
Computational Geometry 40 (2008) 195–206

Covering point sets with two disjoint disks or squares ✩

Sergio Cabello a,b,∗,1, J. Miguel Díaz-Báñez c,2, Carlos Seara d,3, J. Antoni Sellarès e,4,
Jorge Urrutia f,5, Inmaculada Ventura g,6

a Department of Mathematics, IMFM, Slovenia
b Department of Mathematics, FMF, University of Ljubljana, Slovenia

c Departamento de Matemática Aplicada II, Universidad de Sevilla, Spain
d Departament de Matemàtica Aplicada II, Universitat Politècnica de Catalunya, Spain

e Institut d’Informàtica i Aplicacions, Universitat de Girona, Spain
f Instituto de Matemáticas, Universidad Nacional Autónoma de México, Mexico

g Departamento de Matemáticas, Universidad de Huelva, Spain

Received 4 January 2007; received in revised form 7 September 2007; accepted 2 October 2007

Available online 22 October 2007

Communicated by K. Mehlhorn

Abstract

We study the following problem: Given a set of red points and a set of blue points on the plane, find two unit disks CR and CB

with disjoint interiors such that the number of red points covered by CR plus the number of blue points covered by CB is maximized.
We give an algorithm to solve this problem in O(n8/3 log2 n) time, where n denotes the total number of points. We also show that
the analogous problem of finding two axis-aligned unit squares SR and SB instead of unit disks can be solved in O(n logn) time,
which is optimal. If we do not restrict ourselves to axis-aligned squares, but require that both squares have a common orientation,
we give a solution using O(n3 logn) time.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Covering; Facility location; Geometric optimization; Disks; Squares

✩ A preliminary version of this work appeared at the 21st European Workshop on Computational Geometry [J.M. Díaz-Báñez, C. Seara,
J.A. Sellarès, J. Urrutia, I. Ventura, Covering point sets with two convex objects, in: 21st European Workshop on Computational Geometry, 2005].

* Corresponding author.
E-mail addresses: sergio.cabello@fmf.uni-lj.si (S. Cabello), dbanez@us.es (J.M. Díaz-Báñez), carlos.seara@upc.edu (C. Seara),

sellares@ima.udg.es (J.A. Sellarès), urrutia@matem.unam.mx (J. Urrutia), inmaculada.ventura@dmat.uhu.es (I. Ventura).
1 Partially supported by the European Community Sixth Framework Programme under a Marie Curie Intra-European Fellowship, and by the

Slovenian Research Agency, project J1-7218.
2 Partially supported by grants BFM2003-04062 and MTM2006-03909.
3 Supported by projects MCYT-FEDER-BFM2003-00368, Gen-Cat-2001SGR00224 and MCYT-HU2002-0010.
4 Partially supported by project TIN2004-08065-C02-02.
5 Supported by CONACYT of México, Proyecto 37540-A and MTM2006-03909.
6 Partially supported by grants BFM2003-04062 and MTM2006-03909.
0925-7721/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.comgeo.2007.10.001

196 S. Cabello et al. / Computational Geometry 40 (2008) 195–206
1. Introduction

Let R be a set of red points and let B be a set of blue points on the plane. Suppose that we have two circular coins CR

and CB of the same size. In this paper we study the following problem that we call the Two-Coin Problem: Place CR

and CB on the plane in such a way that the number of red points covered by CR plus the number of blue points
covered by CB is maximized. We allow CB and CR to cover some red (respectively blue) points, but require them
to have disjoint interiors. The requirement for disjoint interiors is relevant, for example, in facility location problems
where the facilities may interfere negatively with each other, or when their areas of influence are not allowed to
overlap. We use n to denote the total number of points.

We point out that if we do not require CB and CR to have disjoint interiors, then the problem can be solved
independently for each one of the color point sets using well-known techniques [5]. Our result also solves the following
problem: Given a point set, place two coins with disjoint interiors such that the number of covered points is maximized.
To solve this problem we only need to consider each point as an element of R and B .

A substantially different problem is that of maximizing the number of points covered by two coins whose interiors
may intersect, since then one needs to avoid double counting in the intersection of the coins. Work on similar problems
has been done by de Berg et al. [3]. Another set of variants can be obtained by considering coins of different shapes.
In this direction, we give an O(n logn) time optimal algorithm for finding two axis-aligned square coins SB and SR

with disjoint interiors such that the number of red points covered by SR plus the number of blue points covered by SB

is maximized. We also present an O(n3 logn) time algorithm for square coins with arbitrary orientation, but restrict
them to have the same orientation.

Many related problems have been considered in the context of facility location. A natural assumption is that a
point is served by a facility if it lies within a given distance from it. The metrics used are the Euclidean distance or
the L∞ (box) metric. Many of these problems also arise in operations research [15]. In particular, the problem of
placing a unit disk so as to maximize the number of points covered by the disk was first considered by Drezner [7].
Chazelle and Lee [5] provided a quadratic time algorithm to solve this problem. Within the context of locational
analysis, models considering semi-obnoxious facilities [16] or cannibalization [17] naturally lead to problems where
the optimal solution must consist of disjoint disks.

In pattern recognition and classification problems, a standard method to select prototypes that represent a class is
to perform cluster analysis on the training data [8]. The clustering can be obtained by using simple geometric shapes
such as disks or squares. In general, the problem we consider fits under the class of constrained clustering [10]. In this
context, recent research deals with the following problem: given sets of red and blue points on the plane, maximize
the number of blue points covered by a given object while avoiding all the red points. In particular, Aronov and Har-
Peled [1] consider this problem when dealing with disks. Segal [21] and Liu and Nadiak [14] consider the case of
axis-parallel squares.

Organization

The rest of the paper is organized as follows. In the next section we present an algorithm to solve the Two-Coin
Problem. As a main subroutine for our solution, we use a result of Katz and Sharir [13] for representing the incidences
between points and congruent annuli. In Section 3.1 we show an asymptotically optimal algorithm for covering with
axis-aligned unit squares that have disjoint interiors. We use techniques similar to those in Katz et al. [12]. In Sec-
tion 3.2 we extend our algorithm for squares with arbitrary, but common orientation. Finally, in Section 4, we discuss
extensions of our results to non-congruent shapes and other optimization objectives.

2. The Two-Coin Problem

In this section we present an O(n8/3 log2 n) time algorithm to solve the Two-Coin Problem. This improves our
previous result presented in [6], where an O(n3 logn) time algorithm to solve the same problem was presented.

S. Cabello et al. / Computational Geometry 40 (2008) 195–206 197
(a) (b) (c) (d) (e)

Fig. 1. Examples showing some of the steps in the proof of Lemma 1.

Fig. 2. Arrangement A and the labels (RF(f),BF(f)) for a pair of cells.

2.1. A basic observation

Consider an optimal placement of C∗
R and C∗

B . We show next that we have to consider only solutions that have
certain point configurations on their boundaries.

Lemma 1. If any of the disks C∗
R and C∗

B cover more than one point, then they can be moved to a new optimal
placement such that one of the disks has at least two points on its boundary and the other has at least one.

Proof. We show first that C∗
R and C∗

B can be translated to a position where each of them has at least one point on its
boundary. Move the disks C∗

R and C∗
B away from each other in opposite directions along the line joining their centers

until each of their respective boundaries meets a point, say pR and pB respectively; see Fig. 1(a)–(b).
Now rotate C∗

R and C∗
B around pR and pB respectively and in the clockwise direction keeping their interiors

disjoint; they may have to rotate at different speeds if they become tangent (Fig. 1(b)–(d)). Observe that such rotations
always exist unless C∗

R or C∗
B touch both pR,pB , in which case our result would be proved (Fig. 1(e)). Suppose then

that such rotations are possible. Perform them until some point enters or exists any of the disks, at which point we
stop our rotations. At this point we satisfy the conditions of our result (Fig. 1(d)). �

Henceforth, we assume that the optimal solution to the Two-Coin Problem is of size at least 3, as otherwise the
problem can be trivially solved.

2.2. The arrangement of red and blue circles

For each red point p ∈ R (respectively blue point) we consider the red (respectively blue) unit circle Cp with
center in p. Let A be the arrangement determined by C = {Cp; p ∈ R ∪ B}, and let V , E, and F denote the set of
vertices, edges, and faces of A, respectively. Since all the circles have the same radius, A can be obtained in quadratic
time [5,20].

198 S. Cabello et al. / Computational Geometry 40 (2008) 195–206
To each face f of the arrangement A, we associate the pair of numbers (RF(f),BF(f)) such that RF(f)

(respectively BF(f)) is the number of red circles (respectively blue circles) that contain f . Clearly a unit disk with
center at a point x ∈ f covers exactly RF(f) red and BF(f) blue points, respectively (Fig. 2).

Using standard techniques, we can traverse the dual graph of A in O(n2) time. Observe that for any two adjacent
faces f and f ′ separated by an arc of a red circle, |RF(f) −RF(f ′)| = 1. Using this fact, we can during a traversal
of the faces of A calculate the values RF(f), for all f ∈ A. Similarly we can calculate the values BF(f), for all
f ∈ A. For an edge e ∈ A separating two faces f,f ′ ∈ A we define RE(e) = max{RF(f),RF(f ′)}. For a vertex
v ∈A we define RV(v) to be the maximum RF(f) over all the faces f that contain v on their boundaries. In a similar
way we can define BE(e) and BV(v). Clearly all the parameters defined above for the vertices, edges, and faces of A
can be calculated during a traversal of A in quadratic time.

For technical reasons that will become apparent in Lemma 2, we need to assume that no edge of A covers more
than π of the arc of a circle. Therefore, we subdivide each edge that has length over π into pieces; we can treat the
new endpoints that we have introduced as normal vertices of the arrangement.

2.3. The problem

Observe that a unit circle with center at a vertex of A (arising as the intersection of two circles) passes through at
least two points of R ∪ B , while a unit circle with center on the interior of an edge of A passes through exactly one
point of R ∪ B . Therefore by Lemma 1, to solve the Two-Coin Problem, we need to consider only disks with centers
on the edges or vertices of A.

Given a unit red circle CR (respectively blue circle CB) let |CR| (respectively |CB |) be the number of red (respec-
tively blue) points lying in CR (respectively CB). Let e be an edge in E with endpoints ve, v

′
e ∈ V , and let Q be a

point set in the plane. We define MB(e,Q) to be the maximum value |CB | + |CR| such that the center of CB belongs
to e ∪ {ve, v

′
e}, the center of CR belongs to Q, and CB and CR have disjoint interiors. If all points of Q are such that

the interior of the unit circle centered at them intersects the interior of any unit circle with center on e ∪ {ve, v
′
e}, we

define MB(e,Q) to be 0. MR(e,Q) is defined in a similar way.
From Lemma 1, it follows that the optimal solution to the Two-Coin Problem is given by:

max
e∈E

{
MB(e,V),MR(e,V)

}
.

We will restrict ourselves to compute maxe∈E{MB(e,V)}; the other case is symmetric. For simplicity, we will
state our formulas under the assumption that MB(e,V) > 0.

2.4. An edge

Given a point q on the plane and an edge e of A, let �(e, q) := sup{d(q ′, q) | q ′ ∈ e}, where d(·,·) denotes the
Euclidean distance. Since e is an arc of a circle, it holds that �(e, q) is reached at e or at some of its endpoints, that
is �(e, q) = max{d(q ′, q) | q ′ ∈ e ∪ {ve, v

′
e}}. Therefore, if �(e, q) � 2, there is a point qe ∈ e ∪ {ve, v

′
e} such that the

unit disks with centers at q and qe have disjoint interiors.
If q is a point such that �(e, q) � 2, then

MB

(
e, {q}) = RV(q) +

⎧⎪⎪⎨
⎪⎪⎩

BE(e) if d(ve, q) < 2, d(v′
e, q) < 2,

BV(ve) if d(ve, q) � 2, d(v′
e, q) < 2,

BV(v′
e) if d(ve, q) < 2, d(v′

e, q) � 2,

max{BV(ve),BV(v′
e)} if d(ve, q) � 2, d(v′

e, q) � 2.

This holds because BE(e) � BV(ve) and BE(e) � BV(v′
e), which implies that, whenever d(ve, q) � 2 or

d(v′
e, q) � 2, it is better to place the center of the blue disk at an endpoint of e.
Obviously, we have MB(e,V) = max{MB(e, {q}) | q ∈ V, �(e, q) � 2} and therefore

MB(e,V) = max

⎧⎨
⎩
BE(e) +RV(q) | q ∈ V, �(e, q) � 2
BV(ve) +RV(q) | q ∈ V, d(ve, q) � 2
BV(v′

e) +RV(q) | q ∈ V, d(v′
e, q) � 2

⎫⎬
⎭ . (1)

S. Cabello et al. / Computational Geometry 40 (2008) 195–206 199
Fig. 3. Left: notation concerning an edge e. Right: the region Xe .

Fig. 4. Region of interest in Lemma 2 for edge e, together with a zoom to the most complex part. In the zoom, the region {p ∈ R
2 | �(e,p) � 2} \

(Ave ∪ Av′
e
) is in darker grey. This region is covered by Xe .

Given an edge e ∈ A we characterize now the set of points q such that �(e, q) � 2. Let C(e) denote the circle
containing e, and let c(e) be the center of C(e). Let we and w′

e be the points on C(e) symmetric to ve and v′
e with

respect to c(e), and let He be the closed half-plane with we,w
′
e in its boundary that does not contain ve. See Fig. 3.

The closed annulus centered at a point p with inner radius r and exterior radius r ′ will be denoted by Ann(p, r, r ′).
For v ∈ V , let Av = Ann(v,2,∞), let Ae = Ann(c(e),1,∞), and let Xe = Ae ∩ He.

If e is an edge of A of length at most π , the following lemma characterizes the set of points q such that �(e, q) � 2.
The proof of this lemma follows immediately from Figs. 3 and 4.

Lemma 2. For any edge e ∈ E we have{
q ∈ R

2 | �(e, q) � 2
} = Ave ∪ Av′

e
∪ Xe.

For a subset Q ⊆ V , define R(Q) = max{RV(v) | v ∈ Q}. Because of Lemma 2, Eq. (1), and the fact that both
RV(ve) and RV(v′

e) � RE(e), it is clear that for any edge e ∈ E we have

MB(e,V) = max

⎧⎨
⎩
BE(e) +R(V ∩ Xe)

BV(ve) +R(V ∩ Ave)

BV(v′
e) +R(V ∩ Av′

e
)

⎫⎬
⎭ . (2)

200 S. Cabello et al. / Computational Geometry 40 (2008) 195–206
2.5. Main result and discussion

We index the edges E in decreasing order of “quality”, that is, let e1, . . . , ek be the elements of E sorted such that
BE(ei) � BE(ei+1), for 1 � i < k. Let Wi = V ∩Xei

, for 1 � i � k; it holds that �(ei, v) � 2 for all v ∈ Wi . Note that
if v ∈ Wi and v ∈ Wj , with j < i, then BE(ej)+R(v) � BE(ei)+R(v), and there is no need to consider as candidate
the blue disk with center in ei and the red disk with center at v. More generally, if we define Vi = V \ (

⋃
j<i Wj), for

1 � i � k, then it holds that

max
e∈E

{
BE(e) +R(V ∩ Xe)

} = max
i=1,...,k

{
BE(ei) +R(Vi ∩ Xei

)
}
. (3)

The main advantage of the formulation on the right side is that the sets Vi ∩ Xei
, 1 � i � k, are pairwise disjoint,

which allows a better manipulation. We can use Eqs. (2) and (3) to rewrite our objective as follows

max
e∈E

{
MB(e,V)

} = max
e∈E

max

⎧⎨
⎩
BE(e) +R(V ∩ Xe)

BV(ve) +R(V ∩ Ave)

BV(v′
e) +R(V ∩ Av′

e
)

⎫⎬
⎭

= max

{
maxv∈V {BV(v) +R(V ∩ Av)}
maxe∈E{BE(e) +R(V ∩ Xe)}

}

= max

{
maxv∈V {BV(v) +R(V ∩ Av)}
maxi=1,...,k{BE(ei) +R(Vi ∩ Xei

)}
}

.

We next show how to calculate the two values maxv∈V {BV(v)+R(V ∩Av)} and maxi=1,...,k{BE(ei)+R(Vi ∩Xei
)}.

The approach for this is based on a compact representation of the subset of vertices of V that are inside the annuli
Av,v ∈ V and Ae, e ∈ E.

Let us recall that a bipartite graph G is a graph whose vertex set can be split into two disjoint subsets X and Y

such that all the edges of G join vertices in X to vertices in Y . If for all x ∈ X and y ∈ Y the edge xy is in G, then G

is called a complete bipartite graph. In this case the sets X and Y are sufficient to represent G, and we will denote G

as G = (X,Y). We will rely on the following result by Katz and Sharir regarding the incidences between points and
congruent annuli.

Theorem 1. (Katz, Sharir [13].) Let M be a set of n congruent annuli and P be a set of n points. Then it is possible
to compute the set of pairs {(A,p) | A ∈ M, p ∈ P, p ∈ A} as a collection of edge disjoint bipartite graphs Gj =
(Mj ,Pj), Mj ⊂ M , Pj ⊂ P , in O(n4/3 logn) time and space, 1 � j � m where m is O(n4/3). Moreover

∑
j (|Mj | +

|Pj |) = O(n4/3 logn).

The next result follows from the fact that the size of V is quadratic:

Lemma 3. We can compute the value maxv∈V {BV(v) +R(V ∩ Av)} in O(n8/3 logn) time.

Proof. We have to identify for each Av, v ∈ V , the point p ∈ V ∩ Av with the largest RV(p). Let M = {Av | v ∈ V },
which consists of O(n2) annuli. By Theorem 1 we can obtain a compact representation of {(Av,p) | Av ∈ M, p ∈ V,

p ∈ Av} as a collection of m = O(n8/3) edge disjoint bipartite graphs Gj = (Mj ,Pj), Mj ⊂ M , Pj ⊂ V , in
O(n8/3 logn) time and space.

For each 1 � j � m let Rj be the largest RV(p) such that p ∈ Pj . Since
∑

j |Pj | is O(n8/3 logn) the set of all

Rj can be computed in O(n8/3 logn) time, j = 1, . . . ,m.
Initialize a variable Rv = 0 for each v ∈ V , which will eventually attain the value R(V ∩Av). Next for i = 1, . . . ,m

repeat the following: For all Av ∈ Mi let Rv be the maximum between the current value of Rv and Rj . Clearly at
the end of our process for all Av , the final value of Rv equals that of the largest RV(p), p ∈ V ∩ Av , and hence
Rv = R(V ∩ Av). �

Combining the same technique with semi-dynamic data structures for maintaining the convex hull [4,11] we obtain
the following:

S. Cabello et al. / Computational Geometry 40 (2008) 195–206 201
Lemma 4. We can compute the value maxi=1,...,k{BE(ei) +R(Vi ∩ Xei
)} in O(n8/3 log2 n) time.

Proof. Consider the multiset of annuli M = {Ae | e ∈ E}. By Theorem 1 we can obtain a compact representation of
{(Ae,p) | Ae ∈ M, p ∈ V, p ∈ Ae} as a collection of m = O(n8/3) edge disjoint bipartite graphs Gj = (Mj ,Pj),
Mj ⊂ M , Pj ⊂ V , in O(n8/3 logn) time and space.

For any edge e ∈ E, let Je be the set of indices that contain Ae , that is, Je = {j ∈ {1, . . . ,m} | Ae ∈ Mj }. For any
vertex v ∈ V , let Jv be the set of indices that contain v, that is, Jv = {j ∈ {1, . . . ,m} | v ∈ Pj }. We can compute the
indices Je, e ∈ E, and the indices Jv, v ∈ V , in O(n8/3 logn) time by scanning the bipartite graphs Gj , 1 � j � m.
Note that V ∩ Aei

= ⋃
j∈Jei

Pj , and the union is disjoint because of the properties of Theorem 1.
For each 1 � j � m we store the point set Pj in a semi-dynamic data structure DSj for maintaining the convex

hull [4,11]: it can be constructed in O(|Pj | log |Pj |) = O(|Pj | logn) time, and supports deletions and extreme-point
queries (find the point that is extreme in a query direction) in amortized O(log |Pj |) = O(logn) time. Since construct-
ing DSj takes O(|Pj | logn) time, we spend

∑
j O(|Pj | logn) = O(n8/3 log2 n) time.

If at some stage DSj contains a set of points Qj , then for any given half-plane H we can construct the set Qj ∩ H

and remove it from DSj in O((|Qj ∩ H | + 1) logn) time: we query DSj to find the point p ∈ Qj that is extreme in
the direction perpendicular to the boundary of the half-plane, and if p is contained in H , then we remove it from DSj

and repeat the process.
Next we compute the sets Vi ∩ Xei

, 1 � i � k, as follows. We proceed in k steps i = 1, . . . , k, and use Qj for the
point set stored in the data structure DSj , 1 � j � m, at any given time. During step i, we compute Zi = ⋃

j∈Jei
(Qj ∩

Hei
), and remove all appearances of elements v ∈ Zi from each of the data structures DSj , 1 � j � m. This finishes

the description of the algorithm. We claim that Zi = Vi ∩ Xei
, 1 � i � k. To see this, note that through the process

we maintain the invariant that Vi = ⋃
j Qj at the beginning of each step i. This clearly holds for i = 1. For i > 1, the

invariant holds because V ∩ Aei
= ⋃

j∈Jei
Pj , which implies that Vi ∩ Aei

= ⋃
j∈Jei

Qj , and therefore (Vi ∩ Xei
) =

(Vi ∩ Aei
∩ Hei

) = ⋃
j∈Jei

(Qj ∩ Hei
). As claimed, it follows that Zi = Vi ∩ Xei

, 1 � i � k, and we can return
maxi=1,...,k{BE(ei) +R(Zi)} as the desired value.

The algorithm we have described can be implemented to take O(n8/3 log2 n) time as follows. In step i, we compute
Zi querying each DSj , j ∈ Jei

, as discussed above, and we spend
∑

j∈Jei
O((|Qj ∩Hei

|+1) logn) = O((|Vi ∩Xei
|+

|Jei
|) logn) time. Here we have used that Vi ∩Aei

= ⋃
j∈Jei

Qj , where the union is disjoint. Using that the sets Vi ∩Xei

are pairwise disjoint, 1 � i � k, we can bound the time used to compute Z1, . . . ,Zk by

k∑
i=1

O
((|Vi ∩ Xei

| + |Jei
|) logn

) =
k∑

i=1

O
(|Vi ∩ Xei

| logn
) +

∑
e∈E

O
(|Je| logn

)

= O
(|V | logn

) + O
(
n8/3 log2 n

)
= O

(
n8/3 log2 n

)
.

The deletion of v ∈ Zi has to be done in DSj , j ∈ Jv , and we spend O(|Jv|) time plus the time needed to perform
the deletions. Since each point v ∈ V is deleted at most once during the whole algorithm, and deleting a point from
DSj takes amortized O(logn) time, it follows that all deletions take at most

∑
v∈V O(|Jv| logn) = O(n8/3 log2 n)

time. �
From the preceding discussion and Lemmas 3 and 4, we conclude our main result.

Theorem 2. Given a set of red points and a set of blue points on the plane, we can find in O(n8/3 log2 n) time positions
for two interior-disjoint unit disks CR and CB such that the number of red points covered by CR plus the number of
blue points covered by CB is maximized.

Observe that there may be Θ(n4) optimal solutions to our problem. An example showing this bound can be obtained
as follows. Given n, construct an instance with n/2 blue points that has Θ(n2) optimal solutions for the problem of
maximum coverage unit disk problem, make a copy and color it red, and, finally, place the red and blue copies far
apart; see Fig. 5 for an example. It follows that there are Θ(n2) optimal placements for the blue color, and the same

202 S. Cabello et al. / Computational Geometry 40 (2008) 195–206
Fig. 5. A collection of unit circles and a zoom to a part of the drawing. When the set of unit disks centered at points of B looks like in the figure,
placing the center of the blue unit coin CB in the grey faces of the arrangement would cover most points. A similar scenario but with red circles
that is far enough gives rise to Θ(n4) optimal solutions to the Two-Coin Problem.

for the red color. Since the optimal placements for red and blue do not interact, we have Θ(n4) optimal solutions to
our problem.

Finally, note that the problem we are considering is 3SUM-hard [9]: the 3SUM-hardness result by Aronov and
Har-Peled [1] regarding depth in arrangements of disks can be easily adapted to our problem.

3. Two disjoint squares

In this section we consider the case when our coins are two axis-parallel unit squares SR and SB . As in the previous
section, we restrict ourselves to squares of the same size, i.e., unit squares. This condition can be easily removed,
leaving the results unchanged. We will present a solution that requires O(n logn) time. This improves the result
presented in a previous version of this work [6], where an algorithm using O(n2) time was given. We also present an
algorithm for the same problem but removing the condition that the squares must be axis-aligned.

3.1. Two disjoint axis-parallel unit squares

Let S∗
R and S∗

B be an optimal solution. Observe first that since S∗
R and S∗

B are isothetic, there is a horizontal or
vertical line h that separates them. Without loss of generality, assume that h is horizontal, and that S∗

R is below and S∗
B

is above the line h (Fig. 6).
Assume that S∗

R has a red point on its top edge, otherwise we can slide it down until its top side meets a red point.
Similarly we can assume that S∗

B contains a blue point on its bottom edge. We can also assume that the line h contains
a red point, for otherwise we can simply slide it down until it hits an element of R. Using these observations, we will
outline a process to find an optimal pair S∗

R and S∗
B in O(n logn) time. We consider the following subproblem:

Problem 1. For each point p ∈ R ∪ B , find the unit square below the horizontal line hp passing through p which
contains the maximum number R(p) of red points.

To solve this problem, we will use segment trees in a similar way to that used by Katz et al. [12] to solve the
following problem:

Theorem 3. (Katz et al. [12].) Given a set P of n weighted points within an axis-parallel rectangle R, and another
axis-parallel rectangle Q which is smaller than R, it is possible to place Q within R in O(n logn) time, such that the
sum of the weights of the points covered by Q is minimized.

S. Cabello et al. / Computational Geometry 40 (2008) 195–206 203
Fig. 6. Assumptions on how the optimal solution looks like when the optimal squares have a separating horizontal line and the red square is below it.

Fig. 7. Sweeping the slab. The root of the segment tree keeps track of a best red square within the slab.

To solve Problem 1 we sweep a horizontal slab S of width 1 from bottom to top; see Fig. 7. During the sweep, we
maintain a segment tree structure whose root stores the coordinates of the corners of a red unit square within the slab
that contains the maximum number of red points. The events when the segment tree has to be updated are:

(1) a point of R hits the bottom boundary line of S , or
(2) a point of R hits the top boundary line of S .

Each of these events can be handled in the segment tree in O(logn) time, using the same approach as Katz et
al. [12]. Since there are 2n events, we need O(n logn) time overall.

For a point p ∈ R ∪ B , let RSp be a square below the horizontal line hp passing trough p that contains the
maximum number R(p) of red points. Observe that during the sweep of S from bottom to top, we can maintain the
position of RSp; each time we reach a point of R ∪ B we update the segment tree, if needed, and compare the best
square within the slab with the overall best square until then. We conclude the following result.

Lemma 5. In O(n logn) time we can find, for all points p ∈ R ∪B , the square RSp that contains the largest possible
number R(p) of red points below hp .

In a similar way we can determine for each point p ∈ R ∪ B the position of the square BSp above hp that contains
the largest number B(p) of blue points. To solve our problem, all we need to do is to find the point p ∈ R ∪ B that
maximizes R(p) +B(p). Clearly this can be done in linear time. Thus we have:

Theorem 4. Given a set of red points and a set of blue points on the plane, we can find in O(n logn) time positions
for two axis-parallel unit-squares SR and SB with disjoint interiors such that the number of red points covered by SR

plus the number of blue points covered by SB is maximized.

204 S. Cabello et al. / Computational Geometry 40 (2008) 195–206
Fig. 8. Red and blue points in the reduction for Theorem 6.

Now we show that the algorithm above is asymptotically optimal by proving an Ω(n logn) time lower bound. This
lower bound holds in the algebraic tree model of computation, and we will show it by reduction from the following
problem.

The ε-distance problem. Given n real numbers x1, x2, . . . , xn and a positive real number ε > 0, determine whether
there exists a permutation σ of (1,2, . . . , n) such that xσ(1) � xσ(2) � · · · � xσ(n), and xσ(i+1) > xσ(i) + ε, for all i,
1 � i � n − 1.

Theorem 5. (See [19].) The ε-distance problem requires Ω(n logn) time under the algebraic computation tree model.

Proof. The ε-distance problem is equivalent to the problem of deciding if a given (x1, . . . , xn) belongs to the set

W = {
(x1, x2, . . . , xn) ∈ R

n | |xi − xj | > ε for all i
= j
}
.

It is easy to see that W consists of n! connected components, and therefore the lower bound follows from Ben-Or’s
theorem [2,18]. �
Theorem 6. Finding positions for two axis-parallel unit-squares SR and SB with disjoint interiors such that the
number of red points covered by SR plus the number of blue points covered by SB is maximized requires Ω(n logn)

time in the algebraic computation tree model.

Proof. Let S = {x1, x2, . . . , xn} and a positive real number ε > 0 be an instance for the ε-distance problem, and
assume w.l.o.g. that xn = max(S). Let R = {(x1,0), (x2,0), . . . , (xn,0)}, and let B = {(b1,0), (b2,0), . . . , (bn,0)},
where bi = (xn + 4ε) + xi , i = 1, . . . , n. See Fig. 8.

Let us now solve the Two-Coin Problem for R ∪ B , using ε-squares instead of unit-squares.
By construction, S∗

R and S∗
B cover only red (respectively blue) points, and both of them cover exactly the same

number of points. It is clear that the answer to the ε-distance problem for S is affirmative if and only if the number of
points covered by S∗

R and by S∗
B is exactly one. �

3.2. Two disjoint arbitrarily oriented squares

We now consider a generalized version of the two axis parallel squares problem. We want to determine two disjoint
unit squares SB and SR such that they have the same orientation such that the number of red points covered by SR

plus the number of blue points covered by SB is maximized.
Our purpose is to determine a finite number of candidate orientations and then, for each of them, apply the algorithm

described in the previous subsection. In order to determine candidate orientations, we will use the following result.

Lemma 6. The optimal squares S∗
R and S∗

B can be moved to a new position in the plane such that one of the two
squares either: (i) has at least three points on its edges, two of them on two adjacent edges; or (ii) has at least two
points on its edges, one of them on a corner.

Proof. Since S∗
R and S∗

B have common orientation and disjoint interior there is a line h, parallel to two edges of
each square, that separates them. Without loss of generality, assume that h is horizontal and that S∗

R is above and S∗
B

below h.
Observe that since S∗

R (S∗
B) is an optimal solution, while translating and rotating S∗

R (S∗
B) the first red (blue) point

met by an edge of S∗
R (S∗

B) is a point belonging to R ∩ S∗
R (B ∩ S∗

B), so the number of red (blue) points covered by S∗
R

(S∗) does not change.
B

S. Cabello et al. / Computational Geometry 40 (2008) 195–206 205
case (a) case (b) case (c) case (d)

Fig. 9. Basic cases.

Slide S∗
R up until its bottom edge meets a red point r1, and S∗

B down until its top edge meets a blue point b1.
Assume that b1 is located to the left or on the vertical line through r1. Now we slide S∗

B to its left until its right edge
meets a blue point b2 and S∗

R to its right until its left edge meets a red point r2. Observe that it can occur that r2 = r1
or/and b2 = b1.

Finally, we simultaneously apply a motion to S∗
R and S∗

B as follows. Maintaining their common orientation, we
rotate S∗

R and S∗
B in the clockwise direction while requiring the bottom and left edge of S∗

R to pass through r1 and r2
and the top and right edge of S∗

B to pass through b1 and b2 at all times. During the motion the bottom-left (top-right)
corner of S∗

R (S∗
B) moves along an arc of the circle of diameter r1r2 (b1b2). If r2 = r1 (b2 = b1) the motion of S∗

R (S∗
B)

is a rotation around the bottom-left (top-right) corner of S∗
R (S∗

B). The motion terminates as soon as: (i) an edge of S∗
R

(S∗
B) meets one more red (blue) point r3 (b3); (ii) a corner of S∗

R (S∗
B) meets r1 or r2 (b1 or b2).

In the case that b1 is located to the right of the vertical line through r1 we proceed similarly, but rotating S∗
R

and S∗
B in counterclockwise direction. In any case the rotation angle is at most π/2 radians and, by the choice of the

orientation of the rotation, during the movement S∗
R and S∗

B remain disjoint. �
Let us see that conditions (i) and (ii) of Lemma 6 determine a finite number of candidate orientations. Fig. 9 shows

the four cases than can arise according to Lemma 6. Squares of cases (a) and (b) correspond to condition (i) and
squares of cases (c) and (d) correspond to condition (ii).

In the four cases, points p and q determine the orientation of the square. Next we explain how to determine this
orientation. Cases (a) and (c): points p and q are on the same edge of a unit square. Consequently d(p,q) � 1. The
line passing through p and q determines the orientation of the unit square. Cases (b) and (d): points p and q are
on opposed edges of a unit square. Consequently, it holds that 1 � d(p,q) �

√
2. The parallel lines passing through

p and q at distance 1 determine the orientation of the unit square. Observe that when d(p,q) = 1, the orientation
obtained in cases (a)–(c) and (b)–(d) coincides. From this discussion, we have the following result.

Lemma 7. Candidate orientations for optimal squares SR and SB can be obtained from pairs of points p, q of the
same color such that:

(1) d(p,q) � 1 and the candidate orientation is determined by the line passing through p and q;
(2) 1 < d(p,q) �

√
2 and the candidate orientation is determined by the two parallel lines passing through p and q

at distance 1.

We can now solve the arbitrarily oriented squares problem as follows. First, compute the O(n2) candidate orien-
tations determined by Lemma 7, and then apply to each candidate orientation the O(n logn) time algorithm from
Theorem 4 to solve the two disjoint axis-parallel unit-squares problem. This leads to the following result.

Theorem 7. Given a set of red points and a set of blue points on the plane, we can find in O(n3 logn) time positions
for two unit-squares SR and SB with arbitrary but common orientation and disjoint interiors such that the number of
red points covered by SR plus the number of blue points covered by SB is maximized.

4. Conclusions

We have presented algorithms for the following problem: Given a set of red points and a set of blue points, find two
unit disks (or unit squares) CR and CB with disjoint interiors that maximize the number of red points covered by CR

plus the number of blue points covered by CB . As noted in the introduction, the same algorithms can be used to solve

206 S. Cabello et al. / Computational Geometry 40 (2008) 195–206
the monochromatic version of the problem, where we only have one point set and we want to maximize the number
of points covered by two interior-disjoint unit disks (or squares).

A natural extension of the problem consists in assigning weight to the points, and then optimizing the sum of the
weights of the red points covered by the red disk plus the sum of the weight of the blue points covered by the blue
disk. Our algorithms can be easily modified to handle this generalization.

Our algorithms can also be extended to handle coins of different sizes, or when they are rectangles of a given shape.
The presentation for unit-squares directly carries out to rectangles. For differently-sized disks, the relevant region for
an edge can also be expressed as the union of two congruent annuli and the intersection of an annulus and a halfplane.
The rest of the presentation carries out in the same way.

We note that our algorithms can be easily modified for any optimization function that is monotone on the number of
red points covered by CR and the number of blue points covered by CB , that is, any function that increases whenever
CR or CB cover more red or blue points respectively. For example, we could be interested in disks (or rectangles)
CR,CB maximizing the value min{|R ∩ CR|, |B ∩ CB |}. The same time bounds we have obtained here apply for this
problem.

Finally we left as a research problem that of finding two disjoint squares SB and SR with arbitrary, but not neces-
sarily equal orientations, such that the number of blue points covered by SB plus the number of red points covered by
SR is maximized.

Acknowledgements

These problems studied here were posed and partially solved during the Second Spanish Workshop on Geomet-
ric Optimization, July 5–10, 2004, El Rocío, Huelva, Spain. The authors would like to thank the Ayuntamiento de
Almonte for their support and the other workshop participants for helpful comments.

References

[1] B. Aronov, S. Har-Peled, On approximating the depth and related problems, in: Proceedings 16th Annual ACM–SIAM Symposium on Discrete
Algorithms, 2005, pp. 886–894.

[2] M. Ben-Or, Lower bounds for algebraic computation trees, in: Proceedings of the fifteenth Annual ACM Symposium on Theory of Computing,
1983, pp. 80–86.

[3] M. de Berg, S. Cabello, S. Har-Peled, Covering many or few points with unit disks, in: WAOA 2006, in: Lecture Notes in Computer Science,
vol. 4368, 2007, pp. 55–68.

[4] G.S. Brodal, R. Jacob, Dynamic planar convex hull, In: Proceedings of the 43rd Annual Symposium on Foundations of Computer Science,
2002, pp. 617–626.

[5] B. Chazelle, D.T. Lee, On a circle placement problem, Computing 36 (1986) 1–16.
[6] J.M. Díaz-Báñez, C. Seara, J.A. Sellarès, J. Urrutia, I. Ventura, Covering point sets with two convex objects, in: 21st European Workshop on

Computational Geometry, 2005.
[7] Z. Drezner, On a modified one-center model, Management Science 27 (1981) 848–851.
[8] R. Duda, P. Hart, D. Stork, Pattern Classification, Wiley, New York, 2001.
[9] A. Gajentaan, M.H. Overmars, On a class of O(n2) problems in computational geometry, Computational Geometry Theory and Applications 5

(1995) 165–185.
[10] J.A. Hartigan, Clustering Algorithms, Wiley, New York, 1975.
[11] J. Hershberger, S. Suri, Applications of a semi-dynamic convex hull algorithm, BIT 32 (1990) 249–267.
[12] M.J. Katz, K. Kedem, M. Segal, Improved algorithms for placing undesirable facilities, Computers & Operations Research 29 (2002) 1859–

1872.
[13] M.J. Katz, M. Sharir, An expander-based approach to geometric optimization, SIAM Journal on Computing 26 (1997) 1384–1408.
[14] Y. Liu, M. Nadiak, Planar case of the maximum box and related problems, in: Proceeding of the Canadian Conference on Computational

Geometry, 2003, pp. 11–13.
[15] R.F. Love, J.G. Morris, G.O. Wesolowsky, Facilities Location, North-Holland, Amsterdam, 1988 (Chapter 3.3).
[16] Y. Ohsawa, F. Plastria, K. Tamura, Euclidean push–pull partial covering problems, Computers & Operations Research 33 (12) (2006) 3566–

3582.
[17] F. Plastria, Avoiding cannibalisation and/or competitor reaction in planar single facility location, Journal of the Operational Research Society

of Japan 48 (2) (2005) 148–157.
[18] F.P. Preparata, M.I. Shamos, Computational Geometry. An Introduction, Springer, 1988.
[19] V. Sacristán, Lower bounds for some geometric problems, Technical Report MA2-IR-98-0034, Universitat Politècnica de Catalunya, 1998.
[20] M. Sharir, P.K. Agarwal, Davenport–Schinzel Sequences and Their Geometric Applications, Cambridge Univ. Press, 1995.
[21] M. Segal, Planar maximum box problem, Journal of Mathematical Modelling and Algorithms 3 (2004) 31–38.

