
 1

Synthesis and Reactivity toward H2 of (η5-

C5Me5)Rh(III) Complexes with Bulky 

Aminopyridinate Ligands 

Ana Zamorano, Nuria Rendón,* José E. V. Valpuesta, Eleuterio Álvarez, and Ernesto Carmona* 

Instituto de Investigaciones Químicas (IIQ) Departamento de Química Inorgánica and Centro de 

Innovación en Química Avanzada (ORFEO-CINQA) 

Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Sevilla 

Av. Américo Vespucio 49, Isla de la Cartuja, 41092 Sevilla (Spain) 

Fax: (+34)954460565 

E-mail: nuria@iiq.csic.es (N. R.), guzman@us.es (E. C.) 

 

 

ABSTRACT. Electrophilic, cationic Rh(III) complexes of composition [(η5-C5Me5)Rh(Ap)]+, 

(1+), were prepared by reaction of [(η5-C5Me5)RhCl2]2 and LiAp (Ap = aminopyridinate ligand) 

followed by chloride abstraction with NaBArF (BArF = B[3,5-(CF3)2C6H3]4). Reactions of 
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cations 1+ with different Lewis bases (e. g. NH3, 4-dimethylaminopyridine or CNXyl) led in 

general to mono-adducts 1·L+ (L = Lewis base; Xyl = 2,6-Me2C6H3) but carbon monoxide 

provided carbonyl-carbamoyl complexes 1·(CO)2
+ as a result of metal coordination and formal 

insertion of CO into the Rh—Namido bond of complexes 1+. Arguably, the most relevant 

observation reported in this study stemmed from the reactions of complexes 1+ with H2. 
1H NMR 

analyses of the reactions demonstrated a H2-catalyzed isomerization of the aminopyridinate 

ligand in cations 1+ from the ordinary κ2-N,N´-coordination to a very uncommon, formally 

tridentate κ-N,η3-pseudo-allyl bonding mode (complexes 3+) following benzylic C—H activation 

within the xylyl substituent of the pyridinic ring of the aminopyridinate ligand. The 

isomerization entailed in addition H—H and N—H bond activation and mimicked previous 

findings with the analogous iridium complexes. However, in dissimilarity with iridium, rhodium 

complexes 1+ reacted stoichiometrically at 20 ºC with excess H2. The transformations resulted in 

the hydrogenation of the C5Me5 and Ap ligands with concurrent reduction to Rh(I), and yielded 

complexes [(η4-C5Me5H)Rh(η6-ApH)]+, (2+), in which the pyridinic xylyl substituent is η6-

bonded to the rhodium(I) centre. New compounds reported were characterized by microanalysis 

and NMR spectroscopy. Representative complexes were additionally investigated by X-ray 

crystallography. 
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INTRODUCTION 

Organometallic compounds of rhodium and iridium that contain a (η5-C5Me5)M(III) fragment 

have been extensively investigated because of their capacity to participate in a wide range of 

chemical transformations.1-6 Many of these complexes can be readily prepared from 

corresponding (C5Me5)M halides7 by displacement reactions that utilize a variety of inorganic, 

organic and organometallic reagents. 

 A main, broad area of research that makes ample use of these complexes is the activation 

of C—H, H—H and other element-hydrogen bonds. Lately, our group has studied the reactivity 

of compounds of this type that contain a cyclometallated phosphine ligand, P^C.8 More recently, 

chelating, also monanionic, cyclometallated C^N and aminopyridinate9 (N^N) ligands have also 

been incorporated into (η5-C5Me5)Ir(III) structures. For instance, bulky aminopyridinate ligands 

(in shorthand notation represented from now on as Ap) have produced five-coordinate [(η5-

C5Me5)Ir(Ap)]+ complexes10  in which the amido nitrogen atom acts as a π-donor to compensate 

the electronic unsaturation of the Ir(III) centre (an η5-cyclopentadienyl ligand is regarded to 

occupy three coordination sites). 

During studies on the reactivity of these [(η5-C5Me5)Ir(Ap)]+ complexes we found that H2 

catalyzed a reversible isomerization of the coordinated Ap ligand, from its common κ2,N,N -́ 

coordination to a novel κ,N,η3-pseudo-allylic binding (structures I  and II  respectively in Figure 

1A) in a process that entailed the reversible activation of H—H, C—H and N—H bonds.10 We 

therefore deemed of interest to prepare the rhodium complexes analogues and to study their 

reactivity toward dihydrogen. Here we report the results of this work that has allowed for the 

isolation and structural characterization of neutral and cationic rhodium complexes, [(η5-
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C5Me5)Rh(Ap)Cl] (1·Cl), and [(η5-C5Me5)Rh(Ap)]+ (1+), respectively (the latter isolated as 

BArF
- salts, where BArF stands for B[(3,5-(CF3)2C6H3]4) for the aminopyridinate groups labelled 

a-d in Figure 1A. Somewhat unexpectedly, and in marked contrast with the analogous iridium 

complexes the reaction of cations 1a+-1d+ with H2 provided only minor amounts of the isomeric 

complexes 3+, with structure of type II  in Figure 1. These complexes could not be isolated, but 

were structurally characterized in solution by NMR spectroscopy. The main products of the 

hydrogenation reactions were instead cationic Rh(I) complexes 2+, with structure III  (Figure 1B) 

that possess neutral pentamethylcyclopentadiene, C5Me5H, and aminopyridine, ApH, ligands 

with η4- and η6-coordination, respectively, in the latter case implicating the pyridine aryl 

substituent. 

 

Figure 1. A: H2-catalyzed isomerization of aminopyridinate ligands in [(η5-C5Me5)Ir(Ap)]+ 

complexes (see reference 10). B: Main Rh(I) products resulting from the reactions of compounds 

[(η5-C5Me5)Rh(Ap)]+ with H2. Rh complexes with structure of type II  were also detected and 
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were characterized by NMR studies (see below). The four Ap ligands labelled a-d were 

employed for both this work and that reported in reference 10a. 

 

RESULTS AND DISCUSSION 

Similarly to the iridium complexes analogues10 the targeted rhodium aminopyridinate derivatives 

were prepared by the low-temperature reaction of [(η5-C5Me5)RhCl2]2 and the corresponding 

lithium aminopyridinate, LiAp (Scheme 1). The reactions yielded the expected neutral [(η5-

C5Me5)Rh(Ap)Cl] complexes, 1a·Cl-1d·Cl, that were readily converted into the desired cationic 

species 1a+-1d+ upon treatment with NaBArF. 

 

 

Scheme 1. Synthesis of neutral and cationic rhodium aminopyridinate complexes of the (ηηηη5-

C5Me5)Rh(III) fragment. 
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The chlorides 1a·Cl-1d·Cl were isolated as reddish crystalline solids. In contrast, both solution 

and solid samples of the 1a+-1d+ cations have a characteristic dark green, almost black, colour. 

This is due to ligand-to-metal charge transfer π-d electronic transitions commonly encountered in 

complexes of this kind, in which the amido functionality exhibits a σ- and π- donor coordination 

behavior.11 The new compounds were characterized by analytical techniques and by NMR 

spectroscopy (see the Experimental Section and the accompanying Supporting Information, SI). 

In addition, two neutral complexes, namely 1a·Cl and 1b·Cl, and the cationic derivatives 1b+, 

1c+ and 1d+ were further analyzed by X-ray crystallography. Members of these series were found 

to have similar structures. Therefore, only the molecular structures of 1b·Cl and 1b+ are depicted 

in Figure 2, whereas the others can be found in the SI (Figures S1 to S5). 

The aminopyridinate ligand of both the neutral and the cationic complexes exhibits its classical 

bidentate coordination despite the strain it creates within the four-member ring. This 

can be seen in the small N—Rh—N bite angle of ca. 62 º found for the neutral complexes, that 

increases slightly in the five-coordinate cations 1+ (to ca. 64.5 º in 1b+). In the neutral complexes 

the Rh—Npy and Rh—Namido bonds have similar lengths, with the former being, as expected,  

 

  

1b·Cl 1b+ 

Figure 2. X-ray structure of complexes 1b·Cl and 1b+ (thermal ellipsoids set at 30% probability and 
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anions omitted for clarity). Selected bond lengths (Angstroms) and angles (degrees) for 1b·Cl: 

Rh(1)−N(2) 2.113(3), Rh(1)−N(1) 2.162(3), Rh(1)−Cl(1) 2.3892(10), Rh(1)−C(22) 2.170(4), 

Rh(1)−C(23) 2.116(4), Rh(1)−C(24) 2.146(4), Rh(1)−C(25) 2.145(4), Rh(1)−C(26) 2.175(4), N(2)-Rh(1)-

Cl(1) 88.91(9), N(1)-Rh(1)-Cl(1) 85.95(9), N(2)-Rh(1)-N(1) 62.05(12), C(1)-N(2)-Rh(1) 95.8(2), C(1)-

N(1)-Rh(1) 92.3(2), N(2)-C(1)-N(1) 109.4(3). Selected bond lengths (Angstroms) and angles (degrees) 

for 1b+: Rh(1)−N(1) 2.135(3), Rh(1)−C(24) 2.139(4), Rh(1)−N(2) 1.981(4), Rh(1)−C(25) 2.156(4), 

Rh(1)−C(22) 2.134(4), Rh(1)−C(26) 2.185(4), Rh(1)−C(23) 2.129(4), N(2)-Rh(1)-N(1) 64.51(14), C(1)-

N(1)-Rh(1) 90.4(2), C(1)-N(2)-Rh(1) 97.4(3), N(2)-C(1)-N(1) 106.6(3). 

 

moderately longer than the latter (ca. 2.16 and 2.11 Å, respectively). These metrics are nearly 

identical to those reported for the analogous iridium complexes10 and are also comparable to 

corresponding values in a heterobinuclear Rh/Nd aminopyridinate complex.12 At variance with 

these observations, the partial multiple character of the Rh—Namido bond in the five-coordinated 

cations 1+ causes this bond to have a length significantly shorter (ca. 1.98 Å) than the Rh—Npy 

bond (2.14 Å). Once more, these structural parameters match closely those reported for 

somewhat related compounds with chelating monoanionic N^N ligands. 10,11a,11c,13-17 

 The five-coordinate Rh(III) center of cationic complexes 1+ exhibited Lewis acidity, as 

evidenced by the facile reaction of 1a+ with ammonia, 4-dimethylaminopyridine (dmap) and 2,6-

dimethylphenyl isocyanide, CNXyl (Scheme 2). The reactions occurred almost instantaneously 

and were accompanied by a colour change from dark green to red-orange, indicative of the loss  
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Scheme 2. Lewis acid reactivity of the five-coordinate cationic complex 1a+. 

 

of the π-component of the Rh—Namido bond. The resulting adducts 1a·L+ present spectroscopic 

properties similar to those of the analogous iridium complexes10 (see Experimental Section and 

SI). In particular, 1a·CNXyl+ features ῡ(CN) at 2160 cm-1, i. e. some 45 cm-1 higher than for the 

free isocyanide. As for the analogous iridium adduct,10 this shift denotes that the CNXyl ligand 

behaves in this compound solely as a σ-donor. X-ray data for 1a·CNXyl+ (Figure 3) are also 

alike those obtained for the iridium adduct analogue.10 

 

1a·CNXyl+ 

Figure 3. X-ray structure of complex 1a·CNXyl+ (30% ellipsoids, H atoms and anion omitted 

for clarity). Selected bond lengths (Angstroms) and angles (degrees): Rh(1)—N(1) 2.1573(18), 

Rh(1)—N(2) 2.1172(19), Rh(1)—C(36) 1.989(2), C(36)—N(3) 1.156(3), Rh(1)—C(26) 

2.180(3), Rh(1)—C(27) 2.144(3), Rh(1)—C(28) 2.178(2),Rh(1)—C(29) 2.193(2), Rh(1)—C(30) 

2.180(3), C(36)-Rh(1)-N(1) 85.35(8), Rh(1)-N(2)-C(1) 95.37(13), C(36)-Rh(1)-N(2) 87.45(9), 

Rh(1)-N(1)-C(1) 92.47(13), N(1)-Rh(1)-N(2) 61.91(7), N(1)-C(1)-N(2) 109.19(19). 
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 Interestingly, acetonitrile formed a bis(adduct) in which the aminopyridinate ligand is 

bonded to rhodium exclusively through the Namido atom, [(η5-C5Me5)Rh(κ1-Ap)(NCMe)2]
+, 

1a·(NCMe)2
+ (only the mono-adduct [(η5-C5Me5)Ir(κ2-Ap)(NCMe)]+ was detected for 

iridium10). The existence of a symmetry plane simplifies considerably the 1H and 13C{1H} NMR 

spectra of this complex. For instance, only one septet (3.22 ppm) and two doublets (1.08 and 

1.35 ppm; 3JHH = 7.0 Hz) were recorded for the i-Pr substituents of the Namido aryl group and one 

singlet (2.26 ppm) for the methyl protons of the pyridine xylyl substituent. 

 Also in dissimilarity with the analogous iridium system, complexes 1+ reacted with CO 

with incorporation of two molecules of CO (Scheme 3) and formation of the new compounds  

 

 

Scheme 3. The reaction of complexes 1+ with carbon monoxide. 

 

 

1·(CO)2
+ that contain a terminal carbonyl (ῡ(CO) = 2070 cm-1) and a carbamoyl unit that is part 

of a five-member  ring (ῡ(CO) = 1690 cm-1, data for 1a·(CO)2
+). Comparable 

reactivity has been disclosed for ruthenium14a-d and iridium.14e In the 13C{1H} NMR spectrum of 

these compounds the Rh—CO resonance appears at about 187 ppm (1JCRh ca. 75 Hz) while the 

Rh—C(O)N functionality can be found nearby (~188 ppm) also in the form of a doublet (1JCRh of 
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ca. 30 Hz). Figure 4 contains ORTEP drawings of the molecular structure of 1a·(CO)2
+ and 

1b·(CO)2
+. 

  

1a·(CO)2
+ 1b·(CO)2

+ 

Figure 4. ORTEP view of the molecular structure of complexes 1a·(CO)2
+ and 1b·(CO)2

+ (30% 

ellipsoids, H atoms and anions omitted for clarity). Selected bond lengths (Angstroms) and 

angles (degrees) for 1a·(CO)2
+: Rh(1)—N(1) 2.170(3), Rh(1)—C(26) 2.251(4), Rh(1)—C(37) 

1.921(5), Rh(1)—C(27) 2.226(4), O(2)—C(37) 1.133(5), Rh(1)—C(28) 2.163(4), Rh(1)—C(36) 

2.033(4), Rh(1)—C(29) 2.231(4), O(1)—C(36) 1.206(5), Rh(1)—C(30) 2.309(4), C(37)-Rh(1)-

N(1) 93.29(16), Rh(1)-C(36)-N(2) 113.0(2), C(37)-Rh(1)-C(36) 87.00(18), Rh(1)-N(1)-C(1) 

111.2(2), N(1)-Rh(1)-C(36) 79.28(12), N(1)-C(1)-N(2) 116.9(3). Selected bond lengths 

(Angstroms) and angles (degrees) for 1b·(CO)2
+: Rh(1)—N(1) 2.146(4), Rh(1)—C(18) 2.20(3), 

Rh(1)—C(17) 1.95(3), Rh(1)—C(19) 2.241(7), O(2)—C(17) 1.05(3), Rh(1)—C(20) 2.160(7), 

Rh(1)—C(16) 2.000(6), Rh(1)—C(21) 2.262(7), O(1)—C(16) 1.270(7), Rh(1)—C(22) 2.330(7), 

C(17)-Rh(1)-N(1) 97.8(9), N(2)-C(16)-Rh(1) 112.9(4), C(17)-Rh(1)-C(16)  92.9(6), C(1)-N(1)-

Rh(1) 111.2(3), C(16)-Rh(1)-N(1) 79.98(19), N(1)-C(1)-N(2) 116.7(4). 

 

 As expected, they display noticeable differences in the lengths of the two rhodium-

carbonyl group bonds (ca. 1.92 Å for Rh—CO and 2.02 Å for the Rh—carbamoyl terminus). 

Corresponding C—O distances are also different (ca. 1.10 and 1.23 Å, respectively) as foreseen 
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for essentially triple and double C—O bonds, and sp- and sp2-hybridized carbon atoms, 

respectively. 

 

Reactivity of complexes 1+ toward H2 

 Amido derivatives of (η5C5Me5)M fragments (M = group 8 and 9 metals), particularly 

those that incorporate a chelating amine-amido ligand, have a rich chemistry that permits their 

utilization in the activation of H2 and other small molecules. As a matter of fact, many 

complexes of this type behave as bifunctional M/Namido catalysts for hydrogen transfer, 

heterolytic hydrogenations and even C—C bond forming reactions.6,11,12,15,16 

Contrary to the reactions of the homologous iridium cations [(η5-C5Me5)Ir(Ap)]+ with H2, that 

under appropriate conditions yielded exclusively equilibrium mixtures of the isomeric structures 

I  and II  represented in Figure 1A, the interaction of the rhodium species 1+ with H2 (1 bar, an 

excess) turned out to proceed through a seemingly more complex course, because it provided as 

principal reaction products the cationic Rh(I) complexes 2+ represented in Scheme 4 (see also 

structure III  in Figure 1B). The new complexes 2+ contain neutral pentamethylcyclopentadiene 

(C5Me5H) and aminopyridine (ApH) ligands coordinated in η4-diene and η6-arene fashions, 

respectively. Thus, in a formal sense the monoanionic C5Me5 and  
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Scheme 4. Generation of the Rh(I) complexes 2+ by reaction the Rh(III) precursors 1+ 

and H2. 

 

Ap ligands of complexes 1+ underwent hydrogenation to C5Me5H and ApH, respectively, with 

concomitant reduction of Rh(III) to Rh(I). For all complexes 1+ the reactions were essentially 

quantitative, although partial decomposition of complexes 2+ by action of the solvent (CH2Cl2) 

could not be avoided (see below). 

 The Rh(I) complexes [2]BAr F proved to be air stable in the solid state but decomposed in 

solution in contact with air. Under an inert atmosphere their CH2Cl2 solutions decomposed 

partially to give the known18 binuclear compound [(η5C5Me5)2Rh2(µ-Cl)3][BAr F], whose 

chloride ligands originate from the solvent through an undisclosed, probably radical mechanism. 

It seems that decomposition is triggered by arene dissociation, as hinted by the comparatively 

faster decomposition of complex 2d+ that contains a fluoro-substituted η6-arene ring. The 

molecular complexity of cations 2+ was unveiled by an X-ray diffraction analysis of 2b+ and was 

subsequently confirmed by solution NMR studies. 
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Figure 5. ORTEP view of the molecular structure of complex 2b+ (30% ellipsoids, H atoms and anion 

omitted for clarity). Selected bond lengths (Angstroms) and angles (degrees): Rh(1)−C(6) 

2.341(7), Rh(1) −C(17) 2.113(8), Rh(1) −C(7) 2.300(8), Rh(1) −C(18)  2.140(8), Rh(1) −C(8) 

2.306(8), C(14) −C(15) 1.496(12), Rh(1) −C(9) 2.317(9), C(15) −C(16) 1.436(12), Rh(1) −C(10) 

2.260(8), C(16) −C(17) 1.438(12), Rh(1) −C(11) 2.318(7), C(17) −C(18) 1.485(13), 

Rh(1) −C(15) 2.161(8), C(14) −C(18) 1.489(13), Rh(1) −C(16) 2.136(7), C(16)-C(15)-Rh(1) 

69.5(4), C(16)-Rh(1)-C(15) 39.0(3), C(17)-C(16)-Rh(1) 69.4(4), C(17)-Rh(1)-C(16) 39.6(3), 

C(18)-C(17)-Rh(1) 70.5(5), C(17)-Rh(1)-C(18) 40.9(4), C(14)-C(18)-Rh(1) 93.6(5), N(1)-C(5)-

C(6) 114.7(7), C(14)-C(15)-Rh(1) 92.5(5), N(1)-C(1)-N(2) 117.1(8). 

 

 Figure 5 depicts the molecular structure of the cationic complex 2b+. As can be seen, the 

Rh(I) center is bonded to the C5Me5H ring through the C15-C16 and C17-C18 double bonds, 

with an average Rh—C distance of 2.14 Å (comparable to the Rh—C5Me5 distances in the parent 

complex 1b+, that vary between 2.12 and 2.18 Å). The non-coordinated sp3-hybridized carbon 

atom C14 features endo-H and exo-Me substituents, suggesting that complexes 2+ form by 

intramolecular H transfer from Rh to C5Me5 in a putative, non-detected (η5-C5Me5)Rh(III) 

hydride intermediate (vide infra).19,20 This carbon atom C14 deviates considerably from the plane 

defined by the other four, sp2-hybridized carbon atoms C15-C18. Indeed, the dihedral angle 

between the latter plane and that defined by C15, C14 and C18 is of 34.53 º, a value analogous to 
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those found in related complexes.21 The coordination of rhodium is completed by an η6-

interaction with the 2,6-Me2C6H3 aryl ring bound to the pyridinic unit of the neutral 

aminopyridine ligand. The metal-arene electronic interaction is characterized by relatively long 

Rh—C bonds, the lengths of which vary between ca. 2.26 and 2.34 Å. These separations are 

similar to, albeit somewhat longer than those reported for other Rh(I)-arene complexes.22 

Transition metal compounds with an η4-C5Me5H ligand that have been authenticated by X-ray 

crystallography are scarce but some examples are known.19a,23 

 NMR data for the new complexes 2+ are in excellent agreement with the solid-state 

structure ascertained for 2b+ and discussed in the anterior paragraph. Taking the latter species as 

a representative example, the most noticeable 1H NMR changes that accompany the dihydrogen-

induced transformation of complex 1b+ into 2b+ are the disappearance of the resonance centered 

at 1.29 ppm (relative intensity 15 H) attributable to the η5-C5Me5 ligand of 1b+ and the 

emergence of a set of signals that can be assigned with safety to a neutral molecule of C5Me5H 

with η4-coordination to rhodium. These are: (i) two singlets with chemical shifts 1.95 and 1.32 

ppm, each corresponding to two chemically equivalent =C(Me) groups (hence, each with relative 

intensity equivalent to 6 H); (ii) one doublet (0.43 ppm; 3JHH = 6.5 Hz, 3H); (iii) and a quartet 

(2.78 ppm, 3JHH = 6.5 Hz, 1 H). The latter resonances are assignable to the methyl and methine 

protons of the C(H)Me) unit, respectively. 

 Additionally, it is worth mentioning that the neutral aminopyridine ligand of 2b+ is also 

responsible for a broad singlet centered at δ 5.93 due to the NH proton. Moreover, the CH 

protons of the rhodium-bound η6-2,6-Me2C6H3 ring are shifted toward lower frequencies by 

nearly 1 ppm relative to corresponding signals of the non-coordinated xylyl substituents. These 
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protons resonate as a triplet and a doublet with δ 6.39 (1 H; 3JHH ~6.5 Hz) and 6.01 (2 H; 3JHH 

~6.5 Hz). 

 1H NMR monitoring of the reactions of complexes 1+ with H2 provided useful 

supplementary information. Firstly, it revealed the formation of small amounts of the expected 

(by similarity with the iridium system analogue10) Rh(III) complexes, 3+, which are isomers of 

cations 1+ with a structure of type II  in Figure 1A. Thus, using ca. 20-60 mol% concentrations of 

H2, complexes 3+ formed in about 5-20% quantities with the exception of the fluoro-containing 

cation 3d+ that resulted in approximately 50% yield by 1H NMR (see below). Under these 

conditions, scant proportions of the Rh(I) derivatives 2+ and the decomposition product  

[(η5C5Me5)2Rh2(µ-Cl)3][BAr F] were also detected. Evidently, the 1+-to-3+ rearrangement 

required H—H and C—H bond cleavage as well as N—H bond formation. In addition, 

complexes 3+ were also detected in the reactions of 1+ with an excess of H2 and were found to 

disappear in favour of the Rh(I) derivatives 2+. However, their back conversion to corresponding 

isomers 1+ could not be observed. 

Scheme 5 shows the general mechanism for the H2-catalyzed interconversion of 

aminopyridinate isomeric structures I  and II  that was advanced for iridium complexes with the  
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Scheme 5. General mechanism for the interconversion of rhodium and iridium isomeric 

complexes with structures I and II in the presence of H2. 

 

 

support of experimental and computational studies.10 Even if it is likely that related equilibria 

exist between the Rh(III) complexes 1+ and 3+, unequivocal proof for their operation could not 

be gathered. Probably this is due to the formation of complexes 3+ only in minute concentrations 

and above all to the appearing of the Rh(I) complexes 2+ (which are actually unknown for 

iridium) as the main reaction products. Besides, partial decomposition of the latter to [(η5-
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C5Me5)2Rh2(µ-Cl)3][BAr F] introduced additional complexity into the reaction manifold. For 

rhodium, it appears likely that complexes 2+ derive from a Rh(III) hydride intermediate with 

structure alike B, although an alternative structure B´ (Scheme 6) in which a δ-agostic interaction 

replaces the η2-arene binding seems also reasonable. The latter hypothesis finds strong support in 

the observation of a related, also cationic, hydride agostic structure derived from a (η5-

C5Me5)Rh(III) fragment and a metallated PMeXyl2 ligand.8b Regardless of the precise  

 

 

Scheme 6. Proposed formation of the Rh(I) complexes 2a+-2d+ from intermediate B or B´.  
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nature of this hydride intermediate, a reductive coupling step involving its Rh—H and Rh—

C5Me5 functionalities, along with a conformational change aimed to establish the Rh(I)-η6-arene 

bonding interaction, would account for the formation of complexes 2+. 

 It is important to note that as indicated in Schemes 5 and 6, the formation of complexes 

2+ could be reverted. In this manner larger amounts of complexes 3+ (structure of type II  in 

Scheme 5) were generated (see the Experimental Section) permitting their complete 

characterization by NMR studies. Thus, when CD2Cl2 solutions of previously isolated samples of 

complexes 2+ were heated at 50 ºC in an NMR tube, the corresponding isomers 3+ were readily 

identified. Partial decomposition to the chloride-bridged dinuclear compound [(η5-

C5Me5)2Rh2(µ-Cl)3][BAr F] took also place, but under these conditions the back conversion of 3+ 

into the isomeric complexes 1+ could not be observed. In the absence of theoretical calculations 

we can offer no rigorous explanation for the lack of observation of this isomer. However, it is 

possible that, as for iridium, the thermodynamics favour isomers 3+ relative to 1+, making the 

back 3+-to-1+ conversion slower. This, added to the perturbation introduced in the reaction 

system by the Rh(I) complexes 2+, and by their relatively easy decomposition to [(η5-

C5Me5)2Rh2(µ-Cl)3][BAr F], could justify our failure to observe complexes 1+ under these 

conditions. 

 Another relevant piece of knowledge provided by the 1H NMR monitoring of the 

reactions of complexes 1+ with H2 is the facility of formation of complexes 2+ under the 

conditions of Scheme 4. Complexes 1a+ and 1b+ differ in the nature of the Namido aryl substituent, 

viz 2,6-Pr2
iC6H3 and 2,6-Me2C6H3, respectively (See Figure 1A). It was found that quantitative 

formation of 2a+ (≥ 95% by 1H NMR) required 6 h, whereas that 2b+ needed only 1h. In 
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agreement with the isomerization mechanism represented in Scheme 5, this difference reflects, 

most probably, the steric hindrance exerted by the i-Pr substituents of 1a+ to coordination of H2 

to form intermediate A. On the other hand, complexes 1b+, 1c+ and 1d+ are very similar but may 

be distinguished thanks to the different R´ group in the 4-position of the aryl substituents of the 

pyridine ring (H for 1b+, NMe2 in 1c+ and F in the case of 1d+). As already mentioned, 

quantitative conversion into 2b+ needed 1h, whereas for 2c+ 3h were required. As for 2d+, its 

formation was the fastest, with a 75 % yield after only 10 min. Higher yields of 2d+ could not be 

reached due to its decomposition to [(η5C5Me5)2Rh2(µ-Cl)3][BAr F], probably facilitated by 

dissociation of the F-containing η6-arene ring. The above differences may arise from the facility 

with which the purported Rh(III) hydride intermediates with structure B, or B´, experience 

reductive coupling to the corresponding isomeric Rh(I) structures 2+. 

 Before closing, some comments on the divergent behavior of the iridium and rhodium 

complexes of composition [(η5-C5Me5)M(Ap)] + in their reactions with H2 appear appropriate. 

Firstly, reductive coupling and reductive elimination of M—H20,24 (or M—Me25) and C5Me5 or 

other cyclopentadienyl ligands, have been observed for various transition metals, in some cases 

in a reversible manner.19,20,23,25 Secondly, the formation under mild conditions of the rhodium 

complexes 2+ that, as already noted, are unknown for iridium, is, in almost all probability, a 

consequence of the easier reduction of Rh(III) to Rh(I) in comparison with the analogous Ir(III) 

to Ir(I) redox change. Such difference in the relative stability of metal oxidation states, not only 

in the +1 and +3 ones, but also in others, are commonly encountered in the chemistry of late 

transition elements, particularly of rhodium and iridium. For example, during studies on 

cyclometallations, Leong and co-workers obtained different types of products in the course of the 

reactions of the Rh and Ir [(η5-C5Me5)MCl2]2 dimers with an anyline and a terminal alkyne, that 
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were explained by reason of the more difficult accessibility of the M(V) oxidation state for 

rhodium.26 On a completely different topic, in recent studies of the double deprotonation of the 

bis(2-picolyl)amine ligand in Rh(I) and Ir(I) complexes, [M(bpa)(cod)]+ (cod = 1,5-

cyclooctadiene), Tejel, de Bruin, Ciriano and co-workers explained the observed thermodynamic 

differences in the products as arising from the lower stability of Ir(-1) in comparison with Rh(-

1).17b A last, truly remarkable example that implicates the +1 and +3 oxidation states was 

provided by Brookhart and co-workers, who took advantage of the ease of reduction of Rh(III) 

relative to Ir(III) to observe and characterize by solution NMR spectroscopy a relatively long-

lived σ-methane complex of rhodium (I).27 

 In summary, this contribution extends previous studies on the reactivity of cationic Ir(III) 

complexes of composition [(η5-C5Me5)Rh(Ap)]+ with H2
10 to the rhodium analogues (complexes 

1+). For the two metals a dihydrogen-catalyzed isomerization of the aminopyridinate ligand from 

the common κ2-N,N  ́ bidentate coordination to an unusual κ-N-η3-pseudo-allyl bonding mode 

(Rh complexes 3+) has now been documented (Figure 1A), in a rearrangement that required H—

H, C—H and N—H bond activation. However, while for iridium this was the principal chemical 

change observed,10 for rhodium a stoichiometric hydrogenation of the C5Me5 and 

aminopyridinate ligands to C5Me5H and ApH, respectively, took place, with concomitant metal 

reduction to Rh(I) (complexes 2+). This was demonstrated to be the main reaction path and 

occurred irreversibly at room temperature in the presence of an excess of H2. The dissimilar 

chemical behavior of the rhodium compounds relative to the iridium analogues is most likely due 

to more facile reduction of M(III) to M(I) for rhodium than for iridium. 
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EXPERIMENTAL SECTION 

General Procedures: Microanalyses were performed by the Microanalytical Service of the 

Instituto de Investigaciones Químicas (Sevilla, Spain). Infrared spectra were obtained from 

Bruker Vector 22 spectrometer. The mass spectra were obtained at the Mass Spectroscopy 

Service of the University of Sevilla (CITIUS). The NMR instruments were Bruker DRX-500, 

DRX-400 and DPX-300 spectrometers. Spectra were referenced to external SiMe4 (δ 0 ppm) 

using the residual protio solvent peaks as internal standards (1H NMR experiments) or the 

characteristic resonances of the solvent nuclei (13C NMR experiments). Spectral assignments 

were made by routine one- and two-dimensional NMR experiments where appropriate. All 

manipulations were performed under dry, oxygen-free dinitrogen, following conventional 

Schlenk techniques. The crystal structures were determined in a Bruker-Nonius, X8Kappa 

diffractometer. Metal complex [Cp*RhCl2]2,
7b as well as NaBArF

28 were prepared as previously 

described. The lithium salt of the aminopyridinate ligands were prepared according to published 

procedures.9b The 1H and 13C{1H} NMR spectral data for the BArF anion (BArF = B[3,5-

(CF3)2C6H3]4) in CD2Cl2 are identical for all complexes and therefore are not repeated below. 1H 

NMR: δ 7.75 (s, 8 H, o-Ar), 7.58 (s, 4 H, p-Ar). 13C{1H} NMR: δ 162.1 (q, 1JCB = 37 Hz, ipso-

Ar), 135.3 (o-Ar), 129.2 (q, 2JCF = 31 Hz, m-Ar), 124.9 (q, 1JCF = 273 Hz, CF3), 117.8 (p-Ar). 

 

 

 

Compound 1a·Cl. A toluene solution of the corresponding LiAp (240 mg, 0.66 mmoles; 2 mL) 

at -50 ºC was added to a suspension of [Cp*RhCl2]2 (200 mg, 0.32 mmoles) in toluene at -50 ºC. 

The resulting mixture was stirred, allowed to warm to room temperature and stirred for a further 

period of 5 h. The solution was filtered through celite and the solvent removed under reduced 

pressure. 1H NMR analysis of the crude reaction mixture showed quantitative conversion into 

1a·Cl, which was crystallized from Et2O-hexane mixtures at -23 ºC. 1H NMR (C6D6, 25 ºC): δ = 
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7.32, 7.23, 7.21, (d, t, d, 1 H each, 3JHH ~ 7.5 Hz, 3 CHDipp), 7.06, 7.02, 6.92 (t, d, d, 1 H each, 
3JHH ~ 7.5 Hz, 3 CHXyl), 6.65, 5.66, 5.42 (t, d, d, 1 H each, 3JHH ~ 7.5 Hz, 3 CHPyr), 4.42, 3.53 

(sept, 1 H each, 3JHH ~ 7.0 Hz, 2 CHiPr), 2.72, 2.21 (s, 3 H each, 2 MeXyl), 1.43, 1.35, 1.32, 1.23 

(d, 3 H each, 3JHH ~ 7.0 Hz, 4 MeiPr), 1.03 (s, 15 H, 5 MeCp*). 
13C{1H} NMR (C6D6, 25 ºC): δ = 

172.4, 157.4 (Cq-Pyr), 148.0, 147.9, 139.6 (Cq-Dipp), 140.9, 138.7, 137.0 (Cq-Xyl), 136.8, 107.2, 

106.5 (CHPyr), 128.0, 126.9 (2:1, CHXyl), 125.4, 124.3, 124.0 (CHDipp), 91.6 (d, 1JRhC = 8 Hz, Cq-

Cp*), 28.3, 28.0 (CHiPr), 26.9, 25.8, 25.0, 23.6 (MeiPr), 22.1, 20.1 (MeXyl), 8.8 (MeCp*). Anal. 

Calcd (%) for C35H44ClN2Rh: C, 66.6; H, 7.0; N, 4.4. Found: C, 66.5; H, 7.2; N, 4.1. 

 

Compounds 1b·Cl-1d·Cl: See the Supporting Information for synthetic details and 

characterization data. 

 

Compound [1a]BArF. To a solution of 1a·Cl (374 mg, 0.593 mmol) in CH2Cl2 (5 mL), NaBArF 

(524 mg, 0.593 mmol) in CH2Cl2 (3 mL) was added. Immediately, the colour of the solution 

turned from red to dark green as a consecuence of the formation of the cationic complex. The 

resulting mixture was filtered through celite, evaporated to dryness and the residue washed with 

pentane, to yield quantitatively complex [1a]BAr F. 1H NMR (CD2Cl2, 25 ºC): δ = 7.30 (m, 7 H, 

1 CHPyr + 3 CHXyl + 3 CHDipp), 6.20, 5.16 (d, 1 H each, 3JHH ~ 7.5 Hz, 2 CHPyr), 3.53 (sept, 2 H, 
3JHH ~ 7.0 Hz, 2 CHiPr), 2.32 (s, 6 H, 2 MeXyl), 1.44, 1.14 (d, 6 H each, 3JHH ~ 7.0 Hz, 4 MeiPr), 

1.32 (s, 15 H, 5 MeCp*). 
13C{1H} NMR (CD2Cl2, 25 ºC): δ = 179.9, 156.5 (Cq-Pyr), 145.6, 137.0 

(2:1, Cq-Dipp), 144.4, 116.3, 102.9 (CHPyr), 137.6, 135.7 (1:2 C, Cq-Xyl), 130.0, 128.5 (1:2, CHXyl), 

128.0, 124.6 (1:2, CHDipp), 94.7 (Cq-Cp*), 28.7 (CHiPr), 25.2, 23.8 (MeiPr), 20.2 (MeXyl), 9.5 

(MeCp*). Anal. Calcd (%) for C67H56BF24N2Rh: C, 54.2; H, 3.9; N, 1.9. Found: C, 54.2; H, 4.5; 

N, 1.5. 

 

Compounds [1b]BArF-[1d]BAr F: See the supporting Information for synthetic details and 

characterization data. 
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Compound [1a·NH3]BAr F. NH3 (g) was bubbled through a solution of compound [1a]BAr F 

(100 mg, 0.071 mmol) in CH2Cl2 (5 mL) for 5 min. During this period of time the colour of the 

solution changed from dark green to bright red. The resulting mixture was stirred for 30 minutes 

and the volatiles were then removed under reduced pressure. 1H NMR analysis of the crude 

product revealed quantitative conversion into complex [1a·NH3]BAr F. 1H NMR (CD2Cl2, 0 ºC): 

δ = 7.25 (m, 7 H, 3 CHXyl + 3 CH Dipp + 1 CHPyr), 6.11, 5.74 (d, 1 H each, 3JHH ~ 7.5 Hz, 2 

CHPyr), 3.10, 2.66 (br s, 1 H each, 2 CHiPr), 2.44 (s, 3 H, NH3), 2.20, 2.17 (s, 3 H each, 2 MeXyl), 

1.32, 1.12, 1.02 (br s, 2:1:1:, 4 MeiPr), 1.25 (s, 15 H, 5 MeCp*). 
13C{1H} NMR (CD2Cl2, 0 ºC): δ = 

173.6, 156.8 (Cq-Pyr), 147.8, 143.7, 136.9 (br, Cq-Dipp), 138.9, 129.4, 125.9 (CHXyl + CHDipp + 

CHPyr), 138.5, 137.6, 133.9 (br, Cq-Xyl), 128.4, 127.9, 125.9, 123.3 (br, CHDipp + CHXyl), 110.3, 

108.0 (CHPyr), 94.0 (d, 1JCRh = 8.2 Hz, Cq-Cp*), 29.4, 28.3 (CHiPr), 26.0, 25.1, 24.0, 21.4 (MeiPr), 

20.7, 20.1 (MeXyl), 8.7 (CHCp*). Anal. Calcd (%) for C67H54BF24N3Rh: C, 54.5; H, 4.0; N, 2.8. 

Found: C, 54.5; H, 4.0; N, 2.7. 

 

Adducts of complex 1a+ with dmap, CNXyl and NCMe were prepared by a similar procedure 

(see SI). 

 

Compound [1a·(CO)2]BAr F CO (g) was bubbled through a solution of compound [1a]BAr F 

(100 mg, 0.071 mmol) in CH2Cl2 (5 mL) for 5 min. During this period of time the colour of the 

solution changed from dark green to yellow-orange. The resulting mixture was stirred for 3 h and 

the volatiles were then removed under reduced pressure. 1H NMR analysis of the crude product 

revealed quantitative conversion into complex [1a·(CO)2]BAr F, which was crystallized from 

CH2Cl2-Et2O-hexane mixtures at -23 ºC. IR (Nujol): ν(CO) 2070, ν(COamide) 1690 cm-1. 1H 

NMR (CD2Cl2, 25 ºC): δ = 7.78, 7.00, 6.51 (t, d, d, 3JHH ~ 7.5 Hz, 3 CHpyr), 7.60, 7.40 (t, d, 1:2, 

3JHH ~ 7.5 Hz, 3 CHDipp), 7.43, 7.31, 7.27 (m, d, d, 1 H each, 3JHH ~ 7. 5 Hz, 3 CHXyl), 2.67, 2,32 
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(sept, 1 H each, 3JHH ~ 7.0 Hz, 2 CHiPr), 2.17, 2.16 (s, 3 H each, 2 MeXyl), 1.59 (s, 15 H, 5 

MeCp*), 1.26, 1.18, 1.12, 1.04 (d, 3 H each, 3JHH ~ 7.0 Hz, 4 MeiPr). 
13C{1H} NMR (CD2Cl2, 25 

ºC): δ = 188.4, 186.8 (d, 1JCRh = 30 Hz, 1JCRh = 75 Hz, Rh-CON and Rh-CO, resp.), 160.2, 158.6 

(Cq-Pyr), 146.2, 146.0 (Cq-Dipp), 141.4, 123.6, 111.0 (CHPyr), 138.6, 136.3, 133.2 (Cq-Xyl + Cq-Dipp), 

137.2 (Cq.Xyl), 131.4, 125.8, 125.6 (CHDipp), 130.8, 129.4, 129.2 (CHXyl), 109.6 (d, 1JRhC = 5 Hz, 

Cq-Cp*), 30.0, 29.5 (CHiPr), 24.3, 24.1, 23.9, 23.5 (MeiPr), 22.1, 21.3 (MeXyl), 9.4 (MeCp*). Anal. 

Calcd (%) for C69H56BF24N2O2Rh: C, 54.7; H, 3.7; N, 1.8. Found: C, 54.8; H, 4.0; N, 1.8. 

 

Related carbonyl derivatives of 1b+-1d+ were prepared by an analogous procedure (see SI). 

 

Compound [2a]BArF. In a Young NMR tube, a solution of complex [1a]BAr F (20 mg, 0.014 

mmol) in CD2Cl2 (0.5 mL) was treated with H2 (1 atm). After 5 h at room temperature 1H NMR 

analysis of the reaction mixture revealed transformation into complex [2a]BAr F in ≥95 % 

spectroscopic yield. IR (Nujol): ν(NH) 3426 cm-1. 1H NMR (CD2Cl2, 25 ºC): δ = 7.52, 6.57, 6.13 

(t, d, d, 1 H each, 3JHH ~ 7.5 Hz, 3 CHPyr), 7.37, 7.11, 6.50 (m, d, t, 1 H each, 3JHH ~ 7.5 Hz, 3 

CHη6-Xyl), 7.27 (br d, 3 H, 3JHH ~ 7.5 Hz, 3 CHDipp), 6.00 (br s, 1 H, NH), 3.18 (sept, 2 H, 3JHH ~ 

6.5 Hz, 2 CHiPr), 3.00 (br s, 1 H, CHMe), 2.12 (br s, 6 H, 2 Meη6-Xyl), 2.06, 1.47 (s, 6 H each, 4 

Meη4-Cyclopentadiene), 1.16 (d+d, 12 H, 3JHH ~ 6.5 Hz, 4 MeiPr), 0.56 (d, 3 H, 3JHH ~ 6.5 Hz, CHMe). 
13C{1H} NMR (CD2Cl2, 25 ºC): δ = 160.1, 151.1 (Cq-Pyr), 148.2, 136.3 (Cq-Dipp), 139.2, 114.7, 

100.8 (CHPyr), 129.0, 128.0, 103.0 (CHXyl), 124.8, 115.2 (2:1, Cq-η6-Xyl), 102.8, 79.8 (d, 1JCRh = 

10 Hz, Cq-η4-Cyclopentadiene), 59.7 (CHMe), 29.1 (CHiPr), 23.8 (MeiPr), 23.2 (CHMe), 18.5 (Meη6-Xyl), 

14.0, 11.6 (Meη4-Cyclopentadiene). HRMS (FAB): m/z calcd for C35H46N2Rh [M]+: 597.2716. Found: 

597.2682. 

 



 25

Compound [2b]BArF. Following the procedure described above, complex [2b]BAr F was 

obtained after 24 h in 85 % spectroscopic yield, and it was crystallized from CH2Cl2-pentane 

mixtures at -23 ºC. 1H NMR (CD2Cl2, 25 ºC): δ = 7.44, 6.46, 6.17 (t, d, d, 1 H each, 3JHH ~ 7.5 

Hz, 3 CHPyr), 7.08 (s, 3 H, 3 CHXyl), 6.39, 6.01 (t, d, 1:2, 3JHH ~ 6.5 Hz, 3 CHη6-Xyl), 5.93 (br s, 1 

H, NH), 2.78 (q, 1 H, 3JHH ~ 6.5 Hz, CHMe), 2.15 (s, 6 H, 2 MeXyl), 1.94 (s, 6 H, 2 Meη6-Xyl), 

1.95, 1.32 (s, 6 H each, 4 Meη4-Cyclopentadiene), 0.43 (d, 3 H, 3JHH = 6.3 Hz, CHMe). 13C NMR 

(CD2Cl2, 25 ºC): δ = 159.2, 151.5 (Cq-Pyr), 139.6, 115.3, 107.8 (CHPyr), 137.8, 129.7 (2:1, Cq-Xyl), 

129.5 (CHXyl), 124.3, 115.4 (1:2, Cq-η6-Xyl), 103.3, 101.2 (s, d, 1:2, 1JCRh = 4 Hz, CHη6-Xyl), 103.2, 

80.2 (d, 1JCRh ~ 10 Hz, Cq-η4-Cyclopentadiene), 59.9 (CHMe), 23.8 (CHMe), 19.0 (Meη6-Xyl), 18.9 

(MeXyl), 14.4, 12.0 (Me-η4-Cyclopentadiene). Anal. Calcd (%) for C63H50BF24N2Rh: C, 53.9; H, 3.6; N, 

2.0. Found: C, 53.5; H, 3.8; N, 2.1. 

 

The generation of the related complexes [2c]BAr F and [2d]BAr F is detailed in the accompanying 

SI. 

 

Compound [3a]BArF. Method a: In a Young NMR tube, a solution of complex [1a]BAr F (0.04 

g, 0.03 mmol) in CH2Cl2 (0.5 mL) was treated with H2 (200 mol %). After 24 h at room 

temperature 1H NMR analysis of the reaction mixture revealed transformation into complex 

[3a]BAr F in 6% spectroscopic yield.  
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Method b: In a Young NMR tube, a solution of complex [2a]BAr F in CD2Cl2 (0.5 mL) was 

heated at 50 ºC for 36 h. 1H NMR analysis of the reaction mixture revealed the formation of 

complex [3a]BAr F in 60 % spectroscopic yield. 

1H NMR (CD2Cl2, 25 ºC): δ = δ 7.5-6.0 (9 CHAr), 5.82 (br s, 1 H, NH), 3.72, 2.50 (d, 1 H each, 

2JHH ~ 3.5 Hz, Rh–CH2), 3.19, 2.81 (sept, 1 H each, 3JHH ~ 6.5 Hz, 2 CHiPr), 2.49 (s, 3 H, 1 

MeXyl), 1.54 (s, 15 H, 5 MeCp*), 1.32 (d, 3 H, 3JHH ~ 6.5 Hz, 1 MeiPr), 1.27 (m, 6 H, 2 MeiPr), 1.02 

(d, 3 H, 3JHH ~ 6.5 Hz, 1 MeiPr). 
13C NMR (CD2Cl2, 25 ºC): δ = 96.7 (d, 1JCRh = 7.3 Hz, Cq-Cp*), 

47.3 (d, 1JCRh = 14 Hz, Rh—CH2), 29.6, 28.8 (1:1, CHiPr), 25.7, 23.8, 23.7, 23.1 (1:1:1:1, MeiPr), 

20.7 (MeXyl), 9.6 (MeCp*). Other resonances have not been identified in the reaction mixture. 

HRMS (ESI): m/z calcd for C35H44N2Rh [M]+: 595.2554. Found: 595.2547.  

 

Complexes [3b]BArF-[3d]BAr F were also generated by Methods a and b detailed above. Please, 

see SI for details. 

 

ASSOCIATED CONTENT 

Supporting Information . X-ray crystallographic data in CIF format, experimental procedures, 

crystallographic data, and details of the structure determinations for 1a·Cl, 1b·Cl, [1b]BAr F-

[1d]BAr F, [1a·CNXyl]BAr F, [1a·(CO)2]BAr F, [1b·(CO)2]BAr F, [2b]BAr F, This material is 

available free of charge via the Internet at http://pubs.acs.org. 
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 A study on the reactivity of cationic Rh(III) complexes of composition [(η5-

C5Me5)Rh(Ap)]+ (complexes 1+) with H2 is reported. The main products result from a 

stoichiometric hydrogenation of the C5Me5 and aminopyridinate ligands to C5Me5H and ApH, 

respectively, with concomitant metal reduction to Rh(I) (complexes 2+). Additionally, a 

dihydrogen-catalyzed isomerization of the aminopyridinate ligand from the common κ2-N,N  ́

bidentate coordination to an unusual κ-N-η3-pseudo-allyl bonding mode (Rh complexes 3+) is 

observed. 


