Fitting a two-joint orthogonal chain to a point set

J.M. Díaz-Báñez a,*,1, M.A. López b, M. Mora c,2, C. Seara c,2, I. Ventura a,1

a Departamento de Matemática Aplicada II, Universidad de Sevilla, Spain
b Department of Mathematics, University of Denver, 2360 South Gaylord Street, Denver, CO 80208, USA
c Departament de Matemàtica Aplicada II, Universitat Politècnica de Catalunya, Spain

A R T I C L E I N F O

Article history:
Received 31 July 2009
Accepted 28 July 2010
Available online 3 August 2010
Communicated by J. Mitchell

Keywords:
Polygonal approximation
Combinatorial optimization
Curve fitting
Algorithms

A B S T R A C T

We study the problem of fitting a two-joint orthogonal polygonal chain to a set S of n points in the plane, where the objective function is to minimize the maximum orthogonal distance from S to the chain. We show that this problem can be solved in \(\Theta(n)\) time if the orientation of the chain is fixed, and in \(\Theta(n \log n)\) time when the orientation is not a priori known. Moreover, our algorithm can be used to maintain the rectilinear convex hull of S while rotating the coordinate system in \(O(n \log n)\) time and \(O(n)\) space, improving on a recent result (Bae et al., 2009 [4]). We also consider some variations of the problem in three-dimensions where a polygonal chain is interpreted as a configuration of orthogonal planes. In this case we obtain \(O(n)\), \(O(n \log n)\), and \(O(n^2)\) time algorithms depending on which plane orientations are fixed.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction and definitions

Fitting a curve of a certain type to a given point set in the plane is a fundamental problem with applications in fields as diverse as statistics, computer graphics, and artificial intelligence. A special case of this problem is the so-called polygonal approximation problem or polygonal fitting problem, where a polygonal chain with \(k\) corners or joints is fitted to a data set so as to minimize the approximation error according to some agreed upon metric. This problem is closely related to that of approximating a piecewise-linear curve with \(n\) edges by one with fewer edges, except that the input is now also a chain. Applications of this problem arise in cartography, pattern recognition, and graphic design [5,9,25], and has received much attention in computational geometry [1,6,16,20,27].

In the Min–Max problem a polygonal chain with \(k\) joints is fitted to a data set with the goal of minimizing the maximum vertical distance from the input points to the chain. This problem was first posed by Hakimi and Schmeichel [17] and solved in \(O(n^2 \log n)\) time. The complexity has since been improved, first by Wang et al. [29] to \(O(n^2)\) time and then by Goodrich [14] to \(O(n \log n)\) time.

We consider the case in which the approximating curve is an orthogonal polygonal chain, i.e., a chain of consecutive orthogonal line segments where the two extreme segments are half-lines with the same slope, the slope of the orthogonal polygonal chain. The case in which this slope is given was first solved by Díaz-Báñez and Mesa [11] in \(O(n^2 \log n)\) time, and subsequently improved by Wang [28] to \(O(n^2)\) time, and by López and Mayster [24] to \(\min\{n^2, nk \log n\}\) time. Very recently, Fournier and Vigneron [13] give an \(O(n)\) time algorithm if the points are sorted by their \(x\)-coordinates, and an \(O(n \log n)\)
time algorithm for the unsorted case. These authors give an \(\Omega(n \log k) \) lower bound for the decision problem and thus prove the optimality of their algorithm for the unsorted case when \(k = \Theta(n) \).

Let \(S = \{p_1, \ldots, p_n\} \) be a set of \(n \) points in the plane in general position, i.e., no three points on a line. When \(k \geq 1 \) and \(0^\circ \leq \theta < 180^\circ \), a \(k \)-orthogonal polygonal chain with orientation \(\theta \), \(O_{k,\theta} \), is a chain of \(2k - 1 \) consecutive orthogonal segments such that the extreme segments are in fact half-lines with slope \(\tan(\theta) \). Thus, \(O_{k,\theta} \) consists of \(k \) segments with slope \(\tan(\theta) \) and \(k - 1 \) segments with slope \(\tan(\theta + 90^\circ) \) (Fig. 1). Clearly, \(O_{k,\theta} \) is always monotone with respect to its orientation.

We deal with the problem of fitting a \(k \)-orthogonal polygonal chain \(O_{k,\theta} \) to the set \(S \). Fitting \(O_{k,\theta} \) to \(S \) means to locate \(\theta \)-oriented segments \(s_i(\theta), i = 1, \ldots, k \), according to a given optimization criterion. We consider the Min–Max criterion, illustrated in Fig. 1 and defined as follows. Let \(l_i(\theta) \) be the line passing through \(p_i \in S \) with orientation \(\theta + 90^\circ \). The fitting distance between \(p_i \) and \(O_{k,\theta} \), denoted by \(d_f(p_i, O_{k,\theta}) \), is given by

\[
d_f(p_i, O_{k,\theta}) = \min_{p \in l_i(\theta) \cap O_{k,\theta}} d(p_i, p).
\]

Notice that \(d_f \) is not the Euclidean distance between the point \(p_i \) and the polygonal chain. However, we can assume that this distance is the Euclidean distance between \(p_i \) and a point on a segment with orientation \(\theta \) in \(O_{k,\theta} \). The error tolerance of \(O_{k,\theta} \) with respect to \(S \), denoted by \(\mu(O_{k,\theta}, S) \), is the maximum fitting distance between the points of \(S \) and \(O_{k,\theta} \), i.e.,

\[
\mu(O_{k,\theta}, S) = \max_{p_i \in S} d_f(p_i, O_{k,\theta}).
\]

Definition 1. The \(k \)-fitting problem for \(S \) with the Min–Max criterion consists of finding an orthogonal polygonal chain \(O_{k,\theta} \) such that its error tolerance \(\mu(O_{k,\theta}, S) \) is minimized.

Notice that if the orientation of \(O_{k,\theta} \) is fixed, for example \(\theta = 0^\circ \), then the \(k \)-fitting problem consists of finding an \(x \)-monotone rectilinear path formed by \(2k - 1 \) segments with minimum error tolerance where the fitting distance is just the vertical distance [11].

We focus here on the case where \(k \) is small, in fact \(k = 2 \), and the points in \(S \) are not sorted. We study the 2-fitting problem for \(S \) with fixed orientation (the *oriented 2-fitting problem*) and the problem of finding the best orientation for fitting a two-joint orthogonal polygonal chain to \(S \) (the *un-oriented 2-fitting problem*). We also consider the extension of the problem to three-dimensions where an orthogonal polygonal chain is a configuration of orthogonal planes. See Chen and Wang [78] for recent results on some variants of this problem including NP-hardness results in three dimensions.

Outline of the paper. In Section 2 we study the oriented fitting problem in the plane. In Section 3 we study the un-oriented 2-fitting problem in the plane. Finally, in Section 4, we study the oriented 2-fitting problem in three-dimensions.

2. The oriented fitting problem

In this section we consider the oriented \(k \)-fitting problem for \(S \), i.e., the case where the orientation \(\theta \) of the \(k \)-orthogonal chain that fits \(S \) is fixed. Without loss of generality we assume that \(\theta = 0^\circ \). Thus, we are looking for an \(x \)-monotone rectilinear path, \(O_{k,\theta} \) or \(O_k \), consisting of an alternating sequence of \(k \) horizontal and \(k - 1 \) vertical segments with minimum error tolerance.

Often, the algorithms proposed in the literature for these kinds of fitting problem assume that the input points are given in sorted order. Recently, Fournier and Vigneron [13] give an \(O(n \log n) \) time algorithm for the oriented \(k \)-fitting problem when the points are unsorted and prove its optimality when \(k = \Theta(n) \). The running time of the algorithm from Lopez and Mayster [24] is \(\min(n^2, nk \log n) \) which is \(O(n \log n) \) when \(k \) is a constant. For the sorted case, Fournier and Vigneron [13]...
present an optimal $O(n)$ time algorithm, and an $\Omega(n \log k)$ time lower bound for the decision problem for the unsorted case. Here we consider the oriented k-fitting problem for the case $k=2$ for the unsorted case.

Let $S = \{p_1, \ldots, p_n\}$, where $p_i = (x_i, y_i)$. We can compute $y_{\text{max}} = \max(y_1, \ldots, y_n)$ and $y_{\text{min}} = \min(y_1, \ldots, y_n)$ in linear time. The oriented 1-fitting problem then is solved in $O(n)$ time by finding the horizontal line $y = (y_{\text{max}} + y_{\text{min}})/2$.

Let O_2 denote an optimal solution to the oriented 2-fitting problem for a set S. Then O_2 consists of two horizontal half-lines joined by a vertical segment contained in a vertical line ℓ^* which partitions S into subsets S_1 and S_2, namely the points of S to the left and to the right of ℓ^* respectively. Since ℓ^* must minimize the maximum error tolerance of S_1 and S_2, the following is apparent.

Lemma 1. Line ℓ^* separates the two points in S with y-coordinates y_{min} and y_{max}.

We remark here that there could be several points that achieve y_{max} and y_{min}. All these points can be computed in linear time. It is clear that ℓ^* has to separate all the y_{max} points from all y_{min} points, since otherwise the solution is trivial. This can be checked in linear time. Thus, without loss of generality we can assume that the y_{max} and y_{min} points are unique.

Linear time algorithm for oriented 2-fitting. Any vertical line ℓ between two points of S induces a candidate solution to the oriented 2-fitting problem whose cost is given by $\max(\epsilon_1, \epsilon_2)$, where ϵ_1 (resp. ϵ_2) denotes the tolerance of the subset of S to the left (resp. right) of ℓ. Our algorithm performs a binary search based on the following observation:

Lemma 2. If ℓ is not optimal and $\epsilon_1 < \epsilon_2$ (resp. $\epsilon_1 > \epsilon_2$) then ℓ^* lies to the right (resp. left) of ℓ.

We now outline the algorithm. Let ℓ denote the vertical line through the median x-coordinate of S. Partition S into subsets S_1 and S_2 to the left and right of ℓ, respectively. Compute also the tolerances ϵ_1 of S_1 and ϵ_2 of S_2, and store the two witness pairs of points responsible for the tolerances. All this can be computed in $O(n)$ time [10]. If $\epsilon_1 = \epsilon_2$, stop the algorithm, as $\ell^* = \ell$. If $\epsilon_1 < \epsilon_2$, in $O(n/2)$ time compute the median of S_2, reset ℓ as the vertical line at this median value, compute the subsets S'_2 and S''_2 of the bipartition of S_2 produced by the new median, and compute the tolerances ϵ'_2 and ϵ''_2 of S'_2 and S''_2. The next move of ℓ (left or right) is determined based on the maximum of ϵ'_2 and ϵ''_2 where ϵ is the error tolerance of all points to the left of ℓ, which can be obtained in constant time by the two witness points for ϵ_1 and the two witness points for ϵ_2. Store the tolerance values and the corresponding witness pairs as temporary values. Next compute and update the tolerances once we know the next move of ℓ. (If $\epsilon_1 > \epsilon_2$ we proceed in a symmetric way.) Compare the new tolerance values and continue recursively translating the line ℓ left or right by computing the new median of a subset with half of the points and updating the new tolerance values (left and right) from the old ones. At all times we have two unions at the extremes and an unknown zone in between containing at most two strips. The points in the zone are known but, in general, are not sorted.

Clearly, the time complexity of the algorithm is $T(n) = T(n/2) + O(n) = O(n)$, using a linear time median finding algorithm [10]. By Lemma 1 the optimal line ℓ^* will be located between the two points in S with y-coordinates y_{min} and y_{max}. The algorithm stops when either the tolerance values ϵ_1 and ϵ_2 are equal, or when translating ℓ left and right the bigger of the two tolerances switches sides and the unknown zone contains no points. In this last case the solution will be the best of the two. Since the algorithm performs a binary search on a unimodal function, the method is correct. Notice that the solution (position of line ℓ or bipartition of S) is not unique because in an optimal solution some points can belong to S_1 or S_2 without changing the solution. Notice also that our algorithm does not sort the input points. We have the following result.

Theorem 1. The oriented 2-fitting problem can be solved in $\Theta(n)$ time and space.

By the $\Omega(n \log k)$ lower bound for the decisional oriented k-fitting problem [13] in the unsorted case, it is clear that if $k = o(n)$ there is no linear time algorithm. Thus, we raise the following open question more from a theoretical than from a practical point of view.

Open problem 1. For which values of $k \geq 3$ does there exist a linear time algorithm for the oriented k-fitting problem?

2.1. An $O(n \log n)$-time algorithm

We now describe an $O(n \log n)$-time algorithm for the oriented 2-fitting problem whose interest derives not from its time complexity but from the fact that it will be used as a preprocessing step in the $O(n \log n)$-time algorithm for the un-oriented 2-fitting problem discussed in Section 3. We start by introducing a basic tool.

In [21,26] the maxima problem for a point set S in the plane is considered. Concretely, given two points $p_i, p_j \in S$, the following dominance relation is established: p_i dominates p_j ($p_j \prec p_i$), if $x_i \leq x_j$ and $y_i \leq y_j$. The relation \prec is a partial order in S. A point $p_i \in S$ is called maximal if there does not exist $p_j \in S$ such that $i \neq j$ and $p_i \prec p_j$. The maxima problem
consists of finding all the maximal points of \(S \) under dominance. One can formulate maxima problems for each quadrant in the plane. We are interested in the set of maximal points for \(S \) with respect to the four quadrants which form the rectilinear convex hull of \(S \), also known as orthogonal convex hull (Fig. 2). Each set of maximal points has a total ordering that can be stored in a height balanced search tree [26].

Theorem 2. (See [21].) The maxima problem for \(S \) with respect to any of the four quadrants can be solved optimally in \(\Theta(n \log n) \) time and \(O(n) \) space.

\(O(n \log n) \)-time algorithm for oriented 2-fitting

1. Let \(x_{\max}, x_{\min}, y_{\max}, \) and \(y_{\min} \) denote the respective maximum and minimum of the \(x \)- and \(y \)-coordinates of the points in \(S \). Without loss of generality assume \(x_{\min} = y_{\min} = 0 \), \(x_{\max} = c \), and \(p_1 = (0, y_1) \), \(p_n = (c, y_n) \), \(p_1 = (x_1, y_{\max}) \), and \(p_j = (x_j, 0) \) (Fig. 2), i.e., the rectangle with corners at \((0, 0)\) and \((c, y_{\max})\) is the axis-parallel bounding box for \(S \). Assume further that \(p_1 \) is strictly to the left of \(p_j \) and thus, by Lemma 1, the vertical line \(\ell^* \) lies between \(p_1 \) and \(p_j \). (If both have the same \(x \)-coordinate the solution is trivial.)

By Theorem 2, in \(O(n \log n) \) time we can compute the rectilinear convex hull of \(S \) formed by the staircases structure as in Fig. 2. Notice that staircases of opposite quadrants can intersect. Since \(p_1 \) is to the left of \(p_j \), then the third quadrant staircase gives the lower point on the left of \(\ell^* \) and the first quadrant staircase gives the upper point on the right of \(\ell^* \).

2. By Lemma 1 the vertical line \(\ell^* := (x = a) \) is between \(x_i \) and \(x_j \). In order to find its correct location we do a binary search over the points in the staircase structure (first and third quadrants) in \(O(\log n) \) time getting the best balance between the error tolerance on the left and on the right sides of \(\ell^* \), i.e.,

\[
\min \ a \quad \text{subject to} \quad \max\{y_{\max} - y_k\} \geq \max_{x_0 > a} y_m \quad (1)
\]

or

\[
\max \ a \quad \text{subject to} \quad \max\{y_{\max} - y_k\} \leq \max_{x_0 > a} y_m . \quad (2)
\]

For at least one of Eqs. (1) or (2) there exists a solution. In case (1), the error tolerance of \(S \) is given by the points to the left of \(\ell^* \) and, in case (2), by the points to the right of \(\ell^* \). In constant time compute this error tolerance given by the difference between the bigger and smaller \(y \)-coordinates of the points to the left or right of line \(\ell^* \).

If \(p_i \) is to the right of \(p_j \), then the algorithm is similar with the obvious changes: the second quadrant staircase gives the upper point to the left of \(\ell^* \) and the fourth quadrant staircase gives the lower point to the right of \(\ell^* \).

Notice that once the rectilinear convex hull of \(S \) is obtained, the oriented 2-fitting problem can be solved in \(O(\log n) \) time; this is a key component for the algorithm of Section 3.

The above staircase structure can be used to design \(O(n \log n) \) time algorithms for the oriented 3-fitting and 4-fitting problems as well. We consider 3-fitting first. Let \(\ell_1 \) and \(\ell_2 \) denote, respectively, the two vertical lines containing the two vertical segments of the solution. By Lemma 1, at least one of \(\ell_1 \) and \(\ell_2 \) must lie between \(y_{\max} \) and \(y_{\min} \). Assume that \(\ell_1 \) is to the left of \(\ell_2 \). There are at most a linear number of locations for \(\ell_1 \) between two consecutive points of the staircase structure. For each of these locations a binary search over the staircase structure to the right of \(\ell_1 \) yields the optimal location for \(\ell_2 \) in \(O(\log n) \) time. Details are omitted but the binary search depends on whether the location of \(\ell_2 \) is either between \(y_{\max} \) and \(y_{\min} \), or to the right of \(y_{\min} \).
3. The un-oriented 2-fitting problem

In this section we consider the problem of fitting S using an un-oriented 2-orthogonal polygonal chain \(O_{2,\theta} \) with free orientation \(\theta \). Notice that the un-oriented 1-fitting problem for \(S \) is equivalent to the problem of computing the width of \(S \). If we know the convex hull of \(S \), this problem can be solved in \(O(n) \) time using rotating calipers [19]. Otherwise, computing the width of \(S \) has an \(\Omega(n \log n) \)-time lower bound [23]. Therefore the un-oriented 1-fitting problem for \(S \) can be solved optimally in \(\Theta(n \log n) \) time.

Before studying the un-oriented 2-fitting problem we introduce some notation and tools which will be useful later. We start by reviewing some definitions and results from Avis et al. [2] concerning the computation of un-oriented \(\Theta \)-maximal points of a planar point set \(S \).

Definition 2. (See [2].) A ray from a point \(p \in S \) is called a maximal ray if it passes through another point \(q \in S \). A cone is defined by a point \(p \) and two rays \(C \) and \(D \) emanating from \(p \). A point \(p \in S \) is an un-oriented \(\Theta \)-maximal with respect to \(S \) if and only if there exist two maximal rays, \(C \) and \(D \), emanating from \(p \) with an angle at least \(\Theta \) between them so that the points of \(S \) lie outside the \((\Theta\text{-angle})\) cone defined by \(p \), \(C \) and \(D \) (Fig. 3(a)).

Theorem 3. (See [2].) All un-oriented \(\Theta \)-maximal points of \(S \) for \(\Theta \geq 90^\circ \) can be computed in \(O(n \log n) \) time and \(O(n) \) space, and the algorithm is optimal for fixed values of \(\Theta \).

For \(\Theta = 90^\circ \), the output of the algorithm of Theorem 3 is the list of all the un-oriented 90\(^\circ\)-maximal points that are apices of the wedges that have bounding rays (crossing an edge of \(CH(S) \)) with aperture angle at least 90\(^\circ\). For every such maximal point \(p \) the output also contains the two rays \(L_p \) and \(R_p \) bounding the widest empty wedge on the left and on the right, respectively (Fig. 3(b)). Since the aperture angle is at least 90\(^\circ\), then each maximal point \(p \) can have at most three disjoint wedges. In constant time we can compute the set of orientations of the bisectors of the (90\(^\circ\)-angle) cones with apex \(p \) contained in the wedge defined by \(p \), \(L_p \) and \(R_p \); compute the ray \(R_p \) (resp. \(L_p \)) from \(p \) which is perpendicular to \(L_p \) (resp. \(R_p \)), the bisectors of the (90\(^\circ\)-angle) cones formed by \(R_p \), \(p \), \(L_p \) and by \(R_p \), \(p \), \(L_p \) are the extremes of the set of orientations of bisectors (Fig. 3(b)). This set of orientations can be translated into an orientation interval in \(S^1 \) (see footnote 3 for definition). Thus, each maximal point \(p \in S \) can have at most three disjoint orientation intervals in \(S^1 \) such that for each orientation inside these intervals the point \(p \) is 90\(^\circ\)-maximal. Notice that all the points in the boundary of the convex hull of \(S \) are 90\(^\circ\)-maximal, and that the total number of orientation intervals is linear.

Now we consider the un-oriented 2-fitting problem. An optimal solution for this problem is given by an orthogonal polygonal chain \(O_{2,\theta} \) with orientation \(\theta \) such that the error tolerance of \(S \) with respect to \(O_{2,\theta} \) is minimum. Clearly, this is equivalent to the problem of determining a line \(\ell_\theta \) with slope \(\tan(90^\circ + \theta) \) that splits \(S \) into subsets \(S_{l_\theta} \) and \(S_{r_\theta} \), where \(e_{l_\theta}^u \) and \(e_{l_\theta}^b \) (\(e_{r_\theta}^u \) and \(e_{r_\theta}^b \)) are the points responsible for the error tolerance of \(S_{l_\theta} \) (\(S_{r_\theta} \)) and such that \(O_{2,\theta} \) minimizes the error tolerance of \(S \) over all values of \(\theta \). Accordingly, the error tolerance is given by the following formula, where \(d_\theta(p, q) \) denotes the distance between parallel lines through \(p \) and \(q \) with orientation \(\theta \).

\[
\mu(O_{2,\theta}, S) = \max_{p_1, p_2 \in S} \{d_\theta(e_{l_\theta}^u, e_{l_\theta}^b, d_\theta(e_{r_\theta}^u, e_{r_\theta}^b))\}.
\]

Let \(y_{\min, \theta} \) and \(y_{\max, \theta} \) be the minimum and maximum \(y \)-coordinates of the points in \(S \) when the coordinate system is rotated by angle \(\theta \). The following lemma is a generalization of Lemma 1.

3 By \(S^{d-1} \), \(d \geq 2 \), we denote the unit sphere centered at the origin of the coordinate system defined by the tips of the unit normal vectors of the orientations in \(\mathbb{R}^d \).
Lemma 3. Given an orientation \(\theta \), an optimal solution for the un-oriented 2-fitting problem with orientation \(\theta \) is defined by a line \(\ell_\theta \) passing through a point of \(S \) which separates the points of \(S \) with \(y \)-coordinates \(y_{\text{min}, \theta} \) and \(y_{\text{max}, \theta} \).

Description of the un-oriented 2-fitting algorithm. The goal of our approach is to adapt the \(O(n \log n) \)-time algorithm for the oriented 2-fitting problem described earlier to account for continuous changes in the orientation \(\theta \), looking for the optimal \(O_{2, \theta} \) chain in the process. To do this we update the staircase structure as \(\theta \) varies and use Lemma 3 to look for an optimal solution.

- **Initialization:** The starting situation is the staircase structure formed by the four sets of maximal points with respect to the four quadrants of the coordinate system when \(\theta = 0^\circ \). Analogously to [21,26], we use a height-balanced search tree to store and compute each of the four sets of maximal points with insertions or deletions in optimal \(O(n \log n) \) time. Thus, we compute the staircase structure and its corresponding optimal solution in \(O(n \log n) \) time as we did for the oriented case.

- **Update as \(\theta \) sweeps over \([0^\circ, 90^\circ]\):** As we rotate the coordinate system according to the orientation \(\theta \) in discrete steps from \(\theta = 0^\circ \) to \(\theta = 90^\circ \) to compute the un-oriented optimal solution, we identify the four quadrants by their oriented bisectors, i.e., by the oriented lines with slopes tan\((\theta + 45^\circ)\), tan\((\theta + 135^\circ)\), tan\((\theta + 225^\circ)\), and tan\((\theta + 315^\circ)\). The staircases are formed by the four sets of maximal points in \(S \) with respect to the bisectors of the current four quadrants. Notice that for any \(\theta \), a point is in the staircases if and only if it is a 90\(^\circ\)-maximal point for some of the four orientations above, i.e., when at least one of these four orientations lies in the orientation intervals defined by the point.

The main idea of the algorithm is to rotate the coordinate system by \(\theta \), and update the staircase structure by inserting or deleting points to each of the staircases as the orientation \(\theta \) changes. To do this we maintain four ordered lists of the current un-oriented 90\(^\circ\)-maximal points of \(S \) with respect to the bisectors with orientations \(\theta + 45^\circ \), \(\theta + 135^\circ \), \(\theta + 225^\circ \), and \(\theta + 315^\circ \). The lists correspond to the sequences of points in the four staircases. More precisely, the staircase structure will be maintained with insertions and deletions of points induced by the changes in \(\theta \). Notice that for any orientation \(\theta \) the staircase structure has linear size, and updating a point on it can be done in \(O(\log n) \) time as in the \(\theta = 0^\circ \) case [21,26].

As \(\theta \) changes, the four staircases can be modified because either a new point of \(S \) becomes 90\(^\circ\)-maximal or some current 90\(^\circ\)-maximal point of \(S \) has to be deleted. To determine the sequence of events, as \(\theta \) changes, we use Theorem 3 to pre-compute in \(O(n \log n) \) time the set of all un-oriented 90\(^\circ\)-maximal points of \(S \) together with their respective orientation intervals in \(S^1 \). These orientation intervals are the intervals where each point is an un-oriented 90\(^\circ\)-maximal point for \(S \). Notice that a point can be 90\(^\circ\)-maximal for at most 3 (disjoint) orientation intervals and, consequently, the total number of changes in the staircase structure is linear.

To know in advance the sequences of events, i.e., the values of \(\theta \) where insertions or deletions of points occur, we proceed as follows. Suppose that we have computed the orientation intervals for each point \(p_i \in S \). Fig. 4 represents the set of these orientation intervals. A point \(p \in S \) can have at most 3 disjoint orientation intervals. We sweep the set of these intervals from \(0^\circ \) to \(360^\circ \), keeping track, for each orientation \(\theta \), of the set of 90\(^\circ\)-maximal points for that orientation which is the set of intervals intersected by the sweep line.

Thus, the algorithm performs a sweep of these intervals from \(\theta = 0^\circ \) to \(\theta = 90^\circ \) by vertical lines corresponding to orientations \(\theta \), \(\theta + 90^\circ \), \(\theta + 180^\circ \), and \(\theta + 270^\circ \), stopping at each event (interval endpoint) and updating the staircase structure. Since the points in \(S \) are in general position, only a constant number of updates can occur at each event. We compute the optimal solution for the staircase structure between two consecutive events by computing a line \(\ell_\theta \) with slope tan\((\theta + 45^\circ)\), as explained below. In order to cover all the orientations of the plane, we also run the algorithm as \(\theta \) changes from 90\(^\circ\) to 180\(^\circ\), which can be handled analogously.

Consider consecutive events \(\theta_1 \) and \(\theta_2 \), Lemma 3 implies that for a fixed value \(\theta \in [\theta_1, \theta_2] \), the line \(\ell_\theta \) that gives the optimal solution has to separate the points with the current \(y \)-coordinates \(y_{\text{min}, \theta} \) and \(y_{\text{max}, \theta} \). Thus, the optimal solution is determined by two pairs of points, either (i) \((y_{\text{max}, \theta}, e_u^y)\) and \((e_v^y, y_{\text{min}, \theta})\) if \(y_{\text{max}, \theta} \) is to the left of \(y_{\text{min}, \theta} \), or (ii) \((e_u^y, y_{\text{min}, \theta})\) and \((y_{\text{max}, \theta}, e_v^y)\) if \(y_{\text{max}, \theta} \) is to the right of \(y_{\text{min}, \theta} \), giving the error tolerance in \(S_{\ell_\theta} \), the left error tolerance, and the error
tolerance in S_{θ_0}, the right error tolerance, respectively. To compute the optimal solution between two consecutive events we use the following lemma.

Lemma 4. Let $[\theta_1, \theta_2]$ be an orientation interval corresponding to consecutive events. The optimal solution for the un-oriented 2-fitting problem in this interval occurs at an endpoint, i.e., at θ_1 or θ_2, or at an orientation $\theta_0 \in [\theta_1, \theta_2]$ where the left and right error tolerances are equal.

Proof. Let $\theta_0 \in [\theta_1, \theta_2]$ be the orientation of the optimal solution in $[\theta_1, \theta_2]$. Assume that the left and right error tolerances of the optimal solution for θ_0 are given by the point pairs (p_i, p_k) and (p_j, p_m), respectively. Let p_i and p_j be the points with maximum and minimum y-coordinate, respectively, for any orientation in $[\theta_1, \theta_2]$. The identity of these points does not change in the interval, as otherwise we would get a new orientation interval. Assume that p_i is to the left of p_j. Other cases can be handled analogously.

The left error tolerance can be written as a function $w_1(\theta) = d(p_i, p_k) \cos(\theta_{ik} - \theta)$, where θ_{ik} is the orientation of the line passing through p_i and p_k, and θ is the current orientation in the rotation process. This function is a continuous and unimodal function of the angle θ. Thus, either $w_1(\theta)$ always increases as in Fig. 5(a), or it always decreases as in Fig. 5(b), or the unique increasing/decreasing change occurs if, during the rotation, p_k passes from one side to the other side of line $\ell_{\theta,i}$ with orientation θ going through p_i, which is a predictable event. An entirely analogous situation occurs with the right error tolerance with the function $w_2(\theta) = d(p_j, p_m) \cos(\theta_{jm} - \theta)$ (Figs. 5(c) and 5(d)).

If both functions $w_1(\theta)$ and $w_2(\theta)$ increase, the optimal solution is found at the endpoint θ_1, as otherwise we can rotate clockwise, decreasing both error tolerances in the process (Fig. 6(a)). If both functions $w_1(\theta)$ and $w_2(\theta)$ decrease, the optimal solution is found at the endpoint θ_2 as a counterclockwise rotation decreases both error tolerances (Fig. 6(c)). Analogous is the case when $w_1(\theta)$ increases and $w_2(\theta)$ decreases, or vice versa, but both functions do not intersect. Otherwise, the intersection of both functions gives the optimal solution in an orientation θ_0 when the left and right error tolerances are equal (Fig. 6(b)). This can be detected because there is a change of the maximum error tolerance from the right error tolerance in θ_1 to the left error tolerance in θ_2 or vice versa.

As a consequence of Lemma 4, the optimal solution for a (non-starting) interval orientation $[\theta_1, \theta_2]$ can be computed in $O(\log n)$ time. Summarizing: (1) the number of events for the staircase structure as θ changes from 0° to 90° is linear, (2) any update can be done in $O(\log n)$ time, (3) for a fixed value of θ an $O(\log n)$ time binary search produces the optimal location of the line ℓ_θ, its corresponding error tolerance, and allows us to maintain the minimum one. We conclude that the un-oriented 2-fitting problem can be solved in $O(n \log n)$ time and $O(n)$ space.

The un-oriented-2-fitting-algorithm. We assume that for the current orientation θ the point with y-coordinate $y_{\max,\theta}$ is to the left of the point with y-coordinate $y_{\min,\theta}$; otherwise, we only update the changes in the staircase structure without computing the optimal solution. We repeat the algorithm for the alternative case.

1. Use the algorithm from Avis et al. [2] to compute in $O(n \log n)$ time the list of the un-oriented 90°-maximal points of S and their orientation intervals in S^1 where each point is un-oriented 90°-maximal. Sort the arrangement of the orientation intervals according to their endpoints in such a way that when we sweep the arrangement we know which 90°-maximal points are active in a current sweeping orientation, and which is the next incoming endpoint (Fig. 4).
2. In $O(n \log n)$ time compute the horizontal/vertical staircase structure for S and the optimal solution as we did in the oriented 2-fitting problem. The staircase structure is formed by the 90°-maximal points for S with orientations $0^\circ + 45^\circ$, $90^\circ + 45^\circ$, $180^\circ + 45^\circ$, and $270^\circ + 45^\circ$.

3. Sweep the arrangement of the orientation intervals with the four vertical lines. Each time that we reach an endpoint, either (1) a new un-oriented 90°-maximal point enters the staircase structure, or (2) an active un-oriented 90°-maximal point is deleted from the staircases. We update the changes in the staircases in $O(\log n)$ time, including also the possible changes of the points with minimum and maximum y-coordinates for the current orientation. Since we consider the points in general position, at most two aligned points are updated at the same time producing a constant number of changes. We use binary search to compute the separating line of the new optimal solution in $O(\log n)$ time, and store and update the information of the optimal solution.

Notice that a point enters one of the staircases at most once, so a point is updated a constant number times and the overall running time for updating changes is $O(n \log n)$ time. The running time of the algorithm is $O(n \log n)$ and the space is $O(n)$ since the lists and the arrangement of orientation intervals have linear size.4

Next, we show a reduction for the un-oriented 2-fitting problem from a MAX-GAP problem for points on the first quadrant of the unit circle centered at the origin of the coordinates system to our problem. This MAX-GAP problem has an $\Omega(n \log n)$ time lower bound in the algebraic decision tree model [23]. Let $P = \{(x_1, y_1), \ldots, (x_n, y_n)\}$ be the set of points of an instance of MAX-GAP. Consider a symmetric copy of points in the third quadrant and new copies of the overall circle in other positions as in Fig. 7. It is easy to see that the optimal un-oriented 2-fitting orthogonal chain defines the maximum gap for P and vice versa. This construction can be generalized to work with the un-oriented k-fitting problem, $k \geq 3$, using $k - 1$ copies of the initial circle with the centers located with adequate distances between them.

Theorem 4. The un-oriented 2-fitting problem can be solved in optimal $\Theta(n \log n)$ time and $O(n)$ space.

4. **The oriented 2-fitting problem in 3D**

In this section we consider the oriented 2-fitting problem in three-dimensions where a polygonal chain is interpreted as a configuration of two parallel half-planes, joined with an orthogonal strip. First, we give a short discussion of the 1-fitting problem.

To solve the oriented 1-fitting problem for S in \mathbb{R}^3 we proceed according to how much information about the solution plane we have, distinguishing between two cases:

Case i: The orientation of the solution plane is fixed. Assume that the solution plane has normal $\vec{u} = (0, 0, 1) \in \mathbb{S}^2$. We solve this problem in $\Theta(n)$ time by computing the points with maximum and minimum z-coordinates.

Case ii: The orientation of the solution plane has one degree of freedom. Assume that the solution plane has normal \vec{u} which is orthogonal to $\vec{v} = (0, 1, 0) \in \mathbb{S}^2$. We solve this problem by projecting the points onto a plane with normal \vec{v} and computing the width of the convex hull of the projected points with a rotating caliper. The total running time is $\Theta(n \log n)$. The $\Omega(n \log n)$ time lower bound comes from the computation of the width of the set of points in two-dimensions.

The oriented 2-fitting problem can be defined by three consecutive orthogonal planes. We refer to the plane Π producing the bipartition of S as the separating plane and to the two parallel planes that induce the error tolerances on either side of Π as the supporting planes. We distinguish among three cases depending on how the orientation for the solution is constrained:

4 Notice that the algorithm can maintain the rectilinear convex hull of S during the rotation in $O(n \log n)$ time and $O(n)$ space, improving on a recent result by Bae et al. [4] who present an $O(n^{1.5})$ time and $O(n)$ space algorithm for this problem. In their paper, the authors derive a space/time trade-off: $O(n^{1/2} \log^{1/3} n)$ time and $O(n^{1/2} \log n)$ space are also possible.
(1) the orientations of both the separating plane and the parallel supporting planes are fixed; (2) the orientation of the separating plane is fixed; and (3) the orientation of the parallel supporting planes is fixed. Next, we consider the three cases.

Case (1): The orientations of both the separating plane and the parallel supporting planes are fixed. Assume that the separating plane has normal $\vec{u}_1 = (0, 1, 0)$ and that the parallel supporting planes have normal $\vec{u}_2 = (0, 0, 1)$. We reduce the problem to two-dimensions as follows. Let $\vec{u}_3 = \vec{u}_1 \times \vec{u}_2$, where \times denotes the cross product. We project the points in S onto a plane with normal $\vec{u}_3 = (1, 0, 0)$ and solve it optimally in $O(n)$ time using the algorithm of Section 2.

Theorem 5. The oriented 2-fitting problem in 3D can be solved in $\Theta(n)$ time and space if the orientations of both the separating plane and the parallel supporting planes are fixed.

Case (2): The orientation of the separating plane is fixed. Assume that the separating plane has normal $\vec{u} = (0, 1, 0)$. In $O(n \log n)$ time, sort the points in S along \vec{u}, i.e., by $\vec{u} \cdot p_i$ where \cdot denotes the dot product (e.g., by y-coordinate). Let $\langle p_1, \ldots, p_n \rangle$ be the sequence of the points of S with this order. According to this order, let $S_{i,i} = \{p_1, \ldots, p_i\}$ and $S_{r,i} = \{p_{i+1}, \ldots, p_n\}, i = 1, \ldots, n-1$, be the bipartition of S given by the separating plane passing through p_i. In order to compute the parallel supporting planes of $S_{i,i}$ and $S_{r,i}$ for determining which bipartition of S gives the optimal solution, we project the points of $S_{i,i}$ and the points of $S_{r,i}$ onto two planes parallel to the separating plane. We work with the convex hulls of the projected points. Let $S'_{i,i}$ and $S'_{r,i}$ be the projected points of $S_{i,i}$ and $S_{r,i}$ respectively, and let $CH(S'_{i,i})$ and $CH(S'_{r,i})$ be their respective convex hulls (Fig. 8).

To find the optimal 2-fitting solution for a bipartition $S_{i,i}$ and $S_{r,i}$, we use two clockwise rotating calipers which rotate simultaneously over $CH(S'_{i,i})$ and $CH(S'_{r,i})$ in discrete steps. Each step is defined by the minimum rotating angle of the two calipers on antipodal pairs. Suppose that at some step, the rotating caliper over $CH(S'_{i,i})$ (resp. $CH(S'_{r,i})$) has antipodal points q_1 and q_2 (resp. q_3 and q_4). Let α_1 (resp. α_2) be the angle of rotation with respect to the parallel supporting lines passing through q_1 and q_2 (resp. q_3 and q_4). Let w_1 (resp. w_2) be the width function of $CH(S'_{i,i})$ (resp. $CH(S'_{r,i})$) in the rotation interval and $d_1 = d(q_1, q_2)$ (resp. $d_2 = d(q_3, q_4)$). The continuous and monotone width function w_1 (resp. w_2) depends on d_1 (resp. d_2) and $\cos(\alpha_1)$ (resp. $\cos(\alpha_2)$). The minimum of the maximum of the two width values is a minimum of the upper envelope of the two functions w_1 and w_2. We compute the minimum of the upper envelope in the rotation interval and the corresponding width (at most a linear number of intervals) and maintain the best solution.

Algorithm for case (2). We can update the convex hulls $CH(S'_{i,i})$ and $CH(S'_{r,i})$ in $O(n \log n)$ time when a point p_i changes from $S_{r,i-1}$ to $S_{i,i}$ [3]. We use linear time for the task of computing an optimal solution for each bipartition and update the optimal. Thus, the total running time is $O(n^2)$.

Next, we show a reduction from the MAX-GAP problem for points on the first quadrant of the unit circle [23] to case (2) of the oriented 2-fitting problem.

Since MAX-GAP has an $\Omega(n \log n)$ time lower bound in the algebraic decision tree model [23], this establishes the same bound for our problem. The reduction is as follows. Let $P = \{p_1, \ldots, p_n\}$ be an instance of the MAX-GAP problem for points on the first quadrant of the unit circle C in the XZ-plane centered at the origin of the coordinate system, where $p_i = (x_i, 0, z_i)$, for $i = 1, \ldots, n$. In $O(n)$ time compute the first, the second, the penultimate, and the last points of P in the x-coordinate order; without loss of generality, assume that p_1, p_2, p_{n-1}, and p_n are these points of P, respectively. Furthermore, we can assume that $p_1 = (0, 0, 1)$. Make three copies of P on C by rotating clockwise the points of P by $\pi/2$, π, and $3\pi/2$, respectively. Let $P^1 = \{p^1_1, \ldots, p^1_n\}, P^2 = \{p^2_1, \ldots, p^2_n\},$ and $P^3 = \{p^3_1, \ldots, p^3_n\}$ be the points of the three copies. Notice that the rotation of each point can be done in constant time. We put a point a at the intersection point of the line passing through the points p_{n-1} and p_n, and the line passing through the points p_1 and p_2. We put a point b at the intersection point of the line passing through the points p^1_{n-1} and p^1_n, and the line passing through the points p^2_1 and p^2_2. We put a point c at the intersection point of the line passing through the points p^2_{n-1} and p^2_n, and the line passing through the points p^3_1 and p^3_2. Finally, we put a point d at the intersection point of the line passing through the points p^3_{n-1} and p^3_n, and the line passing through the points p^1_1 and p^1_2. Now let S_1 be the set of these $4n + 4$ points in C, i.e., $S_1 = P \cup P^1 \cup P^2 \cup P^3 \cup \{a, b, c, d\}$. The four points $\{a, b, c, d\}$ force that the minimum width of S_1 (or equivalently the MAX-GAP of P) is defined by two consecutive points of P and the corresponding rotated points in P^2 (similarly for P^1 and P^3).
and \(P^3 \), since we can always rotate the caliper of parallel lines decreasing the width till each of the parallel lines share two consecutive points. Make two copies \(S_2 \) and \(S_3 \) of \(S_1 \) putting their respective centers in the points \((0, 1, 0)\) and \((0, -1, 0)\). Let \(S_4 \) be a set of \(n \) equidistant points in the \(y \)-axis between the points \((0, 1, 0)\) and \((0, -1, 0)\). Let \(S = S_2 \cup S_3 \cup S_4 \) be the set of those \(9n + 8 \) points. Assume that the separating plane has normal \(\vec{u} = (0, 1, 0) \). Now, by construction, an optimal solution for our 2-fitting problem for \(S \) gives the MAX-GAP of the set \(P \) and vice versa. Since the MAX-GAP problem for points on the first quadrant of the unit circle requires \(\Omega(n \log n) \) operations in the algebraic decision tree model \[23\], the lower bound follows.

Notice that we can also have a simpler reduction from computing the width of a planar point set, which is known to admit an \(\Omega(n \log n) \) time lower bound in the algebraic decision tree model \[23\]. The reduction will be as follows: start with a planar point set and consider two copies of the original points. Place one copy on the plane with equation \(y = 0 \), and one copy on plane \(y = 1 \) (after translating by vector \((0, 1, 0)\)). Then the answer to the oriented 2-fitting problem for the copies gives the width of the initial point set.

Theorem 6. The oriented 2-fitting problem in 3D can be solved in \(O(n^2) \) time and \(O(n) \) space if the orientation of the separating plane is fixed. Any solution to the problem requires \(\Omega(n \log n) \) operations in the algebraic decision tree model.

Open problem 2. If the orientation of the separating plane is fixed, can the oriented 2-fitting problem in 3D be solved in \(o(n^2) \) time?

Case (3): The orientation of the parallel supporting planes is fixed. Assume that the parallel supporting planes have normal \(\vec{u} = (0, 0, 1) \). Let \(z_{\min} \) (resp. \(z_{\max} \)) be the points of smallest (resp. largest) \(z \)-coordinate. To simplify the notation, we do not distinguish between a point and its \(z \)-coordinate, as the intended meaning shall be clear from the context. An optimal separating plane produces a bipartition of \(S \) that separates the points with extreme projections along \(\vec{u} \), i.e., \(z_{\min} \) and \(z_{\max} \). We remark here that if several points share the same \(z \)-coordinate as \(z_{\min} \) (resp. \(z_{\max} \)) we can compute the convex hull of their projection onto the \(XY \)-plane. If the two convex hulls are not separable by a line, the solution is \(z_{\max} - z_{\min} \). This condition can be checked in \(O(n \log n) \) time. Thus, to simplify the discussion, we assume that \(z_{\min} \) and \(z_{\max} \) are distinct and unique and, furthermore, that all the points in \(S \) have different \(z \)-coordinates. Let \(S_{\max} \) (resp. \(S_{\min} \)) be the subset of points of \(S \) in the same half-space as \(z_{\max} \) (resp. \(z_{\min} \)) in an optimal solution. Then, the projections of \(S_{\max} \) and \(S_{\min} \) onto the \(XY \)-plane are separable by the intersection between the separating plane and the \(XY \)-plane (Fig. 9).

Algorithm for case (3). Sort the points in \(S \) along the normal shared by the supporting planes, i.e., by increasing \(z \)-coordinate, and store the results in list \(A \). Initially \(S_{\max} \) and \(S_{\min} \) start as empty sets. We add \(z_{\max} \) to \(S_{\max} \) and remove it from \(A \). Similarly, add \(z_{\min} \) to \(S_{\min} \) and remove it from \(A \). The idea behind the algorithm is to move as many elements from the front of \(A \) to \(S_{\min} \) and from the rear of \(A \) to \(S_{\max} \) as possible, while keeping the two sets \(S_{\min} \) and \(S_{\max} \) separable by a plane parallel to the \(z \)-axis. In fact, we perform a greedy procedure with a double sweeping on the list \(A \) (from top to bottom and from bottom to top, assigning points to \(S_{\max} \) or \(S_{\min} \), respectively). We now elaborate on this.

While \(A \) is not empty do the following. Suppose that the current two sets are separable by a plane parallel to the \(z \)-axis and that the first (resp. last) element of the current list \(A \) is \(A_l \) (resp. \(A_r \)). If \(z_{\max} - A_l \leq A_r - z_{\min} \) (or, equivalently, \(z_{\max} - A_r \leq A_l - z_{\min} \)), then we add \(A_r \) to \(S_{\max} \) and check whether the new set \(S_{\max} \) can be separated from \(S_{\min} \). If they are still separable, then we remove \(A_r \) from \(A \) and continue the above procedure; otherwise, any plane parallel to the \(z \)-axis which can separate the two sets \(S_{\max} \setminus \{A_r\} \) and \(S_{\min} \) is an optimal separating plane and the algorithm can stop. Notice that, in the latter case, since \(A_r \) is assigned to \(S_{\min} \), the remaining points in the list \(A \) do not contribute to improve the optimal solution. If \(z_{\max} - A_l > A_r - z_{\min} \), we proceed similarly. When the algorithm stops, i.e. when separability is no longer possible or \(A \) is empty, the optimal tolerance is taken as the maximum of \(z_{\max} - A_l \) and \(A_r - z_{\min} \).

The algorithm constructs \(S_{\max} \) and \(S_{\min} \) in an incremental fashion while maintaining the following conditions: (1) the two convex hulls of the projections onto the \(XY \)-plane of the points in \(S_{\max} \) and \(S_{\min} \), respectively, are linearly separable; or equivalently, the two vertical (\(z \)-axis aligned) minimal prisms containing the points in \(S_{\max} \) and \(S_{\min} \), respectively, can be separated by a plane parallel to \(\vec{u} = (0, 0, 1) \); (2) the best balanced solution between the tolerances of the current points in \(S_{\max} \) and \(S_{\min} \) is maintained.
To determine whether the two sets above are separable, we can compute the convex hull of their projections onto the XY-plane. By using a dynamic convex hull data structure (with insertion only), each insertion can be performed in $O(\log n)$ time \cite{3,18,22}. With insertion only Preparata \cite{22} gives an $O(\log n)$ worst-case time algorithm that maintains the vertices of the convex hull in a search tree. Thus, the separability test can be done $O(\log n)$ time by computing the distance between both sets \cite{12} and the running time of the algorithm is $O(n \log n)$.

In order to illustrate how the algorithm works and to argue its correctness, we examine the algorithm in 2D. Fig. 10 shows a two-dimensional example (which could be viewed as the projections of the 3D input onto a plane parallel to \vec{u} and perpendicular to the separating plane) where the points are identified and labeled with their z-coordinates in the order of A. Without loss of generality, we assume that z_{max} is to the left of z_{min}. The algorithm moves the current endpoints of the list A to either S_{max} or S_{min}, keeping two non-intersecting "prisms" which contain the points in S_{max} and S_{min}, respectively. In 2D, the prisms become axis-aligned rectangles bounded by two lines ℓ_1 and ℓ_2 (see Fig. 10). As the algorithm proceeds, ℓ_1 moves from left to right and ℓ_2 moves from right to left. As in the 3D case, the algorithm stops when the separability condition no longer holds, i.e., when the intervals corresponding to the convex hulls of the projections of S_{max} and S_{min} onto a horizontal line would be forced to intersect. We obtain an optimal solution by taking any vertical line ℓ between ℓ_1 and ℓ_2. In 3D, the axis-aligned rectangles correspond to vertical prisms whose bases are congruent with the convex hulls of the projected points of S_{max} and S_{min} onto the XY-plane. The (linear) separability of the two prisms is verified by the linear separability of the respective convex hulls.

Correctness: For simplicity, we argue correctness for points in the plane, but the reasoning can be easily generalized to three dimensions. In fact, the tolerances are given by the z-coordinates of the points. We give a proof by contradiction. Assume that the optimal solution gives an error tolerance which is strictly less than the error tolerance given by our algorithm. Without loss of generality, let us suppose that z_{max} is to the left of z_{min}. We consider the following cases:

Case (a): Assume that both tolerances are attained on the left side of the partition. Let $z_{\text{max}} - z_p$ be the value of the tolerance in the optimal solution and $z_{\text{max}} - z_{p'}$ be the tolerance given by the algorithm, for $p, p' \in S$ such that $z_{\text{max}} - z_{p'} > z_{\text{max}} - z_p$ (Fig. 11, case (a)).

Since the algorithm's tolerance occurs on the left, this implies that p' is inserted in S_{max} at some step of the algorithm and, at that step, p' is the rear of the current A and $z_{\text{max}} - z_x \leq z_{p'} - z_{\text{min}}$, where x is the front of the current A. Thus, x is below p' and the linear separability condition holds. Now, we have that

$$z_{\text{max}} - z_p < z_{\text{max}} - z_{p'} < z_{\text{max}} - z_x \leq z_{p'} - z_{\text{min}}.$$ (3)
On the other hand, since $z_{\max} - z_{p'} > z_{\max} - z_p$, in the optimal partition, p' is assigned to S_{\min} and then $z_{\max} - z_p \geq z_{p'} - z_{\min}$, a contradiction with (1).

Case (b): Assume that the tolerances are attained on different sides of the partition. Let $z_{\max} - z_p$ be the tolerance in an optimal solution and $z_q - z_{\min}$ be the tolerance produced by the algorithm, for $p, q \in S$. We then suppose that $z_{\max} - z_p < z_q - z_{\min}$ and our algorithm assigns q to S_{\min}. Consider two subcases: (b.1) $z_p > z_q$ and (b.2) $z_p < z_q$.

(b.1) If $z_p > z_q$, then q is assigned to S_{\min} in the optimal solution since otherwise, $z_{\max} - z_q$ would be the tolerance, and by hypothesis, $z_{\max} - z_p < z_q - z_{\min}$. This contradicts the fact that $z_{\max} - z_p$ is the tolerance in the optimal solution.

(b.2) Suppose now that $z_p < z_q$. Since the algorithm assigns q to S_{\min}, in an earlier step p was also assigned to S_{\min}. Thus at some step of the algorithm p is in the front of the current A and $z_{\max} - z_p \geq z_x - z_{\min}$, where x is the rear of the current A. See Fig. 11, case (b). Moreover, x is above q (in the sweeping of the algorithm, q is assigned to S_{\min}) and we have $z_{\max} - z_p \geq z_x - z_{\min} > z_q - z_{\min}$, which contradicts the hypothesis.

Other cases can be handled analogously. Thus, by the discussion above we get the following result.

Theorem 7. The oriented 2-fitting problem in 3D can be solved in $O(n \log n)$ time and $O(n)$ space if the orientation of the parallel supporting planes is fixed.

Open problem 3. Does the oriented 2-fitting problem in 3D have an $\Omega(n \log n)$ time lower bound if the orientation of the parallel supporting planes is fixed?

Acknowledgements

These problems were proposed and partially solved during the Third Spanish Workshop on Geometric Optimization, July 4–8, 2006, El Rocío, Huelva, Spain. The authors would like to thank the other workshop participants for helpful comments. Three anonymous referees deserve our gratitude for their comments and useful suggestions which allowed us to improve the last two results in three-dimensions.

References

