2.19)

Since the force operator is Hermitian, ω2 can only be real so we will have either

purely exponential growth (instabilities) or oscillatory behavior (stable). Moreover, it

also implies that these modes are independent of each other. This is only valid as long

as the perturbation is small enough. If the perturbation had a large amplitude the

linear approach is not longer valid and the non-linear theory has to be used.

Previous results can be applied to the special case of the toroidal geometry (see

figure 2.4a). In such geometries, special symmetries exists can be used to obtain further

simplifications, using a Fourier expansion in the angular space:

ξ⃗(r, θ, φ) =
∑
m,n

ξ⃗mne
i(nφ−mθ−ωt) (2.20)

where φ is the toroidal angle (centered at Z-axis) and θ is the poloidal angle, measured

from the circle in which the torus is centered.

Under the assumption of a purely toroidal symmetry, the decomposition components

are independent. Nonetheless, in real tokamaks this symmetry is broken:

• In the poloidal direction (θ), the value of the magnetic field changes along the

radial value, thus inducing a dependence B⃗ = B⃗(θ).

• in the toroidal direction (φ), the continuous symmetry is broken due to the finite

number of coils: between two consecutive coils there appears a certain toroidal
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field ripple that induces this breakup. As an approximation, this ripple in the

magnetic field is negligible and the toroidal symmetry is not broken.

Under these assumptions, the toroidal components can be still considered as

independent, but the asymmetry in θ leads to a coupling in the poloidal components.

Despite of that, equation (2.19) can be still considered, with the appropriate form

of the force operator when the Fourier decomposition is used. According to the

previous approximation it is useful to consider the toroidal modes as independent, so

the eigenvalue equation can be studied for all the n-modes independently. On the

other hand, the poloidal modes (m-modes) will not be independent and will interact

among them. A good approximation for this mode entangling is to allow for the closest

poloidal modes to interact, i.e., it should be considered that the m-mode is coupled

only to m±1-modes.

Using the approach of ref. [6], the eigenvalue equation (for radial perturbations)

can be written as [8, 9]:

d

dr

[(
ρω2 − F 2

)
r3dξnm

dr

]
− (m2 − 1)

(
ρω2 − F 2

)
rξnm + ω2r2dρ

dr
ξnm = 0

where we have already disregarded the subscript 0 and r corresponds to the radial

distance (of the cylindrical coordinates). The function F = F (r) is defined as:

F ≡ (m− nq(r)) Bθ

µ
1/2
0 r

From the eigenvalues equation a singularity in the highest derivative order appears:

m− nq(r) = ± ωr

Bθ/(µ0ρ)1/2

leading to continuum spectra of frequencies for each mode (n, m). It can be quickly

seen, in ω2 - q(r) diagram (fig. 2.6), that m-modes has crosses among them. Due to

these crosses in ω2 - q(r) diagram, in points close to such crossing the solution obtained

for ω(r) is not longer valid and the m-modes will couple. These modes will break and
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rejoin in the neighborhood of such points, leaving a gap. In these gaps discrete modes

known as Toroidal Alfvén Eigenmodes (TAE) appear.

There is an important feature of this TAE that differentiates it from the continuum

spectra. TAEs suffer from less damping than the continuum frequencies, and thus it is

possible to overcome such a damping. In particular, fast-ions could interact with this

mode and destabilize it. This kind of instability has been experimentally observed in

many tokamaks experiments [8, 9].

m m-1m

m/n (m+1)/n

w
2

q(r)

TAE gap

q(r ) = (m+0.5)/n0

Fig. 2.6 Appearing of the gap mode [7].

The relation between the safety factor and the mode numbers is:

q(r) = m+ 1/2
n

(2.21)

this also enables the determination of the radial location of TAEs, i.e., on which flux

surface the TAE is excited.

A more deep analysis would require taking into account that m-modes are coupled

(within the same n-mode), which can be done by coupling the mode equation [7].



Chapter 3

The physical framework: MEGA

In chapter 2, the plasma has been modelled as a fluid, which implies the coupling of the

Navier-Stokes with the Maxwell equations. The most general description, equations

(2.2)-(2.5), is a non-linear partial differential equation (PDE) system that couples

all the terms in the equation making the analytical solution impossible. In addition,

fast-ions and their interaction with the bulk plasma need to be taken into account.

This separation between bulk plasma and fast-ions comes from the gap between their

energies between both. The bulk plasma has energies of about 10 keV while fast-ions

have much larger energies (e.g., fusion-born α particles have energies of 3.5 MeV or

injected neutral, about 90 keV), making their dynamics to be very different. Due to

these issues, numerical procedures are the only available approach to have more realistic

results, instead of using simplification techniques like linearization. The advantage

of the numerical procedures, apart from solving a more realistic problem, is that it

also allows for more complex geometries to be implemented, like the ASDEX Upgrade

(AUG) tokamak (as shown in 2.4b).

This chapter is dedicated to MEGA [10, 11], a numerical 3D nonlinear hybrid

kinetic MHD model dedicated to compute the solution of such complex equations.

In the following sections both the physical and mathematical background are briefly

discussed and finally, the problem of the boundary conditions is stated.
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3.1 The physical background: Hazeltine-Meiss model

The plasma is divided in two interacting parts, the bulk plasma and the fast-ions,

where the current and pressure of fast-ions must be taken into account in the MHD

equations. A joint set of equations that properly couple both bulk plasma and fast-ions

is needed. In MEGA, a new term in the the momentum equation is introduced to take

into account the current density of the fast-ions.

In MEGA, a more realistic model than resistive MHD is needed, called the extended

Hazeltine-Meiss MHD model (HM) [12]. In this model, dissipative effects have been

introduced through viscosity and diffusivity parameters along with effects like plasma

rotation and the influence of the fast-ions [11, 13]:

∂ρ

∂t
= −∇⃗ · (ρv⃗b) + νn∇⃗2(ρ− ρeq)

ω⃗ = ∇⃗ × v⃗ Fluid vorticity

ρ
∂

∂t
v⃗ = −ρv⃗b · ∇⃗v⃗ + ρv⃗pi · ∇⃗(v∥⃗b) − ∇⃗p+ (J⃗ − J⃗ ′

α) × B⃗ + 4
3∇⃗(νρ∇⃗ · v⃗) − ∇⃗ × (νρω⃗)

∂p

∂t
= ∇⃗ · (ρ(v⃗ + v⃗tor)) − (γ − 1)p∇⃗ · (v⃗ + v⃗tor) + (γ − 1)[νρ ∥ω∥2 + 4

3νρ(∇⃗ · v⃗)2

+ηJ⃗ ·
(
J⃗ − J⃗eq

)
] + χ∇⃗2(p− peq)

∂B⃗

∂t
= −∇⃗ × E⃗

J⃗ = 1
µ0

∇⃗ × B⃗

E⃗ = −v⃗E × B⃗ − v⃗tor × (B⃗ − B⃗eq) + η(J⃗ − J⃗eq)

In this equation, the total velocity of the bulk plasma is divided in three terms:

v⃗b = v⃗ + v⃗tor + v⃗pi

where the velocity without subindex is the velocity described by the MHD equations,

that is corrected with two additional terms, the toroidal velocity and the diamagnetic

drift. Due to the NBI configuration and also transport phenomena, the injected



3.1 The physical background: Hazeltine-Meiss model 21

fast-ions induce an extrinsic angular momentum, producing the spin of the plasma

around itself. The diamagnetic drift is a correction, to this one-fluid model, that

takes into account the difference between the electrons and ions present in the plasma.

Both electrons and ions carries a certain dipole moment, resulting that the plasma is

naturally diamagnetic.

A force can be associated to the pressure gradients, such that a drift can be found

by following expression (2.14):

v⃗prs = B⃗ × ∇⃗p
qnB2

where q is the electron elementary charge (in absolute value) and n is the electron

density.

Dissipative effects in plasma are taken into account by including the resistivity

(η), viscosity (ν), compressibility (νn) and the diffusivity (χ). Finally, the momentum

equation contains a term in which the fast-ions current, J⃗ ′
α, appears explicitly. All these

equations are coupled nonlinear PDE equations (with initial and boundary conditions

are discussed in sections 3.2 and 3.4, respectively). Due to the symmetries present in

tokamaks, MEGA implements a regular grid in cylindrical coordinates and fourth-order

finite differences scheme, i.e., each partial derivative is approximated using a Taylor

expansion up to the fourth order. A fourth-order Runge-Kutta method is applied for

the time integration, as well.

For the motion of the fast-ions, drift-kinetic theory becomes useful, allowing the

reduction of the dimensionality of the problem. Here, only the guiding-center motion is

studied, removing one component in the velocity-space. Still, the gyro-motion can have

an important effect on the stabilization of certain instabilities, so in the simulations,

there are also corrections to take into account the finite Larmor radius (FLR) as seen

in figure 3.1. Here the PIC formalism is used: instead of evolving each particle, which

requires a large numerical effort, a set of markers is considered. Markers represents

a set of these fast-ions with total charge and mass that represents all the particles,

eventually reducing the computational issue. This marker approach is based on the
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Real orbit

Fig. 3.1 Geometrical representation of satellites approach. The time evolution is considered
for the guiding center (blue), but a more realistic evolution requires to take into account FLR
effects. Instead of studying the electromagnetic fields of guiding center, the ones created by
virtual particles located in a circumference with Larmor radius Rc around it (circumference
in red), i.e., the projection of the helix motion onto the plane (in green). Consequently, the
gyro-phase is neglected and this method is only an approximation of the actual motion (helix,
in red).

Boltzmann equation (2.1): for each marker a partial distribution function, fα, can be

associated, such that each one fulfills equation (2.1) [6].

The guiding-center dynamics can be described as:

mαv∥
dv∥

dt
= v∗

∥(qαE⃗ − µ∇⃗B) (3.1)

where v∥ is the velocity parallel to magnetic field line and v∗
∥ is the parallel velocity

with a FLR correction:

v∗
∥ = v∥

[⃗
b+Rc∇⃗ × b⃗

]
The dynamics of fast-ions is, therefore, described as charged particles (with charge

qα) and a magnetic dipole moment, µ. The FLR correction to the parallel component

(parallel to magnetic field) can be understood a magnetic field unit vector (⃗b) and a

Taylor expansion around the helix motion.

The total velocity of the particle consists on this corrected parallel velocity and all

the drifts discussed. Similarly to the HM equations, the numerical integration of the

equation for fast-ions is done through a fourth-order Runge-Kutta scheme.
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3.2 Initial conditions: equilibrium and initial pro-

files

In the previous section, the HM model has been introduced, but the particular solutions

require from the proper boundary and initial conditions. The solutions of the MHD

equations provide the time evolution of the magnetic fields and the pressure, among

others. In order to solve the MHD equations, an initial magnetic field configuration

and profiles for temperature and density for electrons are needed. In this one-fluid

MHD model, the electron density and temperature are only considered

In MEGA, the initial magnetic field configuration is taken from an equilibrium

situation, described by the ideal-MHD model (2.7) - (2.12). In the equilibrium, there

is a relation between the scalar pressure and magnetic field configurations, known as

force balance equation:

J⃗ × B⃗ = ∇⃗p (3.2)

which can be derived from ideal MHD equations by considering the steady state

(∂/∂t → 0).

There is a more convenient formulation of the force balance equation using flux

coordinates instead of cylindrical coordinates [7, 14] (see figure 3.2). This system is

based on three coordinates related to the magnetic field: ψ is the poloidal magnetic

flux and θ and ϕ are the poloidal and toroidal angles.

Defining the following two functions:

B⃗ ≡ 1
R

(∇⃗ψ × u⃗φ)

f(ψ) = R

Bφ

µ0

it is possible to rewrite (3.2) as an elliptic equation that can be solved numerically,

the Grad-Shafranov equation [6, 14], whose derivation is shown in Appendix A.3:

R
∂

∂R

(
1
R

∂ψ

∂R

)
+ ∂2ψ

∂z2 = −µ0R
2p′(ψ) − µ2

0f(ψ)f ′(ψ) (3.3)
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p, surfacesY�

Magnetic axis

q

Magnetic field lines

Fig. 3.2 Magnetic coordinates [15]. Poloidal and toroidal fluxes, Ψ and Ψtor, are the
magnetic fluxes that go across of circular surfaces, Spol and Stor, centered in Z-axis and in
the circumference with radius R0, respectively.

This equation can be solved for some initial conditions. In particular, this initial

profile consists on the experimental values of pressure in AUG experiment, resulting

in magnetic equilibrium as shown in 3.4, which will be used in MEGA as starting

distributions.

The initial conditions of densities and temperatures are used in MEGA in order

to characterize the pressure. This initial conditions are also taken combining the

experimental measurements from different diagnostics, as seen in 3.3.
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Fig. 3.3 Input profiles in MEGA obtained from IPP, with the corresponding experimental
measurement [16] corresponding to the discharge #34570 from AUG in the time window
3.300-3.400 ms. A new radial coordinate is defined ρpol =

√
ψ−ψ0

ψLCF S−ψ0
, where ψ0 is the

magnetic flux at the magnetic axis, ΨLCFS is the flux at the separatrix.
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Fig. 3.4 Magnetic equilibrium for discharge #34570. The flux surfaces are shown in red
dashed lines, whereas the separatrix is shown in blue. The blue rectangle is the simulation
domain and actual 2D wall is shown in magenta. From this figure, it is clear that the
simulation domain is containing parts that are outside the vessel.

3.3 Fast-ions

Fast-ions are particles with energies that are larger than those typical of thermalized

plasmas (about 10 keV). The study of these particles and how they interact with the bulk

plasma, i.e., the thermalized plasma, has a central importance in the fusion research.

Fast-ions, either fusion-born α particles or high-energy neutral particles injected with

NBI, plays a fundamental role in the plasma heating and energy production, since

these fast-ions must provide the energy the plasma needs to sustain the fusion reactions

for long times. The fast-ion confinement is, nowadays, an important research line.

Fast-ions in the plasma are described using a statistical approach by giving a certain

distribution function. The equilibrium distribution function can be derived from a

Fokker-Planck equation1, leading to the slowing down distribution [13]:
1Subject outside of the scope of this work.
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f(Ψ, v, λ) = Ce
− Ψ

Ψscale
1

v3 − v3
crit

erfc
(
v − vbirth

∆v

)
e

(λ−λ0)2

(∆λ)2 (3.4)

where C is a constant that properly normalize the distribution function to the total

energy of the fast-ions.

1. The first exponential describes the spatial distribution: Ψ is the toroidal magnetic

flux coordinate, as discussed in previous section, and Ψscale is a parameter

characterizing the gradient of fast-ions. In the simulations, it has been taken

Ψscale = 0.15, but other values can be studied.

2. The next two factors characterize the velocities distribution (in modulus), v.

Three parameters are here introduced: vcrit, which is the critical velocity at which

collisional friction of fast-ions with both electrons and ions is equal. The critical

velocity is a function of the magnetic field configuration, so it depends on the

equilibrium choice. vbirth is the neutral beam injection velocity and ∆v , small

velocity (compared to vbirth), is used to set the cutoff width. The cutoff velocity

is usually set to 10% of the birth velocity.

3. Last term is referred to the pitch angle distribution. Pitch angle, λ, is the fraction

of the velocity parallel to the magnetic field. In this work, the convention taken

for pitch angle is assigning a negative sign:

λ = −
v∥

v

where v∥ is the parallel velocity (using the already discussed magnetic field

convection) and the sign is given by the fact that in AUG magnetic field and

electric current have opposite signs. This new term allows the separation of

fast-ions in two type: co-going particles, that have negative pitch angle (in this

convention), and counter-going particles . Besides the pair energy and pitch

angle, (E, λ) can fully describe the velocity space of fast-ions within the MEGA

model, since the third component of such velocity space would be the gyro-phase,
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which is neglected in MEGA. The distribution in pitch angle follows a Gaussian

distribution centered at λ0 with a width ∆λ.

Fig. 3.5 Velocity space of the slowing down distribution, centered at λ0 = −0.8 with a width
∆λ = 0.1. This configuration corresponds to the one the Neutral Beam Injectors (NBI 8) in
the ASDEX Upgrade tokamak. The birth velocity of the beam is set to vbirth = 2.98 ·106ms−1.
Only co-going(λ < 0) fast-ion distribution are relevant in this initial distribution function,
and only negative pitch angles are here shown.

3.4 The simulation domain and the boundary con-

ditions

Here, the need of studying which would be the appropriate simulation domain is

presented. Most of the plasma is assumed to be confined within the separatrix, so the

simulation domain must necessarily contains the whole separatrix volume (see figure

3.4).

Since the numerical integration uses a regular grids for integration, regions outside

from both separatrix and the vessel are being considered for the evolution of either

MHD plasma and fast-ions. Although plasma is mainly confined within separatrix,
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the boundary conditions imposed, up to now, are not realistic. A realistic wall can

affect the plasma and its stability [6], so its study becomes important. The boundary

conditions considered previous to this work were:

• All the components of the speed vanishes at the boundaries (blue color in figure

3.4).

• The magnetic field at these boundaries remains unperturbed from its initial

value. This approach makes sense when considering that are well apart from the

separatrix, but it is clear that there are points in which the simulation domain is

close to the separatrix, so this boundary conditions are not realistic at all.

These boundary conditions, despite of giving good results [17] are still unrealistic,

so more realistic boundary conditions are required, trying to fit the wall.

This same issue appears for markers: markers are only considered as losses only

if they scape from simulation domain. The implementation of the a realistic wall for

fast-ions has important consequences, allowing to study the impact of losses along a

realist wall and synthetic Fast-Ion Loss Detector (FILD) whose data can be compared

to experimental data.



Chapter 4

The MEGA wall: towards a

synthetic FILD in MEGA

In this chapter the implementation of the wall in MEGA is discussed. A numerical

background of the simulation code is briefly presented, continuing with the approach

followed in this work to implement such wall and the advantages that it implies. Finally,

the results from the performed simulations are presented.

4.1 Numerical background

To have a good accuracy in the time integration, a time step small compared to the

gyro-period (related to the gyro-period) must be chosen to avoid numerical instabilities

[18]. This small time step (chosen to be 4% of the Larmor frequency) imposes a strong

performance requirement.

Regarding the spatial integration, a fine mesh is required for numerical stability.

As the evolution of the whole plasma is needed, a large domain must be considered

(see figure 4.1), so the mesh must have several subdivisions to reach a minimum spatial

accuracy. This involves also a considerable drawback because the solver must invert

large matrices, slowing down the simulation.
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All these issues combined with the small time step chosen leads to the use of more

advanced numerical and programming techniques than the usual methods. These

techniques include algorithms that work with many processors at the same time

solving different parts of the spatial mesh, known as parallelization. In MEGA, this is

done dividing the whole integration domain into cores, i.e., CPUs that solves part of

the whole mesh (see figure 4.1). The communication among these cores is precisely

the parallelization technique, and the library Open-MP [19] is applied to that goal.

Moreover, each core also integrates all the markers of fast-ions that lie within the

domain of the core.

The final results for all the numerical processes are several files containing the time

evolution of all the relevant properties of the plasma such as density, and temperature,

and its dynamical properties, like velocity and magnetic field that undergo a discrete

Fourier transform (DFT) following the scheme proposed in equation (2.20), so the

analysis of the toroidal and poloidal modes can be done.

4.2 A realistic 3D wall for MEGA: towards a syn-

thetic FILD

The inclusion of a realistic wall shape in the simulation has a significant importance:

• Improvement in simulation times: only when the particles come out of the domain,

they are stopped from evolving. With the wall, the markers are detected when

they reach to the wall and are then conveniently stopped.

• From such an identification algorithm, important information can be obtained.

In particular, if the accuracy of the numerical wall is high enough, the study of

fast-ion losses becomes feasible. The reconstruction of the phase-space of the

losses allows a comparison against experimental data from the Fast-Ion Loss

Detector (FILD).
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Fig. 4.1 Integration domain
discretized (only the poloidal
plane is represented, the sub-
division in the toroidal angle
is analogous). Each part of
the domain will be partially
integrated by one CPU and
then all the data is communi-
cated among all the CPUs to
recompose the complete solu-
tion. The simulation can also
be extended to cover a larger
area of the tokamak.

The methodology followed in this work is based

on the pre-existing separation of the spatial do-

main into cores, and the mesh used to solve

MHD equations. An important distinction is

made: the term mesh is reserved to the lim-

its of the spatial domain that is processed by

each CPU (as shown in figure 4.1) and sub-mesh

for the part of the MHD grid contained in each

CPU.

PIXELATION OF THE WALL

Taking into account all these considerations, the most

straightforward procedure to implement the wall is to

use the cores distribution and the MHD mesh as basis.

The wall can be introduced by applying the pixelation,

i.e., the whole domain is divided in a certain mesh (not

to be confused with the cores or the sub-mesh) such

that each volume element can be characterized by a flag,

stating if this part of the mesh contains the wall, or

not. A priori, the mesh used to pixelate the wall can be

arbitrarily chosen, but using the already existing cores

distribution has a natural advantage due to the parallelization in MEGA, since each

CPU will handle its own markers. The very first approach is considering a distribution

of cores that are outside, inside or contains part of the wall, such that all the particles

reaching the cores containing part of the wall, will be stopped and then stored for

post-processing. Moreover, the cores that have been detected to be outside are stopped

from evolving their markers. This method was implemented and it has no impact on

the computational performance, i.e., it does not slow down the simulation.
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Related to the time consumption, the pixelation of the wall can be done as part

of a certain pre-process and then loaded into MEGA as a matrix, which allows the

simulation only to check in which pixel the particle is (a simple integer quotient).

The process of pixelation is done based on the Jordan curve theorem [20]: tracing

rays starting from arbitrary points, whose relative position with respect to the wall

is previously known, for instance, the Z axis of the tokamak, ending in test points,

the parity of number of collisions with the wall will reveal if the point lies inside (odd

number of crossings) or outside the wall (even number). Following that procedure

recursively for all the points describing each pixel gives a map like the one shown in

figure 4.2.

4.3 Simulations and discussion

Several simulations testing both accuracy and performance have been carried out.

Among all these simulations, the evolution of discharge #34570 has been studied using

the initial conditions shown in figure 3.3 along with its corresponding equilibrium. A

thirty-hour simulation has been carried out reaching 0.18 ms of the plasma evolution

from the initial equilibrium. A (R = 128, φ = 32, Z = 256) cylindrical grid has been

chosen for the simulations. The initial conditions for MHD equations are also shown in

figure 3.3, the initial distribution of fast-ions is a slowing-down distribution centered

at pitch-angle λ0 = 0.8, shown in figure 3.5.

In figure 4.3 the time evolution of the more interesting energies are presented. In the

figure above, the time evolution of each toroidal mode is presented. The predominant

modes are n = 5 and n = 4, and its growth (in logarithmic scale) has three phases,

an initial one in which the system is still close to the original equilibrium, a second

phase, representing a linear growth and a final saturation. The non-linearity of the

system of equations is also shown: when a mode starts growing it can interact with

the other modes. In this case the first excited modes, n = 4,5, interact with the lower

n-modes, inducing, first, its linear growth and the later saturation. In the figure below,
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(a) Overview of the grid showing the spa-
tial distribution for cores. Sub-mesh dis-
tribution is analogous, showing a much
better accuracy.

(b) Overview of the 3D grid and the AS-
DEX Upgrade mesh.

Fig. 4.2 Maps obtained from the pixelation of the 2D and 3D wall. On the left-hand side, the
distribution using the core grid is shown. Each core can decide if it must study the position
of each marker: if the core is completely inside (green), it evolves its markers without any
further check, but if it contains part of the wall (yellow) then it check in which part of its
sub-mesh the particle is, whose pixelation is analogous to the one shown, but with larger
accuracy. Cores in red are not evolving realistic markers, so all of them are stopped from
evolution. Finally, blue-cores are those in one of the limits of the simulation domain that do
not contains any part of the wall, and it has to be studied whether the markers have escaped
from the simulation domain. In right-hand side, the 3D wall pixelation is shown (only yellow
sub-mesh points) compared to the real AUG wall, showing a good fit to the wall.
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Fig. 4.3 Time evolution of different energies.

the evolution of the different kind of energies are shown: kinetic, magnetic and thermal,

related to the bulk plasma energy and the black ones represents the total energy of the

co-going fast-ions (λ < 0). Counter-going particles (λ > 0) are also drawn in dashed

lines (positive pitch angle). It can be observed in the figure 4.3 below is that the

kinetic energy of the fast-ions start to increase its energy from an approximate time of

t ≈ 0.05 ms, which is approximately the time the first banana orbits (as it can be seen

in figure 2.5) has reached their turning point.

A realistic 3D wall of ASDEX Upgrade has been implemented in MEGA code,

enhancing considerably the study of role of the fast-ions during instabilities and the

distribution of losses in the spatial space and in the velocity space.

In figure 4.4, the distribution of lost fast-ions during the simulation is presented,

in a reduced version of the total velocity space (since the gyro-phase is neglected in

the drift-kinetic approach), taking as parameters for representation energy and pitch

angle of the losses. The figure shows the existence of three main lobes of losses: two

main co-going losses lobes and a smaller lobe of counter-going particles. The main

co-going losses lobe shows a shape similar to the initial slowing down distribution
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Fig. 4.4 (Reduced) Velocity space of the losses during the simulation.

function (shown in figure 3.5), but with a certain shift (due to the dependence of the

pitch angle with the local magnetic field) and a larger dispersion, due to the scattering

of the fast-ions. The counter-going fast-ion losses lobe is clearly the most remarkable

feature we can observe since all particles are started as co-going particles, so they must

have suffered from different processes to significantly change its value. A further study

of this region of the velocity space lead to the fact that the losses producing that lobe

are being lost against the divertor (DIV), as shown in figure 4.5.

DIVERTOR REGION

In this section the simulated losses in the DIV region are presented.

In the set of figure 4.6 the spatial and velocity spaces distributions of the losses in

DIV region are shown. In the velocity space two main lobes appears. The largest one

corresponds to co-going particle losses with the initial pitch angle. For the smaller lobe,

the counter-going particles losses lobe, time evolution of the accumulated particles
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Fig. 4.5 Spatial distribution of the co-going lobe losses in 4.4.

arriving has been represented in figures 4.6c and 4.6d. A change in the behavior of

the losses rate at t ≈ 0.05 ms can be observed, corresponding to the time in figure 4.3

where kinetic energy starts increasing, and the energy of the modes are growing as

well. This can be understood as a first hint towards establishing that these particles

are in fact being expelled because of the interaction with such modes. In this second

time window (0.05 ms toward the end), the velocity space is represented in figure 4.7,

showing that fast-ions with larger energies are mainly lost during the first time interval

(from the start until 0.05 ms) showing that the registered high-energy losses are mainly

prompt-losses: particles that have been lost during their first bouncing-back in their

banana-like motion.

To study the existence of instabilities, the time evolution of the frequencies for each

mode has been represented in 4.8. Only modes n = 4, 5 show a well-defined frequency,

that may correspond to TAE excitations [17, 21], according to figure 2.6.

These n-modes shows an stable frequency from, precisely, 0.05 ms time at which

kinetic energy of the bulk plasma (bottom in the figure 4.3) starts linearly increasing, as
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(a) Spatial distribution of losses in DIV: region
under study. (b) Velocity space in DIV.
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(d) Time evolution of the accumulated losses
in DIV from 0.05 ms (counter-going particles).

Fig. 4.6 Analyze of DIV losses. In figure (a) the spatial location of the losses, that are going
to be studied, is shown. This spatial location is known as the divertor (DIV). In figure (b),
the velocity space of the chosen spatial region is represented, showing two main lobes (a
main co-going lobe and a smaller counter-going lobe). In figure(c), the losses accumulated in
the DIV region is represented, showing two main dependences on time. Finally, in (d) the
counter-going lobe is studied, showing that these particles are being lost from 0.05 ms.
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Fig. 4.7 Velocity space of losses in DIV from 0.05ms.
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Fig. 4.8 The time evolution of the Fourier transform (in time) of the n-modes shows that
n = 4, 5 have a coherent frequency from 0.05 ms.

well as the energy that the n-modes increases (top figure of 4.3). This time window then

becomes really important, since it can be seen in figure 4.6d, counter-going particles

start being expelled. This coincidence in time may lead to the fact that these particles

are being expelled by these instabilities.



Chapter 5

Conclusions and future work

During this work, a 3D wall for the ASDEX Upgrade tokamak has been included in the

simulation model to study the simulated fast-ion losses during the plasma evolution.

To accomplish this goal, the underlying physical, mathematical and numerical models

of MEGA have been studied to have a global overview of the plasma physics and

understand, from the theoretical point of view, the results obtained in the simulation. A

particular type of instability has been studied, the Toroidal Alfvén Eigenmode, TAE. A

possible TAE mode has been found in the simulations, having a well-defined frequency

as it was theoretically predicted.

A first correlation between the plasma kinetic energy and the fast-ion losses rate at

the wall has been observed. Moreover, a correlation between the TAE initial time and

the place in the velocity space of the losses has been found.

The results obtained with the implementation of the wall are the basis for future

studies of the impact of fast-ion losses in ASDEX Upgrade, that can partially reveal

the behavior of the fast-ion losses when instabilities are present in the plasma.

Future work includes the finalization of the 3D wall implementation to obtain much

more reliable results of the fast-ion losses, that can be compared to those obtained

from other numerical models, such as ASCOT [22] or to experimental data from the

Fast-Ion Loss Detectors (FILD).
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Part of this work has been presented in a contribution for the European Physical

Society Conference 2018 in Prague [23].



Nomenclature

Acronyms / Abbreviations

AUG ASDEX Upgrade tokamak [Max Planck Institute for Plasma Physics, Garching]

DFT Discrete Fourier Transform

DIV Divertor

FILD Fast-ion loss detector

FLR Finite Larmor Radius

HFS High-Field Side

HM Hazeltine-Meiss MHD

LCFS Last Closed Flux-Surface, equivalent to separatrix

LFS Low-Field Side

MHD Magnetohydrodynamics

NBI Neutral Beam Injector

PDE Partial Differential Equation

PIC Particle in Cell

TAE Toroidal Alfvén eigenmode





References

[1] H.-S Bosch and G M Hale. Improved formulas for fusion cross-sections and thermal
reactivities.

[2] Y. Todo and T. Sato. Linear and nonlinear particle-magnetohydrodynamic simu-
lations of the toroidal Alfvén eigenmode. Phys. Plasmas, 5(5):1321–1327, 1998.

[3] M. García-Muñoz, H.-U. Fahrbach, H. Zohm, and the ASDEX Upgrade Team.
Scintillator based detector for fast-ion losses induced by magnetohydrodynamic
instabilities in the ASDEX upgrade tokamak. Rev. Sci. Instrum., 80(5):053503,
may 2009.

[4] J. Ayllon-Guerola, J. Gonzalez-Martin, M. Garcia-Munoz, J. Rivero-Rodriguez,
A. Herrmann, S. Vorbrugg, P. Leitenstern, S. Zoletnik, J. Galdon, J. Garcia
Lopez, M. Rodriguez-Ramos, L. Sanchis-Sanchez, A. D. Dominguez, M. Kocan,
J. P. Gunn, D. Garcia-Vallejo, and J. Dominguez. A fast feedback controlled
magnetic drive for the ASDEX Upgrade fast-ion loss detectors. Rev. Sci. Instrum.,
87(11):11E705, nov 2016.

[5] J. Gonzalez-Martin et al. First measurements of a scintillator based Fast-Ion Loss
Detector near the ASDEX Upgrade divertor. Rev. Sci. Instruments (accepted),
2018.

[6] J Wesson. Tokamaks. Clarendon Press - Oxford, 2004.

[7] Simon David Pinches. Nonlinear Interaction of Fast Particles with Alfvén Waves
in Tokamaks. Number November. 1996.

[8] G. Y. Fu and J. W. Van Dam. Excitation of the toroidicity-induced shear Alfvén
eigenmode by fusion alpha particles in an ignited tokamak. Phys. Fluids B,
1(10):1949–1952, 1989.

[9] G. Y. Fu and J. W. Van Dam. Stability of the global Alfvén eigenmode in the
presence of fusion alpha particles in an ignited tokamak plasma. Phys. Fluids B,
1(12):2404–2413, 1989.

[10] Y. Todo and T. Sato. Linear and nonlinear particle-magnetohydrodynamic simu-
lations of the toroidal Alfvén eigenmode. Phys. Plasmas, 5(5):1321–1327, 1998.

[11] Y. Todo, M. A. Van Zeeland, and W. W. Heidbrink. Fast ion profile stiffness due
to the resonance overlap of multiple Alfvén eigenmodes. Nucl. Fusion, 56(11),
2016.



44 References

[12] Y. Hu, Y. Todo, Youbin Pei, Guoqiang Li, Jinping Qian, Nong Xiang, Deng Zhou,
Qilong Ren, Juan Huang, and Liqing Xu. Simulation of fast-ion-driven Alfvén
eigenmodes on the Experimental Advanced Superconducting Tokamak. Phys.
Plasmas, 23(2), 2016.

[13] Youbin Pei, Nong Xiang, Wei Shen, Youjun Hu, Y Todo, Deng Zhou, and Juan
Huang. Simulations of toroidal Alfvén eigenmode excited by fast ions on the
Experimental Advanced Superconducting Tokamak Simulations of toroidal Alfv
en eigenmode excited by fast ions on the Experimental Advanced Superconducting
Tokamak. Cit. Phys. Plasmas, 25, 2018.

[14] A. H. Boozer. Physics of magnetically confined plasmas. Rev. Mod. Phys.,
76(4):1071–1141, 2004.

[15] A. Bock. Generation and Analysis of Plasmas with Centrally Elevated Helicity
Profiles in Full W ASDEX Upgrade. PhD thesis, Ludgwig-Maximilian University
Munich, 2016.

[16] E. Viezzer. Radial electric field studies in the plasma edge of ASDEX Upgrade.
PhD Thesis, 2012.

[17] Y. Todo, M. A. Van Zeeland, A. Bierwage, and W. W. Heidbrink. Multi-phase
simulation of fast ion profile flattening due to Alfvén eigenmodes in a DIII-D
experiment. Nucl. Fusion, 54(10), 2014.

[18] A. Spitkovsky. Note on kinetic Plasma Simulations, Princeton.

[19] Open-MPI.org. Open MPI: Open Source High Performance Computing, 2011.

[20] J. Erickson. The Jordan Polygon Theorem. Comput. Topol., pages 1–4, 2009.

[21] Y. Todo, M. A. Van Zeeland, A. Bierwage, W. W. Heidbrink, and M. E. Austin.
Validation of comprehensive magnetohydrodynamic hybrid simulations for Alfvén
eigenmode induced energetic particle transport in DIII-D plasmas. Nucl. Fusion,
55(7), 2015.

[22] Simppa Käslompolo, Taina Kurki-Suonio, Seppo Sipilä, and Ascot Group. Syn-
thetic Fast Ion Diagnostics in Tokamaks: Comparing the Monte Carlo Test Particle
Code ASCOT Against Experiments. 1055, 2017.

[23] J. Gonzalez-Martin, M. Garcia-Munoz, Y. Todo, S.E. Sharapov, M. Dunne,
V. Igochine, R. Fischer, P. Oyola, L. Sanchis-Sanchez, A. J., and E. Viezzer.
Non-Linear 3d Hybrid Kinetic-MHD Simulations of Alfven Eigenmodes in the
ASDEX Upgrade Tokamak. 2018.



Appendix A

Theoretical plasma physics

A.1 Eigenvalue equation for MHD instabilities

The eigenvalue equation for the MHD equations can be derived from the complete

set of equations of the ideal MHD (2.7) - (2.12). The first step towards obtaining the

eigenvalue equation is to linearize these equations. This can be done by considering

that all the magnitudes can be decomposed into two terms A = A0(r⃗) +A1(r⃗, t), where

the subscript 0 corresponds to the equilibrium value, that may be inhomogeneous, and

the subscript 1 is a perturbation over the equilibrium that can evolve in time. For

linearization the ordering in the perturbation larger than the linear term is negelected

(this is assuming that the perturbation is small enough).

The linearized system is:

∂ρ1

∂t
+ ∇⃗ · (ρ0v⃗1) = 0

∂p1

∂t
+ v⃗1 · ∇⃗p0 + γp0∇⃗ · v⃗1 = 0
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∂B⃗1

∂t
= ∇⃗ × (v⃗1 × B⃗0)

µ0J⃗1 = ∇⃗ × B⃗1

ρ0
∂v⃗1

∂t
= J⃗1 × B⃗0 + J⃗0 × B⃗1 − ∇⃗p1

Integrating the previous set of equations in time, taking into account that ξ⃗ = ∂ξ⃗
∂t

:

ρ1 = −∇⃗ · (ρ0ξ⃗) (A.1)

p1 = −ξ⃗ · ∇⃗p0 − γp0∇⃗ · ξ⃗ (A.2)

B⃗1 = ∇⃗ × (ξ⃗ × B⃗0) (A.3)

ρ0
∂2ξ⃗

∂t2
= F⃗ (ξ⃗) (A.4)

If one now applies a Fourier transform in time, the previous equations become an a

set of eigenvalue equations, that can be further simplified (as shown in [8] and [9]) by

considering an angular decomposition and studying only the radial perturbation.

A.2 Hazeltine-Meiss model: viscosity and energetic

particles

The general form of the MHD equations is given in (2.2)-(2.4), but for further analysis

more explicit expressions are needed.

PRESSURE TENSOR

The pressure tensor can be decomposed into two terms:

P = p1 + τ
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where p is the thermodynamical pressure and τ stands for the Cauchy's stress tensor,

related to the gradient in the velocity field of the fluid (∇⃗u). A linear constitutive

equation can be used as first approach:

τ = λ(∇⃗ · u⃗)1 + µ
(
∇⃗ ⊗ u⃗+ ∇⃗ ⊗ u⃗T

)
where λ and ν = µ/ρ are the bulk viscosity and the viscosity, respectively. The tensor

can be generally splitted into two terms, one containing the diagonal part and a

traceless tensor, containing all the anisotropy of the system:

τ = (λ+ 2
3µ)(∇⃗ · u⃗)1 + µ(∇⃗ ⊗ u⃗+ ∇⃗ ⊗ u⃗T − 2

3(∇⃗ · u⃗)1)

The divergence of the non-diagonal components of the pressure becomes:

∇⃗ · τ = ∇⃗(ζ∇⃗u⃗) + 1
3∇⃗(∇⃗µu⃗)∇⃗2(µu⃗)

where ζ = λ+ 2
3µ is introduced.

Using this expression and rearranging the terms in the momentum equation (using

conveniently the vector relations of ∇⃗ operator):

ρ
du⃗

dt
= −∇⃗p̃+ 4

3∇⃗(ρν∇⃗ · u⃗) − ∇⃗ × (ρνω⃗) (A.5)

where:

• d/dt, here stands for the advective derivative;

• p̃ is not the thermodynamical pressure, but a modification due to the general

anisotropy in plasma:

p̃ = p− ζ∇⃗ · u⃗

It is usually assumed that the corrections to the thermodynamical pressure are

negligible so p̃ ≈ p;
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• the vorticity of the fluid, ω⃗ = ∇⃗ × v⃗, is also introduced as a natural term within

the fluid mechanics;

• the momentum induced by the current and the magnetic field has been dropped

for clarity.

Moreover, in the Hazeltine-Meiss model, more frictional terms are required. A

quantitative description of such quantities requires the discussion of Fokker-Planck

equations and other stochastic methods.

ENERGETIC PARTICLES CURRENT COUPLING

The inclusion of the fast-ions in the plasma modelling requires taking into account

the interaction between them and the bulk plasma. From the two-fluids equatiosn:

ρb
dv⃗b
dt

= −∇⃗ · Pb + ρbE⃗ + J⃗b × B⃗

ρH
dv⃗fi
dt

= −∇⃗ · Pα + ρbE⃗ + J⃗α × B⃗

where subindex b and α states for bulk plasma and fast-ions, respectively. Some

assumptions can be made to combine these two equations:

1. Fast-ion density is much smaller than bulk plasma: nb >> nα. Besides, their

Larmor radius is larger than the typical one for bulk plasma, so the perpendicular

component of the pressure contribution for EP can be neglected against bulk

plasma;

2. Quasineutrality applies: ρb ≈ 0;

3. The rate of change in the fast-ion fluid velocity is negligible with respect to the

bulk plasma.
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Substracting conveniently the previous expressions and applying the previous

approximations:

ρb
dv⃗b
dt

= −∇⃗ · Pb − ρHE⃗ + (J⃗b − J⃗α) × B⃗

Further simplifications can be made if one considers that the fast-ion current can be

splitted into two terms, J⃗α = J⃗ ′
α + J⃗E×B, where the second one is the current produced

by the E⃗ × B⃗-drift in fast-ions. Introducing such a definition in the previous equation

and considering the electric field parallel to the magnetic field as negligible:

J⃗E×B × B⃗ = ρH
(
E⃗ − (E⃗ · u⃗B)u⃗B

)
≈ ρHE⃗

this reads to:

ρb
dv⃗b
dt

= −∇⃗ · Pb + (J⃗b − J⃗ ′
α) × B⃗ (A.6)

A.3 Grad-Shafranov equation

In the ideal MHD, the equilibrium situation can be easily described using the force

balanced equation:

J⃗ × B⃗ = ∇⃗ × B⃗ × B⃗ = ∇⃗p (A.7)

which explicitly establish the equilibrium between the magnetic force (left-hand side)

and the pressure gradient (right-hand side), where µ0 has been dropped for simplicity.

The axisymmetry in a tokamak makes that the equilibrium is independent on the

toroidal angle, φ. In particular, it allows introducing a more convenient coordinate:

the magnetic flux, ψ.

B⃗ · ∇⃗ψ = 0 (A.8)

which can splited into two equations:

Br = −1
r

∂ψ

∂z

Bz = 1
r

∂ψ

∂r
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From (A.7) it is clear that there exists a symmetry between magnetic field and

current density, a new flux is introduced:

jr = −1
r

∂f

∂z

jz = 1
r

∂f

∂r

Through the Ampere law, a relation between f = f(ψ) and magnetic can be derived:

f = rBφ

µ0

To derive the Grad-Shafranov equation, (A.7) can be rewritten in terms of poloidal

current and magnetic field, which can be easily related to the magnetic flux:

−Bφ

r
∇⃗f + Jφ

r
∇⃗ψ = ∇⃗p

Using chain rule (since all parameters depends on the magnetic flux) and considering

the previously defined fluxes:

Jφ = rp′ + µ0

r
ff ′

where the derivatives are taken with respect to magnetic flux, ψ. Finally, using Ampere

law and properly combining all these results, the Grad-Shafranov equation is obtained:

R
∂

∂R

(
1
R

∂ψ

∂R

)
+ ∂2ψ

∂z2 = −µ0R
2p′(ψ) − µ2

0f(ψ)f ′(ψ) (A.9)

where r has been changed to R in the final result.
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