
SLA MANAGEMENT OF
NON-COMPUTATIONAL SERVICES

DIGITAL TRANSFORMATION OF SERVICES DRIVEN

BY SLAS

Thesis written by

ANTONIO MANUEL GUTIÉRREZ FERNÁNDEZ

and supervised by

Dr. Antonio Ruiz Cortés and Dr. Manuel Resinas
Arias de Reyna

Universidad de Sevilla

Dpto. de Lenguajes y Sistemas Informáticos

E.T.S.I. Informática

May 2018

First published in May 2018 by
Antonio Manuel Gutiérrez Fernández
Copyright © MMXVIII
amgutierrez@us.es

This is a copyleft document but the content is copyrighted

Support: Pre-doctoral scholarship, and scholarships for research visits granted by the
Spanish Government under CICYT project TAPAS (TIN2012–32273). Additional
support for research visits and attending conferences provided by: the European
Commission project: RISEBPM (H2020–645751); the Spanish Government project
BELI (TIN2015–70560–R); and the Andalusian Government project COPAS
(P12–TIC–1867).

mailto:amgutierrez@us.es

A toda mi familia por su apoyo en todo momento

AGRADECIMIENTOS

i

Según Bernard Chartres, cualquier avance científico "no es más que mirar desde los
hombros de unos gigantes". No está claro si habré conseguido mirar más lejos, pero
tengo claro que mi aportación nunca es más que una pequeñisima luz imperceptible al
calor de la suma de fuegos con la que mi familia, amigos y colegas me ha alumbrado
siempre.

El camino formal empezó de la mano de Manolo, sin el que me hubiera sido impo-
sible llevar a buen término esta tarea. Con su dirección he aprendido a ordenar, retorcer
y exprimir las ideas pero también tengo que agradecerle la paciencia para soportar mi
necesidad de reafirmar mis propias ideas a modo de espejo. Pero esta tesis empezó a
formarse hace más de 10 años. Hablar de SLAs, preferencias de calidad y despliegue
de servicios delante de una tostada de jamón, aceite y tomate con Pablo era, claro, el
principio de algo. Mucho después, no puedo evitar pensar que en cierta forma, el co-
razón y la razón de esta tesis son hijos de ambos (aunque putativo si se me permite
el decirlo). También ha contado con las visitas ocasionales del tito José Antonio, apor-
tando siempre sensatez pero combinada con ideas y humor. Y en esta familia no falta
tampoco, y no lo digo por la edad, el .abuelo.Antonio, poniendo orden y dirigiendo
desde la tramoya los hilos e ideas de ésta criatura.

En un camino tan largo, por supuesto, han sido muchos también los primos (sin se-
gundas) que han aportado su luz. Se me hace difícil dar un nombre primero, pero han
sido muchos cafés que Alejandro ha soportado con mis incesantes inquietudes. Han
sido también muchas las líneas de Latex con Carlos, que tanto (o tan poco :D) me han
hecho aprender a formatear. Y David, aportando orden, no sólo a las ideas científicas,
sino personales. Y muchas han sido también las horas juntos en el aula ISA, tanto con
Cristina, iluminándome con su férrea disciplina y capacidad de trabajo, como Adela
con su alegría y comprensión. Y antes, en el aula SUN, los buenos ratos profesionales
con Ana Belén, José Galindo y Jesús Galán. Y como, además de hablar, también me gus-
ta escuchar, he tenido la suerte de aprender de Joaquín y Sergio, dos grandes ’doers’. Y
todo, sin olvidarme de los buenos momentos que he podido pasar con todos los com-
pañeros del grupo, Octavio, Amador, José Mari, Pablo T, Bea, Margarita y, un poquito
más recientemente, Bedilia, Javi, Alfonso y Antonio G. En realidad son muchos más
nombres, incluyendo a los compañeros de LSI, como para nombraros a todos, gracias.

Esta tesis tampoco hubiera sido la misma sin las estancias que he disfrutado en
Essen, Vienna y Rio de Janeiro. Gracias a Clarissa y Andreas, Scharahm y Hong Ling
y Flavia y Claudia por brindarme la oportunidad de formarme con vosotros y espero

poder seguir extendiendo las colaboraciones que hemos comenzado.

Y por último, quiero acordarme de todos los que no saben ni de que va ésta tesis pe-
ro han sido igualmente importantes. Mi familia y mis amigos. Por un lado, mis padres,
Amparo y José, y mi hermano Pepe que siempre han confiado en mi y puesto todo de
su parte para que llegue tan lejos como proponga. Pero también mis amigos que no
han dejado de preguntarme para cuando terminaba, Juanje, Pablo, Silvia, Alejandro y
Jesús. Por último quiero nombrar a la persona que más ha soportado este camino, Ana.
De todo corazón, gracias.

Guti

ii

ACKNOWLEDGMENTS

iii

Bernard Chartres said that any scientific is "looking farther on the shoulders of giants".
I am not sure if I succeed to look farther but I am sure that my addition is just an
indiscernible light in the sum of fires with which my family, friends and colleagues
have always lighted me.

The formal path of this thesis started together with Manolo and I could have not
finished it without his driving. I have learned to sort, twist and squeeze ideas but I
have also to thank him the patience to hear my need of reaffirm my ideas. But this
thesis started also to take shape more than 10 years ago. Chat in the breakfast about
SLAs, quality preferences and services deployment with Pablo and a piece of bread
with olive oil, tomato and jamon was the beginning of something. A long time after, I
cannot help thinking that the heart and mind in this dissertation are children of both
(although putative if i may say). Of course, there have also been the occasional visits
of the uncle, José Antonio, which has always provided sanity together with a piece of
ideas and good mood. And to complete the family, there is also a grandfather (not
because his age!), Antonio, who has put order in the family and has managed from the
stage the ideas and plot of this dissertation.

In a so long path, there have been, of course, many cousins providing their light.
It is not easy to start with a name, but there have been a lot of coffees with Alejandro
to hear my often questions. There have been also a lot of Latex lines with Carlos, with
who I have learned so much (or so few) to format. And a lot of Napolitanas with
David, providing support to my ideas not just scientific but personals. And also long
time in the ISA office with Cristina, providing the light of iron discipline and, Adela,
always with joy and empathy. And sometime before, in the SUN office, the "technical"
fun with Ana Belén, José Galindo and Jesús Galán. I not only like talk but also hear
so I have also been lucky to hear from the ’doers’ Joaquín and Sergio. And, of course,
I do not want to forget any of my ISA colleagues, Octavio, Amador, José Mari, Pablo
T, Bea, Margarita and, a bit more recent, Bedilia, Javi, Alfonso and Antonio G. There
are really much more names to say, including my colleagues from the LSI department.
Thank you.

This dissertation would have neither been the same without my research stays in
Essen, Vienna and Rio de Janeiro. Thank you to Clarissa and Andreas, Schahram and
Hong Ling and Flavia and Claudia for giving the opportunity to learn with you and I
hope to collaborate further with you.

And last, I want to remind all the people that dont́ know about what this disser-

tation discuss but are equally important for the result. My family and friends n the
one side, thank you to my parents, Amparo y José, and my brother, Pepe, because you
have always trusted on me and supported to handle any achieve I propose. And also,
thank you to all my friends that never stopped to asked when I was going to finish,
Juanje, Pablo, Silvia, Alejandro y Jesús. And lastly, I want to name the person who
longer suffered this path, Ana. My sincere thanks.

Guti

iv

RESUMEN

v

El incremento en el uso de arquitecturas orientadas a servicios en los últimos 15 años
ha propiciado la propuesta de numerosas técnicas para automatizar y dar soporte al
uso de dichos servicios. Un elemento fundamental en la provisión de servicios es el
Acuerdo de Nivel de Servicio (ANS), donde se formalizan los requisitos y garantías
de consumidor y proveedor respecto del rendimiento del servicio. Las propuestas pa-
ra servicios computacionales, además de proveer modelos formales para describirlos,
proponen la automatización de las diferentes etapas del ciclo de vida del ANS, tales
como la negociación de las garantías para crear un ANS, el despliegue de servicios ba-
sados en el ANS, o la gestión de los recursos para cumplir las garantías provistas en el
mismo.

Sin embargo, en los servicios tradicionales, no computacionales, es decir, los ser-
vicios que no son ejecutados por recursos computacionales, tales como los servicios
de logística o de desarrollo de software, la gestión de sus ANSs todavía se realiza por
medios ad-hoc. Así, las soluciones existentes no pueden ser reutilizadas por diferentes
servicios. Y, en la mayoría de los casos, esta gestión se hace de manera manual (p.e.
revisión de los objetivos acordados en los ANSs de servicios de transporte), por lo que
la evaluación de estos ANSs es susceptible a errores y se suele retrasar respecto a la
ejecución del servicio (p.e. cuando el ANS ha finalizado), por lo que no se pueden to-
mar acciones preventivas para evitar el incumplimiento del ANS o estas acciones no
son rentables. En estos escenarios, aparecen, además, acuerdos marco para un periodo
largo (p.e. 1 aõ), durante el cual pueden aparecen ANSs relacionados con éste para un
periodo más específico y el análisis de la coherencia entre acuerdos marco y acuerdos
específicos es complicada de hacer durante la ejecución del servicio.

En esta tesis, nos proponemos automatizar parcialmente la gestión de los ANSs de
servicios no computacionales.

Así, por un lado, proponemos que los modelos para servicios computacionales se
extiendan a servicios no computacionales, de manera que permitan describir la opera-
tiva del servicio y sus garantías. Y, por otro lado, basado en estos modelos, proporcio-
namos el diseño de operaciones para gestionar el ciclo de vida de los ANS. Concreta-
mente, estas operaciones se basan en las fases de despligue y evaluación del ANS.

De forma específica, esta tesis propone tres contribuciones principales. Primero,
(A) extender iAgree para dar soporte al modelado de los ANS de servicios no compu-
tacionales. Segundo, (B) dar soporte al ciclo de vida de dichos ANS mediante la for-
malización de las operaciones citadas (configuración del servicio basada en el ANS y

monitorización del mismo) y, a partir de estas operaciones, implementamos una arqui-
tectura de referencia para estas operaciones. Y, por último, (C) proveemos el modelado
de la relación entre acuerdos marco y específicos que relacione sus términos junto con
la formalización de las operaciones para el análisis que aparecen entre ellos.

Otros aspectos del ciclo de vida del servicio y del ANS, como la gestión de los
recursos para mejorar el rendimiento del servicio o el uso de técnicas (como machine
learning) para la predicción del cumplimiento de los ANSs están fuera del contexto de
esta tesis, pero se plantean como futuras líneas de extensión.

Este trabajo se ha basado en ANSs reales de diferentes dominios, tales como servi-
cios de Transporte y Logística, proveedores de Cloud or outsourcing de desarrollo TIC,
que se han utilizado para validar las propuestas. Además, las contribuciones presen-
tadas se han aplicado en el contexto de proyectos reales de soporte de sistemas TIC.

vi

ABSTRACT

vii

The rise of computational services in the last 15 years brought the proposal of a number
of techniques to automate and support their enactment. One key element in services
is the Service Level Agreement (SLA), where the requirements of service customer are
matched with the performance levels from the service provider to define service level
guarantees and related responsibilities. The proposals from computational domains
are oriented to automate the different stages in the SLA Lifecycle, such as the negoti-
ation of terms which will form the SLA, the deployment of services based on the SLA
artifact or the management of computational resources to accomplish SLA goals on
runtime.

However, traditional non-computational services, that is, services which are not
performed by computational resources, such as logistics or software development ser-
vices, are still supported by ad-hoc mechanisms. Therefore, the existing solutions for
the management of their SLAs cannot be reused for other services. This management
is usually manually performed (e.g.: reviewing of the goals of an SLA in transport ser-
vice), so their evaluation is error-prone and delayed regarding the service execution
(e.g.: when the SLA is finished), so preemptive actions to avoid SLA violations cannot
be taken or/and are expensive to perform. Furthermore, these SLAs are sometimes
described on a long term basis (frame agreements), and related SLAs can appear for
a shorter term (specific agreements) and the analysis of the validity among them is
complex to perform on runtime.

In this dissertation, we aim at partially automate the management of SLAs in non-
computational services.

On the one hand, we suggest that existing models for computational services can be
extended to non computational services and enable the description of the service oper-
ative and their guarantees. And, on the other hand, we provide a design for operations
to partially support the SLA Lifecycle, based on the previous models. Specifically, these
operations are mainly focused on the deployment and fulfillment stages of the SLA.

Therefore, the contributions of this dissertation are three. First, (A) providing a
model to describe Service Level Agreements of non computational services, as an ex-
tension of iAgree, an existing model for SLAs of computational services. Second side,
(B) supporting the SLA Lifecycle with the design of the aforementioned operations
(service configuration based on SLA and monitoring of SLA) and implementing a ref-
erence architecture for such operations. And, lastly, (C) providing a model for frame
and specific agreements which relates their terms and formalises the analysis opera-

tions among them.

Other related operations of the service lifecycle as the management of resources to
improve service performance or the use of novel techniques (such as machine learning)
to predict the SLA accomplishment are out of the scope of this thesis but planned as
future line of extension.

The current dissertation has been based on real SLAs from different domains, such
as Transport & Logistics, public Cloud providers or IT Maintenance outsourcing, which
have been used to validate the proposal. And, furthermore, the contributions have
been applied in the context of real IT Maintenance outsourcing projects.

viii

CONTENTS

ix

I Preface 1

1 Introduction 3

1.1 Research Context . 3

1.2 Research Problems . 5

1.3 Contributions . 7

1.4 Research Methodology . 8

1.5 Publications . 10

1.5.1 Publications Supporting this Dissertation 10

1.5.2 Further Publications . 12

1.5.3 Intellectual Property . 12

1.6 Outline of this dissertation . 13

II Background 15

2 Business Process Management 17

2.1 Introduction . 17

2.2 Business Processes . 17

2.2.1 Business Process Modelling . 19

2.2.2 Business Process Management Lifecycle 20

2.3 Process Performance Indicators . 22

2.4 Process-Aware Information Systems . 26

CONTENTS

2.5 Summary . 29

3 SLA Management 31

3.1 Introduction . 31

3.2 WS-Agreement and iAgree . 32

3.2.1 Context . 32

3.2.2 Terms . 34

3.2.3 iAgree Configurations . 38

3.3 The SLA lifecycle . 39

3.3.1 Early SLA phases in iAgree/WS-Agreement 40

3.3.2 Late SLA phases in iAgree/WS-Agreement 41

3.4 SLA Analysis . 44

3.4.1 Compliance between Offer and Template 44

3.4.2 Agreement validity . 44

3.5 Tooling Support: ADA and Governify . 46

3.5.1 ADA: SLA Analysis . 47

3.5.2 SLA Designer . 47

3.5.3 SLA Repository . 48

3.5.4 SLA Dashboard . 48

3.6 Other SLA Management proposals . 50

3.6.1 SLA Models . 50

3.6.2 Specific domain SLA metrics . 54

3.6.3 Decision making based on SLA Analysis 55

3.7 Summary . 57

III Our Contributions 59

4 SLA Model for BPs 61

4.1 Introduction . 61

x

CONTENTS

4.2 An example scenario . 62

4.3 Requirements for Modelling SLAs of BPs 64

4.3.1 Business Processes . 64

4.3.2 SLA metrics . 65

4.3.3 Guaranteed SLO . 65

4.3.4 Compensations . 66

4.4 SLAs for BP Services with iAgree . 66

4.4.1 iAgree extension . 67

4.4.2 Modelling the SLA . 71

4.5 Applicability of our approach . 72

4.5.1 RQ1: Service Expressiveness . 73

4.5.2 RQ2: Metrics . 74

4.5.3 RQ3: Difficulties modelling SLAs 75

4.6 Related Work . 75

4.7 Summary . 78

5 Management of SLA-Driven Business Processes 79

5.1 Introduction . 79

5.2 SLA Monitoring . 81

5.2.1 Status of the SLA . 82

5.2.2 Infrastructure specification . 83

5.2.3 Monitoring component . 84

5.2.4 Alternatives for Monitoring . 85

5.2.5 Applicability of our proposal . 89

5.2.6 Related Work . 91

5.3 BPs configured by SLA . 93

5.3.1 Modelling configurable BPs based on SLAs 95

5.3.2 Configuring BPs based on SLAs 96

xi

CONTENTS

5.3.3 Architecture . 98

5.3.4 Applicability of our proposal . 99

5.3.5 Related Work . 102

5.4 Summary . 103

6 Frame Agreements 105

6.1 Introduction . 105

6.2 An example scenario . 106

6.2.1 Service Agreements in Transport and Logistics 106

6.2.2 Service Agreements in IT Development 108

6.3 Frame Agreements . 109

6.3.1 A conceptual model for frame agreements 110

6.3.2 Lifecycle of the agreements . 111

6.4 Operations . 112

6.4.1 Creation of a specific agreement 112

6.4.2 Conformance between frame and specific agreements 113

6.4.3 Evaluation of specific instance execution 114

6.5 Interpreting Frame Agreements as SLAs for BP 115

6.5.1 Materialising the operations . 116

6.6 Related Work . 118

6.7 Summary . 119

IV FinalRemarks 121

7 Conclusions and Future Work 123

7.1 Conclusions . 123

7.2 Application scenarios . 124

7.3 Limitations and extensions . 125

7.4 Summary . 127

xii

CONTENTS

V Appendices 129

A Compensables SLAs 131

A.1 Introduction . 131

A.2 Running Examples . 132

A.2.1 AWS EC2 SLA . 132

A.2.2 GNWT SLA . 133

A.3 Compensation Functions . 135

A.3.1 Core Definitions . 135

A.3.2 Validity of Compensation Functions 137

A.4 Compensable SLA . 139

A.4.1 Core Definitions . 140

A.4.2 Validity of Compensable Guarantees 141

A.5 Materialising the Validity Checking . 142

A.5.1 iAgree as Specification Language 142

A.5.2 Inferring the utility function and the saturation limit 144

A.5.3 Solving Technique . 144

A.6 Validation in real-world scenarios . 148

A.6.1 RQ1: Expressiveness . 149

A.6.2 RQ2: Validation result . 149

A.6.3 RQ3: Modeling issues . 149

A.7 Related Work . 151

B SCU Optimization 155

B.1 Introduction . 155

B.2 Scenario and Research Problems . 156

B.2.1 Maintenance Scenario . 156

B.2.2 Research Problems . 157

B.3 Architecture for the management of SCUs 158

xiii

CONTENTS

B.3.1 Architecture . 158

B.3.2 Abstracting Business Measures . 160

B.4 Commitment Analytics and SCU Adaptation 161

B.4.1 Commitment Management . 161

B.4.2 Monitoring and Processing Measures 161

B.4.3 Assigning SCUs to Issues . 162

B.5 Tooling support and Validation . 163

B.5.1 Assignment Simulation . 164

B.6 Related Work . 166

B.6.1 Managing Service Level Agreements 166

B.6.2 Business Process Abstraction and Matching 167

B.6.3 SCU Assignment . 168

B.7 Conclusions and Future Work . 168

C Complete SLA Examples 169

C.1 SLA from Amazon EC2 in iAgree syntax 169

C.2 SLA for FI service in iAgree syntax . 170

C.2.1 Metric examples for FI service SLA in iAgree syntax 172

C.3 Frame Agreement for Work Orders service 174

C.3.1 Metric examples for Frame Agreement in iAgree syntax 175

Bibliography 177

xiv

LIST OF FIGURES

xv

1.1 Contributions diagram . 7

1.2 Publications Map . 10

2.1 BPMN model for Work Orders Management 19

2.2 Business process management lifecycle as described by Weske in [191] . 22

2.3 PPINOT Class Diagram . 23

2.4 PPINOT Measure diagram . 24

2.5 PPINOT Scopes . 24

2.6 PPINOT Dimensions according to [41] . 26

2.7 BPMS support . 27

3.1 Class Diagram for WS-Agreement . 33

3.2 Class Diagram for iAgree . 33

3.3 Context section using iAgree syntax . 34

3.4 Terms section using iAgree syntax . 35

3.5 Guarantees using iAgree syntax . 36

3.6 WS-Agreement and sublanguages . 38

3.7 Agreement states in WS-Agreement . 42

3.8 Guarantee Term states in WS-Agreement 43

3.9 Inconsistent guarantees . 45

3.10 SLA Designer . 48

3.11 Guarantee terms monitoring with Governify 49

4.1 Contributions background . 62

LIST OF FIGURES

4.2 BPMN model of Field Intervention (FI) service 65

4.3 Class Diagram for Modelling SLA of a BP service 67

4.4 Excerpt of the FI service SLA in iAgree syntax 68

5.1 Contributions background . 80

5.2 Guarantee Term states in WS-Agreement 82

5.3 Metric values and Status of Guarantee Terms 83

5.4 Monitoring Architecture . 85

5.5 Stream vs Batch Processing . 87

5.6 Time Window calculation . 89

5.7 Log processing . 90

5.8 Project Dashboard . 91

5.9 Customizing a BP . 95

5.10 Excerpt of the FI service SLA Template in iAgree 96

5.11 Creating Configured BPs . 97

5.12 Architecture . 100

5.13 Use of Management and Monitoring APIs 103

6.1 Contributions background . 106

6.2 Frame agreement for transport & logistics 108

6.3 Business process for work orders . 109

6.4 Example of SLA Hierarchy for work orders 110

6.5 SLA Hierarchy . 111

6.6 Conceptual Model for frame agreements 111

6.7 Agreement states in WS-Agreement . 112

6.8 Examples of Operations between frame and specific agreements 113

6.9 Evolution of Metrics . 115

6.10 Operative with one single document . 117

A.1 Example AWS EC2: Penalties for Amazon as provider. 133

xvi

LIST OF FIGURES

A.2 Compensation actions extracted from the SLA of GNWT. 134

A.3 Different kinds of utility functions . 136

A.4 Compensation function of GNWT-2 (CResolutionHours). 137

A.5 A generic example of increasing compensation function 138

A.6 Example of Inconsistent Compensation function of GNWT-4 (CElapsedDays). 140

A.7 A generic example of compensable guarantee showing the fulfillment
and compensable regions. 141

A.8 GNWT-4 compensable guarantee term in iAgree syntax. 143

B.1 Maintenance Service . 157

B.2 Architecture for Commitments management 159

B.3 Measure monitoring with Governify . 164

B.4 Comparison of SLA Achievement rate with Similar Affinity 165

B.5 Comparison of SLA Achievement rate with Different Affinity 166

xvii

LIST OF TABLES

xix

1.1 Overview of the work performed in this dissertation 7

2.1 Committed PPIs for the Work Order process 25

4.1 Committed times by the contractor (in hours) for the FI Service SLA . . . 63

4.2 Penalties definition (in monthly billing percentage) for the FI Service SLA 64

4.3 Analysed Scenarios . 73

4.4 Metric definition models for BPs . 77

5.1 Committed terms for the FI Service SLA 81

5.2 Penalties definition (in monthly billing percentage) for the FI Service SLA 81

5.3 Excerpt of Widgets configuration . 91

5.4 Expressiveness of SLA Monitoring . 93

5.5 Committed terms by the Contractor A for FI Service SLA 94

5.6 Committed terms by the Contractor B for FI Service SLA 94

A.1 General Mapping from Compensation Function to Constraint 145

A.2 CSPs to evaluate compensation properties for Compensation Functions
and Guarantee Terms . 153

B.1 Guarantees for Long-Time Open Issues and In-Time Closed Issues . . . 158

ACRONYMS

xxi

API Application Programming Interface.

BAM Business Activity Monitoring.

BI Business Intelligence.

BP Business Process.

BPEL Business Process Execution Language.

BPM Business Process Management.

BPMN Business Process Modelling Notation.

BPMS Business Process Management System.

CRM Customer Relationship Management.

CSP Constraint Satisfaction Problem.

EPC Event-driven Process Chain.

ERP Enterprise Resource Planning.

GT Guarantee Term.

IT Information Technology.

KPI Key Performance Indicator.

PAIS Process Aware Information System.

PPI Process Performance Indicator.

SCU Social Computing Unit.

SLA Service Level Agreement.

SLO Service Level Objective.

SOA Servie Oriented Architecture.

UML Unified Modeling Language.

PREFACE

PART I

1

INTRODUCTION

3

Victory belongs to the most persevering.

Napoleon Bonaparte (1769-1821),

1.1 RESEARCH CONTEXT

In an intuitive manner, a service is the bundling or packeting of something that is
consumed by someone, who requests and benefits from it and there is a provider which
take responsibility in delivering it according to some kind of agreement. In the last
decades, the use of computational services over Internet has enabled to make software
consumers independent from providers, specially on the global Internet. Together with
the rise of computational services, the definition of models and protocols to automate
the management of Service Level Agreements (SLAs) has been a research topic during
the last 15 years [6, 122]. SLAs are a fundamental key on the service interaction, as
they match the requirements of service customer and the performance levels from the
service provider to define service level guarantees and related responsibilities. The
proposals from computational domains are oriented to automate the different stages
in the SLA Lifecycle.

The SLA Lifecycle starts with the description of customer or provider performance
preferences which results in the definition of a formal agreement, sometimes after a
negotiation process among these parties. Then, the service is enacted according to
the SLA and its fulfillment has to be evaluated during its validity period. Different
mechanisms have been proposed to automatically negotiate guarantee terms based on
domain information or the management of resources to accomplish SLA goals on run-
time. This thesis has been developed in the context of the research group Applied
Software Engineering (Ingeniería del Software Aplicada-ISA) of the Universidad de
Sevilla, and it proceed from the research line within the area of analysis of computa-
tional services area, pioneered by A. Ruiz [156], O. Martín [116], Pablo Fernandez [60],
Manuel Resinas [153] and Carlos Muller [122].

However, traditional non-computational services, that is, services which are not
performed by computational resources, such as logistics or software development ser-

CHAPTER 1. INTRODUCTION

vices, are still supported by ad-hoc mechanisms. Therefore, the existing solutions for
the management of their SLAs cannot be reused for other services. In this disserta-
tion we are going to base on non-computational services which are based on the pro-
visioning of known business processes. These services can be intra-organisationally
provided or partial or fully outsourced (i.e. business process outsourcing, BPO). Like
computational services, their execution is regulated by SLAs and supported by specific
software [81, 115]. In this case, since non-computational services are process-oriented,
the software that supports them is usually a process-aware information system (PAIS)
such as ERPs, Service Desk Management Systems, CRMs, or business process manage-
ment systems (BPMSs). However, unlike computational services, this management is
usually manually performed (e.g.: reviewing of the goals of an SLA in transport ser-
vice), so their evaluation is error-prone and delayed regarding the service execution
(e.g.: when the SLA is finished), so preemptive actions to avoid SLA violations cannot
be taken or/and are expensive to perform. Furthermore, these SLAs are sometimes
described on a long term basis, as a frame agreement for the service, and related SLAs
can appear for a shorter term and the analysis of the validity between SLAs in different
time terms is complex to perform on runtime.

One example of non-computational service is the transport and logistic of goods,
where people take action to deliver goods from one point to another together mechan-
ical resources such as cars for driving along a city or conveyor belts for movement
inside a factory facility. The execution of manual tasks hinders the automation of their
lifecycle, including the monitoring of their performance or the violation of their SLA.
These difficulties are decreasing as with the digital transformation, the information of
processes and services is increasingly supported by information systems.

A PAIS with SLA-aware capabilities, i.e. an SLA-aware PAIS, is a PAIS that uses ex-
plicit definitions of SLAs to enable or improve the automation of certain tasks related to
both the SLAs and their fulfillment such as performance monitoring, human resource
assignment or process configuration [179]. For instance, an SLA-aware PAIS could be
automatically instrumented according to the metrics defined in the SLA, so that when
there is a risk of not meeting an SLO, an alert is raised allowing the human actors in-
volved in the process to take measures to mitigate the risk. Another example could
be the automated configuration of the process, e.g. removing or adding activities, exe-
cuted by the SLA-aware PAIS depending on the conditions of the SLA agreed with the
client. Apart from the benefits derived from the automation of these tasks, the need for
a SLA-aware PAIS becomes more critical in a business-process-as-a-service scenario.
A business-process-as-a-service (BPaaS) is a new category of cloud-delivered service,
which, according to Gartner [73], can be defined as "the delivery of BP services that
are sourced from the cloud and constructed for multitenancy. Services are often au-
tomated, and where human process actors are required, there is no overtly dedicated
labour pool per client. The pricing models are consumption-based or subscription-
based commercial terms. As a cloud service, the business-process-as-a-service model
is accessed via Internet-based technologies." In this setting, the conditions of the SLA
agreed with each client may vary. Therefore, it is crucial for the PAIS that supports the

4

1.2. RESEARCH PROBLEMS

business-process-as-a-service to behave according to the SLA agreed with the client.
An example could be the prioritisation of the execution of tasks for those clients whose
SLAs have bigger penalties if they are not met.

After the analysis of more than 20 SLAs in different scenarios and projects, such
as IT Maintenance, Transport & Logistics or BPaaS solutions research, different prob-
lems have been identified which lay the ground for this dissertation. On the one side,
as several tasks in the service execution involved human interaction, the related SLA
documents, including the service context, metrics, SLOs and compensations, are de-
scribed with natural language. This hinders an automated analysis and understanding
of these documents. On the other side, non computational services include the use of
heterogeneous resources, such as different information systems, human resources or
devices.

1.2 RESEARCH PROBLEMS

The main goal for this dissertation can be stated as follows.

Dissertation Goal

To partially automate the management of SLAs in non-computational
services.

In order to achieve this goal, we have identified the following two challenges to be
addressed in this dissertation:

• Provide a model to support the automation of the SLA management for non com-
putational services. This model has to enable the description fo business pro-
cesses together with metrics related to them in order to define the guarantees
provided for involved parties. Furthermore, the relationship between SLAs for
different time periods (long and short term) has to be addresses in the model.

• Address the management of SLA Lifecycle for non-computational services, pro-
viding systems to support it during the phases where the SLA is considered ac-
tive: deployment and fulfillment. These phases include the operations related to
the enactment of the service together with the evaluation of the included guaran-
tees and the decision making to accomplish them.

5

CHAPTER 1. INTRODUCTION

Our approach to address the aforementioned challenges is highly inspired in the
solutions proposed to problems of automated management of computational services.
As outlined in the above discussion, in the automation of the Service Level Agreement
Management for non-computational services, a number of problems needs to be con-
sidered. Regarding the management of SLA Lifecycle, we focus on the late phases
of the SLA lifecycle, that is, deployment and fulfillment of SLA as the SLA creation
phases have been deeply analysed by Resinas [153] and Muller [122]. Regarding these
stages, we analyse the impact of a more specific agreement within a frame agreement
context, the adaptation of service according to the SLA and the monitoring the accom-
plishment of SLA during the fulfillment phase. The optimisation of resources to ensure
the accomplishent of the SLOs is out of the scope of this dissertation. Therefore, in
order to address the identified challenges, we identify four research questions related
to the real world scenarios. The current dissertation will address the following four
research questions:

Research question 1. How can we model a SLA for different domains supporting its
automatic management?

Research question 2. How can we model the relationships between frame and specific
SLAs together with the relationships that appear between their terms and goals?

Research question 3. How can we automatically configure and adapt the underlying
information systems based on the SLA for non-computational services?

Research question 4. How can we automate the monitoring of SLAs and their guar-
antees for non-computational services?

These research questions are analysed and answered in the following chapters.

In the Table §1.1, we summarize the relationships between the challenges identified
in existing scenarios, the research questions addressed and the contributions proposed
in this dissertation which are explained in next Section.

Regarding the modelling of SLAs, we identify two different research questions.
First, the Research Question 1 aims to model non-computational services including
service workflow, the related service metrics and the guarantees over them. While, the
Research Question 2 goals modelling different levels of SLAs that appear naturally
on frame agreements for non-computational services but also identify related analysis
operations between SLAs in different levels.

Regarding the operations to support the SLA Lifecycle, we have identified two dif-
ferent important mechanisms to support the deployment of the SLA and its fulfillment.
First, in Research Question 3, we aim to provide mechanisms to deploy service driven
by the SLA terms, such as adapting service workflow or resource assignment to party
requirements. And, in Research Question 4, we goal to provide a mechanism to eval-
uate the fulfillment of the SLA, based on the monitoring of its SLOs.

6

1.3. CONTRIBUTIONS

Goal Digital Transformation of Services driven by SLAs

Challenges
Modelling to automate the
management of SLAs

Automated Management
of Services

Research
Questions

Q1: SLA Models for
Business Processes

Q2: SLA
Multilevel

Q3: Monitoring
SLA
accomplishment

Q4: Configuring
service based
on the SLA

Contributions
Chapter 4: SLA
Models for BPs

Chapter 6: Frame
Agreements

Chapter 5: Business
Processes driven by SLAs

Table 1.1: Overview of the work performed in this dissertation

ru
le

d
by

supported by

Governify

Business Process
 PAIS

Natural
Language SLA

Formalization

Monitoring Adapt

Instance
SLA

Analysis

Chapter 4 Chapter 5

Chapter 6

Instance
SLA

Instance
SLA

iAgree
SLA

Monitoring

Figure 1.1: Contributions diagram

1.3 CONTRIBUTIONS

Our approach to the aforementioned issues is highly inspired in the solutions pro-
posed to problems of automated management of computational services. In order to
achieve such a goal we have used different real scenarios to design artifacts to support
this goal. Specifically this dissertation provides the contributions depicted in Figure
§1.1.

First, in order to address the Research Question 1, an SLA model based on iA-
gree is proposed to support non-computational scenarios, which provides the service
description, metrics and SLOs definitions for different parties and facilities to enable
their analysis independent on the supporting information systems. The description of
this model and how formalise a natural language SLA into this model is described in

7

CHAPTER 1. INTRODUCTION

chapter §4.

Second, we also describe the operations to configure and monitor the service ex-
ecution regarding its related SLA, together with providing a reference architecture to
support them. This architecture consists of: (1) a monitoring component, which allows
the monitoring of service performance independent of the supporting system; (2) a
service adapter which allows the enactment of different service instances based on dif-
ferent SLAs of the same service. The described monitoring component addresses the
Research Question 3, while the adapter addresses the Research Question 4, and both
are described in the chapter §5 .

And third, we provide a model extension to describe frame and specific SLAs. To-
gether with this model, we formalise the operations related to manage the lifecycle of
more specific SLAs related to a frame SLA in the chapter §6, such as the conformance
between a frame and a specific SLA to address the Research Question 2.

The introduced contributions have been developed as component architectures.
These prototypes have been validated with a number of real SLAs (over 20) from dif-
ferent domains and further applied to real IT Maintenance outsourcing projects.

1.4 RESEARCH METHODOLOGY

This dissertation is conducted in the context of the Information Systems research
area. The research in this discipline commonly use design science methodology for the
proposal of innovative architectures solutions to stated problems. Design science ap-
pear fundamentally in engineering to address problems that are considered complex
because they do not have an strict formulation and their solution only can be evaluated
by utility. Therefore, it seeks create innovations to manage effectively and efficiently
information systems. Some general guidelines for this methodology are introduced in
[89]. In summary, this methodology proposes a sequence of expert activities to anal-
yse existing problems and create an innovative product. Then, the product enables
to re-evaluate the problem with new opportunities to improve the design in an itera-
tive process. The phases suggested by Peffer et al. [146] in this methodology are the
following:

1. Identification of relevant problems. The relevance of the research is based on the
awareness of a problem that is of value for a community. The interest may come
from industry or a research discipline. The general relevance of the research pre-
sented in this dissertation comes from the interest of different industrial part-
ners that deal with the limitations on the state-of-the-art solutions to manage the
lifecycle of SLAs, regarding specially the evaluation of SLA accomplishment of
non-computational services identified in Chapter §5.

2. Proposal of research goals. After the analysis of certain scenarios, in this phase, we

8

1.4. RESEARCH METHODOLOGY

evaluate related works and propose a solution to the stated problem which is
used as a starting point for the research efforts. Abstract designs can be pro-
posed in this phase. In this dissertation, we propose the research goals identified
in previous Section §1.2, together with the Figure §1.1 to identify the expected
contributions.

3. Artifact design and development. The goal of this phase is to produce a viable arti-
fact including models, operations and software products following the previous
proposal. This artifact can take the form of models, methodologies or software
architectures. In our dissertation, we propose a model to describe SLAs together
with the description of monitoring and configuration operations and an architec-
ture to implement them (Chapters §4 and §5.

4. Demonstration. Once the artifacts have been developed, they are applied to the
analysed scenarios to demonstrate that they can conduct the stated problems.
We apply our model, which extends iAgree, to the IT Maintenance outsourcing
in the Section §4.4 and implements the proposed operations in Chapter §5 to
demonstrate the compliance of our models with the identified requirements.

5. Evaluation. Once demonstrated the feasibility of the artifacts, they are evaluated
regarding further scenarios to validate the goals proposed in phase 2. Then, de-
viations from expectations are gathered and the additional information gained in
the construction and running of the artifact is used to another iteration. In the
Section §4.5, we describe more than 10 different SLAs from different scenarios,
apart from the example one, to verify that our model can be applied to non-
computational scenarios independently of the domain. This evaluation has been
extended in the context of a transfer of technology project with local government
and in an European project with logistics partners.

6. Communication of research. As the artifacts are proved effective, it is expected that
they are communicated in relevant fora for the topic. In the case of this dis-
sertation, we have published different contributions in relevant conferences and
journals. Specifically, our proposal to model Business Processes has been com-
municated in International Conference on Advanced Information Systems Engi-
neering in 2015 [46] and extended results have been submitted to the IEEE TSC.
Furthermore, we have also applied our model to different industrial projects re-
lated to the monitoring of SLA accomplishment.

In general, we follow this approach in each Contribution (Chapters §4, §5 and §6)
to introduce and discuss our work.

9

CHAPTER 1. INTRODUCTION

2013 2014 2015 2016 2017 2018

ICSOC

CooPIS

JCIS JCIS

CAISE

JCIS JCIS

ICSOC WA4FI@ESOCC PE@BPM

IEEE-AL

IEEE-TSC

IEEE-TSC

COMP

SOCA

Workshops
& Tooldemos

Conferences

Journals

Others

Published

Submitted

SLA for Comp.

Compensations

SLA for BPs

IEEE-TSC

Novatica

Figure 1.2: Publications Map

1.5 PUBLICATIONS

Our research work in this dissertation has followed a clear path of communication
of results. The preliminary results have been communicated in Workshops and na-
tional conferences and then to relevant conferences of the area, such as CooPIS, CAiSE
or ICSOC. The main contributions have been also submitted to high impact journals,
although the PhD time window has not allowed to receive reviews in some cases. As
this dissertation proposes the integration of previous research, the contributions are
mainly the result of collaborations with researchers in different areas (from Business
Processes and SLAs). Furthermore, some research stays have been performed in the
context of the thesis which have started a number of collaboration whose results are
also pendant of publication.

Additionally, as result of studying different adjacent areas, some contributions have
been proposed out of the scope of this dissertation but during the PhD period, which
are added at the end of the contribution list.

1.5.1 Publications Supporting this Dissertation

The Figure §1.2 depicts the map of publications developed during this dissertation.

The blue track follows the main contributions related to the management of SLAs

10

1.5. PUBLICATIONS

of business processes, while the red track follows approaches related to SLAs of com-
putational services and the green track are related to the collaborations in the analysis
of compensations functions in SLAs both of computational and non computational ser-
vices.

International Journals

C. Müller, P. Fernández, O. Martín Diaz, A. M. Gutiérrez, M. Resinas, A. Ruiz
Cortés. "Specifying Compensations with WS-Agreement. IEEE Latinamerica Trans-
actions". Volume 15. Issue 7 (2017): 1335 - 1341.

C. Müller, A. M. Gutiérrez, P. Fernández, O. Martín Díaz, M. Resinas, A. Ruiz
Cortés. "Automated Validation of Compensable SLAs". Submitted to IEEE Transac-
tions on Service Computing in January 2018.

A. M. Gutiérrez, A. Del Río Ortega, A. Durán Toro, M. Resinas, A. Ruiz Cortés:
"Outsourcing of Business Processes driven by SLAs". Submitted to IEEE Transactions
on Service Computing in April 2018.

A. M. Gutiérrez, M. Resinas, P. Fernández, A. Ruiz Cortés: "Management of Frame
Agreements". Submitted to IEEE Transactions on Service Computing in April 2018.

International Conferences

A. M. Gutiérrez, C. Marquezan, M. Resinas, A. Metzger, K. Pohl, A. Ruiz Cortés,
"Extending WS-Agreement to Support Automated Conformity Check on Transport &
Logistics Service Agreements", Submitted and Accepted in Proc. of the 11th Interna-
tional Conference on Service Oriented Computing (ICSOC), Berlin, Dic. 2013.

C. Müller, A. M. Gutiérrez, M. Resinas, P. Fernández, A. Ruiz Cortés, "iAgree Stu-
dio: A Platform to Edit and Validate WS-Agreement documents", Proc. of the 11th
International Conference on Service Oriented Computing (ICSOC), Berlin, Dic. 2013.

C. Müller, A. M. Gutiérrez, O. Martín Díaz, M. Resinas, P. Fernández, A. Ruiz
Cortés. "Towards a Formal Specification of SLAs with Compensations". OTM Con-
ferences 2014 (CooPIS): 295-312.

A. Del Río Ortega, A. M. Gutiérrez, A. Durán Toro, M. Resinas, A. Ruiz Cortés.
"Modelling Service Level Agreements for Business Process Outsourcing Services". 27th
International Conference on Advanced Information Systems Engineering. CAiSE 2015:
485-500.

A. M. Gutiérrez: "Advanced Analysis of Service Level Agreements". Doctoral Con-
sortium in Service Oriented Computing and Applications. SOCA 2015: 255-258.

International Workshops

C. Müller, A. M. Gutiérrez, M. Resinas, P. Fernández, A. Ruiz Cortés: "Towards
Compensable SLAs". ESOCC Workshops 2014: 31-38

11

CHAPTER 1. INTRODUCTION

National Conferences

A. M. Gutiérrez, M. Resinas, A. Ruiz Cortés. "Towards the user-centric analysis of
the availability" in IaaS. 10 Jornadas de Ciencia e Ingenieria de Servicios (JCIS). 2014
(received the Best Paper Award)

A. M. Gutiérrez, M. Resinas, A. Del Río Ortega, A. Ruiz Cortés. "On the Calculation
of Process Performance Indicators". 11 Jornadas de Ciencia e Ingenieria de Servicios
(JCIS). 2015

C. Müller, P. Fernández, O. Martín Diaz, A. M. Gutiérrez, M. Resinas, A. Ruiz
Cortés. "Supporting Compensations with WS-Agreement". 12 Jornadas de Ciencia
e Ingenieria de Servicios (JCIS). 2016 [received the Best Paper Award].

1.5.2 Further Publications

J. A. Parejo, A. M. Gutiérrez, P. Fernández, A. Ruiz Cortés, "FAST-SE: An ESB Based
Framework for SLA Trading ", Proc. of the 7th International Conference on Service
Oriented Computing (ICSOC), LNCS 5900: 643-644, Sweden, Nov, 2009.

A. M. Gutiérrez, J.A. Parejo, P. Fernández, A. Ruiz Cortés. "WS-Governance Tool-
ing: SOA Governance Policies analysis and authoring", Proceedings of IEEE Interna-
tional Symposium on Policies for Distributed Systems and Networks. 2011.

A. M. Gutiérrez, P. Fernández, M. Resinas, A. Ruiz Cortés. "Hacia un análisis cen-
trado en el cliente de la disponibilidad en IaaS". Revista de la Asociación de Técnicos
de la Informatica. Novatica 2015

A. M. Gutiérrez, M. Resinas, A. Ruiz Cortés. "Redefining a Process Engine as a
Microservice Platform". Business Process Management Workshops 2016: 252-263

A. M. Gutiérrez, F. Massena, C. Capelli, M. Resinas, F. Santoro, A. Ruiz Cortés.
"Modelling Citizen Letters for Public Services automation". 13 Jornadas de Ciencia e
Ingenieria de Servicios (JCIS). 2017

Jose A. Galindo, D. Benavides, P. Trinidad, A. M. Gutiérrez, A. Ruiz Cortés: "Au-
tomated analysis of feature models: Quo vadis?". Submitted to Computing in April
2018.

1.5.3 Intellectual Property

P. Fernández, J. A. Parejo, A. M. Gutiérrez, A. Ruiz Cortés. Tool Patent FAST, a
Framework for Automated Service Trading.

12

1.6. OUTLINE OF THIS DISSERTATION

1.6 OUTLINE OF THIS DISSERTATION

Part I: Preface. It comprises this introductory chapter, in which we have introduced
the research context of the work developed necessary to understand the content of
the dissertation, we have detailed the drawbacks of existing proposals, and we have
summed up our contributions to overcome drawbacks identified. Finally, we have
described the context in which the thesis has been developed and the supporting pub-
lications.

Part II: Background Information. It provides specific information about the elements
involved in the scope of the research context of our work. Specifically, Chapter §2
presents the BPM lifecycle and aspects related to its enactment and performance eval-
uation in the dissertation. Afterwards, in Chapter §3 the concepts related to SLAs that
are handled in this dissertation are introduced together the SLA lifecycle and an study
of the existing proposals regarding to support any stage in this lifecycle.

Part III: Our Proposal. This is the core of the dissertation and it is organised in three
chapters. First of all, in Chapter §4 we propose a model to describe SLA for Busi-
ness Processes. This proposal relies on WSAgreement [6], which provides the general
SLA structure, BPMN [138], which is used to model the business process related to the
service, PPINOT [41], which allows the definition of metrics, and iAgree [126], which
provides a language to define SLOs and penalties. In Chapter §5, we introduce an ar-
chitecture to support the SLA lifecycle, using our previous proposed model. In Chapter
§6 we propose a model for frame and specific agreements together with a catalogue of
analysis operations to support their evaluation regarding thier hierarchy.

Part IV: Final Remarks. Chapter §7 concludes the dissertation with a summary of
the contributions and their added value, a definition of the limitations and the future
work identified.

Part V: Appendices. Two appendices have been attached to this dissertation to com-
plement the content of this dissertation. In particular, Appendix §A includes the formal
analysis of the validity of compensable functions related to the SLA Guarantees, and
Appendix §B contains an incipient proposal to optimize the management of human
resources based on the service performance regarding its SLA. Lastly, a list with the
complete examples of SLAs used in dissertation is also provided as Appendix.

13

BACKGROUND

PART II

2

BUSINESS PROCESS
MANAGEMENT

17

A goal without a plan is just a wish

Antoine de Saint-Exupery (1900 - 1944),

2.1 INTRODUCTION

Business process management (BPM) focuses on improving the organization per-
formance through the definition, development and optimization of the business pro-
cesses. Processes are seen as a principal asset to manage business. The business process
management approach is adopted by companies as part of the quality management to
improve their performance. Furthermore, in business outsourcing, the services that
the organization provides to customers are seen as the outcomes of the activities per-
formed in processes. The analysis of the involved activities helps to identify the most
valuable steps, increase quality or save time [27]. Business process management usu-
ally involves the use of supporting technology, such as BPMS or other kind of enacting
software. BPM approach is increasingly adopted by industry and it also discussed
in academia articles focusing mainly on two viewpoints: resources and/or technol-
ogy. The goal of this chapter is to provide an overview of the major concepts of BPM,
focusing on those aspects that are most relevant and useful for the purpose of this
dissertation.

2.2 BUSINESS PROCESSES

The concept of business process is traditionally defined around the concepts of
tasks, related human resources and outputs, arising from job scheduling problems in
the early 20th Century. Weske [191] describes: "The formal definition and technical
modeling has evolved from the process orientation trend of the 1990s, where a new
way of organizing companies on the basis of Business Processs (BPs) was proposed"
. Hammer et al. define a business process as a collection of activities that take one or
more kinds of input and create an output that is of value to the customer [85]. How-
ever, this definition does not consider any relationship or constraint between this col-

CHAPTER 2. BUSINESS PROCESS MANAGEMENT

lection of activities, but Davenport does it in [37], where he defines a business process
as "a set of logically related tasks performed to achieve a defined business outcome
for a particular customer or market", emphasizing how processes can be supported by
information technology.

Based on these definitions, Weske defines a business process as "a set of activities
that are performed in coordination in an organizational and technical environment.
These activities jointly realize a business goal. Each business process is enacted by a
single organization, but it may interact with business processes performed by other
organizations" [191]. A process is a set of activities related to each other targeted at
the same goal. This may be the simplest and most straight definition of a process.
Consciously or not, we participate in plenty of processes daily. For instance, cooking
a recipe is a process in which a set of ingredients have to be cooked and mixed in a
specific order to obtain the desired dish. When the process is performed in the scope of
an organisation, it is called business process (BP). Thus, a BP is a collection of activities
that are executed in a logical order along time to achieve a defined goal within an
organisational and technical environment. To do so, they take one or more kinds of
input and create an output that is of value to the customer or the market [37, 85, 191].

As stated by van der Aalst et al. [181] and Decker [39], the basis of BPM is the
explicit representation of BPs. The modelling of activities is performed by business
domain experts who have a specialized knowledge of the business processes. Repre-
senting a BP helps to discover weaknesses related to the order in which activities are
performed, the information that is handled, and any other issue involved in BP exe-
cution. Hence, an easy-to-understand-and-use, editable, and executable mechanism to
represent BPs is convenient. BP models are defined for that purpose, that is, a business
process model is the representation of the activities, documents, people and all the el-
ements involved in a BP, as well as the execution constraints between them [191]. It
serves as a starting point to be analysed and improved before, during and after execu-
tion. The use of technology to manage BPs focuses on the automation of tasks together
with supporting the human interaction. Current techniques enable the derivation of
process models automatically from enterprise logs with process mining tools.

As simple example of BP we propose the simplified process of developing an out-
sourced work order by a software development company depicted in Figure §2.1 with
Business Process Modelling Notation (BPMN). The goal is to develop and deploy a
work order (or deliverable) with some requested features. In this example we can
see the set of activities that allows realizing such a goal. The core elements in a BP
are the activities and their execution order. However, there are other elements also
involved in BPs, which must be also considered when designing and modelling the
processes. These elements are called business process perspectives or business process
dimensions. There are typically 5 different perspectives in BPs [39, 57, 191]. In this
example we can identify examples for the five perspectives of BPs. (1) The functional
dimension describes the activities to be performed in a BP: Plan, Develop, Deploy or
Billing are part of the functional dimension. (2) The behavioural dimension specifies

18

2.2. BUSINESS PROCESSES

Figure 2.1: BPMN model for Work Orders Management

the control flow dependencies between these activities, e.g. the Work Order has to be
planned and the plan accepted before the development starts. (3) The organisational
dimension focuses on the people, roles or organisational units involved, e.g. the team
responsible for development or the project manager responsible for planning. (4) The
informational dimension defines the information that must be produced or consumed
by activities, i.e. the data flow, e.g. the Work Order plan or the billing info. (5) Fi-
nally, the technical dimension makes reference to the different tools or machines that
may be required in order to perform certain activities, e.g. the activity of deploying
the Work Order to the customer infrastructure is not feasible nowadays if no computer
and internet connection are available.

2.2.1 Business Process Modelling

Apart from BPMN, depicted in previous figure, there are other notations that allow
the definition of BP models. The basis of business process management is the explicit
representation of business processes, since it helps to discover weaknesses in the cur-
rent organisation of activities and serve as starting point to be analised and improved.
Furthermore, process documentation serves educational purposes so new employees
entering the organization can quickly take up how things are done, or during organi-
zational change programs, it can be shown how activities should be carried out in the
new way [39].

This explicit representation of business processes is accomplished during the de-
sign and analysis phase of the BPM lifecycle and it is also called business process mod-
elling. It has a long tradition and consequently several research directions can be iden-
tified. The most prominent one is related to graphical modelling notations. Between
them we can highlight Eventdriven Process Chain (EPC), Unified Modeling Language
(UML) Activity Diagrams, Business Process Execution Language (BPEL) and Business
Process Model and Notation (BPMN). All of them have in common that they support
the specification of a process control flow, defining activities, decision points with al-
ternative paths of execution, exception handling, event handling and additional rules
and constraints [176].

EPCs [163] are part of a holistic modelling approach called the ARIS (Architecture
of Integrated Information Systems) framework, that defines a number of views which

19

CHAPTER 2. BUSINESS PROCESS MANAGEMENT

are similar to the dimensions previously defined for BPs, namely: the functional view
(enterprise goals and subgoals and their relationships), the organisational view (en-
terprise organisational structure and its instanciation), the data view, the output view
(outcome of BPs, i.e. products and services), and the control view, that integrates all
the previous views and use EPCs to describe BPs [191].

UML [159, 160] is a language proposed by the OMG for the object oriented visual
modelling. It is especially focused on the development of software systems. It provides
several types of diagrams that can be used in conjunction with activity diagrams (class
diagrams, component diagrams, sequence diagrams and use case diagrams between
others). Activity diagrams allow to capture the process’s control flow requirements
by depicting what activities are performed, in what order and under what conditions.
These activities are triggered by events as well as generate new events, which can be
described using state chart diagrams.

Apart from these modelling notations, there exist other more formally oriented
modelling languages, that allow the verification of BP formal properties such as cor-
rectness or completeness. One example is simple finite state automata [91, 107], with
which processes are described as devices that maintain the state of something at a cer-
tain time and can alter this state in reaction to input as well as cause an action or output
as a result of a changing state. Petri nets [3, 131] offer another graphical technique, and
are a special form of graphs constituting of places, transitions, directed arcs and tokens.
Places are connected to transitions via directed arcs and vice versa. Places contain to-
kens, which may represent signals, events, conditions, and so on. Transitions are fired
through the presence of tokens in their in-place(s). As a result, the distribution of to-
kens is changed [176]. Petri nets present some limitations when modelling complex
BPs, in these cases Workflow nets are used [2]. Workflow nets are an extension of petri
nets with concepts and notations that ease the representation of BPs, like the possibil-
ity for tokens to carry information about the process instance they belong to. One of
the main drawbacks of all these approaches is that they require expert knowledge to
be used.

2.2.2 Business Process Management Lifecycle

As stated before, the basis of BPM is the explicit representation of business pro-
cesses. Nevertheless, BPM also comprises other activities as described in the BPM
lifecycle presented in this section. In the literature there is no consensus about the
number and the name of the phases in the BPM lifecycle. They vary depending on
the granularity for identifying the phases and the way of grouping the functionality
in the different phases [132, 176, 181, 191, 192]. In this dissertation we will present the
BPM lifecycle described by Weske in [191]. He proposes the four-phase BPM lifecycle
depicted in Figure §2.2.

This lifecycle starts with the design and analysis phase. If no process exists, the
goal of this phase is to define a new one; but if there is already an existing process,

20

2.2. BUSINESS PROCESSES

then the goal is to create an alternative for the current process. The new process need
to be identified based, in the first case, on surveys on the organisational and techni-
cal environment, and in the second case, on the identified improvement possibilities.
In either case, the informal business process description is translated to a particular
business process modelling notation (usually a graphical one). Once a BP is defined,
it needs to be validated to check whether all valid process instances are reflected by
its corresponding business process model. Furthermore, simulation techniques can
help during the validation by allowing possible undesired execution sequences to be
detected and also verifying that the process actually exposes the desired behaviour.
Finally, verification techniques allow to check correctness properties.

Once the business process model is designed and analysed, it needs to be imple-
mented. This is carried out during the configuration phase in a number of different
ways. If a set of policies and procedures that the employees of the enterprise need to
comply with are used to implement it, no system is required. Otherwise, if a dedicated
software system is needed, it must be selected and configured in order to take into
account the interactions of the employees with the system and the integration with
existing software systems. This integration with existing systems may involve some
implementation work, for instance to attach legacy system to the current BP manage-
ment. Finally this configuration must be tested, where traditional testing techniques
from the software engineering area can be applied, and deployed in its target environ-
ment.

Next phase is the enactment, that encompasses the execution of the business pro-
cess. On the one hand, a correct orchestration is necessary for the business activities to
be performed according to the business process’s execution constraints. On the other
hand, process monitoring is an important mechanism for providing information about
the statuses of running business process instances (BAM techniques [53] are used for
this purpose). During this phase, valuable execution data is gathered. Typically, exe-
cution logs are used to orderly storage information about processes such as the start or
the end of activities.

Finally, the evaluation phase uses information collected to evaluate and improve
business process models and their implementations. Techniques from the fields of
business process intelligence [77], and hence, process mining [182, 184], data ware-
housing and classical data mining [185] are applied in this phase.

Note that there not exists a strict temporal ordering in which these phases need to
be executed; incremental and evolutionary approaches involving concurrent activities
in multiple phases are, thus, common.

21

CHAPTER 2. BUSINESS PROCESS MANAGEMENT

Figure 2.2: Business process management lifecycle as described by Weske in [191]

2.3 PROCESS PERFORMANCE INDICATORS

In order to evaluate the efficiency and effectiveness of BPs, quantifiable metrics are
defined that measure the data generated by process flow. These metrics are commonly
named Process Performance Indicators (PPIs). They are aimed at process controlling
and continuous optimisation [28]. Often, the terms PPIs and KPIs (Key Performance
Indicators) are used interchangeably, although, there is no consensus in the literature
regarding the relationship between PPIs and KPIs. Some authors do not establish any
difference between them [121, 148], while others consider PPIs as a particular case of
KPIs, i.e. process-related KPIs [48, 193]. Finally, there are others who give different
definitions to each one, placing them at different levels, KPIs nearest to the tactical and
strategical level, while PPIs nearest to the operational level [28]. For this dissertation
we consider PPIs as a particular case of KPIs defined for measuring the performance
of BPs.

For the given process in previous section, a set of six PPIs was defined. They were
defined in natural language and collected in a table (an excerpt is shown in Table
§2.3). Like other KPIs, PPI definitions are recommended to satisfy the SMART cri-
teria [51, 118, 165]. SMART is a mnemonic that broadly conforms to the following
words: Specific, it has to be clear what the PPI exactly describes; Measurable, it has to
be possible to measure a current value and to compare it to the target one; Achievable,
it has to be able to achieve the target set in the PPI; Relevant, it must be aligned with
a part of the organisation’s strategy, something that really affects its performance; and
Time-bounded, a PPI only has a meaning if it is known the time period in which it is
measured. The definition of SMART PPIs requires a detailed specification of several
characteristics of a PPI such as how it is measured or which is its target. There are a
number of PPI languages, but for the purpose of this research we have chosen PPINOT

22

2.3. PROCESS PERFORMANCE INDICATORS

PPI

+identifier: String
+name: String
+goals: String[0..*]
+responsible: HumanResource
+informed: HumanResource[0..*]
+comments: String[0..1]

ProcessInstanceFilter

Process

+relatedTo

*

1

MeasureDefinition

Target

SimpleTarget

+upperBound: any[0..1]
+lowerBound: any[0..1]

ComposedTarget

CustomTarget

+restriction: String

*

1

+Value: String

+scope

1..*

1

+definition

1..*

1

+target

1 1

Figure 2.3: PPINOT Class Diagram

[41] because of its expressiveness and its traceability with BPMN models. Furthermore,
PPINOT has been used at the core of a software tool called the PPINOT Tool Suite [42],
which includes the definition of PPIs using either a graphical or a template-based tex-
tual notation [44], their automated analysis at design-time, and their automated com-
putation based on the instrumentation of open source BPMSs. Specifically, metrics are
defined using PPINOT measure definitions. As described in [41], they can be classi-
fied into three main categories depending on the number of process instances involved
and the nature of the measure: base measures, aggregated measures, and derived mea-
sures.

The full model for PPI is depicted in Figure §2.3, where we can see that a PPI is
formed by a Measure Definition and a Target. The class diagram for measures is de-
picted in Figure §2.4, where the four base types of measures are displayed: (i) Time
Measure, (ii) Count Measure, (iii) Condition Measure and (iv) Data Measure, and how
these types are related to different elements in processes such as Time Instant or a State
Condition. Aggregated measures handle the set of base measures for a set of instances
with an aggregation function such as Average, Sum, Maximum or Minimum. And,
lastly, we have the derived measures to apply simple math or logic operations over a
measure.

In the Figure §2.5, we display the class model for the scope of the measure. A
measure can be limited by time events, by period criteria such as monthly, daily, etc.
periods.

These types can be classified according to two different dimensions (cf. Figure §2.6):

23

CHAPTER 2. BUSINESS PROCESS MANAGEMENT

PPI

MeasureDefinition

+scale: String
+unitOfMeasure: String

CyclicTimeMeasure

BaseMeasure
AggregatedMeasure

+samplingFrequency: int

Variable

+name: String

DerivedSingleInstanceMeasure

DerivedMeasure

+function: String

TimeMeasure CountMeasure DataMeasure

«enumeration»
AggregationFunction

Maximum
Minimum
Average
Sum

DerivedMultiInstanceMeasure
ConditionMeasure

BPElement

ProcessInstanceCondition

StateCondition

+state: RuntimeState

DataPropertyCondition

+restriction: String
+statesConsidered: RuntimeState

Condition

TimeInstantCondition

+changesTostate: RuntimeState

LinearTimeMeasure

DataContentSelection

+definition

1..* 1

+refersTo

11

+aggregationFunction

*

+1

+aggregationFunction

*

+1

+aggregates

*

1

+isGroupedBy

*

1

+precondition

*

1

+from

*

1

+to

*

1

+when

*

1

+appliesTo

*
1 +meets

*

1

+prec
* *

+measuresData

*

1

Figure 2.4: PPINOT Measure diagram

PPI
ProcessInstanceFilter

+id: int

ComposedFilterTimeFilter ProcessStateFilterLastInstanceFilter

+numberofInstances: int

TemporalCondition

Period

+every: int[0..1]
+ends: String[0..1]

And Or Not

Daily

Weekly

+dayOfWeek: String

Monthly

+dayOfMonth: String
+dayOfWeek: String

Yearly

Composition

AndComposition OrComposition

TimeDefinition

AbsoluteTimeDefinition

+date: String

RelativeTimeDefinition

+timeFromNow: int

Unit

«enumeration»
Moment

start
end

«enumeration»
ConditionType

before
beforeOrAt
after
afterOrAt

«enumeration»
ProcessState

Active
Finished

1..*

+scope

1

+filter

*

1..*

+processState

1

+temporalCondition

1..*

0..1

+periodicity

1..*

1

+composes

*

2..*

+moment

1..*

1

+condition

1..*1

+unit
1..*

1

Figure 2.5: PPINOT Scopes

24

2.3. PROCESS PERFORMANCE INDICATORS

PPI1 Open WOs per day ≤ 4 Weekly
PPI2 Average time of WO Planning ≤ 1 Working Day Weekly
PPI3 Average time of WO Resolution ≤ 4 Working days Weekly
PPI4 Average time of WO Billing ≤ 2 Working days Weekly
PPI5 Number of WO deploy rejections per WO ≤ 2 Weekly
PPI6 Number of simultaeneous WO ≤ 10 Weekly

Table 2.1: Committed PPIs for the Work Order process

the number of process instances necessary to compute the measure value, and the na-
ture of the measure. As for the former, the measure definitions are single-instance
measures if a single process instance is used to take the measure, and multi-instance
measures if the measure value is calculated using a set of process instances. As for
the latter, measures can be classified as: time measure to reflect the duration between
two time points in the process, for instance, the duration of Plan WO, being the in-
stants the start and the end of the activity; count measure to count the number of times
certain condition is satisfied, such as the number of times that a WO is rejected; con-
dition measure to check if certain condition is (for running instances) or has been (for
finished instances) met, e.g. if Plan is accepted; data measure to take the value of a
property of certain data object, for instance, the cost of WO billing; and derived mea-
sure, when it is calculated by performing a mathematical function over any number
of measures previously defined, e.g. the percentage of the duration of activity Plan
WO out of the duration of the whole process. Consequently, according to these di-
mensions, base measures group all the single-instance measures that can be calculated
without using any other measure. They include time, count, condition and data mea-
sures. Aggregated measures are multi-instance measures calculated by applying an
aggregation function on different instances of a single instance measure. Finally, de-
rived measures, as stated above, are those whose value is calculated by performing
a mathematical function over other measures. Derived measures can be both, single-
instance and multi-instance measures, depending on the measures used to calculate its
value.

Note that aggregated measures and derived measures are adjoining in Figure §2.6
because a derived multi-instance measure of an aggregated measure and an aggre-
gated measure that aggregates a derived single-instance measure are two different
types of measures. For instance, let ∆tPOW be the duration of activity Plan Work
Order, and ∆tP be the duration of the whole process, a derived multi-instance mea-
sure of an aggregated measure could be defined as max(∆tPOW)

max(∆tP)
, whereas an aggregated

measure of a derived single-instance measure could be something like max(∆tPOW
∆tP).

25

CHAPTER 2. BUSINESS PROCESS MANAGEMENT

Measures

In
st

an
ce

s
Multi-Instance

Single-Instance

Time Count Condition Data Derived

Base Measure

Aggregated Measure

D
er

iv
ed

 M
ea

su
re

Figure 2.6: PPINOT Dimensions according to [41]

2.4 PROCESS-AWARE INFORMATION SYSTEMS

The phases of the BP lifecycle are increasingly supported by software aware of the
executing process. The enactment of different BP has been traditionally supported
by software tools, such as bug tracking tools in software development or purchase
tracking in Enterprise Resource Planning tools (ERP). These systems also facilitate the
definition or monitoring of BPs. Dumas et al. introduced the concept of Process-Aware
Information System, henceforth referred to as PAIS [54]. This system is defined as "a
software system that manages and executes operational processes involving people,
applications, and/or information sources on the basis of process models" [189].

Weber et al. [189] used a PAIS architecture in order to discuss the different perspec-
tives of PAIS. This architecture can be viewed as a 4-tier system:

• Persistence Layer enables the necessary support for a database management sys-
tem to maintain the data persistence.

• Application Layer is responsible for storing the application codes and implemen-
tations of the various functionalities of the activities. These implementations can
be owned by different organizations.

• Process Layer runs the process logic. In particular, it contains the schema and
complete specification of the process model which is used for the process execu-
tion.

• Presentation Layer provides different build- and run-time tools for customers,
e.g., a process template editor and an application program interface that enables
the different components to be monitored.

26

2.4. PROCESS-AWARE INFORMATION SYSTEMS

BPMS

BP modelling & analysis
BP configuration

BP evaluation BP execution and monitoring

Figure 2.7: BPMS support

When a PAIS handles explicit BP models created with a generic BP language are
named Business Process Management Systems. Open Source BPMSs are YAWL [64],
jBPM 1, Activiti jBPM 2 or Camunda 3. Others, such as Architecture of Integrated
Information Systems (ARIS) 4, IBM Business Process Manager 5 or AuraPortal 6, are
commercial. They are composed of a number of subsystems that address functions
belonging to the different phases in the BP lifecycle. An overview of the typical archi-
tecture of a BPMS is depicted in Figure §2.7. In the following we provide definitions
for every subsystem (inspired by the descriptions given by Weske [191]), specifying
the BP lifecycle phase to which each it is related.

• Modelling and Analysis. A BP modelling tool is used for creating BP models, in
which all the BP perspectives (cf. Section §2.2) involved in a process should be
properly represented. The BP models can be then used by process analysts for
analysis purposes. Thus, after modelling, the role of the BP analysts comes on
stage. They deal with the more tactical aspects of BPM (discovering, validating,
documenting and communicating BP-related knowledge) and typically do pro-

1http://www.jbpm.org/
2https://www.activiti.org/
3https://www.camunda.org/
4http://www2.softwareag.com/corporate/products/aris_alfabet/bpa/aris_architect/

default.aspx
5https://www.ibm.com/us-en/marketplace/business-process-manager
6https://www.auraportal.com

27

http://www.jbpm.org/
https://www.activiti.org/
https://www.camunda.org/
http://www2.softwareag.com/corporate/products/aris_alfabet/bpa/aris_architect/default.aspx
http://www2.softwareag.com/corporate/products/aris_alfabet/bpa/aris_architect/default.aspx
https://www.ibm.com/us-en/marketplace/business-process-manager
https://www.auraportal.com

CHAPTER 2. BUSINESS PROCESS MANAGEMENT

cess and data analysis, make changes to processes, and make sure that any ram-
ifications downstream and upstream from the process have been checked over.
BP models that are created with the BP modelling tool are stored in a BP model
repository.

• Configuration. When processes and system are prepared, the BP environment
triggers the instantiation and enactment of BP instances based on the BP models.
The BP architects may also participate in the preparation of the system during
the Configuration phase of the BP lifecycle.

• Enactment. The Process Engine is the core component of a BPMS. It is responsi-
ble for instantiating and controlling the execution of BPs. It orchestrates the ex-
ecution of activity instances, calling entities that act as providers of the required
functionality. Typically, these providers are human resources of the organisation
(i.e. people), or service providers (in service-oriented architectures). In the case
of having human participants, an activity typically generates one or more work
items (a.k.a. tasks) which together constitute the work to be undertaken by a user
(or a group of users). The list of work items associated with a given participant
(or with a group of people) constitutes his/her (their) worklist. The work item(s)
are normally presented to the user via a work-list, which maintains details of the
work items allocated to a user, and a worklist handler, which interacts with the
work is on the behalf of the user 7. The event logs (a.k.a. history logs, or execu-
tion logs) are used to store the information generated during BP execution, which
is necessary to perform runtime and post-mortem analysis.

• Evaluation. Dashboards can be generated as a result of the analysis (specially
design-time and post-mortem analysis) with the aim of studying the actual be-
haviour of a BP in order to identify and correct potential problems (at design
time), or define improvement mechanisms to be applied in subsequent execu-
tions. The BP analysts are usually also in charge of performing such evaluations.
It may have four main goals: (i) to check whether the process instances worked
as expected, and detect unexpected behaviour of the process under certain cir-
cumstances. This check is related to the degree of compliance of the process with
the rules that must be fulfilled in the organisation; (ii) to find out bottlenecks or
conflicting activities; (iii) to perform any kind of statistical analysis over one or
more BP perspectives; and (iv) to identify changes that lead to an improvement of
the process. Techniques from the fields of BP intelligence [77], and thus, process
mining [177, 182, 184], data warehousing and classical data mining are usually
applied in this phase.

7http://www.wfmc.org/

28

http://www.wfmc.org/

2.5. SUMMARY

2.5 SUMMARY

In this chapter, we have introduced the main concepts related of BPM. In particular
we have provided definitions for BP and BP Management Systems. We have also de-
scribed a notation for BP performance indicators, which is relevant for the context of
this dissertation. Finally, a brief description of other tools related to process automation
have been provided.

29

3

SLA MANAGEMENT

31

Let each man exercise the art he knows.

Aristophanes (427 BC - 386 BC),

3.1 INTRODUCTION

In scenarios where a party consumes services from a service provider under a pre-
vious agreement, the service consumer usually requires some expected performance
on the services they intend to consume. These expectations are defined over quality
or non-functional properties that can be measured so both parties can check if the ser-
vice fulfills them. These measures and fulfillment conditions are defined as service
level objectives (SLOs). The service description and SLOs, are included in a Service
Level Agreement (SLAs) agreed between consumer and provider. The evaluation of
SLA fulfillment is a key part to enforce service quality. A number of research efforts
have focused on proposing models for SLA management in computational and non-
computational domains.

In the industry, most of the SLAs are described by means of natural language and
are intended to be used only by humans for legal procedures. With the rise of ser-
vice oriented architectures, a number of research proposals have defined different for-
mal languages with the aim of analyzing some properties of the SLAs [18, 31, 158]
or enabling the interoperability between consumers and providers easier [6, 111, 135].
Among the approaches of the latter group we find the WS-Agreement [6] recommenda-
tion that provides an SLA specification based on a XML language to describe domain-
independent agreements, offers and templates. The recommendation also provides a
lifecycle for the agreements, including the creation, validity stages and the different
reason to finish an agreement (agreed period, violation or cancellation). It lacks of a
language to provide semantics to the service description and SLOs but is extensible
to achieve a fullyfledged language to describe the service functionality and the SLOs.
One of the proposals to fill this gap is iAgree, a human-readable language based on
WS-Agreement. In this chapter we explain in detail the WS-Agreement structure to-
gether with iAgree and a full tool suite to manage SLAs, Governify. In addition, we

CHAPTER 3. SLA MANAGEMENT

also short review the different scope and elements supported by other SLAs specifica-
tions.

3.2 WS-AGREEMENT AND IAGREE

WS-Agreement is a specification that describes computational service agreements
between different parties. It defines both a protocol and an agreement document meta-
model in the form of XML schema [6]. The general structure of WS-Agreement doc-
uments is depicted in Figure §3.1 using a class diagram to clarify the XML schema
proposed in the recommendation [6] for the documents. Some of the elements, such as
ServiceDescriptionTerm, ServiceLevelObjective or Constraint, can be extended with a new
sublanguage to describe them. Thus, a WS-Agreement document is composed of an
agreement Context, and agreement Terms. Template documents can be described to in-
clude agreement creation constraints to restrict the space of offers that can be created
from them. For example, a sea carrier defines a template document for their shipments
from one port to another where they describe the generic terms of the shipments, such
as origin and destination port, standard transport conditions, such as container size or
weight, and estimated transport duration. Any customer who contracts this carrier can
use this template to make an agreement offer with specific transport dates and includ-
ing penalization terms in case of not accomplishing the estimated transport duration.
According to WS-Agreement the terms included in the template are not mandatory for
the agreements based on it.

iAgree syntax, defined by Müller [126], is designed for making WS-Agreement doc-
uments more human-readable and compact than with the original XML syntax. All
examples included in this paper are defined using iAgree. Although iAgree struc-
ture lightly differs from WS-Agreement, iAgree sections can be easily mapped to WS-
Agreement structure. The class diagram for iAgree is depicted in Figure §3.2. Through
next sections we describe the agreement structure referring to the example in the code
in Figures §3.3, §3.4 and §3.5. This example is based on the SLA defined by Amazon
Web Services for its computation service, Amazon EC21. In order to know the map-
ping with WS-Agreement, we will refer to its sections in the corresponding iAgree
description. The complete example is listed in the Appendices, Section §C.1. iAgree
is evolving as it is applied in different projects. Refer to the website for the current
specification: http://iagree.specs.governify.io.

3.2.1 Context

The agreement context contains information about the roles in service provision.
Apart from who is the service provider and consumer, the initiator of the agreement
proposal is also included, i.e. who creates the agreement offer and proposes to the

1http://aws.amazon.com/ec2/sla/

32

http://iagree.specs.governify.io
http://aws.amazon.com/ec2/sla/

3.2. WS-AGREEMENT AND IAGREE

Agreement

AgreementTemplate AgreementOffer

All

TermCompositor

Term

ServiceTerm

ServiceDescriptionTerm ServiceReferenceServiceProperties

Variable

GuaranteeTerm

BusinessValueList ServiceLevelObjective ServiceScope

Preference Penalty Reward

Compensation AssesmentInterval

TimeInterval Count

CustomBusinessValue

ConstraintSection

Constraint

Item

AbstractTerm

OneOrMore

ExactlyOne

AgreementContext

+creationConstraints
1

0..*

0..*

+location
1

+terms

0..1 1..*

+variableSet1..*

+location

1

0..*11

1

0..* 0..* 0..* 0..*

+serviceTermReference

1

Template
Constraints

Service
Description

Service
Guarantees

Figure 3.1: Class Diagram for WS-Agreement
Agreement

+id
+version
+type

Context

+provider
+consumer

Term

Metric
Pricing

+cost
+currency

Guarantee

+id

Validity

+initial
+end
+TimeZone

Definitions

Schema

Billing

+initial
+period

ScopedGuarantee

+objective
+with

Compensation

+groupBy
+upTo

PenaltyReward

ScopedCompensation

+condition
+value

Window

+initial
+end
+period
+type

Scope

*

1

1 *

*

*

*

1

*

1

*

*

*

1

1

Service
Description
and
Guarantees

Infrastructure

1

1

1

*

1

Figure 3.2: Class Diagram for iAgree

33

CHAPTER 3. SLA MANAGEMENT

id : Amazon_EC2
vers ion : ’ 1 . 0 ’
type : agreement
context :

provider : Amazon
consumer : Consumer
v a l i d i t y :

timeZone : Europe/Madrid
i n i t i a l : ’2018−07−13T00 : 0 0 : 0 0 . 0 0 0 Z’

d e f i n i t i o n s :
schemas :

S e r v i c e C r e d i t :
d e s c r i p t i o n : Percentage to decrease in the next b i l l
type : i n t e g e r
uni t : ’% ’

scopes : { region }

Figure 3.3: Context section using iAgree syntax

other party. The service provider can be either the agreement initiator either the agree-
ment responder (and reverse for the service consumer). The context also includes the
service description and data types definitions for non monitorable properties. Non
monitorable properties are those which do not depend on the service execution or are
significant for the evaluation of the service performance. The monitorable properties
are defined later in the document and will be described in next subsection. For in-
stance, in our example in Figure §3.3, Amazon, who is the provider of the computing
service, plays the role of responder because it receives agreement offers from other
parties. And the Amazon penalization is defined with a schema for Service Credits as
a percentage value. Additionally, the scopes where the guarantees shall be parame-
terized are also described in the Context section. In the case of Amazon, the service
billing and compensations depends on the computation region, so the region is one
scope value for Amazon EC2.

In addition, it optionally provides information about the agreement parties end-
points, the agreement’s lifetime or references to the template from which an agreement
offer is created, if this is the case. The infrastructure object relates the SLA to the specific
information systems supporting the service execution in order to provide the required
execution information (e.g.: performance values). In the example in §3.3, the definition
of validity periods (VPs) is included. The WS-Agreement context section is similar to
iAgree but it does not include data types.

3.2.2 Terms

The terms section of an iAgree document describes both the characteristics of the
services to be provided and the guarantees on such services by involved parties. in
iAgree, the service terms are divided into pricing, metrics and guarantees.

Pricing section defines the properties to properly process the service billing such
as currency, accounting period or cost. The cost depends on the service and can be
measured by time units (e.g. 3e/hour) and/or other metrics (e.g. number of executed

34

3.2. WS-AGREEMENT AND IAGREE

instances). Commonly, compensations are described with a percentage discount or fee
over the billing, as consequence of under- or over-fulfillment of SLOs. Therefore, the
percentage property is named in the pricing but the compensation definition is related
to the SLO in the corresponding Guarantee.

Metrics use iAgree schemas to describe the data types of the service properties that
are monitorable or computed (e.g. availability of a computation unit). A metric defini-
tion can include an endpoint to get the execution values. The values can be monitored
in a specific time window (monthly, hourly, ...) and this window can be static (e.g.:
natural weeks from Monday to Sunday) or dynamic (the previous 7 days from a given
moment). The monitoring mechanism is not defined in the model, just the service end-
point that provides the metric. These metrics can be used to define guarantees, which
are detailed in next subsection. In our example, we include the metric Monthly Uptime
Percentage (MUP), which measures the availability of the computing units in Amazon
EC2 for a given user. It is measured by natural months according to the computing
regions defined by Amazon Web Services 2.

terms :
p r i c i n g :

b i l l i n g :
period : monthly
i n i t i a l : ’2017−11−12T10 : 3 5 : 3 6 . 0 0 0 Z’
p e n a l t i e s :
− over :

S e r v i c e C r e d i t :
$ r e f : ’#/ context/ d e f i n i t i o n s /schemas / . . . ’

guarantees :
. . .

Figure 3.4: Terms section using iAgree syntax

In the example in Figure §3.4, we describe the pricing term and the metrics for
Amazon service. In this case, the billing is monthly required and the compensation is
defined with a variable ServiceCredit over it. The only metric in this service is the MUP.

Guarantee Terms

The guarantee terms (GTs) describe the SLOs that an obligated party, usually the
service provider, must fulfill as part of the agreement. The SLO of a guarantee term is
defined with an assertion over a monitorable variables which were described in Met-
rics section and over external parameters such as date, time, etc.

Each guarantee term can be parameterized with additional properties to specify
the scope where it is applied such guarantee. In the Amazon computing service, they
define an SLA with a single SLO. However, they organize their global computation
service by regions and the billing and the context to apply the guarantee is limited to
each single region (Amazon currently defines more than 15 computing regions). That
is, if the objective of 99.95% is not accomplished in a region, the penalty is applied

2https://aws.amazon.com/es/ec2/sla/historical/

35

https://aws.amazon.com/es/ec2/sla/historical/

CHAPTER 3. SLA MANAGEMENT

for the billing of that same region. We can parameterize the guarantee using the re-
gion as scope. Then, the guarantee is evaluated for each region value (e.g.: Canada,
US East, ...). In practice, adding a scope variable with N possible values to a guaran-
tee, it is as defining N guarantees (e.g.: G1.1 : MUP ≥ 99.5 AND region = Canada,
G1.2 : MUP ≥ 99.5 AND region = USEast, etc). We have described in the Figure §3.5
the SLA from Amazon EC2, with the clause offered by Amazon to penalize itself by
a service unavailability. In the clause, the customer is able to claim for a reward of
a Service Credit when MUP objective is not achieved. However, information such as
the claiming procedure or the fact that Amazon requires that the customer proves this
violation, is not supported by iAgree formalisation. In order to prove the violation the
customer has to monitor and compute the MUP by subtracting from 100% the unavail-
able period. It is not the case of Amazon, but the SLOs can be defined different for each
value of the scope variables (e.g. to define a different goal and compensation for each
specific region).

id : Amazon_EC2
. . .
terms :

. . .
guarantees :
− id : Amazon_GT

scope :
region : *

of :
− o b j e c t i v e : MUP >= 99 .95

scope :
region : *

with :
MUP: { }

window :
type : s t a t i c
period : monthly
i n i t i a l : ’2016−07−13T00 : 0 0 : 0 0 . 0 0 0 Z’

p e n a l t i e s :
− over :

S e r v i c e C r e d i t :
$ r e f : ’#/ context/ d e f i n i t i o n s /schemas / . . . ’

of :
− value : ’10 ’

condi t ion : MUP >= 99 .00 && MUP < 99 .95
− value : ’30 ’

condi t ion : MUP < 99 .00

Figure 3.5: Guarantees using iAgree syntax

Regarding the penalties, Rana et al. in [151] provide an approach to (1) identify
classes of penalty clauses that can be associated with an SLA; (2) define how to spec-
ify penalties in an extension of WS-Agreement; and (3) specify to what extent penalty
clauses can be enforced based on monitoring of an SLA. An extended analysis of com-
pensations have been described during the current work and it is included in the Ap-
pendix §A.

As summary, a compensation function is usually defined as a function from the
metric M guaranteed in the SLO to R that associates a compensation to each of the val-

36

3.2. WS-AGREEMENT AND IAGREE

ues of M. The compensation function is usually proportional to the utility of the met-
ric values (i.e.: Poor availability can be penalized, high availability can be rewarded).
As in the SLA, both service parties, customer and provider, can commit to different
SLOs, the responsible of the compensation can be either the service provider or the
service customer. Therefore, the compensations have two roles, namely guarantor and
beneficiary of a guarantee, and they are usually provider and customer but it can be
the opposite. For example, in a cloud scenario, the availability guarantor is the cloud
provider and the beneficiary is the customer.

WS-Agreement also proposes to add other service properties as Terms to describe
the service as it is, not to negotiate about them and their performance. An example of
these properties, namely Service Description Terms, would be origin and destination
cities in the Transport Service example.

In order to simplify, the Agreement definition in iAgree, all the terms are manda-
tory. However, the terms in a WS-Agreement document can be grouped using three
different terms compositors denoting that the comprised terms are either mandatory,
optional, or alternative, as it is depicted in Figure §3.1.

• All terms compositor: every comprised term or compositor is mandatory. In
other words, all of them must be fulfilled. WS-Agreement specification imposes
that at the top level of the terms section, all terms must be inside a mandatory
terms compositor. For the sake of simplicity we consider as implicit such a top
level mandatory terms compositor.

• OneOrMore optional terms compositor: every comprised term or compositor is
optional. In other words, a set of them, but at least one, must be fulfilled.

• ExactlyOne exclusive terms compositor: comprised term or compositor are ex-
clusive. In other words, only one of them must be fulfilled.

Term compositors can be nested, therefore enabling the specification of alternative
branches with potentially complex nesting within the agreement terms. Choices ex-
pressed using compositors can be exercised by the party that makes the next step in
the agreement creation process, i.e., by the agreement initiator if it is creating an offer
from a template, by the agreement responder if it is creating an agreement from an
offer, or by the service provider if it is delivering the service according to a previously
created agreement.

Note that parties can exercise the choice but it is not mandatory to do so. In other
words, the term compositors can remain in an offer and even in a final agreement,
exactly as they were defined in the former template.

Furthermore, in WS-Agreement, the guarantees can be categorised using also asser-
tions, namely qualifying condition (QC), or a set of service operations, which express
the conditions under which the guarantee holds. WS-Agreement also considers that

37

CHAPTER 3. SLA MANAGEMENT

 Service Terms

QC-UDL SLO-UDLSP-UDL BVL-UDL CC-UDL
Context

-UDL
SDT-UDL SR-UDL

 Service Terms

WS-Agreement

Context Service

Description Terms

Guarantee

Terms
Service

Properties

Creation

Constraints

QC-SubL SLO-SubLSP-SubL BVL-SubL CC-SubL

Service

Reference

mandatory optional

Context

-SubL
SDT-SubL SR-SubL

requires

Figure 3.6: WS-Agreement and sublanguages

SLOs can be related to externally defined key performance indicators (KPIs), i.e. exter-
nally defined monitorable variables and to a list of business values (BVL) to describe
the relative importance between the terms, penalties, etc.

3.2.3 iAgree Configurations

As WS-Agreement do not provide a specific language for service terms, different
languages such as JSDL (Job Submission Description Language) and the WSLA [94]
expression language, have been used for this task since WS-Agreement do not im-
pose additional constraints on their expressiveness. Therefore, in order to create a
WS-Agreement document is required to decide which are the languages that are going
to be used in it. The optional and mandatory sublanguages than can be described in
WS-Agreement are depicted in the Figure §3.6. On the one side, we can define a lan-
guage to describe the service context, which can be domain specific. On the other side,
we have different language/s required to describe the terms, which can include a lan-
guage for metrics, other for service description terms, other the guarantees (including a
language for qualifying conditions), another for SLOs and another for Business Value
Lists, which are values added in WS-Agreement in order to the parties can express
the importance of the SLO. This importance can be expressed as a priority parameter, as
the confidence on the accomplishment of the SLO or as a compensation function. The
specific set of languages used to describe an SLA is called a WS-Agreement Config-
uration (WSAC) in Müller [122]. For instance, the implementation of WS-Agreement
developed by the Open Grid Forum (OGF), WSAG4J [134]3, configures a WSAC that
involves using JSDL as the language for specifying service description terms and JEXL
as the language for specifying service level objectives. SWAPS [139] also proposes a
WSAC by using WSDL-S/OWL as language for the service functionality, and WSLA
[94] expression language for SLOs.

Regarding iAgree, it provides its own WS-Agreement configuration. iAgree defines

3WSAG4J

38

WSAG4J

3.3. THE SLA LIFECYCLE

service terms as attribute-value pairs. The metric language which is used to define the
metric of a service property, provides the domain of the service property, i.e., it de-
scribes its data type and its allowed values. And also defines expression languages to
specify SLOs and creation constraints. In this case, the expressions are described with
assertions using logical, relational, and algebraic operators defined on the domain of
the service descriptions, service properties and literals. In practice, in order to support
different analysis operations as we will describe in Sections §3.4 and §3.5, the expres-
sion language used shall be restricted by the types of expressions that a particular
solver can use as these expressions.

3.3 THE SLA LIFECYCLE

During the last decade SLA management has become both: (1) an increasingly im-
portant issue in the IT infrastructure [120, 170], and (2) a fundamental aspect to achieve
a quality-driven service consumption. In this context, in order to ease the management
of SLAs, it is necessary to identify the different phases that should be followed during
the so-called SLA lifecycle to create and make use of SLAs [90].

Several proposals mention different phases of the SLA lifecycle depending on their
relationship with the related service lifecycle. Thus, authors like Comuzzi [31], Radha
Krishna [101] and Vonk [186] consider the early SLA phases performed before the
agreement is considered firm and services executions are ruled by it. Other propos-
als, such as the WS-Agreement specification [6], pay more attention to such late SLA
phases performed from the beginning of execution of the agreed service to the termi-
nation or expiration of the agreement. Finally, authors like Koller [98] try to consider
each and every SLA management phase in its approach. In such general-purpose pro-
posals a full SLA lifecycle is presented. Among these proposals we focus on the phases
mentioned in the Fernandez-Montes PhD [60], where a model for trading architectures
is presented. These phases are really shared with the proposals with limited scope in-
troduced before. Thus, the phases we consider in this dissertation for the SLA lifecycle
are the followings:

• Preparation. It is a special stage that involves the creation of a document with
the service offered by the provider and the analysis of its functional and non-
functional requirements by the consumer (also called preferences).

• Information. The goal of this phase, which is also called as discovery and selec-
tion, is to match service providers with potential consumers and vice versa. In
other words, either consumers try to find a suitable provider for their desired ser-
vices and service levels, or providers try to find service demands from potential
consumers. In order to locate and select a suitable counterparty, the parties inter-
change public information during this phase that can be eventually aided by an
intermediary party that provides an ordered list of potential counter parties [68].

39

CHAPTER 3. SLA MANAGEMENT

• Negotiation. It is the phase in which parties try to achieve an agreement on the
service level for the service provisioning. Several offers and counter-offers are
usually exchanged at this complex phase in which several strategies can be fol-
lowed in the pursue to achieve a final agreement signed by the parties [153].

• Deployment. In this phase both, the service provider and consumer set up a de-
ployment plan to make it possible to follow all terms established in the agreement
settled in the previous phase. The phase delimits when the service subject of the
agreement can be started to be consumed or provided.

• Fulfillment. This is the last phase in the contracting process and it involves the
monitoring of the whole process in order to ensure that both parties observe the
obligations established in the agreement, correctly. This phase requires specific
monitoring tools and approaches [113, 141, 151].

• Termination. This is the last phase of the SLA lifecycle and it delimits when
the SLA expires and then, the service provisioning is stopped for the specific
consumer. At this moment if the agreement includes termination clauses they
must be considered.

In order to automated the operative of theses phases (detailed in subsections), the
SLA is considered as a first-class citizen to analyze service performance. The most
relevant aspects for these operational analysis is described in next section §3.4.

3.3.1 Early SLA phases in iAgree/WS-Agreement

The agreement creation protocol supported by the WS-Agreement recommenda-
tion proposes the use of agreement offers and templates to perform Preparation, Infor-
mation and Negotiation phases of the SLA lifecycle mentioned previously.

The most common usage scenario of the agreement creation protocol starts with
the Preparation of an agreement template. A template is a partially completed offer
that specifies customizable aspects of the documents, and rules that must be followed
in creating an agreement, which are called agreement creation constraints. Creation
constraints (CCs) are optionally included in an agreement template in order to specify
the mandatory presence of specific elements and their acceptable values for resulting
offers created from such templates. To this end, the template may define specific items
using XML Schema [188] to delimit the possible value assignments for the service terms
or, if the creation constraint involves several elements, they can be specified using any
suitable constraints language that must be described by means of one or more sublan-
guages. Since items can be considered as a particular case of constraints, in iAgree we
just consider a sublanguage for the constraints. Therefore, an agreement offer created
from such a template must observe these constraints. We detailed the SLA lifecycle in
section §3.3.

40

3.3. THE SLA LIFECYCLE

Once the template is published, it can be found by any potential customer demand-
ing the service at the Information phase of the lifecycle. Such a potential customer pre-
pares an agreement offer compliant with the published template and initiates the cre-
ation process by sending it to the provider. Finally, the provider either accepts or rejects
the agreement offer. If rejected, new offers may be sent to the provider in this Negotia-
tion phase, but if accepted, such an offer is deployed as the agreement that regulates the
service provision. As can be seen, the customer initiates the interaction and therefore
it plays the role initiator in the agreement creation process, whereas the provider plays
the role responder. Although the previous is the usual usage scenario, two additional
considerations are included in WS-Agreement. First, the publication of a template is
optional and thus, any party may send an agreement offer to other party without any
template published.

However, the acceptance of an agreement offer is more likely if it is defined based
on a previously published template. Second, although the service provider usually acts
as responder, WS-Agreement also allows consumers to play the role of responders by
publishing templates with the service they intend to consume and some desired guar-
antees. In these cases, providers would initiate the SLA creation process by sending
agreement offers including the service they provide and their capabilities.

3.3.2 Late SLA phases in iAgree/WS-Agreement

Once an SLA is signed, service set ups are arranged, such as resources allocation
or internal process customizing during Deployment phase. During service execution
the parties have to provide some mechanism to check whether the service fulfills the
committed service level objective (SLO) during its provisioning, that is the Fulfillment
phase. This checking implies monitoring the service performance.

SLAs must provide the information of how SLOs and metrics must be monitored to
enforce the trust by involved parties. In WSLA [111] documents by means of the mea-
surement directives element. In turn, WS-Agreement provides a metrics for each ser-
vice property that may include such a kind of measurement information, and the scope
to denote which SLO must be monitored when a service operation is being providing.
When an SLO is violated, the penalties and rewards included within the guarantee
term apply. In iAgree, the computer attribute of each metric provides the measure-
ment for this metric. The computer is a reference to an external service which provides
the measures for a metric. It is out of the scope of iAgree how this measure is obtained.
It can be queried from a database, listened from an event sequence or processed as a
derivate value from other more simple metrics. The monitoring usually depends on
the system which performs or supports the service execution. The former is the com-
mon case in computational service and the second in services which include manual
tasks but performance evidences are captured in an information system. Therefore,
defining mechanisms for measuring each metric would require consider the domain
where the service belongs, the supporting systems, etc.

41

CHAPTER 3. SLA MANAGEMENT

Rejected

OfferReceived

Complete

ObservedPending

PendingAndTer
minating

ObservedAndTe
rminating Terminated

Figure 3.7: Agreement states in WS-Agreement

In order to avoid this ad-hoc dependence, WS-Agreement does not provide a tech-
nique to monitor the service in order to check the fulfillment of WS-Agreement doc-
uments, but it considers several states of the SLAs and Guarantee Terms (GTs). As
depicted in Figure §3.7, an SLA in WS-Agreement can be in one of the following states:
(i) Pending, (ii) PendingAndTerminating, (iii) Observed, (iv) ObservedAndTerminat-
ing, (v) Rejected, (vi) Complete and (vii) Terminated; and as depicted in Figure §3.8,
the GTs can be in one of the following states: NotDetermined, Fulfilled, Violated. Such
states are thoroughly described in the recommendation [6] and we do not intend to
explain them in this dissertation but to remark that an SLA or a GT would change its
state by the use of an external monitoring technique that provided information about
the current SLA and GT fulfillment.

The monitor component included in such external monitoring technique should
consider some aspects related with the monitoring information that SLAs comprise:
The monitor must be aware of such a monitoring information in order to monitor spe-
cific SLOs and metrics when the scoped service operations are executed at runtime. In
addition, if the guarantee terms have local periods specified they must be considered
as the periods in which the terms must be monitored.

The monitor must include enough monitoring logic to obtain the term state. Such
a logic depends on the complexity of monitoring and measuring the SLOs and met-
rics. For instance, the monitor must compute the MUP of the AmazonEC2 scenario,
explained in Section §3.2, by subtracting from 100% the average of the error rates,
i.e. internal server errors divided by the requests during each five minute period of

42

3.3. THE SLA LIFECYCLE

Not
Determined

Fulfilled

Violated

Figure 3.8: Guarantee Term states in WS-Agreement

a monthly billing cycle. The responsibility of monitoring and demonstrating an SLA
unfulfillment uses to fall into the customers, or an intermediary third-party. For in-
stance, a low MUP in the AmazonEC2 scenario must be monitored and demonstrated
by the customer, as in other commercial services such as Google Cloud Storage4, or
RackSpace5. In the AmazonEC2 case, the customer must provide within ten business
days after the end of the billing cycle in which the errors occurred, both: (1) the time
instants in which it suffers the lack of service; and (2) a log including the requests and
error messages provided by Amazon.

The monitoring result can be used both in proactive and reactive procedures. The
proactive behaviors take actions to avoid an SLO is unfulfilled when performance lev-
els are close to the SLO limit values or is predicted that it could happen. These actions
can be related to scale computational resources, plan different human assignments or
decrease other performance attributes (e.g. increase speed over quality) in order to
accomplish SLO. Reactive decisions are commonly defined with compensations func-
tions so when an SLO is unfulfilled, a penalty is automatically applied. In other cases,
similar actions to preemptive ones are taken (e.g: scale resources).

When there are not explicit actions defined for unfulfilling SLOs, manual decisions
has to be taken. In the worst case, the SLA is considered broken so both parties have to
renegotiate a new agreement (e.g.: with less restrictive performance objectives) or fin-
ish the service interaction. Renegotiation can follow similar mechanisms to the original
negotiation phase.

In the Termination of the relationship between provider and consumer ruled by the
SLA terms, some assessments about termination arrangements such as final billing,
service data ownership, etc can be performed. As it was stated, the agreement can
finish because its violation, a manual decision or just because its validity period is
ended. The consequences of the termination will also depend on the termination cause.

4https://cloud.google.com/products/cloud-storage
5https://www.rackspace.com/

43

https://cloud.google.com/products/cloud-storage
https://www.rackspace.com/

CHAPTER 3. SLA MANAGEMENT

3.4 SLA ANALYSIS

In order to support the SLA phases introduced before, different analysis operations
can be performed. For example, to define the SLO thresholds in the SLA, the customer
can evaluate existing service execution logs to define a reasonable threshold. Or to
define negotiation strategies, the provider can analyse the utility of the different terms
of an SLA offer in order to accept or reject it. The PhD Thesis from Carlos Müller [122]
defines an extensive catalog on possible operations over SLA documents. The origin
of this dissertation is developing these operations to different scenarios where there
are no existing approaches to implement them. For the sake of this work, among these
operations, we highlight the following ones:

3.4.1 Compliance between Offer and Template

According to WS-Agreement, it is defined that "an agreement offer is compliant
with a template advertised by an agreement responder if and only if each term of ser-
vice described in the Terms section of the agreement offer complies with the term con-
straints expressed in the CreationConstraints section of the agreement template". In
addition, in the Context of the offer, the AgreementResponder value must match the
value specified in the template; and the TemplateId must exactly match the name pro-
vided in the template document against which compliance is being checked.

Then, we interpret that there exists compliance between an offer and a template if
and only if none of the offer terms contradicts the template creation constraints which
is included and proposed in the PhD Thesis from Carlos Müller [122]. In this proposal,
as service terms are expressed as constraints over metrics in iAgree, the compliance op-
eration is described with a Constraint Satisfaction Problem (CSP) using the metrics as
variables, and the Terms as constraints. The statement "if and only if none of the offer
Terms contradicts the creation constraints" is described with the CSP operation Sat-
isfiability (i.e.: logic operator "exists") with the additional constraint: CC AND !(ST),
where CC is the set of Creation Constraints and ST is the set of constraints related to
the Terms. With the evaluation of Satisfiability of this constraint, it is evaluated if exists
a possible value for the metric that solves the creation constraints but does not solve
the service Terms.

3.4.2 Agreement validity

Although some services are ruled by simple SLAs (such as SLA from Amazon EC
where only Availability is guaranteed for values greater than 99.99% and 99.0%), in
other scenarios, a single SLA can include a great number of guarantees with more
complex SLOs (e.g.: in IT Maintenance, the average accomplishment of the committed
times in the SLA have to be over 95%, where the committed times depend on factors
such as the Severity of the maintenance or work force assigned). As SLAs are humanly

44

3.4. SLA ANALYSIS

Figure 3.9: Inconsistent guarantees

created, even in simple cases the definition of an SLA can be a tedious and error-prone
task. One complex analysis operation is the evaluation of the validity of the agreement.
Some validity evaluations require a domain or semantic knowledge. For example, the
guarantee:

G1 : Availability < 80%

in common cloud computing scenario can be considered an error, as providers usu-
ally guarantee that the time when machines are available is greater than a percentage of
total time, not the opposive, lesser than %.

In spite of domain criteria, other validity checking can be performed. This is the
case of the agreement self-consistency. An agreement is considered consistent if there
are no contradictions among their guarantee terms. For instance, these SLOs are con-
tradictory:

G1 : MUP > 99
G2 : MUP≤ 99

This kind of inconsistency is depicted in Figure §3.9. We represent orange coloured
the metric values which fulfill the SLO in G1 guarantee and blue coloured the metric
values which fulfill the SLO in G2. As there is no overlapped areas for such values, G1
and G2 can never simultaneously be accomplished. Therefore, there was an error in
the modelling of these guarantees or one of them is never going to be fulfilled.

Inconsistencies can even be isolated to single guarantees:
G1 : MUP > 99 AND MUP≤ 99

45

CHAPTER 3. SLA MANAGEMENT

The consistency operation takes the guarantees as input and returns a boolean re-
garding the consistency or inconsistency of the guarantees. Depending on the solving
technique, we could consider to return the explaining of errors in case of inconsisten-
cies.

Another evaluation to check the validity of the agreement is analysing if there are
dead terms, i.e. terms that are never evaluable. A guarantee term is a dead term if it can
never be applied. For example, when the scope of the guarantee can never be achieved
(e.g.: a guarantee term which only applies when Availability < 0% and Availability is
measured as a time percentage). Other more complex cases appear when the qualifying
condition for a guarantee is inconsistent with other guarantee SLO:

G1 : ResponseTime < 2 hours
G2 : If ResponseTime > 2 hours then SolvingTime < 1 day

In this example, G2 assumes that G1 can be violated. Without any information
about what happens when an SLO is broken (i.e.: the SLA could be considered can-
celled), this example can be either a model error either a model decision to apply dif-
ferent guarantees.

3.5 TOOLING SUPPORT: ADA AND GOVERNIFY

Originally, the WS-Agreement specification has been successfully applied in the
Grid computing arena within grids services in projects such as Assess Grid, a project
funded by the European Commission [1], BEinGRID SLA negotiation component [50],
UNICOREVIOLA, of CoreGRID and Viola [62], or decentralized, cross-middleware
grid job submission service (JSS) [174], between others. Furthermore, The GRAAP
Working group of the Open Grid Forum, lead by researchers of the Fraunhofer SCAI,
developed WSAG4J, a framework developed with Java supporting the WS-Agreement
protocol and considering all phases of the SLAs lifecycle. And it provides some op-
erations as agreement offer validation based on template creations constraints or the
evaluation of penalties and rewards for guarantees.

A more complete component stack is provided by Governify Platform, http://
www.governify.io. This stack includes different components to provide a full ecosys-
tem for the management of SLAs, including: (i) an editor with facilities to support the
creation of valid SLAs, (ii) an SLA repository, (iii) an SLA monitor. In the Governify
website, there is extensive information about SLAs modelling and analysis with a suite
of the examples used in this work.

Governify is built on a microservice architecture basis so each service is developed
and deployed independently and they are connected through REST APIs.

46

http://www.governify.io
http://www.governify.io

3.5. TOOLING SUPPORT: ADA AND GOVERNIFY

3.5.1 ADA: SLA Analysis

The analysis support in Governify is provided by ADA, which is a complete analy-
sis tool that was developed in the context of Thesis from C. Müller [122] and delivered
as a library for Agreement Documents’ Analysis (ADA)[124]6. The basis of ADA is
defining each analysis operation as a Constraint Satisfaction Problem (CSP) and solve
it (logic satisfiability operation). In an SLA, we find assignments to describe pricing or
other service functional terms (e.g.: billing period: monthly), inequalities to describe
SLOs (e.g. Availability > 99%) or piecewise functions to describe compensations func-
tion:

Penalty = 10% when 95%≤ Availability < 99%
Penalty = 30% when Availability < 99%

These sentences can be directly mapped to constraints. The ADA library provides
the mapping to the different CSP related to each analysis operation. These CSPs are
solved with Minizinc CSP. Each operation (including the mapping from iAgree to CSP)
is exposed with a REST API.

3.5.2 SLA Designer

Governify provides an SLA editor, named SLA Designer, which internally uses iA-
gree with yaml syntax but it can be extended to other syntaxes such as json or xml.
Figure §3.10 displays the main interface of SLA Designer. The rendering of the doc-
uments can be customized with document templates to speed up the creation of new
SLAs just filling certain sections, such as target values in SLOs or even to enrich it with
graphic visualization for compensation or metric functions. The use of iAgree enables
to interact with ADA, the analysis library, to use their analysis operations to create
valid SLAs in design time.

The editor window is divided in 4 sections. On the left side, section 1 in Figure
§3.10, we find the project and file browser, where new documents can be created, orga-
nized or deleted. The documents are stored in the SLA Repository which is accessible
with a REST API. In the main window, section 2 in Figure §3.10, the documents are
edited. SLA Designer provides coloured syntax and other automatic features to speed
up edition. The command panel, section 3 in Figure §3.10, provides the different anal-
ysis operations depending on the document (template, offers, SLAs). And, finally, the
results of the operations are output into the console, in the section 4, where operations
can be also manually invoked with autocompletion.

6http://www.isa.us.es/ada

47

http://www.isa.us.es/ada

CHAPTER 3. SLA MANAGEMENT

1

2

3

4

Figure 3.10: SLA Designer

3.5.3 SLA Repository

The SLAs are stored in a external component, the SLA Repository, which is exposed
through an API to be integrated with the editor or the Monitor component. This API
has been developed with Swagger Framework following the OpenAPI Specification to
enable the development of the entire API lifecycle and can be completely consulted in
http://datastore.governify.io/docs/index.html.

3.5.4 SLA Dashboard

Figure §3.11 depicts the main Dashboard of Governify, where the monitoring and
evaluation of SLOs are graphically displayed. The Dashboard depicts the monitoring
values which are consumed from the computers indicated for each metric in the SLA.
A Computer is a specific object to process performance values (aggregating them, cal-
culating averages, etc.) and have to be instantiated with parameters such as the URL
where the related performance value can be queried (e.g.: pooling a REST API). The
performance values are depicted together the KPIs values, the SLA status, etc.

48

http://datastore.governify.io/docs/index.html

3.5. TOOLING SUPPORT: ADA AND GOVERNIFY

Figure 3.11: Guarantee terms monitoring with Governify

49

CHAPTER 3. SLA MANAGEMENT

3.6 OTHER SLA MANAGEMENT PROPOSALS

We have developed an extense review of the research efforts related to the auto-
mated analysis of either namely SLAs or just quality of service (in the form of perfor-
mance metrics) in different domains. The research sources were the common research
databases, such as Scopus 7 or Google Scholar 8.

To introduce this analysis, we are going to distinguish three kind of works. First,
the works which define a new SLA model including the service description together
the parties guarantees, highlighting the domains where they were applied and the ex-
pressiveness of such languages. Then, we are going to analyse the works which focus
on the definition of performance metrics based on the domain and their utility regard-
ing SLA (in order to negotiate SLAs). These proposals either extend an existing SLA
to describe specific domain metrics or just focus on the definition of the quality of ser-
vice metrics (usually performance metrics) but without a complete SLA formalisation.
And, lastly, we analyse the proposals related to use the evaluation of the SLA accom-
plishment to make decisions about service execution (scale resources, review execution
plan,...).

3.6.1 SLA Models

The reviewed proposals in this subsection introduce or create a model to describe
the main elements in an SLA: Service description, metrics and guarantees. In the anal-
ysis, we have identified the domain where the proposal have been applied: if is limited
to a specific explicit quality vocabulary or it is service domain independent, the expres-
siveness of the SLA model (for example, if they include Templates or Compensations
functions), and if they provide some tooling support for the SLA lifecycle.

SLAng [38] is a language, created in 2003, for agreement modeling proposed by
University College London. This language intends to associate penalties with QoS
properties defined in the agreement. In addition, it allows applying these restrictions
dynamically at the time or by some state variable visible by all the parties to the agree-
ment. They propose to fill the gap of QoS to sign SLAs in computational domains, as
service descriptions are covered by other languages such as WSDL or business process
definitions are covered by BPEL.

SLA* [93] is part of the European project SLA@SOI, which concluded in 2011, which
sought to increase the automation and predictability of all phases of the agreement life
cycle. The syntax is domain independent and describes agreement templates docu-
ments and agreement documents through a generalization of other specifications such
as WS-Agreement, WSLA or WSDL. It is not especially focused on web services but
allows it to be extended with the requirements of each domain. As in other proposals,

7http://www.scopus.com
8http://shcolar.google.com

50

http://www.scopus.com
http://shcolar.google.com

3.6. OTHER SLA MANAGEMENT PROPOSALS

an agreement template contains five sections: 1) template attributes; 2) the parties in-
volved in the agreement; 3) service description; 4) variable declarations; 5) terms of the
agreement and guarantees.

Service-Level-Agreement for Clouds (SLAC) [194] is a language, proposed in 2014,
to define SLA in a cloud environment. Since it is WS-Agreement inspired, it shares
many characteristics, structure and definitions. This language offers multiple prede-
fined metrics, inspired by cloud computing, e.g. better multi-party support, group
definitions, and parties involved for each term. Unlike other agreement models, SLAC
does not differentiate between service description terms and QoS requirements.

rSLA [171] is a language, created in 2015, for specifying, monitoring and enforcing
SLAs for cloud services. The language describes basic metrics that are to be obtained
and how they are aggregated in terms of composite metrics. It is possible to define how
to proceed if SLOs are met or violated. The syntax is similar to Ruby language (because
of this the ’r’ in ’rSLA’). As WSLA, they use conditions-actions to define the guaran-
tees and they support renegotiation or compensations (actions after SLA violations).
They support metric definition through composition and negotiation and monitoring
of SLAs

Linked-USDL Agreement [70] is an extension to Linked-USDL [69]. It can cap-
ture agreement terms, business aspects, liability, compensations, and time constraints.
Specifically, Linked-USDL Agreement is designed to be used to establish and share
agreements among customers and providers that seek to perform automated service
trading in a web context. They describe 2 examples: A business process outsourcing
and a cloud service example. And provide tooling support for Document lifecycle
including RDFa analysis (a subset of RDFservice).

Quality Requirements Language (QRL) [157] (published in 2002) is a fully fledged
and expressive language to describe quality requirements of products. The quality
requirements and the products can be considered as the SLOs and SDTs in the WS-
Agreement specification, respectively. As WS-Agreement proposes the use of service
properties and metrics to be used in the SLOs, QRL, similarly, describes a catalogue of
attributes with their metrics to be used within the quality requirements.

Collaboration-Protocol Profile and Agreement Specification (CPPA) [135] (which
was published in 2002) was proposed by OASIS based on an electronic commerce col-
laboration standard language called ebXML [137]. It is based on previous works de-
veloped in projects as Unified Business Agreements and Contracts (UBAC), performed
in 2002 by the United Nations Centre for Trade and Facilitation and Electronic Busi-
ness (UN/CEFACT). The main objective of ebXML is to obtain a setup document to be
used at runtime called ebXML Business Service Interface Configuration. Thus, ebXML
is a complete approach which wraps all necessary aspects to define the information
exchange in SOA systems. The starting point to obtain the setup document is to per-
form the ebXML business process (ebXMLBP) [136], which is based on business pro-
cesses standard languages as BPMN. Then, it is necessary to study the collaborations

51

CHAPTER 3. SLA MANAGEMENT

between the interested parties by means of different OASIS specification languages.
For the business collaboration context they propose to use the Collaboration-Protocol
Profile (CPP) specification. CPP describes the agreement party capabilities, including
information about: each party, communication protocol, security, document exchange
protocol, retries, and other information necessary for an autonomous interaction be-
tween parties. Once described the CPP, it is mandatory to define information system
terms and constraints to allow the electronic exchange. Such terms and constraints
are specified by the ebXML agreement specification called Collaboration-Protocol and
Agreement (CPA). CPP and CPA are included in the Collaboration-Protocol Profile
and Agreement Specification (CPPA) [135]. Since the CPPA specification is focused in
electronic services, they provide only a limited set of domain-specific quality of ser-
vice constraints on the kind of messages, certificates, protocols, etc. Therefore, the
differences in the scope of CPPA and WS-Agreement specifications make negligible a
comparison between them.

Rule-Based Service Level Agreement Language (RBSLA) [143] (published in 2005)
is a declarative rule language which enhances the XML-serialised RuleML9 language
with useful constructs to express SLA terminology. RBSLA support to express predi-
cates, event condition action rules, and rule priorities, that describes concepts similar
to the SLOs, QCs, and relative importance of BVL, of the WS-Agreement specification.
In addition, RBSLA supports specific vocabularies defined externally (e.g. in RDF-
S/OWL ontologies10, or Java class hierarchies) for elements such as metrics, pricing
policies, rights and obligations. A great advantage is that off-the-shelf RuleML engines
already exist for the processing of such SLAs in order to validate the SLA rules.

CC-Pi specification [20] (published in 2007) proposes a theoretical framework for
mapping SLAs to service constraints. The CC-Pi model is, however, tightly coupled
to the negotiation and monitoring process. This leads to the lack of concepts such as
agreement parties or service interfaces. Nevertheless, CC-Pi supports to describe vari-
ables and constraints that connect the involved variables, as the metrics and SLOs of
WS-Agreement specification. CC-Pi defines a validity criteria to reach and validate
agreements using Constraint Satisfaction Problems (CSPs) that considers SLA require-
ments imposed by the involved parties.

A number of proposals have appeared with the rise of cloud services. At this re-
gard, Stantchev et al. [168] propose to connect a set of guarantee terms defined with
non-functional properties (metrics) and goals (SLOs) with specific performance issues
in real cloud platforms. They are not very precise about how to handle the variabil-
ity of platforms. From the formalisation of SLOs they propose to negotiate SLAs and
enforce them when the connection for them is defined. Wieder et al. [194] define a Ser-
vice Oriented Architecture with their own SLA model. The model has to be refined on
each specific domain and there is an independent proposal to define measurements.
Son et al. [167] introduce a full lifecycle SLA management for Cloud services with their

9http://ruleml.org/
10http://www.w3.org/TR/rif-rdf-owl/

52

http://ruleml.org/
http://www.w3.org/TR/rif-rdf-owl/

3.6. OTHER SLA MANAGEMENT PROPOSALS

quality own vocabulary (allocation region, time response, price...). The syntax of the
SLA is a set of constraints with required performance levels (the common properties in
cloud platforms). They use these offers to negotiate and, then, signing the agreement
according to an utility function.

There are different proposals to model contracts for specific domains. This is the
case of Daly [34] et al. , who propose a simple SLA language for CRMs. They describe
metrics as customer satisfaction or utility, as the relationship between accomplishment
and customer satisfaction. Augenstin et al. [7] propose a language to describe logistic
services. They mainly focus on functional aspects. The performance quality is named,
but none attribute or related language are proposed. They propose to model service
descriptions from a BPMN using a model to model transformation. Nguyen et al. [133]
propose align the SLAs for the different services/tasks with different layers: business,
people and technology. So they describe different categories for SLOs and for SLA in
the different layers and check how they align the other layers. Chau et al. [29] proposes
to define performance metrics and goals based on business processes. they relates
SLAs and business process artifacts where guarantees over the process are defined
through process events.

Other proposals focus on different phases of the SLA lifecycle, so they define a
model with a language with ease these phases. Therefore, Uriarte et al. [175], intro-
duce a formal language based on CSP to describe SLA together different protocols for
negotiation and monitoring. They highlight the advantage of using their language
for service brokering and they provide a comparison between different generic SLA
languages. Kotsokalis et al. [99] propose a syntax for describing guarantees in SLAs
based on Binary Decision Diagrams (BDD) as the models proposed by WSLA or WS-
Agreement do not include semantics for service description. They propose mapping
qualifying conditions to conditions, and service terms as facts and guarantees as con-
ditions. Dastjerdi et al. [35] proposed that the SLAs include semantic information so
they are fully understood by all the parties. They also criticise the importance of the
deployment time in Cloud services and, as the relationships between different layers
(IaaS, SaaS, ..) are not described, they propose using Web Service Modeling Ontology
(WSMO) for composing descriptions (between layers) and monitoring the deployment
of service. Goo et al. [75] discuss about the role of SLA in service outsourcing and how
to define metrics, and targets values. They also consider that the agreement metrics
should not provided alone themselves, but also with the measurement procedure and
what happens in case of violation (penalties or rewards). Grzech et al. [79] analyze the
impact of performance on the service cost from a functional point of view. They view
a service as a number of tasks that are described in the SLA, so the cost depends on
how to manage these tasks. They model service composition as a more complex ser-
vice (with more tasks) and they propose a model to analyse the execution order of the
different tasks.

53

CHAPTER 3. SLA MANAGEMENT

3.6.2 Specific domain SLA metrics

In this subsection, we analyse the different proposals related to the definition of
a quality and performance vocabulary together with the SLA creation based on this
vocabulary. We also highlight if they use an existing language they use to describe the
metrics (as the ones in previous section) or use an ad-hoc language for the sake of their
proposal.

Sauvé et al. [161] propose a methodology to calculate SLO thresholds to sign IT
services SLAs according to service function cost from a business perspective. In all
these cases, guarantees are proposed upon computational metrics (e.g. response time
or availability). Therefore, it is useful only for SLAs that apply to the software infras-
tructure that support business processes and not for the business processes offered as
a service.

Kieninger et al. [95] describe a categorization of IT services and outline a mechanism
to obtain efficient SLOs for them. However, they do that in a conceptual level and do
not detail how they can be formalised to enable their automated management.

Daly et al. [34] propose an SLA model based on the different elements in the service
provision, i.e. application, servers, network, etc, related to service provision system.

Cardoso et al. [25] propose a description language for services that include business
characteristics together with technical or operational parameters. This work is focused
on managing services including business perspective. in this domain, there is a limited
amount of work. The solution of Augenstein et al. [7] introduce a platform based on
service-oriented- approach for managing contracts on 4PL business. The proposed so-
lution itself is mainly focused on coordinating the business process conducted among
these different partners.

Another example is the work introduced by Bing and Zhongying [15]. They define
in mathematical terms the parameters of a contract in transport & logistics collabo-
rative business process. Mai and Teo [83] also followed a mathematical approach to
define and analyse contracts in the collaborative business process in transport & lo-
gistics. Nevertheless, none of the aforementioned solutions focus on the conformance
check of the agreements among the partners.

In [78], Grubitzsch et al. focus on the definition of multiple objectives in Service
Level Agreements to provide a management document for flexible services which
adapt performance according to these multiple levels to avoid violations and can-
celling of SLAs. They define different quality thresholds to enable SLA renegotiation or
SLO update depending on the situation. They propose a pricing model for the different
execution levels and penalties to take decisions about choosing provider.

In [133], Nguyen et al. propose to align the metrics guaranteed in the SLA to the
actors related to the metric in manual processes (such as actors to satisfaction metrics
or costs to used applications).

54

3.6. OTHER SLA MANAGEMENT PROPOSALS

Bar-Isaac et al. in [10] describe a business scenario with cost, customer expectations
and reputation variables where reward function follows a non-monotonic behaviour
(based on satisfying preferences from different customers). Similarly, Fenghui Ren
et al. analyse in [152] how utility function is obtained from customer objective func-
tion (i.e., customers timetable preferences affect how transactions distribute through
commercial opening hours).

Correia et al. [32] relate SLA Lifecycle to BPMN lifecycle and they propose a table
of relationships between SLA and BPM (e.g. A SLA Contract is related to a Process).

Terry et al. [172] propose an architecture to provide a storage service based on dif-
ferent storage providers according to a consistency metric. The consistency is based
on data integrity, so storage services are databases. At the end, the proposed storage
service selects the best service according an utility function based on this consistency
evaluation together other common properties, such as latency or response time.

Again, there are also a number of proposals related to the cloud specific domain.
Messina et al. [117] propose a multi-agent system to negotiate contracting over SLA
based on performance metrics (CPU, Availability, Time to boot, response time, ...) and
then propose a protocol for SLA selection with the agents. Omezzine et al. [140] de-
scribe requirements for SLA negotiation in cloud environments where there are dif-
ferent layers (IaaS, SaaS) with different terms categories to discuss. They propose an
architecture and flexible procedure to calculate an utility measure to select the best re-
sources in a Cloud. Wu et al. [196] proposes a broker for cloud services based on a
cloud performance metrics (such as availability, response time, price or customer sat-
isfaction level) and an algorithm to negotiate the optimal SLA dynamically. The SLOs
are based on WSPolicy. Lam-Son et al. [103] propose decompose a service described
by its high-level business goals to elementary constituent services so their elementary
goals can be precisely defined and analyse as common basic utility properties (avail-
ability, inputs, outputs...) and then compose these properties. Zulkemine et al. [201]
defines a protocol to negotiate SLAs based on the SLA goals. They differentiate be-
tween fixed terms, e.g. response time or free layer depending on VIP customers, and
performance metrics with goals, like availability or price. The negotiation is performed
by a Negotiation Broker and uses SLAs and a Knowledge Base to get an utility mea-
sure. Voorsluys et al. [187] introduce the cost of virtual machines live migration to the
analysis of availability in order to relate the IaaS from the provider with the provided
SLAs by the IaaS consumer to their SaaS customers. Yaqub et al. [198] propose a ne-
gotiation mechanism based on common quality metrics for cloud SLAs (availability,
backup and performance) where different bidding strategies are applied to get the best
deals.

3.6.3 Decision making based on SLA Analysis

In this section, we review the proposals which consider the evaluation of SLA to
make decisions regarding service execution and, therefore, propose different strategies

55

CHAPTER 3. SLA MANAGEMENT

to enforce service based on the analysis of the accomplishment of the SLA (including
the cancelling of the SLA in case of its violation). These proposals address how op-
timising the costs of resources planning or modelling complex scenarios to obtain an
utility function to optimise the making decisions.

Hani et al. [86] review the different stages in SLA Management to (with related
literature review) to conclude that renegotiation is better than cancelling SLA after
SLO violation, so they propose different strategies for renegotiate SLA terms, based on
theory’s game or Bayesian learning. At this regard, Czajkowski et al. [33] provide a
protocol to manage SLAs for resources planning. They relate the resources assignment
with the negotiation mechanisms.

Tokairin et al. [173] propose use QoS and context information to optimize service
bandwidth. They describe a protocol for presence and image detection to recognize
when young/old people come into some place. Tan et al. [169] propose a mechanism
to take decisions over business process execution based on its monitoring (in the con-
text of Business Process Intelligence). They propose different metrics around abstract
metrics and at different process perspectives (Cost, time, ...). Bobroff et al. [17] analyze
a specific cloud scenario to allocate virtual machines in servers following a proposed
strategy to ensure that SLA is not violated.

Buyya et al. [22] propose an architecture to allocate jobs from users in a Cloud envi-
ronment considering the user QoS requirements (in the form of SLA) and infrastructure
services (Amazon EC2 in the scenario). Buyya et al. [21] complement it with an allo-
cation strategy for VMs based on SLAs from different providers and requirements as
multi-objetive function based on different metrics (price, performance..) and different
providers (Amazon, Azure...). In a similar scenario, Y. Gao et al. [67] propose a model to
save energy based on job predictions, SLAs (mainly response time requirements and
possible violations), power costs, to manage resource in a data center environment.
They introduce different mechanisms to avoid NP-hard planning cost.

Also in the cloud domain, Lorido-Botran et al. [110] make an analysis of different
techniques to scale virtual machines based on different mechanisms. These techniques
are basically based on action-reaction following different criteria, such as the SLA of
Cloud services. And Garg et al. [72] propose a mechanism to distribute server load
to maximize their use using SLAs documents from providers. The idea is preparing
servers in advance without over provision. Linlin Wu et al. [195] propose an strat-
egy to plan resources for new users in a SaaS environment. Their strategy considers
two different SLA layers (SLA from user requirements/penalties and the SLA for re-
source provision) and a profit model based on the cost to execute the plan. Kailasam
et al. [92] propose how to optimally manage Cloud resources considering public and
private clouds (or different data centers), execution times of tasks, and transfer time.
They use some quality measures, included in an SLA to propose an scheduler to make
decisions about the processing of tasks in the cloud platform queue. X. Li et al. [108]
provide a mechanism to monitor trust over the performance of cloud computing ser-
vices, guided by SLAs. They also provide in [109] an architecture to manage multime-

56

3.7. SUMMARY

dia personalized services based on QoS. They use an SLA broker who analyses cus-
tomer requirements and provided QoS in SLAs (they use WS-Agreement) to choose
the best platform and monitor it.

Emeakaroha et al. [58] propose an architecture to measure metrics and detect SLA
violations in scenarios related to computing services. They define abstract metrics re-
lated to performance metrics: CPU availability, RAM and Storage, and different target
values. They map performance abstract measures that are guaranteed in the SLA, like
Availability, to specific monitoring variables, like Server Downtime in order to mea-
sure them without ambiguity. Similarly, Brandic et al. [19] propose a mapping based
on WS-Agreement and XSLT. from abstract SLA metrics to the real taken measures.

Hedwiq et al. [88] propose a model for dynamic SLA management. They consider
that the SLA is important for planning and providing resources based on the pricing
and penalty model and it is required to adapt to the service using (the example are
related to evolution of Wikipedia workload) so it is a kind of renegotiation of SLA as
they propose to update SLO targets in runtime. They also relate this proposal to the
changing pricing model in Amazon computing units.

Leitner et al. [104] propose monitoring SLAs in runtime to predict SLA violation in
simple and composed services.

3.7 SUMMARY

In this chapter we have introduced the SLA structure according to WS-Agreement
and iAgree, as extension to provide a more human-readable language. We also de-
tailed the SLA phases in which SLAs may be during its lifecycle with the aim of de-
scribing how these phases are considered in the agreement creation and their status
proposed by WS-Agreement. We have provided the most common scenarios of the
WS-Agreement protocol about SLA lifecycle. In turn, regarding the management of
this lifecycle we have cited the most common operations to support it. Specifically, we
have described the different states that agreements and guarantees may have during
the WS-Agreement protocol. Such states ease the evaluation of agreements and guar-
antees at monitoring in order to detect violations. However, domain-specific moni-
toring techniques are not provided by WS-Agreement specification due to its domain-
independent purpose. Such a domain-independence of the specification boosts the ap-
pearance of a plethora of tools with a diverse support for the creation and monitoring
of WS-Agreement documents. At the end of the chapter we have provided informa-
tion about most important of these tooling support approaches. Furthermore, we have
detailed an extensible framework, Governify, which provides an enriched-text editor
for the creation of iAgree documents with edition templates and a dashboard to mon-
itor external systems based on the performance measuring and the SLAs. Lastly, we
provide an extensive review of works related to the automated analysis and evalua-
tion of SLAs. As we discussed, SLA management has been extensively researched in

57

CHAPTER 3. SLA MANAGEMENT

the computational domain. A diversity of languages and tools have been developed.
However, in non-computational domains domains, SLA management is just beginning
to be applied. The SLA management in other domains involve the increasing digitiza-
tion of SLA documents together with the need to properly manage the information in
the SLA to enforce business services.

58

OUR CONTRIBUTIONS

PART III

4

SLA MODEL FOR BPS

61

Everything I do and everything Pixar does is based on a simple rule: Quality is the best business plan, period.

John Lasseter (1957–),
2009

4.1 INTRODUCTION

As we have introduced, non-computational services are process-oriented and the
software that supports them is usually a process-aware information system (PAIS) such
as ERPs, Service Desk Management Systems, CRMs, or business process management
systems (BPMSs). However, unlike computational services, there is little work related
to the extension of PAISs with SLA-aware capabilities to support non-computational
services. A PAIS with SLA-aware capabilities, i.e. an SLA-aware PAIS, is a PAIS that
uses explicit definitions of SLAs to enable or improve the automation of certain tasks
related to both the SLAs and their fulfillment such as performance monitoring, human
resource assignment or process configuration [179].

In this chapter, we formalise the SLAs for BP as a first step to enable such SLA-
aware PAIS. To this end, after analysing the modelling requirements of such SLAs,
four main aspects involved in their formalisation have been identified, namely: 1) the
description of the business process provided by the service; 2) the SLOs guaranteed
by the SLA; 3) the penalties and rewards that apply if the guarantees are not fulfilled;
and 4) the definition of the metrics used in these guarantees. These SLAs are usually
described in natural language so we provide a formalisation for aforementioned as-
pects using computational SLAs and techniques used to model the service description
together with the process performance indicators and goals. Furthermore, we validate
our approach through the modelling of several real BP SLAs.

The contribution of this chapter regarding the scope of this dissertation is high-
lighted in Figure §4.1.

CHAPTER 4. SLA MODEL FOR BPS

ru
le

d
by

supported by

Governify

Business Process
 PAIS

Monitoring Adapt

Chapter 4 Chapter 5

Business Process

Natural
Language SLA

Formalization
iAgree
SLA

Instance
SLA

Analysis

Chapter 6

Instance
SLA

Instance
SLA

Monitoring

Figure 4.1: Contributions background

4.2 AN EXAMPLE SCENARIO

IT maintenance tasks are commonly outsourced agreeing to an SLA. We take as an
example of these SLAs the definition of statements of technical requirements (STR) of
a public company which belongs to the Andalusian Autonomous Government, from
now on APC, acronym of Andalusian Public Company. Statements of technical re-
quirements are described in natural language and include information about the ser-
vices required as well as their SLA. The statement of technical requirements docu-
ment of this example is defined for the Technical Field Support for the Deployment
of the Corporative Telecommunication Network of the Andalusian Autonomous Gov-
ernment. It is presented in a 72-page document written in natural language including
the SLAs defined for five of the required services, namely: 1) field interventions; 2)
incidents; 3) network maintenance; 4) installations and wiring; and 5) logistics. In par-
ticular, we focus on the field interventions (FI) service. The term field intervention refer-
ences to the fact of requiring the presence of a technician at any headquarter of the APC
for different reasons: troubleshooting technical assistance, installations supervision or
restructure. From a high-level perspective, the FI service is performed as follows: the
APC requires an FI, which can have different levels of severity, from the contractor
staff. Then, the contractor plans the FI and performs it at the infrastructure location.
In some cases, the contractor must provide some required documentation and, if such
documentation is considered incomplete or inadequate by the APC, it needs to be re-
submitted by the contractor until it fulfills the APC’s quality requirements.

62

4.2. AN EXAMPLE SCENARIO

For this service, the statement of technical requirements (STR) document presents
the following information: 1) the committed times by the contractor (see Table §4.1);
2) the general objective defined for FIs —the SLO of the SLA— represented as AFIP >
95%, where the AFIP (accomplished FIs percentage) metric is defined as:

AFIP =
accomplished FIs

FIs
× 100

and 3) the penalties applied in case of the SLO is not accomplished (see Table §4.2).
These penalties are defined as a percentage over the monthly billing by the contractor
for the FI service. In addition, the STR document describes the following definitions
for the referred times in Table §4.1:

Response Time: Elapsed time between the notification of the FI request to the contrac-
tor and its planning, including resources assignment, i.e. technicians.

Presence Time: Elapsed time between resource (technician) assignment and the be-
ginning of the FI, i.e. technician arrival.

Resolution Time: Elapsed time between the technician arrival and the end and closure
of the FI.

Documentation Time: If documentation, i.e. reports, is required, it is defined as the
elapsed time between the end and closure of the FI and documentation submis-
sion. If the APC considers this documentation as incomplete or inadequate, it
will be rejected and sent back to the contractor and documentation time is again
activated and computed.

The different stages of the service during the process are supported by different
tools. These tools are not BPMSs but Process Aware Information Systems, where the
different events in the service are tracked and orchestrated with the users interaction.

Criticality
Level

Response
Time

Presence
Time

Resolution
Time

Document
Time Timetable Calendar

Critical 0.5 4 2 4 8:00 – 20:00 Local
High 2 8 4 12 8:00 – 20:00 Local
Mild 5 30 6 24 8:00 – 20:00 Local
Low 5 60 8 48 8:00 – 20:00 Local

Table 4.1: Committed times by the contractor (in hours) for the FI Service SLA

63

CHAPTER 4. SLA MODEL FOR BPS

AFIP Penalty
94%≤ AFIP < 95% -1%
93%≤ AFIP < 94% -2%
92%≤ AFIP < 93% -3%
91%≤ AFIP < 92% -4%
90%≤ AFIP < 91% -5%

AFIP < 90% -10%

Table 4.2: Penalties definition (in monthly billing percentage) for the FI Service SLA

4.3 REQUIREMENTS FOR MODELLING SLAS OF BPS

Based on the analysis of the state of the art in SLAs for both computational and
non computational services, and more than 20 different BP SLAs developed by 4 dif-
ferent organizations, we conclude that four elements must be formalised in SLAs for
non-computational services, namely: 1) the business processes; 2) the metrics used in
the SLA; 3) the SLOs guaranteed by the SLA and how to evaluate each SLO by filter-
ing different parameters (e.g. region); and 4) the penalties and rewards that apply if
guarantees are not fulfilled or over fulfilled. Next we describe each of them.

4.3.1 Business Processes

An SLA is always related to one or more specific services. The way such services
must be provided is usually defined by describing the underpinning business process,
and this is often done in natural language. Consequently, the formalisation of SLAs for
non computational services requires the formalisation of the business process itself.
Note that it is not required for the SLA to detail the low level business process that
will be enacted by the provider’s PAIS since most SLAs do not delve into that level of
detail and just focus on main activities and the consumer-provider interaction (cf. Fig
§4.2 for the high-level business process of the motivation scenario). The Field Inter-
vention process follows a simple task sequence: Plan the Field Intervention, Perform
and Document it (in the case it is required). The customer reviews the documentation
submitted and can require corrections so the last task would be repeated. The process
description can be as simple as a single sequence of tasks where tasks are executed and
the deliverable of one or more tasks is evaluated to decide wether to continue with the
following task or go back to execute a previous task in the sequence. Therefore, the
service could be described with a generic language such as BPMN or in other cases
with state machines, Event Process Chains, etc.

Task sequences are currently supported by a number of PAISs without requiring
a generic BPMS. There are PAISs which support well-known and configurable work-
flows, such as Issue & Project Tracking System Jira or systems which support generic
pipelines for project management, such as Trello and Liquid Planner.

64

4.3. REQUIREMENTS FOR MODELLING SLAS OF BPS

Co
nt

ra
ct

or

APC

FI requested

FI request

Plan FI Perform FI

FI
documentation

required?
Create and
submit FI

documentation
Documentation

Accepted

Correction
required

FI closed

no

FI documentation Correction
request

FI documentation
acceptation

Figure 4.2: BPMN model of Field Intervention (FI) service

4.3.2 SLA metrics

The SLA metrics are measures that need to be computed so the fulfillment of the
SLA can be evaluated. For instance, in the running example, the response time, the
presence time, or the AFIP are examples of such metrics. The mechanism used to define
these metrics must have three main features. On the one hand, it must be expressive,
i.e. it must allow the definition of a wide variety of metrics. On the other hand, it must
be traceable with the business process so that it enables their automated computation.
And, lastly and more important, it has to be computable. In addition, it is convenient
that the metrics are defined in a declarative way (i.e. defining what is measured instead
of how to measure it) because it reduces the gap between the SLA defined in natural
language and the formalised SLA and decouples the definition of the metric from its
computation [47].

4.3.3 Guaranteed SLO

SLAs include assertions, namely Guarantee Terms, over the aforementioned met-
rics that are guaranteed by the SLA and, hence, must be fulfilled during the execution
of the service. For instance, the running example defines AFIP > 95% as an Service
Level Objective (SLO) for AFIP metric of the FI service. In general, SLOs are guaran-
tees defined as mathematical constraints over one or more SLA metrics. The fulfillment
of these constraints can be delimited to a specific time period which also can match the
billing period. In the introduced example, the guarantee AFIP ≥ 95% refers to the
monthly billing period. Therefore, when the AFIP is less than 95 just for a week, the
SLO is not considered unfulfilled (although preemptive management could consider
this situation as potentially risky). Furthermore, the SLO can be evaluated as a whole

65

CHAPTER 4. SLA MODEL FOR BPS

or it is can be evaluated regarding a more specific scope. For example, if the APC has
offices in different regions and requires to monitor the fulfillment of the AFIP SLO for
each region.

4.3.4 Compensations

Guarantee terms usually include the compensations that are applied when the SLO
is not fulfilled or is improved, respectively. An example is shown in Table §4.2, which
depicts the penalties that apply for the FI Service SLA in our running example. The
specification of penalties and rewards requires the definition of a mathematical func-
tion, whose domain is one or more SLA metrics and whose range is a number which
represents the penalty or reward. The compensations are usually defined as a percent-
age over the billing. This percentage can be applied to the billing period when the SLO
was not accomplished or to a future billing (e.g.: when the compensation is claimed).
In the example scenario, when the expected times are not average fulfilled over a 95%,
the contractor is penalized with an increasing reduction of the billing up to a 10% over
the monthly billing.

4.4 SLAS FOR BP SERVICES WITH IAGREE

From the identified requirements, we conclude that the structure of SLAs for non-
computational services can follow a similar structure to the SLAs defined for compu-
tational services. For instance, Amazon EC2 SLA1 also includes a definition of the
service; some metrics like the monthly uptime percentage (MUP); a guarantee defined as
MUP ≥ 99.95% with a penalty based on the MUP and defined in terms of a percentage
over the price paid in the last month. Therefore, the definition of guarantees is similar
for computational and non-computational services.

In contrast, the description of the service and the definition of the metrics of non
computational and computational SLAs presents significant differences. The main rea-
son is that, unlike computational services, non computational services are process–
aware and, hence, their description and their SLA metrics are based on that process.

Based on the similarities and differences between non computational SLAs and
computational SLAs, we propose modelling non computational SLAs by combining
the agreement structure and mechanisms for the definition of SLOs, penalties, and
rewards that have been already proposed for computational SLAs, such as iAgree
[122, 125] and notations used to model the processes and Process Performance Indica-
tors (PPIs), such as [41, 49, 145, 149, 193], which were introduced in Chapter §2.

In the following we describe the specific information added in the different sections
in the iAgree Configuration to support the business process domain. iAgree Configura-

1http://aws.amazon.com/ec2/sla/

66

http://aws.amazon.com/ec2/sla/

4.4. SLAS FOR BP SERVICES WITH IAGREE

Agreement

+id
+version
+type

Context

+provider
+consumer

Term

Metric
Pricing

+cost
+currency

Guarantee

+id

Validity

+initial
+end
+TimeZone

Definitions

Schema

Billing

+initial
+period

ScopedGuarantee

+objective
+with

Compensation

+groupBy
+upTo

PenaltyReward

ScopedCompensation

+condition
+value

Window

+initial
+end
+period
+type

Scope

*

1

1 *

*

*

*

1

*

1

*

*

*

1

1

Infrastructure

1

1

1

*

1

BP

MeasureDefinition

BaseMeasure

BPElement

AggregatedMeasure DerivedMeasure

*

+appliesTo

*

1
* Business

Process
Extension

Figure 4.3: Class Diagram for Modelling SLA of a BP service

tion was described in Section §3.2.3 as the specification of the languages used in each
section in the SLA structure. Specifically, we extend iAgree [126, 127], to support the
requirements identified for our scenario, i.e. define the provided business process and
its related metrics and guarantees. For such a goal, we propose BPMN as the language
to model business processes and PPINOT [41] as the mechanism to model PPIs. These
proposals have been chosen because of two reasons. Firstly, they are amongst the most
expressive proposals of their kind, which is necessary to model the different scenar-
ios that appear in BP SLAs. Secondly, they have a formal foundation that enables the
development of advanced tooling support that can be reused in SLA–aware PAIS en-
vironments: (i) Governify, which was introduced in section §3.5 and (ii) PPINOT Tool
Suite [42], which includes the definition of PPIs using either a graphical or a template–
based textual notation [44], their automated analysis at design–time, and their auto-
mated computation from event logs. The class diagram for such extension is depicted
in Figure §4.3, which extends the diagram §3.2 to support this scenario.

To follow the extensions we are going to use the running example, which is de-
picted in Figure §4.4 and fully described in appendix §C.2 but we illustrate also sepa-
rately each relevant fragment of the SLA.

4.4.1 iAgree extension

67

CHAPTER 4. SLA MODEL FOR BPS

1 id : FI_Service_SLA
2 version : ’ 1 . 0 ’
3 type : agreement
4 contex t :
5 process :

6

Co
nt

ra
ct

or

APC

FI requested

FI request

Plan FI Perform FI

FI
documentation

required?
Create and
submit FI

documentation
Documentation

Accepted

Correction
required

FI closed

no

FI documentation Correction
request

FI documentation
acceptation

7 d e f i n i t i o n s :
8 schemas :
9 MonthlyFeePercentage :

10 descr ipt ion : Percentage a f f e c t i n g next monthly b i l l
11 type : in teger
12 uni t : ’% ’
13 scopes : { }
14 computers :
15 responsetime :
16 u r l : ’ ht tp : //ppinot . computer . chap . governify . io : 8 0 8 0 ’
17 apiVersion : ’6 ’
18 terms :
19 metr ics :
20 AFIP :
21 schema :
22 descr ipt ion : Average F i e l d I n t e r v e n t i o n s f i n i s h e d on time
23 computer :
24 $ r e f : ’#/ contex t/ d e f i n i t i o n s /computers/AFIP ’
25 type : consumption
26 guarantees :
27 − id : G1
28 of :
29 − o b j e c t i v e : AFIP > 95%
30 with :
31 window :
32 type : s t a t i c
33 period : monthly
34 p e n a l t i e s :
35 − over :
36 MonthlyFeePercentage
37 of :
38 − value : ’95 − AFIP ’
39 condi t ion : 90% <= AFIP < 95%
40 − value : ’10 ’
41 condi t ion : AFIP < 90\%
42 . . .

Figure 4.4: Excerpt of the FI service SLA in iAgree syntax

68

4.4. SLAS FOR BP SERVICES WITH IAGREE

Context

The service description can be provided in terms of the underpinning business pro-
cess and included in the context section. This description could be formalised with a
generic process notation, such as EPC, finite-state machine or BPMN (Business Process
Model and Notation), as in the example service (lines 5–11 in Figure §4.4). BPMN is a
well-known standard to model Business Process with extensive tooling support. We
depicted the abstract BP without considering execution information, which is usually
BPMS dependent, for exemplification criteria, but it is not limited to it. It is common
that the public BP is a business view of the deployed BP but the level of detail that
consumer and provider agree. For example, specific endpoints for message commu-
nication could be included or the role assignment to user tasks. As BPMN can also
address these implementation details, we base on it for the complete service descrip-
tion.

Metrics

In non computational services, these metrics can be specified using a PPI–oriented
approach. Specifically, metrics are defined using PPINOT measure definitions (de-
scribed in Section §2.3). The PPINOT measure is defined as a metric computer with
provides an endpoint that is referred in the SLA, so the metric becomes independent
of the details of its processing.

Therefore, in the SLA document we find the metric name with the reference:

AFIP :
schema :

d e s c r i p t i o n : Average F i e l d I n t e r v e n t i o n s f i n i s h e d on time
computer :

$ r e f : ’#/ context/ d e f i n i t i o n s /computers/AFIP ’
type : consumption

where the attribute type indicates that we have to make requests by pooling to the
endpoint indicated by $ref attribute in the schema, which refers to the computer at-
tribute in the context, to get the performance values.

And this url points to a document with the full PPINOT measure definition for the
SLA (which is included in the appendix §C.2.1). Templates to describe PPIs are pro-
posed in [44] in order to structure the information in a fixed form, reducing ambiguity,
promoting reuse and also serves as a guide to avoid missing relevant information. Ac-
cording to these templates the PPI description can be described as:

AFIP : The PPI value i s c a l c u l a t e d as the funct ion
AFI_Measure/FI_Measure x 100 ,
where AFI_Measure i s the sum of accomplished FIs
and FI_Measure i s the number of FIs

PPINOT Derived measure refers an math or logic operation over other measure/s.
In this case, the number of accomplished FI on time divided by the total number of FIs

69

CHAPTER 4. SLA MODEL FOR BPS

as a percentage. This metric is included in the only guarantee term (line 20 in Figure
§4.4).

Guarantee Terms

To define SLOs, we use the predicate language defined in iAgree [126], which in-
cludes relational, logical and common arithmetic operators. As apart from a concrete
syntax, iAgree also provides semantics to define SLOs expressions as logic constraints,
it enables the automation of analysis operations on SLAs such as detecting conflicts
within an agreement document [126] or explaining SLA violations at run–time [129].
Furthermore, the scope attribute can be used to parameterise guarantee and their eval-
uation. For example, in the IT maintenance scenario, the guarantees for User Support
are commonly scoped to three variables: region, node and priority. The service provided
covers a wide geographical area, so the customer organizes the service in 8 different
main regions. As these 8 main regions are known and statically defined, 8 different
guarantees could be explicitly defined, but using a scope variable as facility enable us
to define the SLO only once. Nodes are small offices which can be created during the
SLA validity period so if we define a single different guarantee for each node in the
SLA, the SLA would have to be updated each time a new node is created. When agreed
guarantees can be applied to new nodes (for example under certain limitations such
as new node within a city limits), the scope variable enables to define a single SLO
for all the nodes without including the explicit domain for the node variable or listing
exhaustively all the nodes. And, lastly, guarantees for this contractor are also scoped
by priority. In this case, the SLOs for different Priorities are different (i.e.: Committed
Response Time for Critical priority issues is lesser than for Normal priority issues).
Therefore, the definition of a guarantee has different SLOs for different priority values
although other commons attributes in the guarantee can be used, as the other scope
variables or compensations.

In the running example, there is only one guarantee, regarding the previous defined
metric AFIP (and line 29 in Figure §4.4):

− id : G1
scope :

{ region , node , p r i o r i t y }
of :
− o b j e c t i v e : AFIP > 95%

window :
type : s t a t i c
period : monthly

. . .

This percentage is measured according to a monthly static window, i.e. natural
month. Time windows were described in section §3.2.2 as static (e.g.: natural weeks)
or dynamic (e.g: the next or previous 7 days from a specific day). Although the com-
mitted times for each FI depends on the severity, the guarantee expects a global 95% of
accomplished times, without considering which was the specific committed time for
each FI (95% of total FI must accomplish their committed time).

70

4.4. SLAS FOR BP SERVICES WITH IAGREE

Compensations

Concerning penalties and rewards, they are defined with iAgree syntax as well to-
gether with the notion of compensation function defined in [127] and referred in Section
§3.2.2.

Regarding the existing modelling proposed in section §3.2.2, there are no significant
extensions to the compensations definitions.

In our example, as depicted in Table §5.2, when the AFIP is under 95% a penaliza-
tion value is applied. This value goes from 1% to 5% percent when the AFIP is from
94% to 90%, respectively (reverse proportion) and a 10% is applied when the AFIP is
under 90%. This percentage is regarding to the Monthly Fee, which is consistent with
the monitoring period:

Guarantees :
− id : G1
. . .
with :
. . .

p e n a l t i e s :
− over :

MonthlyFeePercentage
of :
− value : ’95 − AFIP ’

condi t ion : 90% ≤ AFIP < 95%
− value : ’10 ’

condi t ion : AFIP < 90%

4.4.2 Modelling the SLA

The SLAs are usually completely described in natural language. We describe here
some considerations to formalise the natural language description to iAgree. First,
some legals aspects, such as exclusion situations because natural disasters, are not cov-
ered by our formalisation and are out of the scope of this dissertation. Then, in order
to model the SLA we differentiate among the service description, the service metrics
and the guarantees.

Service description

We base our proposal in describing the service with BPs. However, sometimes the
natural language description is ambiguous so there is no a precise formalisation into
business processes and it requires from a business expert to support this modelling.
Furthermore, this description is usually an abstract modelling without execution de-
tails for the sake of understanding the service. Therefore, in some scenarios is even
possible not modelling the full process, just the relevant events for the performance
monitoring of the SLA. Performance metrics are addresses in next subsection.

71

CHAPTER 4. SLA MODEL FOR BPS

Metrics

The formalisation of performance metrics into PPI metrics also requires a domain
expert. This formalisation is based on the business process modelling. In order to
describe the PPIs, it is only require to properly identify the significant events for the
metric. For example, in the Field Intervention scenario, the Response Time metric re-
quires identify the corresponding starting and finishing event to measure this time.
The events, tasks or decisions that are executed between these two events are not rel-
evant for describing the metric. In fact, as we introduced, it is usual that the business
process described in the SLA is abstract so it is not executed. However, a precise cor-
relation between the described metric and the real executed events is required in order
to properly measure it. For enable, this would enable to perform monitoring from an
event log as we describe in next chapter §5.

Guarantees

SLOs, as a fundamental part of the SLA, are usually straight forward defined. For
example, "the availability of the service aims to be over 99%". However, in some cases,
this goal has no compensation functions definition in case of underfulfillment which
hinders how to manage the violation of the SLO. In other cases, the SLO is not di-
rectly described, just the compensation definitions. In these last cases, following the
discussion in appendix §A, the SLO can be defined using the limit of the compensation
region (e.g.: if it is defined a penalty for availability under 99%, we define the SLO as
"availability >= 99%").

4.5 APPLICABILITY OF OUR APPROACH

In this section we describe how we have validated our proposal. In particular, the
goal of the validation was to answer the following research questions:

• RQ1: How expressive is our SLA language in comparison to real-world ser-
vices?. We want to know whether our service model is expressive enough to
describe a wide variety of real-world services and which are the characteristics
of the services that we are not able to express.

• RQ2: Are we able to model the metrics in real-world SLAs with our SLA lan-
guage? Real-world metrics are expressed in natural language with complex con-
siderations. Therefore, we examine the exceptions that may appear to measure
them.

• RQ3: Which difficulties appear when modelling SLAs? SLAs are expressed in
natural language with different parameters. The analysis of the SLAs is a funda-
mental goal of this dissertation, so we want to know whether real-world SLAs
can be modelled and the problems that may appear to fully support them.

72

4.5. APPLICABILITY OF OUR APPROACH

Scenario Service Metric Des. Sc. Excluded
1. IT Systems User Support 9 X 3 Calendar & work hours
by APC Gehronte 10 X 1 Calendar & work hours
2. Telecomm. Field Intervention 1 X 0 Calendar & work hours
Network Incidents 1 X 0 Calendar & work hours
by APC Net. Maintenance 1 X 0 Calendar & work hours

Installations 1 X 0 Calendar & work hours
Logistics Service 2 X 0 Calendar & work hours

3. Project Performing Tasks 4 X 0 Time offsets
Management Staff Replacement 3 X 0 Time offsets
by APC Availability 1 X 0 Human resources
4. Systems in Reporting 3 X 0 X
Northwest User Support 8 X 1 Calendar & work hours
Territories App Enhancement 8 X 1 X

Table 4.3: Analysed Scenarios

In order to validate the applicability of our approach, we have used it to model the
SLAs of 13 different services designed by 4 different organisations, with a total of 52
metrics and related guarantee terms. All these SLAs were published on Internet. The
modelled SLAs are available at https://github.com/isa-group/sla4bpdatasets. In
the case of the first scenario for IT Systems, we have not only modelled it but applied
in the context of two transfer of technology projects, collaborating with private com-
panies. For that reason, detailed real data about that scenario can not be provided.

The comparison table of this analysis is depicted in Table §4.3. The first column
indicates the scenario modelled where APC indicates an Andalusian Public Company
which acts as the contractor. The second column, Service, names the different services
in the scenario. The third column indicates the number of KPIs defined for each ser-
vice. The fourth column, Des., indicates if the Service DEScription could be completely
described with BPMN. The fifth column, Sc., indicates the number of scopes defined
in the scenario. And the sixth column, Excluded, indicates if the metrics described in
the Guarantees could be completely described with PPINOT or there were limitations
to be further handled, which are expressed in the cell.

4.5.1 RQ1: Service Expressiveness

We propose using a formal BP language, such as BPMN, for the service description
together PPINOT for the metrics and iAgree for the general SLA structure together
with the guarantees. As BPMN provides enough expressiveness to model process se-
mantics involving task flows and orchestrations and user or computational tasks, all
the analysed services could be described with BPMN in the context section. As we
introduced in the Section §4.3 common maintenance scenarios follow a single task se-
quence with simple control flows as executing one of the tasks in the sequence or not,
or go back to a previous task. The only issue is that the service is usually described

73

https://github.com/isa-group/sla4bpdatasets

CHAPTER 4. SLA MODEL FOR BPS

with natural language, so the formalisation of the SLA requires that a domain expert
supports the definition of the BPs without ambiguity.

4.5.2 RQ2: Metrics

Concerning SLA metrics, although most of them could be successfully modelled
using PPINOT, there were a few types that could not be represented properly. As far
as we know, this limitation is not specific to PPINOT, since there is not any other PPI
modelling approach that can model all of the metrics that appear in the analysed SLAs.

We believe that the main reason why we have found this limitation is that, although
related, the purpose of PPIs and SLA metrics are slightly different. PPIs are used in-
ternally by the organisation that performs the process as a mechanism to improve its
performance. In contrast, SLA metrics are aimed at providing service–level guarantees
to the service consumer or defining penalties when guarantees are not met. As a con-
sequence, SLA metrics are much more focused on the customer and its expectations
than the former.

Previous to this dissertation, parameters such as work calendars, were not sup-
ported by PPINOT but it was extended because they appear in all the SLAs analysed.

Specifically, we found three types of metrics that cannot be modelled neither with
PPINOT nor with most of the other PPI modelling approaches:

Metrics which involve complex date definitions It is common that in order to mea-
sure dates and times, we have to consider idle times, such as office working
hours, or holidays (or just weekends) so the measure is correct. In other cases,
it is also common taking an Event trigger as reference (i.e. the start of a Task) but
use some specific delay or advance for that Event (i.e. the duration between "2
hours before a Task starts" and "2 hours after it finishes").

Metrics that involve human resources These metrics are used in SLAs in which the
task performer profile must be taken into account when applying penalties, so
that a different coefficient is applied, according to the different profiles, to calcu-
late the penalty. For instance, in one of the studied scenarios, the general penalty
of each metric had to be multiplied by the monthly profile rate of the person
involved in the non-fulfillment. This metric is again closely related with the cus-
tomer. In this case, with the fact that the customer expects a fair compensation
depending on the task performer profile that failed to fulfilled the guarantees.
However, current PPI modelling approaches do not support any metric that in-
volve information related with the human resources that performed the task.

Metrics that involve different processes Some SLA metrics have to be defined over
two or more process instances. This happens when a metric require execution
information from two different processes to be computed. An example was found

74

4.6. RELATED WORK

in one of the analysed BPO SLAs, where the number of incidents post production
had to be obtained, and this metric required information from the incidents and
the software delivery processes. Again, this metric cannot be modelled using
current PPI modelling approaches, since a PPI focuses on just one process by
definition.

These limitations could be easily addressed in PPINOT just by doing minor changes
in its metamodel. Complex time metrics are supported just by defining filters over
time measures, so that idle time, suspend time, calendars or timetables can be taken
into account when computing the time for the measure; and by adding a new type of
measure, time instant measure, that measures the date and time in which an event takes
place instead of the duration between two events.

However, others are left as future work since they require more significant changes.
The metrics that involve human resources can be partially addressed using an exten-
sion to PPINOT to define resource–aware PPIs [43]. Finally, the metrics that involve
different processes can be defined as a derived measure that relates measures in each
process instance, but it is necessary to include information on how to correlate process
instances when defining them, which is something that will be addressed in future
work.

4.5.3 RQ3: Difficulties modelling SLAs

After modelling the iAgree documents and the 52 metrics with PPINOT, we found
some limitations concerning the definition of metrics, whereas iAgree and the models
used to define business processes, SLOs, penalties, and rewards proved to be capable
to model all possible situations.

The application of the proposed approach for defining SLAs of BP services to real
scenarios showed up that the parameterising of the guarantee has to be carefully anal-
ysed. The scope has provided to be very useful in several SLAs, as SLOs are defined
once but they are applied to multiple scopes. Specifically, when the domain of a pa-
rameter is not completely known before defining the SLOs it would not be possible to
define a single SLO for each parameter value (e.g.: Node variable in the example).

4.6 RELATED WORK

Regarding the analysed proposals for the modelling of SLAs in chapter §3, we
compare the proposals relevant for the modelling of SLAs for BPs. In Table §4.6,
we compare the significant features in our scenario. That is, the set of attributes re-
quired to model it. First, we identify if they provide a vocabulary for the modelling of
non-computational services or just computational, including the description and also
the performance metrics. Then, we check if they provide a template model, as WS-

75

CHAPTER 4. SLA MODEL FOR BPS

Agreement, to derivate new SLAs from a template. We also evaluate if they define
compensation functions to penalize or reward overfulfilling or overfulfilling of SLOs.
And last, we check if they provide tooling to support the design and creation of such
SLAs.

Among the analysed proposals, we have generic purpose proposals, together some
of the domain specific ones. As specific domain proposals, we find Daly [34] et al. ,
which propose a simple SLA language for CRMs. They describe metrics as customer
satisfaction or utility, as the relationship between accomplishment and customer sat-
isfaction so they are ad-hoc defined for the proposed domain. Augenstin et al. [7]
propose a language to describe logistic services. They mainly focus on functional as-
pects. The performance quality is named, but no any attribute or related language is
proposed. They propose to model service descriptions from a BPMN using a model
to model transformation. Bar-Isaac et al. in [10] describe a business scenario with
cost, customer expectations and reputation variables where reward function follows a
non-monotonic behaviour (based on satisfying preferences from different customers).
The domain is specific to the scenario proposed and it cannot be extended. Cardoso
et al. [25] propose a description language for services that includes business charac-
teristics together with technical or operational parameters. Unlike our proposal of
managing a business process as a service to define their SLA, this work is focused
on managing services including business perspective.

There are a number of proposals which are independent of the domain, but they do
not address business processes or non-computational domains. These are SLA* [93],
which is a domain independent language generalizing other specifications such as WS-
Agreement, WSLA or WSDL. The document structure is similar to WS-Agreement and
it can be extended with the requirements of each domain. However, as far as we know,
there is not domain proposal to describe non-computational services. Rule-Based Ser-
vice Level Agreement Language (RBSLA) [143] supports specific vocabularies defined
externally. They provide an SLA document structure supporting guarantees with com-
pensations but there is no proposal with a business domain vocabulary to validate the
proposal. Forster et al. [63] propose a model for business processes and quality require-
ments as temporal logics problems. However, they do not handle with other kind of
measures and they do not provide a compensation language. Sauvé et al. [161] pro-
pose a methodology to calculate SLO thresholds to sign IT services SLAs according to
service function cost from a business perspective. However, this proposal is focused
on the cloud domain and how the cloud performance metrics relates to business costs.
Kieninger et al. [95] describe a categorization of IT services and outline a mechanism to
obtain efficient SLOs for them. However, they do that in a conceptual level and do not
detail how they can be formalised to enable their automated management. Therefore,
the service description and SLOs are limited to the proposed services.

And among the proposals which specifically address business processes descrip-
tion and metrics are Linked-USDL Agreement [70], which specifically addresses non-
computational and computational domains. They use ontologies to describe service

76

4.6. RELATED WORK

Proposal BP Metrics GT Template Comp. Tooling
SLA* [93] [34] x x X X X X
Linked-USDL
Agreement [70]

X X X X X x

CPPA [135] X X X x x X
RBSLA [143] x x x X x X
Daly [34] x x X x x X
Augenstin [7] X x X x x X
Nguyen [133] X x x x x X
Chau [29] X X X x x X
Forster et al. [63] x x X x x x
Sauvé [161] x x X x x x
Kieninger [95] x x X x x x
Cardoso [25] X x x x x X
Bar-Isaac [10] x x x x X x
Our Proposal X X X X X X

Table 4.4: Metric definition models for BPs

and metrics together with constraints for the guarantees. However, the scenarios mod-
elled are syntetic and they do not provide tooling support to monitor SLAs. Nguyen
et al. [133] propose aligning the SLAs for the different services/tasks with different
layers: business, people and technology. So they describe different categories for SLOs
and for SLA in the different layers and check how they align with the other layers.
However, they do not provide a generic language for service description in non compu-
tational domains. Collaboration-Protocol Profile and Agreement Specification (CPPA)
[135] (which was published in 2002), which complements ebXMLBP for commerce col-
laboration. They focus on electronic collaboration so they provide a specific language
for electronic tasks, such as document exchange protocol, message system, secure com-
munications, etc. Chau et al. [29] propose to define performance metrics and goals
based on business processes. they relates SLAs and business process artifacts where
guarantees over the process are defined through process events.

The namely attributes in the table are: (i) BP, if the proposal enables to describe the
non-computational services and business processes or it is related to a specific com-
puter domain, (ii) Metrics if they provide performance generic metrics for non compu-
tational services (if they are defined ad-hoc, we considered that they do not support
non computational metrics), (iii) GT if they provide a language to describe guarantees
over metrics in non computational services (iv) Template, if they consider the creation
of SLAs derived from a Template, (v) Comp., if they provide compensations definitions
and (vi) Tooling, if they provide tooling support to create SLAs.

As we can see in the comparison table, just some of the proposals provide a lan-
guage to describe non-computational services or business processes and, amongst them,
only three [70],[135],[29] provide a language to describe metrics over them. Further-
more, almost none of the agreement models consider the definition of compensations.

77

CHAPTER 4. SLA MODEL FOR BPS

Therefore, in summary, none of the proposals cover the required expressivity for our
model, including service description, performance metrics and compensations, neither
give support to the lifecycle.

4.7 SUMMARY

With this proposal, BP SLAs can be modelled by combining mechanisms for mod-
elling computational SLAs with mechanisms to model business processes and PPIs.

Furthermore, our proposal to model SLAs combines well founded approaches and
standards for modelling computational SLAs and PPIs. Specifically, we rely on WS-
Agreement [6], which provides the general SLA structure, BPMN [138], which is used
to model the business process related to the service, PPINOT [41], which allows the
definition of metrics, and iAgree [126], which provides a language to define SLOs and
penalties.

The application of the proposed approach to a number of real scenarios allowed
us to conclude that our approach is able to model all possible situations in these sce-
narios except for some identified limitations concerning the definition of SLA metrics.
Some of them could be solved by applying minor changes to the PPINOT metamodel.
However, other limitations require more significant changes that shall be carried out
in future work.

78

5

MANAGEMENT OF SLA-DRIVEN
BUSINESS PROCESSES

79

Never promise more than you can perform.

Publilius Syrus (85 BC - 43 BC),

5.1 INTRODUCTION

In the previous chapter, we discussed the model to describe SLAs for Business Pro-
cesses. There are a number of tools to support the execution of business process (or
are aware of process flows). However, although some current existing PAISs (Pro-
cess Aware Information Systems) support multiple customers (e.g. BonitaSoft1), they
do not provide facilities to manage their SLAs as a first level citizen. In this chapter,
we analyse how to provide automated support to the SLA lifecycle in PAISs. A PAIS
with SLA–aware capabilities, i.e. a PAIS that manages explicit definitions of SLAs, can
enable the sharing of monitoring mechanisms, process configuration [179] or optimise
the management of shared resources used by different parties.

We focus on the late phases of the SLA lifecycle (described in Subsection §3.3.2) as
the SLA creation phases have been deeply analysed by Resinas [153], Pablo Fernan-
dez [60] and Muller [122]. Regarding these stages, after reviewing the scenarios, we
analyse the impact of deployment of the SLA in order to describe how (i) configure the
service according to the SLA and then we identify the requirements to (ii) monitor the
accomplishment of SLA during the fulfillment phase. Then, we propose how to extend
PAISs to support these operations through SLAs.

On the one side, regarding monitoring, we propose extend an SLA–aware system
to instrument the monitoring of the metrics for different parties and SLAs. Doing so,
we can provide different dashboards for each customer, aggregated stats for the system
provider, or create alerts based on the accomplishment of the SLOs. On the other side,
regarding configuration, we describe an architecture to extend a BPMS that configure
the process execution to meet the SLA terms. We specifically consider BPMS platforms
because the process execution depends on the supporting system. This architecture

1http://www.bonitasoft.com

http://www.bonitasoft.com

CHAPTER 5. MANAGEMENT OF SLA-DRIVEN BUSINESS PROCESSES

ru
le

d
by

Chapter 4

supported by

Governify

Business Process
 PAIS

Formalization

Monitoring Adapt

Chapter 5

Chapter 6

iAgree
SLA

Governify

 PAIS

Monitoring Adapt

Chapter 5

Natural
Language SLA

Instance
SLA

Analysis

Chapter 6

Instance
SLA

Instance
SLA

Monitoring

Figure 5.1: Contributions background

has been developed as a prototype in Open Source BPMS Camunda. Other operations
could be considered during the deployment and fulfillment phases, such as optimiza-
tion, but it is out of the scope of the current dissertation, although some initial results
are included in Appendix §B.

The contribution of this chapter regarding the dissertation is highlighted in Figure
§5.1.

In the previous chapter, we focused on the formalisation of SLAs such as the one
described in the STR document proposed by APC for IT maintenance outsourcing, that
is then discussed with the potential contractors. As a result, the required performance
goals (e.g. maximum times to solve different tasks) or the service execution options
(e.g. executing documenting task or human assignments for certain tasks) are nego-
tiated with each contractor and different agreement offers are proposed which result
in different final agreements with each contractor (after the public contract tendering).
The agreement offers have to be consistent with the STR, which means they should
guarantee similar or even more restrictive performance terms but they can differ from
one contractor to another. The required goals and related penalties are again depicted
in Figures §5.1 and §5.2.

In this scenario, the APC provides different tools which act as PAIS to support the
task execution for all the contractors and capture all the service relevant events (plan
interventions, start of related tasks, ...). As the terms agreed with each contractor vary,
when the SLAs are deployed, the supporting tools have to be aware to their different

80

5.2. SLA MONITORING

Criticality Critical High Mild Low
Response Time 0.5h 2h 5h 5h
Presence Time 4h 8h 30h 60h
Solving Time 2h 4h 6h 8h
Doc. Time 4h 12h 24h 48h
Timetable Office Office Office Office
Calendar Local Local Local Local
Document
required N/S N/S N/S N/S
PlanFI HR N/S N/S N/S N/S

Table 5.1: Committed terms for the FI Service SLA

AFIP Penalty
94% ≤ AFIP < 95% -1%
93% ≤ AFIP < 94% -2%
92% ≤ AFIP < 93% -3%
91% ≤ AFIP < 92% -4%
90% ≤ AFIP < 91% -5%
AFIP < 90% -10%

Table 5.2: Penalties definition (in monthly billing percentage) for the FI Service SLA

terms so they are instantiated and executed properly for each party (e.g.: executing the
documenting task only when it is required for a contractor).

Once the SLAs are deployed and service instances are executing, the APC evaluates
their fulfillment. This evaluation of the SLAs requires retrieving performance informa-
tion and processing it regarding the involved party and their targets (i.e.: monitoring
guarantees, providing resources to achieve goals, etc.). And, lastly, the common man-
agement of the different processes could be used to optimise the process execution.

5.2 SLA MONITORING

The monitoring information is useful for different purposes. First, to evaluate the
accomplishment of the SLOs and apply penalties in case they are not fulfilled. Sec-
ond, to provide visual dashboards for managers and business domain experts. Then,
a system of alerts based on the monitoring indicators could be provided. And last,
they would be required to make decisions about optimizing service execution (e.g.
resources management) in runtime. Regarding this last purpose, the monitoring infor-
mation is the basis for systems that predict the evolution of performance supporting
the decision making.

81

CHAPTER 5. MANAGEMENT OF SLA-DRIVEN BUSINESS PROCESSES

Not
Determined

Fulfilled

Violated

Figure 5.2: Guarantee Term states in WS-Agreement

In order to describe this operation we, first, formalize its definition:

Definition 5.1 - Monitoring Operation.
Let SLA be the SLA to monitor, M the performance information from the supporting systems,
T a time period and ST a set of states of the SLA. Thus, we define Monitoring as a function
which for each value of SLA, M and T returns a set of states ST of SLA for that time period T.

The relationship between performance information, M, and the guarantees is de-
scribed with the metrics. The expressiveness of a metric is related to, on the one side,
the metric domain, that is, if we can use just built-in metrics in the PAIS (e.g: Metric
#SolvingTime: Duration of a single Task) or they can be defined in a generic way for
business process domain (e.g.: Metric #SolvingTime: Duration from the status Start of
Task #1 to the status End of Task #2). On the other side, related to math, logic or aggre-
gated operations, that is, if we can define metrics deriving a base metric with additional
operators, such as a Metric that calculates the Average of the Metric #SolvingTime for
all the process instances. Existing solutions do not provide generic definitions for the
business process domain or more complex operators.

5.2.1 Status of the SLA

The aforementioned status is referred to the SLA status introduced in the Section
§3.3.2. The status of the SLA is monitored during the Observed phase and it depends
on the state of its guarantees, which possible states are again depicted in Figure §5.2.

The monitoring operation retrieves the performance information to compute the
metrics included in the guarantees. Once the metric value is obtained, then it has to be
evaluated regarding the SLO. If the value accomplishes the target included in the SLO,
then the SLO and its corresponding guarantee are considered in the status Fulfilled.
Fulfilled is one of the possible Guarantee Term states depicted in Figure §5.2. If the SLO
is not accomplished, then the guarantee is considered Violated. When the guarantee is
violated, the compensations defined for that guarantee have to be applied. In the Fig-
ure §5.3 we describe different examples of SLA status depending on the performance
value.

82

5.2. SLA MONITORING

In practice, the scope in the guarantee multiplies the number of guarantee evalu-
ations per the scope domain. In the example in Figure §5.3 (A), the scope office has 4
possible values: Huelva, Sevilla, Cádiz, Córdoba so the metric has 4 different values,
one per scope value, and the guarantee behaves as 4 different guarantees, with their
own status.

Regarding the guarantee window, it also impacts how the status of the guarantee is
evaluated. In the example in Figure §5.3 (B), with a static monthly window, the metric
value, 96.9%, for January does not accomplish the SLO objective so the Guarantee is
Violated, but in February, the status is reset (Not Determined) until the month finishes.
Then, when the month finishes, it is evaluated again and then the metric value is 99.9%,
so the SLO is accomplished and the guarantee is Fulfilled. Therefore, a guarantee with
a scope with 10 possible values and a static monthly window, will require 120 evalua-
tions of its state in a full year (12 months X 10 scope values). For the sake of simplicity,
we do not consider in this discussion or in the Figure §5.3 that the guarantee can be
evaluated Violated or Fulfilled even before the defined Window finishes (e.g.: in an SLO
of 99.9% of Availability in a month and the service has been unavailable more than
0.1% of the month duration, no matter what happens during the rest of the month, the
SLO will not be accomplished) but it has to be properly evaluated in any moment.

SLA
...
guarantees :
 -id : G1
 of :
 objective:
 Availability > 99.5%
 with:
 window:
 type: static
 period: monthly
 scope:
 {office}

office: {Huelva, Sevilla, Cádiz, Córdoba}

Availability
99.9%

G1

G1
Córdoba

G1
Sevilla

G1
Cádiz

G1
Huelva

Availability
95.4%

Availability
99.7%

Availability
97.9%

(A) Evaluation of Guarantee for each scope value

vio
lated

fulfil
led

fulfil
led

vio
lated

Availability
95.9%

G1
Huelva

Availability
99.7%

(B) Evaluation of Guarantee for each Window slot

fulfil
led

 January February March April ...

fulfil
led

vio
lated

Availability
99.9%

Figure 5.3: Metric values and Status of Guarantee Terms

In the Appendices, Subsection §C.2.1, we list the metric computers for this agree-
ment.

5.2.2 Infrastructure specification

Business processes are usually supported by different tools to handle user interac-
tion, orchestrate tasks, automate processing, etc. Although there are BPMS to manage
generic BP, each system has their own information management and storage. Some

83

CHAPTER 5. MANAGEMENT OF SLA-DRIVEN BUSINESS PROCESSES

tools, such as the Camunda BPMS, provide an API to query executed events and pro-
cesses. In other cases, the information is accessible reading the executed event logs
or even only through querying database. Specifically, in the example scenario differ-
ent tools are used to support process execution. So, in order to properly evaluate the
performance, it is required to include information to handle this tooling heterogeneity.
Our proposal is using an homogenous event log that is fed by each supporting tool
and process this log. In the following excerpt, we depict the sections in the context of
the SLA that include the URL of the event log in the Infrastructure section and some
parameters about the log structure. Amongst these parameters are the event attribute
corresponding to the id of the process instance, instanceIdColumn, the name for the pro-
cess event (which task, gateway, etc.), actionColumn, or how to identify the event that
corresponds to the end of the instance, terminator.

context :
. . .
i n f r a s t r u c t u r e :

. . .
logs : ’ ht tp : //naos . logs . chap . governify . io/api/v1 ’

logs :
naos :

d e f a u l t : t rue
u r i : ’ ht tp : //naos . logs . chap . governify . io/api/v1/logs ’
s t a t e U r i : ’ ht tp : //naos . logs . chap . governify . io/api/v1/count ’
measures : ’ ’
s t r u c t u r e :

instanceIdColumn : INCIDENT_ID
timestampColumn : CREATION_DATE
actionColumn : SID

terminator : >−
[{ " column " : "ACTION" , " values " : [" SDK_HIST_TRANS_PHASE "] } , { " column " :
"VALUE" , " values " : [" Cierre d e f i n i t i v o "] }]

We have to remark here that when the log is processed only the finished instances
are considered, because, in some cases, the intermediate events can produce errors in
the measure because as long as the instance is running, the supporting tools enable
to go back in the process to previous stages so, if we consider these instances, values
previously processed could change.

5.2.3 Monitoring component

We propose the architecture depicted in Figure §5.4 for the processing of perfor-
mance. We assume that there is a REST API (Performance Information in the Figure
§5.4) where to connect for a batch query or to receive an event stream. After the pro-
cessing, the monitored data are also provided as a service (SLA Monitor API in the
Figure §5.4). The components and their responsibilities in this architecture are:

SLA Monitor API. The API just exposes the operations related to the monitoring
of an SLA, that is, given an SLA, returning the result of evaluating their fulfillment of
its SLOs and the timeline of metric values. This evaluation is performed by the SLA
Monitor component.

84

5.2. SLA MONITORING

Monitor Component

SLA Repository

Metric
ComputerSLA Monitor

P
A

IS
P

er
fo

rm
an

ce
 In

fo
rm

at
io

n

Metric Values

S
LA

 M
on

ito
r A

P
I

Metric
Definitions

Metric
Adaptor

Figure 5.4: Monitoring Architecture

SLA Monitor. This component processes SLA terms, which include SLOs with
metrics and target values. The metric values are retrieved from the Metric Computer.
and this component uses them to evaluate their SLOs accomplishment regarding their
targets to determine the status of Guarantee Term in the SLA. This component also
applies the possible compensations if the Guarantee Term is violated.

Metric Computer. This component encapsulates the processing and storage of met-
ric values with both batch and runtime processing (it can be configured). In the stream
processing model, the temporal monitoring information is stored in a repository of
Metric Values. The metrics to process are described with the Metric Definitions related
to an SLA. When the SLA Monitor requests the evaluation of a metric, this component
receive performance information from the PAIS with the Metric Adaptor and process
it according to its Metric Definition.

Metric Adaptor. This component makes the monitoring independent of the mech-
anism provided by the PAISs to retreive information. The adaptor can either connect
as listener to receive events as they are dispatched from the PAIS either make a query
to the API provided by the PAIS to query a set of events.

In the following subsections, we exemplify the two implemented approaches for
the type of processing. The method to choice depends on supporting infrastructure
capabilities or performance criteria, as both approaches are similar in terms of expres-
siveness.

5.2.4 Alternatives for Monitoring

In this scenario, we focus on the definition and development of PAIS independent
operations to compute measures over business process executions. To achieve this, we

85

CHAPTER 5. MANAGEMENT OF SLA-DRIVEN BUSINESS PROCESSES

use the set of tools and techniques defined for PPINOT [40]. Computing measures
as non-intrusive methods depends on supporting infrastructure and the facilities to
retrieve information from it.

Regarding the processing of performance data, there are usually two different ap-
proaches to process them: (i) Batch and (ii) Stream processing. Both approaches are
compared in Figure §5.5 for the processing of average time of process instances. The
performance information is depicted with events of start (green colour) and end (red
colour) of different process instances (PI #1, #2, ...).. On the one side, the batch pro-
cessing is performed capturing at once all the performance. In the upper side of Figure
§5.5, there is batch capture of five events, the start of process instances #1, #2 and #3
and the end event of process instances #1 and #2. As the instance #3 is not finished, is
not used for the average processing (although it could be used considering the current
time). We obtain the average with the normal processing: the different between the
sum of end event times and the sum of start event times, and dividing the result by
the number of instances (e.g. two). On the other side, the stream processing is per-
formed as the events appear sequentially. In the lower side of Figure §5.5, the stream
processing is depicted. When the first event in the stream appear, i.e. the start event
of process instance #1, it is processed. As there is no information about the end time,
no duration can be calculated and it has to be internally stored until the related end
event appears. Then a second start event from process instance #2 appears that has
to be also internally stored. Then, the end event of process instance #1 comes and the
duration of process instance can be processed as the first average time. And this pro-
cessing continues as the events appear. Batch processing can be demanding on CPU,
depending on the amount of data processing but it can be requested on demand, as for
example, daily at 0.00 when the work load is low. On the opposite side, stream pro-
cessing usually requires less computation as the events are processed iteratively one by
one, but it requires a constant use of resources, such as memory to maintain the pro-
cessing state. These approaches are detailed in the next subsection §5.2.3, describing
their implementation.

We can also consider the mechanism provided to extract performance information
from the PAIS, that can be based on querying an API or event listening. The mechanism
could be related to the processing approach but they are independent. We can perform
a query to the API to get a set of execution events but store them in a log instead of
processing as a batch, and later processing the log as a stream. And, reversely, we can
listen events and process them directly as a stream, or store them and process them
later as a batch.

Batch processing in a BPMS: Camunda

BPMSs usually provide an interface to query performance information. This is the
case of Camunda API, which offers methods to retrieve any activity (task, gateway or
event) information so we can easily get timestamps for time indicators or account tasks
executions with the Camunda History Service.

86

5.2. SLA MONITORING

BATCH

PI #4
00:55

PI #3
00:34

PI #1
00:05

PI #2
00:12

PI #1
00:15

PI #2
00:40

00:15 + 00:40 00:05 + 00:12-) / 2 = 19

STREAMING

Aux-S1: 00:05 Aux-S1: 00:05
Aux-S2: 00:12

Aux-S2: 00:12
Avg-1: (00:15-00:05)/1
= 10

Aux-S3: 00:34
Aux-S2: 00:12
Avg-1: 10

Aux-S3: 00:34
Avg-2:
(10*1+(00:40-00:12))/2
= 19

AVG = (
START
EVENT

END
EVENT

Figure 5.5: Stream vs Batch Processing

The Batch example illustrated in Figure §5.5 to compute the average Time Measure
for process instance duration, is implemented requesting to the Camunda History API,
the events start and end, from the proper process instances. As we get all the process
instances that have finished, we just sum all the timestamps for event start on the one
side, the timestamps for event end on the other side, then substract the former to the
latter and, lastly, divide the result by the number of instances.

Stream processing

In other scenarios, the stream of events processing is used. So we process the events
as they are received, filtering the activities for metrics of interest. The processing of av-
erage Time Measure for process instance duration is calculated as we listen the events
start and end and follow the processing depicted in Figure §5.5. When we receive an
event start for a process instance #i, it has to be registered without processing until
we receive the event end of that process instance #i. Then we calculate the instance
duration (end event time - start event time), and process the average, considering the
previous average and number of process instances computed.

In real scenarios with massive process instances, the processing of metrics in both
approaches can degrade performance, either because memory requirements either be-
cause performing a massive number of metric processing computing at once. Nowa-
days, improving big data processing is a research goal so a number of techniques and
tools have been developed focusing on this topic. We take advantage of these tech-
niques to enrich our proposal [87].

On this regard, we use incremental calculation technique. This technique is im-
plemented by a number of tools to provide scalable processing in big data scenarios
(such as Apache DataFu over Apache Hadoop). For the introduced metrics, we have
to calculate average times on static 30 days window. A full month measure requires

87

CHAPTER 5. MANAGEMENT OF SLA-DRIVEN BUSINESS PROCESSES

processing full data for 30 days. However, if we want to monitor this measure daily,
we can store intermediate times so future processing can be made faster if we consider
only the different day intervals. Therefore, if we monitor one week and calculate av-
erage for that week, monitor 3 days later only requires adding data for these 3 days.
Incremental calculation is described below.

Let InstDayi the number of process instances in a day i and TimeDayi the accumu-
lated Develop Time for all the process instance in a day i:

InstDayi = N (5.1)

Total Develop Time per Day:

TimeDayi =
N

∑
j=0

DevelopTimej (5.2)

Accumulated Process Instances in the last 7 days:

AccumInstDayi =
j

∑
j=i−7

InstDayi (5.3)

Accumulated Develop Time in the last 7 days:

AccumTimeDayi =
i

∑
j=i−7

TimeDayj (5.4)

Average Develop Time in the last 7 days:

AverageTimeDayi =
AccumTimeDayi
AccumInstDayi

(5.5)

If we store intermediate accumulated and daily number of instances, and total pro-
cess time for the given day i, we can incrementally calculate the average for the follow-
ing day i+1:

AccumInstDayi+1 = AccumInstDayi + InstDayi+1 (5.6)

AccumTimeDayi+1 = AccumTimeDayi + TimeDayi+1 (5.7)

88

5.2. SLA MONITORING

AverageTimeDayi+1 =
AccumTimeDayi+1

AccumInstDayi+1
(5.8)

This process is depicted in Figure §5.6, where a window time is computed for the
first 3 days and intermediate results are stored (Intermediate Stage 1). In our example,
these intermediate data are accumulated process time and accumulated number of in-
stances. On the fourth day, instead of computing full measures for previous days, we
reuse previous results and add the day 4 execution data and get the new result. So,
measure calculation leverages this technique to simplify queries, and avoids unneces-
sary data processing.

Figure 5.6: Time Window calculation

5.2.5 Applicability of our proposal

This proposal has been applied on two real projects of transfer of technology to
provide the computation of more than 20 KPIs described by iAgree and PPINOT inde-
pendently of the supporting tool for the processes. These projects were in collaboration
with the Andalusian Health System, AHS, and Andalusian Finance Council, AFC.

A monitoring component has been developed following the event stream approach
based on querying a log. This component has been deployed in the Governify 2 plat-
form, which already provides different visualizations for REST API monitoring. The
Metric component was developed in Java while the rest of the platform is in Node.js.
The dashboard acts as the consumer of the endpoints defined for the metric schemas
(defined in Previous Chapter §4). By doing so, Governify provides a complete ecosys-
tem to: (i) create SLAs with iAgree syntax with some analysis operations to avoid man-
ual errors and (ii) monitor the processes performance with the proper metric schema
and infrastructure information included in the SLA. The code of the platform is pub-
lished in Github: https://github.com/isa-group/ppinot.

The supporting PAISs are heterogeneous tools with heterogeneous data storage and
mechanisms to retrieve performance information, such as Trello, JIRA or Dropbox.

2http://www.governify.io

89

https://github.com/isa-group/ppinot
http://www.governify.io

CHAPTER 5. MANAGEMENT OF SLA-DRIVEN BUSINESS PROCESSES

Therefore we developed wrappers for the different tools to export the corresponding
performance information to a log storage. Therefore, in this scenario, the metrics de-
fined in the SLAs are shared with these wrappers to export only the relevant informa-
tion. This architecture is displayed on the Figure §5.7, that depicts the integration of
wrapped tools together the SLA processor for the AHS dashboard.

Figure 5.7: Log processing

In our component, the Metric Adaptor processes this log as a stream which is pro-
cessed by the Metric Computer with the metric definitions from the SLA. In the proto-
type, the log included millions of events (with Gigabytes of size), which were filtered
by monthly periods because the metric definitions. The SLA included 12 KPIs, so con-
sidering the different scopes for each KPIs (the scope domain multiply the number
of computations) so in a normal month we processed half millions events for a total
of 3000 KPI computations. A graphic dashboard is displayed with the evaluation of
the SLA in the Figure §5.8, where we blur the text because confidentiality issues. This
graphic component requires some additional information to configure the graphic wid-
gets. An excerpt of this information is described in the Table §5.3. The fields required
are: (i) Title, the displayed Name, (ii) Name, the identifier of the data, (iii) Mandatory, if
the value is always displayed, (iv) Format, to indicate the data type and (v) Description
to provide a human readable description of the data.

90

5.2. SLA MONITORING

Figure 5.8: Project Dashboard

Title Name Mandatory Format Description
Unit Value KPI UNITKPI YES Text Unit used to measure KPI
Frequency FREQUENCY YES Integer Frequency to measure months
Init cycle Day INITDAY YES Integer Day to start the cycle

Table 5.3: Excerpt of Widgets configuration

5.2.6 Related Work

There are a number of systems that can support the management of business pro-
cesses, including monitoring. However, these systems usually manage business pro-
cesses instances from different parties as independent models and instances and pro-
vide a simple support for SLAs such as defining sets of simple event metrics directly
on a dashboard.

In the service of our scenario, the supporting systems are heterogeneous for each
party and do not provide SLA-Aware monitoring mechanisms. Even in existing BPMSs
the monitoring mechanisms to store or log common process events, such as Task Status
changes (with Business Activity Monitor, BAM, or similar) do not process more com-
plex indicators, such as our example SolvingTime and have to be externally defined
and processed. Furthermore, existing BPMSs commonly monitor performance with
ad-hoc metrics while our proposal with PPINOT is generic, which is specially useful
when we have to use an heterogeneous number of tools as in our scenario.

Regarding non-computational services, some of the models introduced in previous
chapter, [93], [70], [29], [63] are considered a first step to automate the management

91

CHAPTER 5. MANAGEMENT OF SLA-DRIVEN BUSINESS PROCESSES

of non-computational SLAs but they do not propose any monitoring architecture or
mechanism.

There are also a number of proposals related to the monitoring of services which
are usually related to Cloud platforms. Amongst these, we find X. Li et al. [108], who
define a mechanism to monitor Trust over the Performance of cloud computing ser-
vices, guided by SLAs. This proposal is specific for cloud computing and they do not
address how the performance is retrieved. rSLA [171] is a language for specifying,
monitoring and enforcing SLAs for cloud services. They discuss about the advantages
of using conditions and actions for the definition of guarantees and compensations but
they do not address how the monitoring is performed. Emeakaroha et al. [58] propose
to map performance abstract measures that appear in SLA, like Availability, to spe-
cific monitoring variables, like Server Downtime to measure them without ambiguity
but they do not specify how the real measures are obtained. Brandic et al. [19] also
propose a mapping from abstract SLA metrics to the real taken measures from cloud
infrastructure but they do not specify how the real measures are obtained.

In order to monitor domain independently, Leitner et al. [104] propose monitoring
SLAs in runtime to predict SLA violation in simple and composed services. Their en-
gine use Complex Event Processing of event streams to perform the evaluation of per-
formance metrics. They support complex measures but they do not provide a domain
language for business processes.

And as an example of BPMS, Bonita BPM suite 3 provides its own performance
monitoring system based on activities events (Business activity monitoring, BAM),
such as event duration but without generic complex indicators (e.g.: sum of (a) av-
erage Time Measure from Start of a Task #2 to End of a Task #1 and (b) average Time
Measure from Start of a Task #4 to End of a Task #3).

In the table §5.4, we analyse the comparison of these proposals related to moni-
tor the performance and SLA. To compare the proposals, we consider first the Domain
where they apply, computational (x) or non computational (X) domains. Then we
evaluate their Expressiveness, i.e., if the proposal considers just event metrics (x), such
as a single Task duration, or they provide more complex metrics, as operating with
a set of event metrics or involving different events for a metric, such as the duration
from the start of an event to the end of another event (X). Regarding the processing
Mechanism, we check if they support batch processing, stream processing, both or un-
known if the monitoring proposal only discusses the evaluation of the metric but not
the developed approach. As different SLAs can share the metrics, we evaluate if the
proposals support monitoring Multiple SLAs from the same metric definition or not.
And, lastly, we evaluate if the proposal applies or not some Compensation regarding to
the result of evaluating the monitored SLOs.

As a result of this comparison, we can highlight that while some of the proposals
provide the definition of complex metrics [58] or [19], they do not address how extend

3http://www.bonitasoft.com/

92

http://www.bonitasoft.com/

5.3. BPS CONFIGURED BY SLA

Proposal Domain Expressiveness Mechanism Multiple Compensation
X. Li [108] x x unknown X x
Bonita BPM suite X x both x x
Leitner [104] X X stream x x
rSLA [171] x x unknown x X
Emeakaroha [58] x X unknow x x
Brandic [19] x X unknown x x
Our Proposal X X both X X

Table 5.4: Expressiveness of SLA Monitoring

a system to retrieve them. And, reversely, while some proposals handle the processing
of monitoring performance (Bonita BPM or [104]), they not provide a generic language
to define complex metrics. Both perspectives are addressed by our proposal.

5.3 BPS CONFIGURED BY SLA

When different contractors sign different SLAs with the APC, the SLA terms can
vary not only in guarantees but also in the service execution. The model to describe
the service business process has to support the process configuration to provide this
variability likewise the supporting PAIS has to be aware of this variability to configure
the deployed or executed business processes for each party. As WS-Agreement tem-
plates aim to provide a common document for the SLAs with different parties, we can
use it as the document to model the STR. Tables §5.5 and §5.6 describe the committed
service terms by two contractors, A and B, to the APC. SLA with contractorA commits
more restrictive times to solve incidences than the STR and requires documenting Crit-
ical and High Severity interventions, while SLA with contractorB requires even more
restrictive times to perform tasks, documenting all the issues and requires that task
Plan FI can only be performed by person with the manager role. These differences
imply, on the one hand, that the PAIS has to support these multiple parties, e.g.: to per-
form or not the documenting task depending on the contractor SLA, and, on the other
hand, monitor consistently the performance of their related process instances to detect
SLA violations, take preemptive decisions, etc, which was addressed in the previous
section.

In this section, we address the adaptation of process execution to the different par-
ties. In order to describe this operation we, first, formalize its definition:

Definition 5.2 - Configuration Operation.
Let SLAt be an SLA template for BPs and C a configuration for such BPs. Thus, we define
Configuration as a function which for a value of SLAt and C returns a configured version of the
BPs in SLAt for that configuration C.

93

CHAPTER 5. MANAGEMENT OF SLA-DRIVEN BUSINESS PROCESSES

Criticality Critical High Mild Low
Response Time 0.5h 2h 5h 5h
Presence Time 4h 8h 15h 30h
Solving Time 2h 4h 6h 8h
Doc. Time 4h 12h 24h 48h
Timetable Office Office Office Office
Calendar Local Local Local Local
Document
required All All N/S N/S
PlanFI HR N/S N/S N/S N/S

Table 5.5: Committed terms by the Contractor A for FI Service SLA

Criticality Critical High Mild Low
Response Time 0.5h 2h 4h 4h
Presence Time 4h 8h 15h 30h
Solving Time 2h 4h 6h 8h
Doc. Time 4h 12h 24h 24h
Timetable Office Office Office Office
Calendar Local Local Local Local
Document
required All All All All
PlanFI HR Manager Manager Manager Manager

Table 5.6: Committed terms by the Contractor B for FI Service SLA

This configuration depends on, on the one side, different agreed service terms, such
as the Documenting Task in the FI service, which is always executed for Contractor B
(Table §5.6), while depends on the intervention severity for Contractor A. And, on the
other side, the process provider can manage different process models or instances for
two different customers because of internal rules that are not explicitly included in
their SLAs, derived for the need to adapt execution to customer needs. We focus on
the first situation with public terms in the SLA.The configuration can affect directly
to the business control flow (e.g. in our example, if the Documenting Task is always
required, the decision taking gateway is omitted), impact on the resources allocation
(e.g.: increasing the computation resources for a VIP customer) or modify the execution
of a service task (e.g.: configure a service endpoint depending on the customer). The
service configuration can be considered either in the deployment either in the fulfillment
phase.

Furthermore, as BPs for different SLAs can be reused, it is required that the BPMS
properly correlate each BP instance with their corresponding SLAs in the fulfillment
phase.

94

5.3. BPS CONFIGURED BY SLA

Task1 Task1

Customized BP ModelConfigurable BP Model

customization

Based on:
- decisions
- transformations

Figure 5.9: Customizing a BP

5.3.1 Modelling configurable BPs based on SLAs

In previous chapter, we introduced how to extend iAgree with BPMN and PPINOT
to specify an SLA for BPs. However, variability or configuration aspects were not
considered, so we extend the former specification to support the definition of SLA
templates for business processes. The template has to support the configuration infor-
mation described in the scenario, that is: (i) control flow variations, (ii) process data,
(oii) resources assignment or allocation, (iv) configuration data. These configuration
options are precisely what the configurable processes provide [155].

There are a number of proposals to define configurable business processes, that
can be considered for this purpose [12], [76], [147], [155]. The common approaches to
configure process are four: (i) identify configurable nodes (i.e.: tasks) that are optional
or can be modified in the configured process [183], (ii) annotate with predicates some
elements in the process so the evaluation of these predicates configures the process
[12], (iii) specialise some elements in the process so these elements can be instantiated
for their related specialised fragment [164] and (iv) describe operations that can be
performed over the activities in the process to get the configured version (e.g.: delete a
task) [84]. In all these approaches, there is configurable model for BPs and a procedure
to configure the process using decisions and transformations (depicted in the Figure
§5.9). In our proposal, the configurable BP is included in the SLA template with a
simple notation proposed in the following. The decisions for the configuration options
are described with pair attribute/values as service terms in the specific SLA, which can
be named simply as the configuration.

In the Figure §5.10, an excerpt of the SLA template for our example extends the
context of the proposed model in section §4.4, introducing two added configuration
variables. First, a variable #DocRequired (line 8), which can be initiated with a value to
constraint the minimum severity of the tasks that have to be mandatory documented.
The configuration can include a default value, in case is not configured in a specific
SLA. In the example template, the default value is none, which means that unless the
SLA configs a more demanding criteria, no task is required to be documented. And, as
the human resources responsible to perform the task Plan FI could be required to have
a specific role, such as manager, we have a second configuration variable to indicate
it. This variable role refers the property responsible of the task PlanFI, meaning that the
human resource assigned to perform Plan FI is required to have the role indicated by
this variable. By default, the role indicated in the SLA template is manager, but it can
be different in the corresponding SLA for each contractor. Furthermore, the process
defines different communication tasks with the contractors: (i) FI request, (ii) Correction

95

CHAPTER 5. MANAGEMENT OF SLA-DRIVEN BUSINESS PROCESSES

1 id : FI_Service_SLA
2 version : ’ 1 . 0 ’
3 type : agreement template
4 contex t :
5 process :

6

C
on

tr
ac

to
r

APC

FI request

Plan FI Perform FI

Create and
submit FI

documentation

Documentation
accepted

FI closed

Correction
request

No

FI documentation Correction
request

FI documentation
acceptation

FI documentation
requested?

FI.severity < #DocRequired#

#role#

7 c o n f i g u r a t i o n s :
8 DocRequired : [d e f a u l t : none]
9 PlanFI . r e s p o n s i b l e : [# role # ; d e f a u l t : manager]

10 Timetable : O f f i c e
11 Calendar : Local
12 d e f i n i t i o n s :
13 schemas
14 DocRequired : . . .
15 Timetable : . . .
16 Calendar : . . .
17 terms :
18 metr ics :
19 . . .

Figure 5.10: Excerpt of the FI service SLA Template in iAgree

required and (iii) Documentation accepted. The specific endpoints for each contractor (url,
communication protocol, etc.) have to be configured in order to enact the process.

In the Appendices, section §C.2, we list the complete example of the proposed SLA
Template together with the related metrics referred in previous section and the exam-
ple of configure SLA.

5.3.2 Configuring BPs based on SLAs

In order to apply the described configuration process of two different parties and
SLAs to the underpinning processes, two approaches can be followed, which are de-
picted in Figure §5.11.

On the one hand, each party can use its own deployed and configured process
models. This case is depicted in Figure §5.11 (b) Design-time adaptation. When a
new party signs a new SLA based on the SLA template (Steps 1 and 2), its business

96

5.3. BPS CONFIGURED BY SLA

SLA Aware BPMS

SLA Template
#SLAT-1

1

SLA #SLA-2SLA #SLA-1
Configuration
#BP-1

Configuration
#BP-2

1

2 2

Process Engine

Process Instance
#PI-1

3

Process Instance
#PI-2

4

Configurable BP
#CBP-1

a) Run-time adaptation

SLA Aware BPMS

SLA Template
#SLAT-1

1

SLA #SLA-2SLA #SLA-1
Configuration
#BP-1

Configuration
#BP-2

1

2 2

Adapt

Process Engine

Process Instance
#PI-1

3

Process Instance
#PI-2

4

Configurable BP
#CBP-1

b) Design-time adaptation

Adapted BP
#ABP-2

Configurable BP
#CBP-1

Adapted BP
#ABP-2

Figure 5.11: Creating Configured BPs

processes are configured for each SLA (Step 3). As these models are exclusive for each
party, when a new service instance is required, the BPMS only needs to create a new
process instance (Step 4) as no correlation are required. Although the deployed pro-
cesses are independent for each party, the BPMS could include common information
in the models, to ease monitoring or optimise resource management.

On the other hand, different parties can share the deployed configurable process
models included in the SLA template, which is described in Figure §5.11 (a) Run-time
adaptation. First, each customer checks the SLA template (Step 1) to propose a SLA
with specific configuration based on it (Step 2). This SLA is related to the common de-
ployed business processes for all the SLAs of this Template. As the deployed processes
are shared by all the related SLAs, it is required to configure and correlate the process
instances on runtime. Therefore, when a party starts a new service instance (Step 3),
the process instance is created taking into account the related SLA configuration. In
our scenario, in the processes instances for the Contractor B (Table §5.6), the decision
variable DocRequired values #Low means that all the issues have to be documented.
This value can be provided in the instantiation of the new process instance (Step 3) or
postponed until the decision has to be taken. This mechanism configures service in-
stances in runtime and requires handling the correlation of service instances and their
SLAs.

Summarising, we identify two different mechanisms to manage the set of BPs from
different SLAs.

• Handle the different set of BPs agreed in each SLA (although based on the same
original BP) as different BP models. This configuration mechanism is performed

97

CHAPTER 5. MANAGEMENT OF SLA-DRIVEN BUSINESS PROCESSES

in design time (e.g.: no decision gateway for a specific Contractor).

• Handle a single set of BP for different SLAs which requires providing a mech-
anism in order to the process instances can query SLA terms (e.g.: Checking if
Documenting Task is required) and configure execution.

For the sake of simplicity, we apply the first approach, design-time adaptation, but
both mechanisms can be applied depending on the case. Configuring and deploying
different sets of BPs for different SLAs simplifies correlation but hinders that process
engine applies techniques to optimise resources for all the instances of the same set of
BPs (that is one of the proposed advantages of a SLA-aware BPMS), as it handles each
set of BPs independently.

Correlating instances

As effect of deploying the same BPs for different parties (run-time adaptation), any
technique (e.g.: allocation planning) applied to share resources will increase its impact
but it is required to enforce the relation between specific process instances and their
parties as the process model are reused. Therefore, we need to add explicit informa-
tion in the instances about their corresponding SLA. A simple mechanism would be
to include the SLA identification when a process instance is created so when this in-
stance requires to access SLA terms, it can identify the corresponding SLA. However,
correlation is not only required to query SLA terms in runtime, but also to provide any
mechanism to interact with the specific process instances of a specific SLA. If the cor-
relation is just managed through process instances variables, the opposite operation,
that is, identifying the process instances related to a specific SLA would require select-
ing all the process instances related to the SLAs sharing deployed BP and filtering the
process instances by the SLA identification process variable. This processing can de-
crease the process engine performance so additional mechanisms to correlate process
instances and SLA could be considered (such as an explicit relationship map). These
correlations will be further discussed in the next subsection.

5.3.3 Architecture

In this subsection we propose an architecture to handle configuration extending a
BPMS to enhance it with SLA-aware capabilities. Our proposal for monitoring is not
linked to use a BPMS because the processing of performance indicators relies on the
events related to them, which can be generated from the existing information. How-
ever, the management of BPMN requires a tool which is aware of these models, such
as BPMSs. The proposed architecture decouples the responsibilities to fulfill the afor-
mentioned requirements described in this chapter section into different components.
We also describe the necessary interface required in order to the involved parties, con-
tractor and customer, manage the full BP lifecycle (no matter who provides the process
execution supporting system).

98

5.3. BPS CONFIGURED BY SLA

Figure §5.12 depicts the components in architecture to manage the artifacts re-
viewed in the previous section. We integrate the monitoring components (grey coloured)
described in Section §5.2 to provide the full solution. The additional components and
their responsibilities in this architecture are:

BP Manager. It is responsible for managing and validating Business Process Mod-
els, including abstract or executable ones (and not in the extended BPMS). The han-
dling of BP models in the BPMS is wrapped by this component.

SLA Manager. This component manages Template and SLA documents modelled
together with their related process models. It is responsible for storing agreement doc-
uments, validating them and managing the business process related to them, that is
through the BP Manager.

BP Configurator. This component handles the configuration of the BPs included in
the public SLAs with their corresponding BP artifacts: configured deployed BPs and
BP instances.This component would have to be extend to support complex configura-
tion and correlation on run-time.

The system provider can handle their SLA templates together with their config-
urable and/or executable processes using a private API. A second public API is pro-
vided so external parties (customer or provider, depending on the responsible for pro-
viding the supporting system) can interact with the service. The interface for such API
is

In the next listing, we summarize the main operations to manage SLA of the public
API.

/sla -- Operations related to SLAs

POST /newsla/()/ -- Add an SLA to the system

DELETE /{$ID}/ -- Cancel an SLA with given ID

PUT /{$ID}/ -- Update an SLA with given ID

GET /{$ID}/start -- Starts a new instance related

to the SLA given by ID

POST /{$ID}/{$PID}/{} -- Provide a message to the process

instance PID of the SLA given by ID

GET /{$ID}/evaluation -- Retrieve the evaluation of the SLA

given by ID

Document 5.1: Java code of the getAgreement operation

5.3.4 Applicability of our proposal

We have developed a prototype with the proposed components and interfaces as
an extension to an open source BPMS, Camunda4. We describe some of the implemen-
tation decisions. Camunda provides two different interfaces to interact with processes.

4https://camunda.org/

99

https://camunda.org/

CHAPTER 5. MANAGEMENT OF SLA-DRIVEN BUSINESS PROCESSES

Runtime

BPMS

Process Engine

BPaaS

SLA
Repository

Task1

Task1

X

Task2

X

Task1

BP
Manager

SLA
Manager

Deployed BP
Repository

Metric
Computer

SLA Monitor

B
P

M
 A

P
I

S
LA

 M
on

ito
rin

g
A

P
I

P
ub

lic
 A

P
I

BP Configurator

BP Repository

P
riv

at
e

 A
P

I

Metric
Values

Figure 5.12: Architecture

A Java interfaces and a REST API provides operations to deploy business models, start
new process instances or monitor instances runtime information. Although our ar-
chitecture would increases decoupling using the REST API, for network performance
reasons, we have developed the prototype with the JAVA service interface.

As we use BPMN to describe BPs our SLA documents include these XML mod-
els. The BP models are stored in BP repository and managed by SLA manager. As the
provider can define business processes before relating it to an SLA or template, BP doc-
uments are managed by BP Manager. As common BPMSs have their own storage sys-
tem for deployed BPs, when SLA manager requests the deployment of an executable
BP in the BPMS, it also registers the identification of the deployed BP model to correlate
SLA and deployed BP model. This correlation is required to initiate, handle or monitor
service process instances. Therefore, the BPMS is decoupled of the SLA management
but as it is completely unaware of it, if the BPMS updates model identification, the cor-
relation between SLAs and deployed BP models would be broken. To avoid this, we
could include mechanisms to keep correlation in the BPMS storage. A simple mecha-
nism is using an universal identifier for deployed BP model which includes the related
SLA identification, such as:

#deployedBPID = #BPID@#slaID

where #slaID is the unique identifier of the SLA and #BPID, the unique identifier of
each business process included in the SLA.

100

5.3. BPS CONFIGURED BY SLA

Doing so, we also avoid some interaction with BPMS, i.e. querying the executable
process model related to an SLA template in order to include it in a new SLA. An
executable BP commonly includes other resources apart of BPMN documents, there-
fore the executable BP related to an SLA includes not only BPMN documents but any
other information required for deployment such a code sources files (e.g. .java files in
Camunda BPMS) or images (BP model).

In the previous subsection §5.3.2, we described different choices to configure busi-
ness process according to the SLA. In our developed prototype, each configuration
parameter, such as DocRequired, is mapped as a process variable and its values are
included in the deployed process model using the design-time approach. This mecha-
nism is only valid if the specific SLA includes the specific configuration value. If this
value requires run-time processing through the SLA lifecycle, additional mechanisms
should be provided. In our running example, in order to be consistent with this ap-
proach, the decision gateway related to execute or not the documenting task has to be
based on this process variable, DocRequired.

A full example of the use and responsibilities of these components is described in
Figure §5.13, where an example of the main activities in the SLA lifecycle are depicted.

In Step 0 in Figure §5.13, the service provider defines a SLA template, #T1, which
includes a simplified version of the example process, #CBP1, with a Task and decision
gateway, and a guarantee term, DocTime lesser than 4 hours. This process is defined
with BPMN and this metric, DocTime, as the time difference between the process starts
and the Task is finished. The decision gateway depends on the configuration option,
DocRequired. The provider uses the Private API to register the template. Then the
API uses the SLA manager to check and register the SLA template (Step 0.1). The SLA
Manager extracts the business process and requests to BP Manager to evaluate and
register it (Step 0.2). As it is a configurable processes is not deployed in the process en-
gine. Once the SLA template and related processes are registered, potential customers
can query them with a public API to analyse and negotiate possible SLAs (Step 1 in
Figure §5.13).

When a customer signs a new SLA, it is registered with the public API. In the Step 2
in the Figure §5.13, a new SLA, #S1 is proposed based on the SLA Template #T1, where
the DocRequired has the value of all, which means that the Task is always executed,
and a guarantee term with a similar metric to #T1, DocTime, but more restrictive target
value, 2 hours. This SLA is managed by SLA Manager (Step 2.1) and then processed by
BP Configurator. This component checks the SLA document and included process and
requests to the BP Configurator (Step 2.2) to evaluate the SLA terms and the process
to propose a deployable process. In the example, the process included in the SLA is
similar to the SLA Template but, as the Task is always execute, the decision gateway
is not required. As the process model in the template could be reused in different
SLAs, BP Configurator defines a configured process, #ABP1, which is handled by BP
Manager (Step 2.3), component and deployed in the Process Engine, through its BPM
API (Step 2.4).

101

CHAPTER 5. MANAGEMENT OF SLA-DRIVEN BUSINESS PROCESSES

In a similar way, when a new service execution related to SLA #S1 is requested
through public API in the Step 3, the request is received by SLA Manager (Step 3.1).
This component uses BP Configurator to properly correlate with the BP model (Step
3.2) to be executed. In the example, the term Required Task in #S1 has to be included as
a variable in the process execution so the decision gateway included in the deployed
BP is properly evaluated. Then, BP Configurator requests to BP Manager to start a new
process instance of #ABP1 (Step 3.3) and this component uses the BPM API to initiate
the process instance (Step 3.4). The identification of the process instances has to be
managed by the BP and SLA Manager to correlate the SLA with its process instances.
We have to highlight that, in order to simplify the scenario, we log all the process
instances events so any performance information can be queried in any future moment.
In a real environment where resources overuse can decrease performance, the metrics
included in #S1 should be considered to only log the relevant events for its metrics
(process start and end of Task events).

Although it was covered in previous section, we also include the corresponding
SLA evaluation stage in this diagram. When it is requested to evaluate the SLA #S1
accomplishment through the Public API in the Step 4, this request is handled by SLA
Manager (Step 4.1), which uses BP Configurator to correlate the SLA terms with the
deployed BP model and instances (Step 4.2). And this component asks the SLA Moni-
tor to evaluate the SLA terms, such as DocTime < 2h (Step 4.3). To evaluate this metric,
it is required to compute the value of DocTime, what it is performed using the logged
events and the Metric Computer (Step 4.4). The result of the evaluation is returned
through the Public API.

In our running example, the initial service template is proposed by APC, the service
customer, so the party responsible to review template and propose a specific SLAs and
configured business process are the potential contractors. In a BPaaS scenario, the
responsible to define the template is the service provider and the potential customers
are responsible to propose their configured SLA.

5.3.5 Related Work

Current BPMSs provide mechanisms to support process instances related to dif-
ferent parties, but their support for SLA is limited. IBM Process Standard 5 provides
a notification system based on SLAs. These SLAs are sets of performance indicators
over the process instances. Notification helps to take preemptive actions or decisions
on runtime but these actions are manual and automatic actions has to be made as an
extension to this engine. There is no mechanism to automatically customise process
execution based on their so-called SLAs.

Some research proposals also address the configuration of executable business pro-
cesses. Gottschalk et al. [76] and van der Aalst et al. [183] propose a mechanism to

5http://www-03.ibm.com/software/products/business-process-manager-family

102

http://www-03.ibm.com/software/products/business-process-manager-family

5.4. SUMMARY

Process Engine

#EBP1 Instance 1

SLA Template #T1

Configurable #CBP1

Public API

Task1

/template/register

Register #T1

/sla/newagree

Query Template #T1

/sla/#S1/start

Start #S1

Instantiate #EBP1

/sla/#S1/evaluation

Register #CBP1

/template/query/#T1

1

Adapt #BP1

Add #S1 Evaluate #S1

BP Manager

BP Configurator

Deploy #EBP1

Register
Executable
#EBP1

Metric Computer

SLA Monitor

Log Events

Evaluate Instances #S1 Process #S1
SolvingTime

Start #EBP1

3.10.1

DocTime< 4h

Private API

0.2

1.1

2.2

B
P

M
 A

P
I

M
onitor A

P
I

2.1

2.3

SLA #S1

Configured #BP1

Task

DocTime< 2h
DocRequired = all

2.4

3.3

3.4

Executable
#EBP1

4.1

4.3
Monitor #S1

4.2

4.4

SLA Manager

3.2
Start #S1

0 2 3 4

Figure 5.13: Use of Management and Monitoring APIs

define configurable business processes or workflows which can be configured for each
node based on different attributes on design or execution time. They do not consider
named SLA with SLOs. Kumar and Yao [102] use logic language to describe rules
which customize the process instances before executing them on a workflow engine.
Their goal is provide a robust process design that makes it easier to accommodate
changes to business policy. And, lastly, Acher et al. [5] use feature models to describe
a family of services in such a way that allows reasoning about the compatibility be-
tween connected services to ensure their consistency and propagating the variability
choices when configuring services. All these proposals focus on providing configura-
tion mechanisms but they are based on the SLA so we could extend our proposal to
include them.

5.4 SUMMARY

In this chapter, we address the management of lifecycle of SLA for BPs, introduced
in the previous chapter. Regarding the late stages in SLA lifecycle (Deployment and
Fulfillment), we identify three operations of interest: monitoring, configuration and
optimization, although the latter is out of the scope of this dissertation. With respect
to monitoring, after analysing the different approaches to process performance data
we provide a reference component to monitor SLA accomplishment which is indepen-
dent of the supporting PAIS. This proposal enables the run-time evaluation in different

103

CHAPTER 5. MANAGEMENT OF SLA-DRIVEN BUSINESS PROCESSES

PAISs of performance indicators defined and has been applied to a real monitoring sce-
nario. Furthermore, some mechanisms are proposed to increase efficiency.

Regarding the configuration of BPs for different parties, we provide a mechanism to
support the creation of configured BPs based on an SLA template and specific configu-
ration for each party. These configured BPs are deployed and executed corresponding
to their related SLA. The application of the proposal is developed through an architec-
ture to extend an existing BPMS and it has been validated through the implementation
for an open source BPMS, Camunda. In order to properly validate that this proposal
is independent of the supporting BPMS, it should be extended to a wider range of
systems. This effort shall be carried out in future work.

104

6

FRAME AGREEMENTS

105

This is an era of specialists, each of whom sees his own problem and is unaware of or intolerant of the larger
frame into which it fits.

Rachel Carson (1909 - 1965),

6.1 INTRODUCTION

Certain scenarios of outsourcing of non computational services, such as IT devel-
opment projects or transport&logistic services (T&L), are ruled by a frame agreement
for a time period or for a budget limit. This frame agreement defines the characteristics
of the services provided and some commitments between the parties within that pe-
riod. However, in contrast with the scenarios previously analysed, in this context each
service instance has its specific agreement that regulates the aspects that are specific to
it.

This is the case of a new transportation request in the T&L context, where large
transport companies can operate 100.000 transportations in a random month or IT
development contracts where each work order has its own agreed resolution times.
These frame agreements are usually described with natural language, so supporting
their evaluation requires developing ad-hoc mechanisms.

In this dissertation, we provide a model to formalise frame agreements supported
by process-aware-information-systems (PAIS) so the global commitments or the ones
related to single actions or service instances can be automatically monitored. We had
previously analysed in [81] the conformance between aggregated and specific metrics
in terms of constraint programming. In this chapter, we reinterpret the problem in
terms of an SLA for Business Processes.

The contribution of this chapter regarding the dissertation is highlighted in Figure
§6.1.

CHAPTER 6. FRAME AGREEMENTS

Business Process

supported by

Governify

 PAIS

Formalization

Monitoring Adapt

Chapter 4 Chapter 5
iAgree
SLA

Chapter 4

Formalization
iAgree
SLA

 PAIS PAIS

ru
le

d
by

Natural
Language SLA

Instance
SLA

Analysis

Chapter 6

Instance
SLA

Instance
SLA

Monitoring

Figure 6.1: Contributions background

6.2 AN EXAMPLE SCENARIO

We identify here two different scenarios where the frame agreements are described
with different scopes. On the one side, when transport & logistics enterprises out-
source transport services, it is common that they sign an agreement for a long validity
period, such as a natural year, although each specific transport provision has different
execution terms. On the other side, in IT development contracts, companies usually
outsources the development of a component given a limited budget but each iteration
on the development of the component is managed with a single work order with their
own performance requirements. In this section, we describe these two scenarios.

6.2.1 Service Agreements in Transport and Logistics

In the case of agreements in transport & logistics between international parties, a
forwarder, which regularly sends good from Asia to Europe, contracts a shipper for
annual periods so they are guaranteed that certain terms are held for the whole year,
such as price per container, although they specify a new specific agreement per ship-
ment where they include specific conditions for that shipment such as dates for de-
livery. These frame agreements usually define other limitations to their scope apart
from validity period, such as maximum number of shipments of appliance or con-
tainer contents (e.g.: not biologic contents) so the pricing per container is constant for
the considered frame agreement. The evaluation that the agreement for a single ship-

106

6.2. AN EXAMPLE SCENARIO

ment or the shipment itself is consistent with the frame agreement, i.e. the required
number of containers to be shipped does not exceed the scope defined in the frame
agreement, is manually performed at the end of the agreement so preemptive actions
cannot be taken if a single shipment violates the frame agreement and the checking of
consistency for the whole year is a tedious, error-prone task. This scenario has already
been analysed with an approach to handle agreement conformance in our proposal in
[81].

The scenario described in that work is based on real life situations described by do-
main partners of the European FInest project [114] and it is illustrated in Figure §6.2.
A shipper establishes in the end of 2011 a frame agreement #A with a forwarder. This
frame agreement defines that the forwarder will organize the shipments of the goods
with a certain set of SLOs. In this example, the SLO maximal transit time is defined with
value 25 days, as well as the SLO max containers which determines that maximum 1000
containers could be transported for the same agreed price during the validity period of
frame agreement #A. For each execution of a transport & logistics process associated
with the frame agreement #A, a specific agreement is created. In this example, three
specific agreements were established during the year of 2012 for each time the ship-
per requested a service. One request at the beginning of 2012 originates the specific
agreement A#1. A second request originates the specific agreement A#2 and another
one creates the specific agreement A#3. At the beginning of 2013, both shipper and
forwarder analyze their business operations during the past year to identify eventual
violations.

In the case illustrated in Figure §6.2, one violation happened. According to the
frame agreement A, only 1000 containers could be transported under this agreement.
However, at the time the specific agreement A#3 was created, the cumulative trans-
ported cargo under A was 550 containers (the aggregated value of the SLOs called
Containers in specific agreements A#1 and A#2). The remaining amount of allowed
cargo was 450 containers, but the shipper transported 600 containers as described in
the specific agreement A#3. Thus, the shipper violated the frame agreement A by hav-
ing extra 150 containers transported for the same price of the allowed 450. Penalties
upon this partner will be enforced very late after the actual losses in the perspective of
the forwarder were suffered. This happens because the conformance checking in trans-
port & logistics agreements is currently a manual process executed typically every 6 or
12 months [114]. Such manual process could be viable in a small company, but in large
companies with high volumes of specific agreements such manual processes becomes
very costly. Hence, new online, automated conformance checking mechanisms can
drastically improve the violation detection in transport & logistics SLAs and this could
lead to cost reductions.

107

CHAPTER 6. FRAME AGREEMENTS

2015 2017

SLA Agreed

Agreement Date 25/03/16

Shipper Company A

Forwarder Company B

Origin Turkey

Destination UK

Transit Time 25 days

Containers 100

Specific Agreement A#1

SLA Agreed

Agreement Date 12/12/2015

Agreement Validity Period 01/01/2016 to 31/12/2017

Shipper Company A

Forwarder Company B

Origin Turkey

Destination UK

Max Transit Time 25 days

Max Containers 1000

Frame Agreement A

2016

SLA Agreed

Agreement Date 12/07/16

Shipper Company A

Forwarder Company B

Origin Turkey

Destination UK

Transit Time 30 days

Containers 500

Specific Agreement A#2

SLA Agreed

Agreement Date 03/11/16

Shipper Company A

Forwarder Company B

Origin Turkey

Destination UK

Transit Time 25 days

Containers 600

Specific Agreement A#3

Business Operation Phase

Analysis Phase of
Agreed Services

vs Business
Operations in

2016

Figure 6.2: Frame agreement for transport & logistics

6.2.2 Service Agreements in IT Development

Similar to annual contracting in transport & logistics, we find the outsourcing of
development services, where an agreement is signed with the development company
at the beginning of the project. In this agreement, they define terms such as dead-
lines for development tasks or the maximum total budget. Each time a new work
order (WO) is requested, the service provider plans and estimates specific terms for
this work order, such as expected finishing times or estimated budget for this work
order. These terms for a single work order should take into account the agreement
because the maximum budget could be insufficient so the work order should be can-
celled or redefined. When agreement is signed, some terms specific to each single work
order could also be specified, such as the maximum time to solve each one. This global
restriction could be mandatory watched in the each service execution or they could
be just a default term (e.g.: maximumsolvingtime < 2d) to be redefined in a new work
order, as more restrictive constraint (e.g. maximumsolvingtime < 1d), more relaxed con-
strained (maximumsolvingtime < 3d) or even discarding the constraint.

The abstract process for work orders is depicted in Figure §6.3. When the validity
period of the agreement starts, new work orders must follow the defined BP. When a
new work order is requested, the provider plans the work effort for this work order.
The result of the plan is a specific agreement just for this request and includes the
estimated cost or tasks deadlines for this work order. When the plan is approved, the
provider develops and then documents the work order. Lastly, the work order is delivered

108

6.3. FRAME AGREEMENTS

Figure 6.3: Business process for work orders

into the customer infrastructure.

In Figure §6.4 there is an example of status for outsourcing with different instances
of work orders. Before starting the IT outsourcing, the signed agreement #A defines
a budget of 1000 e for the outsourcing and constraints that all the requested work
orders have to be developed in a maximum of 3 days. A first work order #1 was
requested, planned (with an estimated cost of 200 e) and developed in 2 days so it is
consistent with the agreement. A second work order #2 was requested, planned (with
an estimated cost of 400 e) but development took 4 days to finish so this execution it
is violating the agreement. A third work order #3 was requested and planned (with an
estimated cost of 300 eand it is currently in development). And a fourth work order #4
has been requested but it has been planned with an estimated cost of 400 e. Although
these four work orders have not been finished, their total estimated costs sum 1200 e,
200 e over the planned budget, so the plan for the work order #4 cannot be approved.
Therefore, a decision over the execution has to be taken, as cancel or replan the work
order #4. The process could consider review estimated costs in any stage of the rest of
work orders and the real final cost should be considered when the work order process
is finished. Furthermore, when a new work order is planned, the required Deliver Date
is specified as a deadline for the delivery of the developed work order. The delivery
date is a guarantee included in each specific agreement and each one is independent of
the rest of the specific agreements. If there were a general constraint for every work
order (e.g.: the time from starting the work order to the delivery has a common limit
for every work order), it could be included in the frame agreement.

6.3 FRAME AGREEMENTS

In this section, we are going to analyse how to model the SLAs for the introduced
scenarios using the model proposed in the previous chapters for non computational
services. As in these scenarios two level of SLAs appear, we also evaluate the impact
of their relationships in the SLA lifecycle and how to address the operations related to
the different phases of the SLA lifecycle.

109

CHAPTER 6. FRAME AGREEMENTS

Plan Develop Document Deliver

Work Order #5

 Work Order #4
 Cost: 400 €

Work Order #5
Work Order #5

Frame Agreement #A

Develop Time < 3 d

Budget: 1000 €

 Work Order #1
Deliver Date 17/01
DevelopTime: 2d
Cost: 200 €

Work Order #3
Deliver Date: 16/07
Cost: 300 €

 Work Order #2
Deliver Date 05/04
DevelopTime: 4d
Cost: 400 €

Figure 6.4: Example of SLA Hierarchy for work orders

6.3.1 A conceptual model for frame agreements

The example scenario introduced in the previous section (Figure §6.4) includes a
cascade of commitments between parties which exchange a service (usually, consumer
and provider). We establish the relationship between a frame agreement (FA), and a
specific agreement (SA), in three points, that are depicted in the conceptual model in
Figure §6.6. First, the traceability between a FA and its SAs (relation between Agree-
ments). Second, a FA can include general requirements for all the service instances
(e.g.: Develop Time < 3d), so they will be included in each related SA. These are atomic
terms. And last, aggregated metrics in the FA (e.g.: Budget = 2000e) should be related
to the corresponding metric in the SA (e.g.: instance cost = 500e). In more complex sce-
narios, a specific agreement can also be frame agreement of more specific actions in its
scope. For example, the development activity could be composed of different subtasks:
(i) purchase required equipment, (ii) planned onsite implementation and (iii) later re-
mote verification; and each of these subtasks could have a more specific agreement
ruled by the SLA of the work order, which acts as its frame agreement.

Recursively, more specific agreements could describe subprocess and extend the
SLA hierarchy, as it is depicted in Figure §6.5, where three layers of SLAs are displayed.
Within the context of a frame agreement, A, such as the SLA for IT outsourcing, more
specific agreements, A1, A2 and A3, can appear, one for each kind of tasks in the IT
outsourcing: development, maintenance and IT training, and each kind of tasks can
have more specific agreements for each task instance (e.g.: a specific training period),

110

6.3. FRAME AGREEMENTS

Figure 6.5: SLA Hierarchy

Figure 6.6: Conceptual Model for frame agreements

A1-1, A1-2, A2-1 and A3-1.

6.3.2 Lifecycle of the agreements

Now, we review the interaction between FA and SA and the required operations
to properly manage them. As the specific agreements are related to specific service
instances in the context of the frame agreement, they are only created when the frame
agreement is already created and deployed, that is, during the fulfillment phase of the
frame agreement. The lifecycle of a specific agreement is depicted over the SLA Life-
cycle, which was introduced in Chapter §3, in the Figure §6.7. First, the creation of a
specific agreement is one of the first activities in a new service instance (e.g.: the first
activity of a work order is planning it). It is created according to the atomic inherited
guarantees from its frame agreement. After its creation is on the pending state. If there
is conformance between frame and specific agreement (e.g.: the available Budget in the
frame agreement has to be greater than the estimated cost for a work order), the spe-

111

CHAPTER 6. FRAME AGREEMENTS

Rejected

OfferReceived
SA Created

Complete
SA Evaluated

ObservedPending
SA Conformance

PendingAndTer
minating

ObservedAndTe
rminating Terminated

Figure 6.7: Agreement states in WS-Agreement

cific agreement is considered valid and it is in the Observed phase. During this phase
we observe the specific agreement fulfillment. And, finally, the executed terms have to
be evaluated not only regarding specific agreement but also with frame agreement (e.g.:
the final Cost can be higher than the estimated Cost, so the available Budget after the
work order execution would decrease). Therefore, we identify three different opera-
tions to support SA Lifecycle: (i) creation of new specific agreement based on a frame
agreement, (ii) conformance between specific and frame agreement, (iii) evaluation of
execution regarding specific and frame agreement.

6.4 OPERATIONS

In this section we are going to detail the operations defined in the previous one. A
simple example for each operation is depicted in the Figure §6.8.

6.4.1 Creation of a specific agreement

When a new service instance is created in the context of a frame agreement, a new
specific agreement has to be defined. The terms in frame agreement that impact single
service instances are inherited in the specific agreement. The Figure §6.8 (1) depicts
the creation of a new specific agreement S#1, related to the frame agreement A#1 and
which inherits the goal Develop Time < 2d.

112

6.4. OPERATIONS

FRAME A#1
FRAME A#1

FRAME A#1 SPECIFIC S#1

SPECIFIC S#1
SPECIFIC S#3

1. Creation of Specific Agreement 2. Conformity between Frame and Specific Agreement

3. Evaluation of Specific Instance Execution

Terms
 Budget: 2000 €
 DevelopTime< 2d

Terms
 Budget: 2000 €
 Develop Time< 2d

Terms
 Develop Time<2d

Terms
 Develop Time<1d
 Est. Cost: 500 €

Terms
 Budget: 2000 €
 Develop Time< 2d

Context
 Frame A#1
Terms
 Develop Time<1d
 Est. Cost: 500 €

Frame Status

Cost S#1: 500€
Cost S#2: 400€

Frame Status

Cost S#1: 500€
Cost S#2: 400€

Execution

Develop Time: 20h
Cost: 500 €

Figure 6.8: Examples of Operations between frame and specific agreements

As a result of this operation, a new specific agreement is created referring to a frame
agreement.

6.4.2 Conformance between frame and specific agreements

Once the specific agreement is completely defined, the conformance between the
frame and the specific agreement can be analysed, not only including inherited terms
but also other terms related to aggregated terms (e.g.: The Estimated Cost that has to
be considered for the aggregated metric Budget). We consider that a frame and specific
agreements are conform if:

• (i) In atomic guarantees that are related between specific and frame Agreement,
the former implies the latter. That is, the SLO in the specific agreement has to
be, at least, so restrictive as the SLO included in the frame agreement. For ex-
ample, as depicted in Figure §6.8 (2), if the frame agreement defines a guarantee
DevelopTime≤ 2d, the specific agreement can define a guarantee DevelopTime < 2d
or DevelopTime≤ 1d but not a guarantee DevelopTime≤ 3d.

• (ii) Regarding to aggregated SLOs, frame and specific agreement are conform if
considering the related metric values for previous specific agreements and the
current defined specific agreement, the aggregated SLO is fulfilled (e.g.: If the
frame agreement defines an SLO Budget = 1000 and two work orders have fin-
ished with a cost of 400e and 300e, respectively, a new work order that esti-

113

CHAPTER 6. FRAME AGREEMENTS

mated a cost of 300e is not conform, as the sum of finished costs, 400e + 300e,
and the estimated one, 300e, overcomes the budget, 1000e.

A detailed description of conformance and Constraint Satisfaction Problems (CSPs)
to solve this operation is included in our previous work [81].

This operation returns a boolean (conform or not conform) and a negative result
can determine that the specific agreement is out of the scope of the frame agreement or
it is replanned.

In Figure §6.9, we describe in detail the evolution of Budget aggregated value re-
garding specific agreements (estimated cost) and service execution (real cost).

6.4.3 Evaluation of specific instance execution

During service instances, their execution has to be monitored in order to properly
evaluate SLAs accomplishment, both its specific and frame agreement. The evalua-
tion should be addressed regardless of the conformance between specific and frame
agreement. The expected evaluation is that execution holds both specific and frame
guarantees, but it could happen that execution matches specific agreement guarantees
and does not match frame agreement guarantees. Fro example, if the frame agree-
ment defines a guarantee DevelopTime < 4days which is even constrained by the specific
agreement to DevelopTime < 2days, both agreements are conformance. But if the real
Develop Time is 3 days, the execution would be not valid in the context of the specific
agreement but it would be valid in the context of the frame agreement. Evaluating the
execution is similar to the conformance but using specific execution values (e.g. De-
velop Time = 2 days) instead of the guarantee constraints (e.g. Develop Time < 2 days).
In Figure §6.8 (3), there is an example of execution values, with DevelopTime = 20h and
Cost = 500 e. These values can be directly evaluated against the constraints in specific
and frame agreements. In the case of Develop Time, it accomplishes both guarantees
(DevelopTime < 2d in frame agreement and DevelopTime < 1d in specific agreement).
And, once the instance is finished and we have the final Cost, the Estimated Cost of
that instance is not relevant for the processing of Budget.

After evaluating the metric values together with the objective, different SLO sta-
tuses can result. If all the SLOs are fulfilled, the specific agreement is considered ter-
minated and the frame agreement would be still being observed. However, if one of the
SLOs is not fulfilled, different situations can happen. On the one side, when the real
Develop Time is 3 days, both the atomic SLO DevelopTime < 2d in frame and specific
agreement are violated. On the other side, if atomic SLO in specific agreement is more
restrictive than in frame agreement, it could happen that the atomic SLO in specific
agreement is violated and the one in the frame agreement is not. In the aggregated
metrics, the metric in the service instance is not guaranteed by the specific agreement
so the final metric value could unfulfill the aggregated SLO in frame agreement al-
though the specific agreement is fulfilled (e.g.: when the available Budget is 300eand

114

6.5. INTERPRETING FRAME AGREEMENTS AS SLAS FOR BP

2017

Frame Agreement #A

Budget: 2000€
January-December 2017

Word Order #1 Plan
Estimated cost: 500 €

Work Order #2 Plan
Estimated Cost: 600€

Work Order #3
Estimated Cost: 800€

Work Order execution
Final Cost: 600 €

Work Order execution
Final Cost: 500 €

Work Order execution
Final Cost: 1000 €

Budget: 1500€

Budget: 1400€

Budget: 900€

Budget: 0€

Budget: 200€

Budget: 1000€

Figure 6.9: Evolution of Metrics

a new work order that estimates a cost of 200e is approved. If the final cost is 400e,
the aggregated SLO would be unfulfilled). In any case, as a result of this evaluation,
a manual decision could consider that the specific agreement and the related service
instance are out of the scope of the frame agreement, so neither the specific agreement
neither the service execution has impact in the frame agreement status (e.g.: if we have
an available Budget of 300e and a new work order costs 400e, it could be considered
out of the scope, so the available Budget would still be 300e).

6.5 INTERPRETING FRAME AGREEMENTS AS SLAS FOR

BP

We propose modelling frame and specific agreements with our SLA model for BP,
introduced in Chapter §4. First, the services described can be modelled with BPs. Sec-
ond, atomic metrics and related guarantees can be defined with metrics of base mea-
sures in PPINOT. And, last, aggregated metrics can also be defined with aggregated
measures in PPINOT. Therefore, we interpret these scenarios as an SLA for Business
Processes and we formalise specific and frame agreement with our proposed model.
Then, the SLA for a single work order includes only single instance metrics and the
frame agreement both atomic guarantees for each single process instances and aggre-
gated metrics for the whole service.

115

CHAPTER 6. FRAME AGREEMENTS

In order to address the identified lacks and support the proposed architecture, one
choice is developing an extension to our SLA management tool, Governify 1, to support
the frame and specific agreements and the operations proposed in this chapter.

Therefore, given the requirements of our scenarios, where the specific agreements
do not redefine the atomic guarantees but just instantiate the metrics, we take an in-
terpretation to use one single SLA level, that we describe in this subsection (e.g.: if the
frame agreement defines an SLO of DevelopTime < 2d, the specific agreement defines
a deadline for the development 2 days later than the start of development as a conse-
quence of the SLO in frame agreement). If we consider the frame agreement as our SLA
for BPs and a specific agreement as a single service instance that we need to monitor,
the frame agreement is described with our SLA model, and the specific agreements are
defined as the events that are monitored using the Infrastructure element in the SLA.
The guarantees and performance values of the specific agreements are stated as process
data and included in the events. With this interpretation, the applicability is simplified
as all the operations are performed over the same agreement but we have to differenti-
ate between the events related to the specific agreements and the real executed events
for the service. Therefore, the metrics should have to be described to consider both
events. We consider both creating two metrics, one for the estimated metric values and
other for the executed metrics values. An example of this interpretation is explained
and depicted in next subsection, where a frame agreement is modelled as an SLA for
BP and the specific agreements as the monitored events.

The model that we introduced in Chapter §4 only lacks of the expressiveness to ex-
plicitly relate the frame and specific agreements and describe the relationship between
terms from frame and specific agreements (e.g.: the relation between the atomic guar-
antee Develop Time < 2d in the frame agreement and the corresponding in the specific
agreement, or the relation between aggregated metric, Budget, in the frame agreement
and the related metrics, Estimated Cost or Final Cost, in the specific agreement).

6.5.1 Materialising the operations

The implementation the aforementioned operations using our interpretation would
have the following schema, which is depicted in the Figure §6.10 for our example. First,
the frame agreement defines the aggregated metrics as the aggregation of two different
atomic metrics: a metric in the specific agreement and a metric for the execution value
together with atomic ones (e.g. Develop Time in the Figure §6.10). Then, when a new
service instance is created with a new specific agreement, a new event is created with
the related data for the atomic metric in the frame SLA, which are inherited. Then,
when the work order is planned the specific atomic metrics are defined in a new Event
and the conformance between frame and specific agreement is evaluated as monitoring
the execution. When the work order finishes, the real value substitutes the estimated
one. The conformance and evaluation of execution are performed similar, checking

1http://governify.io

116

http://governify.io

6.5. INTERPRETING FRAME AGREEMENTS AS SLAS FOR BP

Figure 6.10: Operative with one single document

that the monitored values of both, execution and estimated event, accomplishes the
aggregated SLO in the frame agreement.

In the example in the Figure §6.10, a Work Order has a Develop Time, which (in
order to simplify the explanation) is the total time since the Work Order starts until it
finishes, an Estimated Cost, which is the planned cost of the Work Order at its begin-
ning in order to manage resources, and a final Cost, which is the real Cost when the
Work Order has been performed. As it is depicted in the Figure §6.10, the frame agree-
ment limits the Develop Time of all the Work Orders to 2 days, which is an atomic SLO
and the total Budget for all the Work Orders to 2000e, which is an aggregated SLO,
defined as the sum of Estimated Cost and Cost. In the Figure §6.10 (1), a new Work
Order is request, and as it inherits the atomic SLO of 2 days for Develop Time, a new
event is created for this Work Order, where the expected Deadline for this new Work
Order #2 is 2 days after the start of the Work Order. In the Figure §6.10 (2), the Work
Order is planned with an Estimated Cost of 400eand a new event is created. The con-
formance between the Work Order is checked with the aggregated SLO, Budget, using
also the Cost from previous Work Orders. The evaluation at the end of the Work Order
is performed similarly, creating a new event and using the final Cost of Work Order #2
instead of the Estimated Cost.

The frame agreement is listed in the Appendices, Section §C.3, together with the
related metric computers.

117

CHAPTER 6. FRAME AGREEMENTS

6.6 RELATED WORK

There are a number of proposals related to the creation and evaluation of services
in domains like transport & logistics or IT Maintenance. However, as far as we know,
none of the evaluate the existence of multiple levels of agreements. First, in our pre-
vious work, [81], we presented an analytic model to evaluate these multiple levels of
agreements, providing a definition and implementation of the conformance between
frame and specific agreements based on CSP. Then, in [115], Cassales et al. , extended
this proposal to provide an SLA Management Framework for Transport and Logistics
Services.

In the past years, there is an increasing amount of research efforts specifically try-
ing to bring into the transport & logistics domain technical solutions based on Service
Oriented Computing [199], [13]. Nevertheless, when it comes to SLAs management
there is a limited amount of work.

The work proposed by Zhu and Fung [200], for instance, define incentive con-
tracts based on principal-agent theory to provide solutions for cooperative relation-
ships among different partners in 4PL business. Another example is the work intro-
duced by Bing and Zhongying [16]. They define in mathematical terms the parame-
ters of a contract in transport & logistics collaborative business process. The solution
of Augenstein et al. [8] introduces a platform based on service-oriented approach for
managing contracts on 4PL business . The proposed solution itself is mainly focused
on coordinating the business process conducted among these different partners. Nev-
ertheless, none of the aforementioned solutions focus on the relationships among the
SLAs from different scopes. The work proposed by Leitner et al. [105] aims at pre-
dicting SLA violations in business process. The authors consider two types of SLOs:
instance-level, associated with each instance of a business process in isolation; and ag-
gregated, representing the execution of several instances of the same type of business
process. The violation prediction of aggregated SLOs is performed on values at the
same SLA level, i.e., the same type of document describing the SLOs of a business
process. In our case, in contrast, we need to aggregate information in the same level,
but compare this information to a different level of SLA document. Goel et al. [74] use
temporal logics of safety (DSF - Deterministic Safety Formula) to formalize the SLOs
and model checking to support the monitoring conformance of SLAs. Their solution is
able to detect and present to the user the occurrence of violations of the specified SLA.
The aforementioned approaches do not deal with the validity between frame and spe-
cific agreements and they have limited support for expressing aggregate information
in SLOs.

118

6.7. SUMMARY

6.7 SUMMARY

In this dissertation, a proposal to manage frame and specific agreements in non
computational scenarios such as IT Development or Transport & Logistics outsourc-
ing has been introduced using our computational techniques for managing Business
Process as a Service from the previous chapters. This proposal, together iAgree specifi-
cation, require extending tooling with enhanced models to support creation of specific
Agreements based on frame agreements and integrating them in an analysis tool. This
proposal supports the creation of specific agreements within frame agreement scope
and the evaluation of their conformance and their execution. These SLA hierarchies
appear naturally in other non computational scenarios so this enriched model can be
the basis to solve other two-level (or even more level) SLA scenarios. We have ad-
dressed these scenarios with our proposed models from previous chapters but it could
hinder the proposal of more complex hierarchies where guarantees in different layers
are defined with predicates.

119

FINALREMARKS

PART IV

7

CONCLUSIONS AND FUTURE
WORK

123

Yesterday is gone. Tomorrow has not yet come. We have only today. Let us begin.

Mother Teresa (1910-1997),

7.1 CONCLUSIONS

As a main result of this dissertation, we have shown that non computational ser-
vices can benefit using models and techniques from computational services, [60, 122,
153], to support their management.

The research effort was aimed by the following four research questions:

Research question 1. How can we model a SLA for different domains supporting its
automatic management?

Research question 2. How can we model the relationships between frame and specific
SLAs together with the relationships that appear between their terms and goals?

Research question 3. How can we automatically configure and adapt the underlying
information systems based on the SLA for non-computational services?

Research question 4. How can we automate the monitoring of SLAs and their guar-
antees for non-computational services?

And these questions have been address with different proposals.

First, as proposal for Research Question 1, we provide an SLA model based on iA-
gree to describe different non-computational scenarios, including: (i) the description
of service operative based on Business Process Modelling Notation (bpmn), (ii) perfor-
mance metrics with a specific DSL for BPMN, PPINOT, (iii) the definition of guarantees
together compensation functions based on these metrics, and (iv) configuration of pro-
cesses to adapt them to different parties. Furthermore, we extend the SLA model to
relate different SLAs and terms in different service scopes, enabling the description of

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

multilayer SLAs where one SLA for a long term service can be refined for each service
instance or more specific tasks and designing the operations related to (i) creation of
Specific SLAs based on a Frame SLA, (ii) conformance analysis between Frame and
Specific SLA. With these proposal, we address the Research Question 2.

Then, we provide a catalogue of analysis operations related to the deployment and
fulfillment phases in the SLA Lifecycle. At this regarding, we design the operations
related to (i) SLA monitoring and accomplishment evaluation, which addresses the
Research Question 3 and (ii) service configuration and adaptation based on the SLA
terms, addressing the Research Question 4.

And, lastly, in order to validate all the contributions, we provide a reference ar-
chitecture as extensions of existing PAISs. Specifically, we propose: (i) A monitoring
component which does not depend on the process execution system and it can be con-
figured to existing endpoints to retrieve performance information or process a log sys-
tem together the language PPINOT, to compute the performance indicators based on
events, (ii) An architecture to manage the process models and handle service execu-
tion driven by their SLAs as extension of an existing BPMS, i.e. a PAIS which explicitly
handles BPMN documents.

This dissertation has been applied to over 20 SLAs of non-computational services
and over 300 KPIs and guarantees to validate our proposal.

7.2 APPLICATION SCENARIOS

Some of the research results (total or partial) of this thesis can be applied to other
domains to solve similar or different problems. Specifically:

• The modelling of real SLAs together monitoring component can be integrated as
part of existing enterprise systems to improve existing ad-hoc monitoring com-
ponents which have long development cycles since the SLA are signed until the
monitoring component are operative (~months) and hinders the monitoring of
SLAs for short term changes.

• In traditional services where analysis of the SLA accomplishments are performed
after long term SLAs have terminated. In the case of transport & logistics service,
this means where the number of specific agreements to be checked by a large
company could reach up to 100,000 documents per month, the automated evalu-
ation of SLA accomplishment can leverage in the analysis costs .

• In addition, the formalisation of SLAs together the analysis of their validity with
the conformance operation between Frame and Specific Agreements or the eval-
uation of compensations functions, improve the design and correctness of SLAs
which is a tedious and error-prone task. The errors in the definition of metrics

124

7.3. LIMITATIONS AND EXTENSIONS

or compensations can introduce uncertain behaviours that could appear without
being detected.

In summary, we can affirm that, although computational and non-computational
services differ in operative, the SLA structure for them is similar. SLAs for both kind
of services have to include the context where the SLA is applied, such as the involved
parties in the service (usually consumer and provider, but other parties can appear),
the service operative or references to related services. Also, the levels of performance
guaranteed by each party, which are expressed with measurable properties, i.e. met-
rics, and expected goals in the form of Service Level Objectives (SLOs). Guarantees
usually include compensations rules in case of underfulfilling the SLOs to enforce their
accomplishment. Therefore, computational techniques can be applied to different non-
computational scenarios to improve their lifecycle.

7.3 LIMITATIONS AND EXTENSIONS

Despite our proposed validation techniques have proved to be useful in many real-
world SLAs, it still has some limitations that can focus our further research. Thus, we
plan to extend our model so that it covers all different real-world SLAs we have found.

We next present the main limitations and possible extensions identified for the re-
search work presented in this dissertation.

• Tool support. The contributions presented in this dissertation have been im-
plemented into Governify ecosystem, supporting the definition and automated
monitoring of SLAs. Nevertheless, other contributions of this thesis are not inte-
grated in the ecosystem. That is the case of the adaptation of BPs based on SLAs,
which is developed as an extension of a BPMS.

Extension: Extend Governify with the aforementioned features.

• Configurable SLAs. In the chapter §5, we introduced the need to provide a lan-
guage to configure BPs driven by SLAs and provided a simple mechanism for
the current scenario. However, in current research context, there are a number
of efforts related to provide different complex approaches to the configuring and
adaptation of BPs.

Extension: Apply configurable BPs techniques to our SLA model, so more com-
plex adaptation scenarios can be modelled.

• Resources Management. In the chapter §5, we propose to take advantage of man-
aging related processes instances to optimize the management of their resources.
Nevertheless, we did not provide any specific technique.

Extension: Apply techniques for the management of computational and human
resources to optimize the performance of BPs driven by SLA.

125

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

• Abstract Process and Executable Process. In the chapter §5, we introduced the
need to configure BPs driven by SLAs for different parties. In real scenarios, the
processes which are executed include private details and differ from the public
agreed processes. However, some scenarios, such as auditing betting products,
requires that the executed processes are exactly or at least compliant with the
published processes.

Extension: Design and implement a compliant operation between private exe-
cutable processes and public abstract processes regarding their SLA.

• SLA Hierarchy. We have proposed a materialisation of the SLA Hierarchy with a
single level of SLAs and their monitoring. However, this proposal makes that the
inherited terms from the Frame SLA have the form of assignation in the Specific
SLA (e.g.: If the Frame SLA defines an SLO Transit Time < 25 days, it appears as
Transit Time = 25 days or smaller value in the Specific SLA) but we do not support
the definition and checking of a hierarchy of predicates (e.g.: Transit Time < 25
days in the Frame SLA and Transit Time < 15 days in the Specific SLA).

Extension: Extend SLA Model to support a complete SLA Hierarchy which pro-
vides related constraints in SLAs at different levels.

Apart from addressing the identified limitations, there are two lines of future work.
On the one hand, we want to build an SLA–aware PAIS that uses these models to im-
prove the automation of certain tasks related to both the SLAs and their fulfillment.
To this end, we plan to take advantage of the application of new computation tech-
niques such as machine learning for the analysis of these measures so more intelligent
information can be provided and the decision making to accomplish SLAs can be auto-
mated. First, these techniques can provide the identification of factors with big impact
in the performance, either positive, increasing efficiency, either negative, creating bot-
tle necks. Finding such factors can support the evaluation of the correctness of the KPI
goals and compensations described in the SLA. And, second, the current performance
displayed in the dashboards is analysed by business domain users to make decisions to
lead to improve performance (saving resources, increasing outcomes, etc...). However,
because the number of KPIs included in an SLA and the complexity of them, including
the management of human resources or multiple and heterogeneous devices (as Inter-
net of Things devices), this interpretation is too complex to be manually done. There-
fore, machine learning techniques can provide performance prediction and decision
making support which can no be performed with the current monitoring technique.

Regarding the model expressiveness, the model presented in this dissertation was
designed to allow the definition of the analysed scenarios. As we apply the model
to each new scenario, new requirements had to be considered that were not support
by initial versions (exceptions like local calendars, or standard languages to define
human assignment plans). However, based on the knowledge acquired in this context
in our research group, we think that the definition of new scenarios can benefit from

126

7.4. SUMMARY

the current techniques proposed in this dissertation so we plan the application of this
dissertation to new domains apart from the IT Development and Transport & Logistics.

On the other hand, we want to include additional information in SLAs to cover
not only performance guarantees, but other aspects that are relevant for the customer
such as compliance or audit–related issues [4]. In some scenarios, this information is
covered as part of the guarantees as violation actions. However, in our dissertation we
just focus on the compensation functions. At this regard, we plan the analysis of the
different legal aspects and how they can be formalised in the SLA for their processing.

7.4 SUMMARY

As a last summary and conclusion of this dissertation, we might affirm that we
have set the basis of the automated management of non-computational services. We
have extended iAgree as modelling language and Governify for the support of dif-
ferent proposed operations. We have left the prediction and decision taking analysis,
such as resources management on runtime, out of the scope of the analysis included in
this dissertation. We propose the further research to enhance this drawback and other
potential enhancements of the proposals included in the Phd.

127

APPENDICES

PART V

A

COMPENSABLES SLAS

131

Never mistake activity for achievement

John Wooden (1910-2010),

A.1 INTRODUCTION

During the last years, the use of Service Level Agreements (SLA) to describe the
rights and obligations of parties involved in service provisioning (typically the ser-
vice consumer and the service provider) is on the rise. Amongst other information,
SLAs have associated a set of service metrics on which some Service Level Objectives
(SLOs) can be guaranteed to either the consumer or the provider; additionally, SLAs
usually define compensations as a consequence of under or overfulfilling their SLOs
(i.e. penalties or rewards). By means of these guarantees [6], one party (herein after the
guarantor) guarantees to another party (herein after the beneficiary) the fulfillment of a
Service Level Objective (SLO). For instance, Amazon as provider of its Elastic Com-
pute Cloud Service (AWS EC2) has a term that guarantees its consumers an SLO such
that availability >= 99.95%1. In addition, in real-world SLAs, guarantee terms typi-
cally have associated one or more compensations that represent the consequences of
underfulfilling (penalties) or overfulfilling (rewards) the SLO. For instance, Amazon is
penalised with a 10% in service credits if the availability of AWS EC2 drops below
99.95%. In a previous work we coined the concept of Compensable SLAs [128] to refer
to SLAs that include at least a compensation action, either a penalty or a reward.

Given the potential economic impact of compensations, it is of the utmost impor-
tance to validate that they are well defined in order to avoid undesirable consequences,
specially if the action derived from the compensation is automated. For instance, while
defining compensations is desirable to set a limit for the maximum compensation that
can be applied if the SLO is not fulfilled. Amazon does so by establishing that they
compensate consumers of the Elastic Cloud service (AWS EC2) up to a limit of the 30%
of the EC2 monthly billing. Such a limit helps to avoid mistakes like an automated

1http://aws.amazon.com/es/ec2/sla/

http://aws.amazon.com/es/ec2/sla/

APPENDIX A. COMPENSABLES SLAS

penalty without a limit that was discarded in 2005 by the UK Royal Mail company
after causing a loss of 280 millions in one year and a half2.

However, despite the importance of checking the validity of compensations, it has
not been dealt with by current research proposals that use some form of compensation
in their SLAs [65, 106, 112, 119, 197]. Instead, they mostly focus on the optimisations
of service costs by finding a trade-off between compensation and operation costs or
on the automation of several parts of compensation management. As a matter of fact,
this focus on automation makes it even more relevant the need to ensure that com-
pensations are validated beforehand because they can be used to guide several aspects
during the service lifecycle such as the elasticity [130], cost [71] or offerings [66].

We aim at answering the question “How can compensations be automatically vali-
dated?” To this end, we build on the compensable SLA model proposed in [128] to
propose an automated technique to validate compensable SLAs. Furthermore, we also
present a tooling support that implements our validation technique. Our proposal
has been validated by modelling and analysing the compensations of 24 SLAs of real-
world scenarios including 319 guarantee terms. As a result, our technique has proven
to be useful for detecting mistakes that are typically derived not only from the manual
specification of SLAs in natural language, but also from the complex nature of com-
pensation definitions.

A.2 RUNNING EXAMPLES

Two of compensable SLAs found in real world scenarios are introduced as run-
ning examples. These two scenarios are a computing service and a human-driven IT
support service[61].

A.2.1 AWS EC2 SLA

Amazon Web Services (AWS) is a service catalogue that has boosted the idea of
cloud computing in the industry. Amongst the services offered by AWS, the Elastic
Compute Cloud (EC2) represents a widely used Infrastructure as a Service (IaaS). The
aim of EC2 is to provide a scalable infrastructure to organizations that either have
variable needs or need to grow seamlessly without the investment for an internal data
center. In this context, the reliability of a virtualized infrastructure represents a key
point for IaaS consumers in order to choose a service like AWS EC2.

As a consequence, Amazon has published an SLA for EC23 that guarantees the
availability of the virtual resources requested by means of the Monthly Uptime Per-
centage (MUP) service metric. Specifically, the SLA defines a term that guarantees the

2Page 3 in http://goo.gl/o7gw6B
3Available at http://aws.amazon.com/es/ec2/sla/

132

http://goo.gl/o7gw6B

A.2. RUNNING EXAMPLES

99.8 99.9 99.95 100
Monthly Uptime Percentage

 10

 0

 20

 30

 40

0 0.1 0.2 98.9 99 99.1

Se
rv

ic
e

C
re

di
t P

er
ce

nt
ag

e

Figure A.1: Example AWS EC2: Penalties for Amazon as provider.

following SLO: MUP≥ 99.95%. The consequences of not meeting the SLO is defined in
two levels: in case the MUP drops below 99.95% and in case the MUP drops below 99%
percent. Figure §A.1 depicts the penalty function [106] of this scenario that is defined
as a percentage of discount in the next billing cycle (Service Credit Percentage or SCP).
In this scenario Amazon is not rewarded under any circumstance. Note that in Figure
§A.1 a dark point denotes the inclusion of the service metric value in the interval and
a gray point means the value exclusion.

A.2.2 GNWT SLA

The Government of the Northwest Territories (GNWT) of Canada outsources the IT
support. Specifically, the demanded services include issues related to: reporting, user
support, problem correction, application enhancement, process and application im-
provement, and other services. They provide a template for establishing an SLA with
an external vendor that provides the mentioned kind of IT support with the desired
service levels and penalties and rewards for the parties[30].

Four examples of terms with at least a penalty or a reward have been extracted
from its SLA template4. In the example GNWT-1 included in Figure §A.2 the GNWT
demands the delivery of quarterly reports. The government must receive such reports
not less than five days before scheduled review meetings under a penalty of 5% of
monthly invoice for the IT support provider.

The example GNWT-2 of Figure §A.2 depicts specific times for different milestones
that take place in the resolution of problems that have made a critical application

4Available at https://goo.gl/m0duhI

133

https://goo.gl/m0duhI

APPENDIX A. COMPENSABLES SLAS

Example GNWT-4

Example GNWT-3

Example GNWT-2

Example GNWT-1

Type Measurement Penalty
Quarterly Status

Report
Delivered at quarterly intervals and not less than five
business days before scheduled review meeting

5% of monthly
invoice

Severity
Code

Initial
Response

Estimation
Response

Subsequent
Responses

Resolution

1 15 minutes 2 hours Every 30 min. 4 hours

Type Measurement Reward Penalty

Severity 1 Resolution

All Severity 1 problems are resolved
in less than 2 hours.

10% of
monthly fees

NA

One or more Severity 1 problems are
resolved in over 4 hours.

NA 10% of monthly
fees

Type Measurement Reward Penalty

Maximum Problem Aging No problem is older than 60 days.
5% of

monthly fees
NA

Type Measurement Reward* Penalty

Project Delivery

Total elapsed days until delivery is
more than 20% greater than
planned.

NA 10% of the
amount invoiced
for the project.

Total elapsed days until delivery is
20% less than planned.

5% of the
amount invoiced
for the project.

NA

Figure A.2: Compensation actions extracted from the SLA of GNWT.

function unusable or unavailable and no workaround exists (severity 1 code). Specifi-
cally, an initial response should be received within 15 minutes, an estimation response
should be ready in 2 hours, subsequent responses are expected every 30 minutes, and
the problem must be resolved within 4 hours. In this case, a reward for the provider
applies if all problems are resolved in less than 2 hours, and a penalty for the provider
applies if any of them is resolved in more than 4 hours. An additional clause reward-
ing than no problem is older than 60 days is included as example GNWT-3 of Figure
§A.2. A term like GNWT-2 that includes both penalties and rewards is called by us
as full-compensated term. If the term just includes either a penalty, like GNWT-1, or a
reward, like GNWT-3, we call it a half-compensated term.

Finally, the GNWT SLA also includes a term that relates the scheduled project de-
livery to the real project delivery that is shown in example GNWT-4 of Figure §A.2.
This term includes a penalty for the provider if the elapsed days until delivery is more
than 20% greater than planned but also a reward for the provider if the elapsed days
until delivery is 20% less than planned. Note that, if this latter sentence is taken liter-
ally, the reward could not make sense because it would apply if the delivery is exactly
20% less than planned and not if its less than that, e.g., 40% less. Such a problem would
be solved with the automated validation proposed in Section §A.5.

134

A.3. COMPENSATION FUNCTIONS

A.3 COMPENSATION FUNCTIONS

Compensation functions are defined over service metrics, or simply metrics that
associate two types of compensations depending on the subject and recipient of the
compensations: on the one hand, a penalty represents a compensation from the guar-
antor to the beneficiary and, on the other hand, a reward represents a compensation
from the beneficiary to the guarantor. In this section we formalise the concept of com-
pensation function in order to analyse some interesting properties that would support
their automated validation.

A.3.1 Core Definitions

Definition A.1 - Metric Values.
Let m be a metric of the service, the set of all possible values of m is defined as follows: Mm =
{v1, ...,vn}.

In the examples of Section §A.2 we find several metrics such as MUP, interven-
tions, and urgent interventions, with the following bounded set of metric values Mm =
{0, ...,100}; and others with an infinite set of metric values such as resolution hours, or
elapsed days Mm = {0, ...,∞}.

Definition A.2 - Utility Function.
Let m be a metric; an Utility Function for m can be denoted as Um, and defined as a function
from Mm to R that associates an utility to each of the values; i.e. it defines which metric values
in Mm are more interesting for a given party.

For instance, Figure §A.3 includes two utility functions in §A.3(a)-(b) for the reso-
lution hours metric of GNWT-2 example (described in Figure §A.2); an utility function
for availability warranty from Amazon EC2 in §A.3(c); and an utility function for daily
hours of high availability, which aims at optimizing different customer goals, such as
a common office time of 8 hours per day of high availability, or fully 24 hours per day
of high availability, which are the two peeks in function §A.3(d)5. As shown in the
Figure, the parties may define different kinds of utility functions such as decreasing,
increasing, constant, or non-monotonic. Utility functions do not appear explicitly in
the SLAs because the value each party gives to a service metric is part of their pri-
vate information and they are usually not willing to share this information with other
parties.

5Example called "horizontal demand" in [10]

135

APPENDIX A. COMPENSABLES SLAS

Resolution Hours

 25 %

 0 %

 50 %

 75 %

 100 %

 0 1 2 3 4 5 6 7 8

M
or

e
U

til
ity

Le
ss

 U
til

ity

(a) Decreasing Utility Function

Resolution Hours

 25 %

 0 %

 50 %

 75 %

 100 %

 0 1 2 3 4 5 6 7 8

M
or

e
U

til
ity

Le
ss

 U
til

ity

(b) Increasing Utility Function

Monthly Uptime Percentage
 10 20 99.95 99.96 99.97 99.98 99.99 100

...

 0 %

 25 %

 50 %

 75 %

 100 %

M
or

e
U

til
ity

Le
ss

 U
til

ity

 0

(c) Constant Utility Function

 0
 0 %

 6 8 12 16 20 24

 25 %

 50 %

 75 %

 100 %

M
or

e
U

til
ity

Le
ss

 U
til

ity

Availability Daily Hours

(d) Non-Monotonic Utility Function

Figure A.3: Different kinds of utility functions

Definition A.3 - Utility Precedence.
Let v1 and v2 be values of the metric values set Mm of a metric m, and Um an utility function
defined on the same metric; a precedence relation called utility precedence is defined on Mm by
Um. Thus, we denote that v1 is less interesting than v2 by v1 ≺ v2 when Um(v1) < Um(v2).

For instance, the example of Figure §A.3(a) may represent the utility of the benefi-
ciary of GNWT-2. In the utility precedence defined for such utility function, the higher
value of resolution hours, the less interesting it is for the beneficiary (e.g. 4≺ 2). On the
other hand, the example of Figure §A.3(b) may represent the utility of the guarantor in
the same scenario. In this case, the utility precedence defined for such a utility function
establishes that a lower value of resolution hours is less interesting for the guarantor
(e.g. 2≺ 4).

Definition A.4 - Compensation Function.
Let m be a metric; a Compensation Function for m can be denoted as Cm, and defined as a
function from Mm to R that associates a compensation to each of the values. Similarly to utility
functions, the compensation functions can be either decreasing, or increasing, or constant, or
non-monotonic.

As a normalised convention that is aligned with related work [106, 142] we establish
a positive compensation as penalties (that should be compensated from the guarantor

136

A.3. COMPENSATION FUNCTIONS

to the beneficiary) and negative compensations as rewards (i.e. beneficiary should
compensate guarantor).

Figure §A.4 shows an example of increasing compensation function taken from
the full-compensated example GNWT-2. The function denotes: (1) a reward for the
guarantor if problems are solved in less than 2 hours; (2) no compensation applies in
problems which are solved between 2 and 4 hours, inclusive, and (3) a penalty for the
guarantor if the problems are solved in more than 4 hours. Another example is de-
picted in Figure §A.1. In this case, the compensation function does not take negative
values, which means that only penalties are applied.

M
on

th
ly

 fe
e

co
m

pe
ns

at
io

n
(%

)

Resolution hours

 -5

 -10

0

 5

 10

 0 1 2 3 4 5 6 7

Figure A.4: Compensation function of GNWT-2 (CResolutionHours).

Definition A.5 - Compensation Regions.
Let Cm be a compensation function of a given metric m; up to three compensation regions can
be defined by such compensation function, namely: penalized, rewarded, and neutral.

Penalized(Cm) = {vi ∈Mm | Cm(vi) > 0}
Neutral(Cm) = {vi ∈Mm | Cm(vi) = 0}

Rewarded(Cm) = {vi ∈Mm | Cm(vi) < 0}

Figure §A.5 shows these three potential subsets. Thus, ∀vi < a in Figure §A.5 vi is a
rewarded value. ∀vi > b in Figure §A.5, vi is a penalized value. And ∀vi | a≤ vi ≤ b in
Figure §A.5, vi is a neutral value.

A.3.2 Validity of Compensation Functions

We consider a compensation function is valid if it fulfills two conditions.

137

APPENDIX A. COMPENSABLES SLAS

a b

Rewarded Neutral Penalised

Service Property0

Figure A.5: A generic example of increasing compensation function

1. It is consistent with the utility function of the party to whom the guarantee is
provided, i.e., the beneficiary.

2. It is saturated, i.e., it sets a limit for the maximum compensation (penalty or re-
ward) that can be applied.

Next, we formalise these concepts using the definitions presented in the previous
section.

Property 1 (ConsistentU
CF). Let m be a metric and let U be the utility function defined for m by

the beneficiary, a compensation function Cm for m is said to be consistent if the compensation
for a less interesting value of the metric is greater or equal than the compensation for a more
interesting value, according to the utility precedence defined by the utility function U.

ConsistentU
CF(Cm)⇔ ∀v1,v2 ∈Mm · v1 � v2⇒

⇒ Cm(v1) ≥ Cm(v2)

Let us analyse the consistency of the compensation functions of AWS EC2 and
GNWT-4 examples if the beneficiary establishes in both cases that the higher the metric
value, the more interesting, i.e., the utility functions UMUP and UElapsedDays are mono-
tonically increasing. In the AWS EC2 example, the decreasing CMUP depicted in Fig-
ure §A.1 is consistent with the monotonically increasing UMUP. However, the non-
monotonically increasing CElapsedDays depicted in Figure §A.6 is not consistent with the
UElapsedDays in the GNWT-4 example because a 60% of elapsed days is a less interesting
value than 80%, but its compensation is higher.

Property 2 (Saturated). Let m be a metric, a compensation function Cm for metric m is said to
be saturated with respect to a threshold τ = (τmin,τmax), where τmin,τmax ∈R, if the threshold

138

A.4. COMPENSABLE SLA

delimits the higher compensation, either penalty or reward.

Saturatedτ
CF(Cm)⇔ ∀vi ∈Mm,

Cm(vi) ≤ τmax∧
∧ Cm(vi) ≥ τmin

This property prevents the definition of unbounded compensations as a boundary
is defined by a threshold τ. One may think that it would be enough to check that
compensations do not grow infinitely. In practice, however, this is often not enough
because, although bounded, it does not guarantee that the compensation is reasonable
according to the problem domain. For instance, a compensation that grows linearly
with the number of minutes of unavailability in a month is bounded because the num-
ber of minutes in a month is finite. However, in practical terms, such a compensation
may be unreasonable for the provider. Therefore, we define the threshold as a way to
set a reasonable boundary in a domain-specific manner.

Based on the previous properties we can formalise the validity of a compensation
function as follows:

Property 3 (ValidU,τ
CF). Let m be a metric, let U be an utility function defined for m by the

beneficiary, and let τ be a threshold for m, a compensation function Cm for metric m is said to
be valid, if it is consistent according to U and saturated with respect to τ.

ValidU,τ
CF (Cm)⇔ ConsistentU

CF(Cm)∧
∧ Saturatedτ

CF(Cm)

According to this definition, the compensation functions of Figures §A.1 and §A.4
are valid. On the contrary, the compensation function of GNWT-4 example, depicted
in Figure §A.6, is not consistent and therefore, not valid.

A.4 COMPENSABLE SLA

As discussed in the introduction, a guarantee is a term of an SLA that guarantees
a certain SLO to a beneficiary (e.g. Response Time < 100ms or Monthly Uptime Percent-
age ≥ 99.95%). Following the terminology introduced by [128] we call a compensable
guarantee to any guarantee term that also includes the concept of penalties and re-
wards to compensate the underfulfillment or overfulfillment of the SLO, respectively.
By extension, we call compensable SLA to the type of SLA that includes at least one
compensable guarantee. Next, we formalise these concepts and introduce a set of prop-

139

APPENDIX A. COMPENSABLES SLAS

Elapsed Days (%)

 -5

 -10

0

 5

 10

 0 20 40 60 80 100 120 140

A
m

ou
nt

 In
vo

ic
ed

fo
r t

he
 p

ro
je

ct
 (%

)

Figure A.6: Example of Inconsistent Compensation function of GNWT-4 (CElapsedDays).

erties to analyse the validity of compensable guarantees.

A.4.1 Core Definitions

Definition A.6 - Service Level Objective.
Let m be a service metric, SLOm is a Service Level Objective if it represents a predicate over m.

Examples of valid SLOs include Response Time < 100ms or MUP ≥ 99.95%.

Definition A.7 - Fulfillment Regions.
Let SLOm be a service level objective over the service metric m; SLOm delimits two regions over
the values of m, namely fulfilled and unfulfilled.

Fulfilled(SLOm) = {vi ∈Mm | SLOm(vi)}
Unfulfilled(SLOm) = {vi ∈Mm | ¬SLOm(vi)}

Definition A.8 - Compensable Guarantee.
Let m be a service metric, a compensable guarantee CGm defined over m is a tuple (SLOm,Cm),
where SLOm is a service level objective and Cm is a compensation function, that are defined
over the same service metric m. With CGm.SLO we refer to the SLO of CGm; and with CGm.C
we refer to the compensation function of CGm.

140

A.4. COMPENSABLE SLA

rewarded neutral penalised

a b

Rewarded Neutral Penalised

Service Metrict

Fulfillment Unfulfillment

Figure A.7: A generic example of compensable guarantee showing the fulfillment and
compensable regions.

Figure §A.7 shows a typical compensation function that depicts the relationships
between the fulfillment regions delimited by the SLO and the compensation regions
defined by the compensation function (c.f. Section §A.3.1). Moreover, as shown in this
Figure, it is important to highlight that fulfillment regions are not necessarily coupled
with compensation regions. Specifically, the Figure exemplifies a case in which metric
values between t and b are unfulfilled but not penalized, and similarly metric values
between a and t are fulfilled but not rewarded.

A.4.2 Validity of Compensable Guarantees

We consider a compensable guarantee is valid if it fulfills two conditions: its com-
pensation function is valid according to Property 3; and its SLO and compensation
function are consistent according to the following Property. Property 4 (Consistent). A
compensable guarantee CGm is said to be consistent if the fulfillment regions are coherent with
compensation regions, i.e. if there is no unfulfilled value that is rewarded, there is no fulfilled
value that is penalized, and there is at least one fulfilled value that is neutral.

ConsistentCG(CGm)⇔ Unfulfilled(CGm.SLO)

∩Rewarded(CGm.C) =∅
∧Fulfilled(CGm.SLO) ∩ Penalized(CGm.C) =∅
∧Fulfilled(CGm.SLO) ∩Neutral(CGm.C) ,∅

141

APPENDIX A. COMPENSABLES SLAS

Based on Properties 3 and 4 we can formalise the validity of a compensable guar-
antee as follows:

Property 5 (ValidU,τ
CG). Let m be a metric, let U be an utility function defined for m by the

beneficiary, and let τ be a threshold for m, a compensable guarantee CGm is said to be valid if its
SLO and compensation function are consistent and it contains a valid compensation function
according to a threshold and the utility function of the beneficiary.

ValidU,τ
CG (CGm)⇔ ConsistentCG(CGm)

∧ValidU,τ
CF (CGm.C)

A.5 MATERIALISING THE VALIDITY CHECKING

The first requirement to materialise the validity checking of compensable SLAs is
to establish a specification language for the compensable SLAs themselves (cf. Section
§A.5.1). Next, we discuss some extensions that facilitate the validity checking in case
of missing information (cf. Section §A.5.2). Then, we propose a technique based on
Constraint Satisfaction Problems (CSPs) to automate the checking (cf. Section §A.5.3).

A.5.1 iAgree as Specification Language

The previously defined validity properties for compensable SLAs deal with several
SLA elements, namely: service metrics (Mm), compensable guarantees (CG), service
level objectives (SLOs), and compensation functions (C). Thus, in order to provide an
automated validation technique we must use a specification language for the SLAs
supporting the aforementioned SLA elements. Given such requirement, we propose a
notation to specify compensations within iAgree [122, 126], a WS–Agreement-based [6]
language with precise semantics.

Figure §A.8 depicts an excerpt of the GNWT SLA in iAgree notation including the
GNWT-4 compensable guarantee. Specifically, an iAgree SLA includes two types of
elements, namely: a context and a set of terms. The context specifies who the consumer
and provider are and defines schemas that specify the domain and unit for the com-
pensations used in the SLA (we refer to the compensation value as c in the following
sections; c.f. InvoicePercentage in the example). The terms are divided into metrics and
guarantees. Metrics are specified by means of their schemas, which define their values
(Mm; c.f. elpasedDaysPercent in the example). Therefore, schemas can be seen as a func-

142

A.5. MATERIALISING THE VALIDITY CHECKING

GNWT_SLA:
. . .
context :

provider : Provider
consumer : Northwest T e r r i t o r i e s Government
v a l i d i t y :

i n i t i a l : ’2016−07−13T00 : 0 0 : 0 0 . 0 0 0 Z’
d e f i n i t i o n s :

schemas :
Invo icePercent : //compensation value " c "

d e s c r i p t i o n : Percent a f f e c t i n g next monthly b i l l
type : i n t e g e r ; uni t : ’% ’
minimum : −100; maximum : 100

terms :
metrics : // s e r v i c e p r o p e r t i e s d e f i n i t i o n s

elapsedDaysPercent : //metr ic name "m"
schema :

d e s c r i p t i o n : elapsed days u n t i l d e l i ve r y (%)
type : i n t e g e r ; uni t : ’% ’
minimum : −200; maximum : 200

guarantees :
id : GNWT−4

of :
o b j e c t i v e : elapsedDaysPercent < 120 //SLOm
window :

type : s t a t i c
period : monthly
i n i t i a l : ’2016−07−13T00 : 0 0 : 0 0 . 0 0 0 Z’

p e n a l t i e s :
over : InvoicePercent :
of :

value : ’10 ’ //Pc [1] . value
condi t ion : elapsedDaysPercent >=120//Pm[1] . cond

rewards :
over : InvoicePercent :
of :

value : ’−5 ’ //Rc [1] . value
condi t ion : elapsedDaysPercent ==80 //Rm[1] . cond

Figure A.8: GNWT-4 compensable guarantee term in iAgree syntax.

tion that returns the domain of either metrics or compensation defined as schema(m)
= domain(m) and schema(c) = domain(c), respectively. Guarantees include both: (i) the
SLO defined on a service metric (SLOm; c.f. elapsedDaysPercent < 120 in the example),
and (ii) the Compensation Function (Cm). Following the WS–Agreement specification,
Cm is defined by specifying penalties and rewards separately. Neutral values are not
explicitly specified and include those that are not part of any penalty or reward. For
each penalty and reward, the compensation domain is defined by means of element
over. The definition of the penalty (or reward) part of the compensation function is
done as a piecewise function through a set of (value,condition) pairs (we refer to it as
(Pc[i].value,Pm[i].cond) for penalties and (Rc[i].value,Rm[i].cond) for rewards, in the fol-
lowing sections; e.g. (′10′, elapsedDaysPercent ≥ 120) in the penalty of the example).
According to our definition of Cm, both penalty and reward are defined over the same
schema. It is important to highlight that, based on the analysis of SLAs in the industry
(c.f. Section §A.6), the usage of piecewise functions proves to be sufficiently expressive
to model a wide range of compensations functions in real-world scenarios.

143

APPENDIX A. COMPENSABLES SLAS

A.5.2 Inferring the utility function and the saturation limit

The consistency checking of a compensation function requires knowing besides the
compensation function of each compensable guarantee, both, (i) the utility function of
the beneficiary for each metric; and (ii) the threshold for the saturation property. These
elements are not usually public, and hence, they do not appear in the SLA. Therefore,
they must be provided by service domain experts during the validity checking. How-
ever, although the utility function is not explicitly described in the SLA, its structure
can be roughly estimated from the SLO so that it eliminates the need for providing
the utility function in simple cases. This is useful to avoid having to define the utility
function for the most simple cases.

After analysing up to 24 SLAs, 95% of their 319 compensable guarantees include
simple SLOs in the form of metric > target value or metric < target value. Therefore,
the intuitive related utility can be described as a monotone linear function directly
proportional (a greater value of the metric is more useful) or reverse proportional (a
lower metric value is more useful) to metric values, respectively. For instance, in the
SLO: Availability ≥ 99, the utility function can be described as UAvailability(x) = x, and
in the SLO elapsedDaysPercent ≤ 120 (c.f. SLO of Figure §A.8), the utility function can
be described as UelapsedDaysPercent(x) = −x. Therefore, to avoid manual modelling, we
apply this simple automatic criteria to define the utility function in our tooling. Of
course, this approach is not valid when there is no explicit SLO, the SLO is specified
as an equation instead of an inequation, or the SLO is more complex, but it covers the
95% percent of modelled agreements. In cases where the SLO is defined as an equation
(e.g. UnavailableMinutes == 0), we transform it, with no side-effects in validation,
to the SLO UnavailableMinutes <= 0, that allows to infer a proper utility function for
the metric.

Regarding the saturation property, there are different situations where the maxi-
mum (τmax) and the minimum (τmin) values are defined in the SLA. In some cases, as
in Figure §A.8, compensation is defined through constant values so the maximum and
minimum possible values are in fact saturation thresholds.

In cases where there are no explicit thresholds in the SLA and they are not included
in analysis, the default approach is using the domain of the compensation variable as
threshold. If the compensation can reach maximum or minimum domain value, it is
not saturated.

A.5.3 Solving Technique

The SLO and compensation expressions are commonly specified by means of con-
straints or functions of their related service metrics. Thus, a quite straightforward way
to interpret the checking of the introduced properties (c.f. sections §A.3 and §A.4) is in
terms of constraints satisfaction problems (CSPs). Similar techniques have been previ-
ously applied by the authors to analyse: the conflicts between agreement terms [126],

144

A.5. MATERIALISING THE VALIDITY CHECKING

Mapping for Compensation Function
mapCF(SLOm,P,R)

(Pm[1].cond⇒ Pc[1].value
Penalised AND ... AND
Region Pm[N].cond⇒ Pc[N].value)

AND
Rewarded (Rm[1].cond⇒ Rc[1].value
Region AND ... AND

Rm[N].cond⇒ Rc[N].value)
Neutral AND
Region (NOT(Pm[1].cond OR ... OR Pm[N].cond

OR Rm[1].cond OR ... OR Rm[N].cond)⇒ c == 0)

Table A.1: General Mapping from Compensation Function to Constraint

the SLA fulfilment at monitoring time [129], and the compliance between agreements
and agreement templates [123]. CSPs are defined as a set of variables, their domains
and a number of constraints, and there are a number of solvers that use satisfaction
method to find a solution for the CSP, if it exists. Our approach involves mapping
the iAgree SLA to a CSP and then using a CSP solver to check the validity properties.
Therefore, next we thoroughly explain this mapping, which is summarized in Tables
§A.1 and §A.2. In order to exemplify the CSP mapping we will use the SLA presented
in Figure §A.8 (GNWT-4) as a running example in the rest of the section.

Mapping the Compensation Function (CF): As a common element included in every
CSP used to analyse each property, we map the compensation function defined for
each CG to a constraint. Table §A.1 describes this mapping. Each (value,condition) pair
in penalties or rewards is mapped to a constraint of the form condition ⇒ variable

== value. As neutral compensations are not usually explicit, an additional constraint,
where compensation is zero outside the defined penalty and reward expressions, is
added. Finally, all these constraints are combined with an AND operator. Note that
this mapping corresponds to a well-defined piecewise function. A previous operation
to check that the compensation is a mathematical well-defined function could be per-
formed before compensation analysis.

Our running example (GNWT-4) includes a guarantee with a compensation func-
tion that expresses a penalty when metric elapsedDaysPercent is greater or equal than
120, and a reward when the same metric elapsedDaysPercent is equal to 80. There-
fore, the compensation definition for GNWT4 would be mapped to the next constraint:

145

APPENDIX A. COMPENSABLES SLAS

mapCF(GNWT4) = {
{(elapsedDaysPercent >= 120
⇒ InvoicePercent == 10) AND

(elapsedDaysPercent == 80
⇒ InvoicePercent == −5) AND

!(elapsedDaysPercent == 80 OR
elapsedDaysPercent >= 120)
⇒ (InvoicePercent == 0)}

This mapping is used as a base to create the CSPs to check the validity of CF and
CG, which are described next. In next CSPs, the metrics and the compensation variable
are the CSP variables and their corresponding domains are the CSP domains.

CSP for Consistent Compensable Function (Property 1): Since CSPs can only solve sat-
isfiability problems (i.e. exists a solution) and we have to check the accomplishment of
this property for all possible values, we verify this property by transforming it into an
existential constraint and check that the resulting CSP is not satisfiable. Furthermore,
in this CSP we duplicate the metrics variables so that we can check if two different vari-
ables with the same constraints (i.e.: same compensation function) have inconsistent
compensations. For instance, if the CF is defined on metric elapsedDaysPercent, we
define two different metrics, elapsedDaysPercent1 and elapsedDaysPercent2, with
the same compensation function to check the consistency. The property is evaluated
by adding a constraint that relates the two compensations and utilities for these vari-
ables so that one variable can have both a higher compensation (i.e. higher penalty)
and a higher utility than the other. If the resulting CSP is satisfiable, it implies that the
function is not consistent. Otherwise, it would mean that there are two values of the
metric variable for which one metric value has both higher penalty and higher utility
than the other value.

Considering our example, where the utility function (U) is the reverse of the previ-
ous metric, elapsedDaysPercent (and is inferred according previous subsection), as a
greater delay in delivery is less useful for the customer (and the opposite), we get the
following CSP:

cspCCF(GNWT4) = {
{elapsedDaysPercent1,elapsedDaysPercent2,

InvoicePercent1, InvoicePercent2},
{int[−200..200], int[−200..200],

int[−100..100], int[−100..100]},
{mapCF(GNWT4 − 1) AND mapCF(GNWT4 − 2)

AND (InvoicePercent1 > InvoicePercent2) AND
(−elapsedDaysPercent1 > −elapsedDaysPercent2)}}

146

A.5. MATERIALISING THE VALIDITY CHECKING

As this problem is satisfiable, the example compensation function is inconsistent.
This result is an effect of the wrong compensation definition, which only rewards when
the value for elapsedDaysPercent is exactly 80, but does not reward more useful val-
ues as elapsedDaysPercent = 60.

CSP for Threshold Saturated Compensable Function (Property 2): For this property, the
generation of CSP receives two additional input values, the saturation thresholds, so
we only check if the metrics are outside these two values. In this case, we consider it
not saturated. In our example, using 30 and -30 as input thresholds for saturation, the
CSP for checking the saturation in the example compensation function is:

cspTSCF(GNWT4,30,−30) = {
{elapsedDaysPercent, InvoicePercent},
{int[−200..200], int[−100..100]},
{mapCF(GNWT4) AND
(InvoicePercent > 30 OR InvoicePercent < −30)}}

As the compensation value cannot reach maximum or minimum values in any case
(its only possible values are 10, 0 and -5), the problem is not satisfiable and the com-
pensation is therefore saturated.

CSP for Valid Compensable Function (Property 3): A compensation function is valid if
it is consistent (Property 1) AND saturated (Property 2). In our example, the compensa-
tion is invalid (it is saturated but not consistent).

CSP for Consistent Compensable Guarantee (Property 4): To check the consistency of
compensable guarantees, we evaluate SLO accomplishment together with the compen-
sation function. This property involves checking one existentially quantified CSP, there
exists a value that is neutral and fulfilled, and one universally quantified CSP, no value
is fulfilled and penalised or unfulfilled and rewarded at the same time. Therefore, we
build two different CSPs. First, if there is a neutral compensation region (NCR) for an
SLO fulfilled value, and then if there is a positive compensation value (penalty) when
the SLO is fulfilled or a negative compensation value (reward) when SLO is not ful-
filled (consistent compensation regions, CCR). In our example, the CSPs for checking
the consistency between compensation function and SLO are:

cspNCR(GNWT4) =

{elapsedDaysPercent, InvoicePercent},
{int[−200..200], int[−100..100]},
{mapCF(GNWT4) AND (InvoicePercent == 0

AND elapsedDaysPercent < 120)}

147

APPENDIX A. COMPENSABLES SLAS

cspCCR(GNWT4) = mapCF(GNWT4) AND
{elapsedDaysPercent, InvoicePercent},
{int[−200..200], int[−100..100]},
{mapCF(GNWT4) AND (InvoicePercent > 0

AND elapsedDaysPercent < 120) OR
(InvoicePercent < 0 AND

!(elapsedDaysPercent < 120)}

As cspNCR is satisfiable and cspCCR is not satisfiable for the elapsedDaysPercent
metric, the compensable guarantee is consistent.

CSP for Valid Compensable Function (Property 5): If the compensable guarantee is
consistent with compensation function (Property 4) and the compensation function is
valid (Property 3). For our example, the compensation definition is invalid, hence the
compensable guarantee is also invalid.

A.6 VALIDATION IN REAL-WORLD SCENARIOS

In this section we describe how we have validated our proposal. In particular, the
goal of the validation was to answer the following research questions:

• RQ1: How expressive is our compensations model in comparison to real-world
SLAs? We want to know whether the compensation model that we use is ex-
pressive enough to model a wide variety of real-world SLAs and which are the
characteristics of the SLAs that we are not able to express.

• RQ2: Are the compensations in real-world SLAs valid according to our notion
of validity? The validity of a CG is at the central part of this paper, so we want
to know whether CG of real-world SLAs follow this notion of validity.

• RQ3: Which difficulties appear when modelling SLAs defined in natural lan-
guage? All real-world SLAs are expressed in natural language. Therefore, before
checking their validity it is necessary to formalise them. With this question, we
examine the problems that may appear in this step.

To answer these questions, we have modelled with iAgree and evaluated up to 319
compensable guarantees that are described in natural language in 24 different scenar-
ios6 belonging to three different domains, namely: cloud service providers (e.g., Ama-
zon, Google, or Rackspace), non-cloud service providers (e.g., DHL, train companies
or telecommunication services), and B2B service outsourcing.

6Documents used to model SLAs are available at https://goo.gl/yLvxo5

148

https://goo.gl/yLvxo5

A.6. VALIDATION IN REAL-WORLD SCENARIOS

A.6.1 RQ1: Expressiveness

Regarding the expressiveness of compensable guarantees included in the 24 stud-
ied scenarios, we have found that our technique has two main limitations concerning
the expressiveness of compensation functions.

Firstly, the SLO must be specified with just one service metric, then its compensa-
tions have to be based on such metric so that its related utility precedence function can
be properly evaluated.

Secondly, the compensation conditions must be defined on the SLO-related metric.
Additionally, constant values should be involved in compensation conditions if and
only if they do not have an impact on validity conditions, expressed in section §A.4.
As an example, if we have a compensation defined as Penalty = monthlyBilling x

unavailablePeriod, the former value can be committed in validation analysis since it
does not change from a billing cycle to the next.

Despite these limitations, our tooling support can validate up to 242 compensable
guarantees (76% of reviewed).

A.6.2 RQ2: Validation result

After modeling the iAgree documents of the 24 real-world scenarios and using our
proposed automated validation technique we found that 9 compensable guarantees
were not properly defined in the original SLAs specified in natural language.

A.6.3 RQ3: Modeling issues

During the recent years, we have found that the use of natural language in the re-
viewed SLAs of real-world scenarios7 makes them susceptible to include semantic am-
biguities. Among others, we have found the following problems that must be solved
in order to obtain a formal iAgree model of the real-world scenarios:

1) Imprecise and misleading compensation conditions and/or SLO. One of our
examples guarantees an availability of 99,999% but compensations only apply for 1-
minute periods and starting after a 3-minute period of downtime. However, it is not
clarified if the "3-minutes" exception might be considered for every single failure, or
also in relation to the aggregated failure time. In our modeling we have considered
that the 3-minutes initial exception is affecting to the aggregated failure time. Thus, we
use to gather the compensation the accumulated unavailability defined as the aggre-
gated minutes of unavailability after the first 3 divided by total minutes in the month.
In addition, the SLO is not precisely defined because considering a 31-days month, the

7This study was comprised of 3 cases in [128], 5 in [26], and 24 in the current article. All of them are
available at: https://goo.gl/yLvxo5.

149

https://goo.gl/yLvxo5

APPENDIX A. COMPENSABLES SLAS

100% of availability in minutes are 44640 minutes, and the 99.999% of availability just
permits 1 minute of unavailability that won’t be compensated due to the lack of an ini-
tial "3-minutes" exception. Therefore, as one compensation applies after 4 minutes of
unavailability, the total minutes of availability without compensations is 44636 (i.e. a
99.991% of availability) and thus, the actual SLO would be availability > 99.991%.

2) Usage of imprecise value. In some cases, the metric availability is expressed as a
percentage with integer values or float values providing just one decimal. However, it
is not clear whether they are simply rounding values for the sake of clarity, or not.

A side effect of representing in a machine-processable iAgree document the real-
world SLAs defined in natural language is that some modifications must be done to
face the two aforementioned modeling problems. In the following, we provide some
modeling best practices that an expert should consider in the process of writing an
iAgree document supported by our proposed technique:

As general rule, the expert should obtain a mathematical formulae for both SLO
and compensations. In case of SLOs specified as equations of the form Availability

= 100 or Unavailable Minutes = 0, as mentioned in section §A.5.2, they should be
transformed to an SLO of the following form: Availability ≥ 100 or Unavailable
Minutes ≤ 0, respectively, because this allows to infer an utility function for the met-
ric.

This general rule must be applied wisely by making decisions to solve the mod-
elling issues. These decision making could be as simple as in the following three
scenarios: (i) in the GNWT scenario, the iAgree document of Figure §A.8 is straight-
forwardly gathered from the GNWT4 term of Figure §A.2 by just considering that
elapsedDaysPercent == 100% is the scheduled delivery date; (ii) the aforementioned
imprecise compensation function definition of CloudLock scenario can be easily solved
by considering the metric monthly uptime percentage as a kind of availability
that is the SLO-related metric; and (iii) the exception condition of OVH scenario can be
solved by considering a new metric for a kind of unavailability that does not include
the first 3 minutes of unavailability, called accumulated unavailability. Regarding
the imprecise value definitions, we cannot model what is not expressed in the real-
world SLAs. Therefore, we propose to consider that the specified values are rounded
values despite of the impreciseness it implies in terms of compensations.

On the contrary, applying the general rule to other scenarios may imply to make
more complex decisions. For instance, in GoGrid, it is guaranteed the 100% of server
uptime so that the costumers are compensated with a 10,000% of the failure time (in
relation with the customer fee) in further service credits. As an example, a one hour
failure of a virtual server, whose cost of 1GB RAM is $0.08/GB Hour, will generate a
credit of $0.08 x 1 (GB) x 100 = $8. In this case, two considerations are required: i) the
customer fee should be omitted by our modelling because it is a constant value; and ii)
server uptime and duration failure, in total hours, must be amounted to in each com-
pensation term. This GoGrid scenario demonstrates that we must also include as best

150

A.7. RELATED WORK

modelling practice the homogenization of metrics used in both: SLO and compensa-
tions conditions.

A.7 RELATED WORK

As far as we know, there is no proposal to model compensation in SLAs which
enables automating its validation to avoid wrong compensation definitions.

The proposal of Leitner et al. in [106] formalises the problem of finding the optimal
set of adaptations, which minimizes the total costs arising from SLA violations and the
adaptations to prevent them. In this work, a model for penalty functions is presented;
this formalisation has been the starting point of the characterisation model for com-
pensations presented in [128] and thoroughly explained in Sections §A.3 and §A.4. In
[142] the mentioned authors present an approach for optimally scheduling incoming
requests to virtual computing resources in the cloud, so that the sum of payments for
resources and loss incurred by SLA violations is minimized. The example relates the
penalty with a service property representing the duration of requests to virtual com-
puting resources in the cloud.

Buco et al. propose in [119] an SLA management system, called SAM that uses
penalties in a Service Level Management process to alert about potential cumulative
penalty cost. Grabarnik et al. propose in [65] a model that can be used to reduce total
service costs of composite services by considering a trade-off between penalty costs
and fulfillment cost at a design-time choice of service suppliers. Rana et al. identify in
[150] how SLOs may be impacted by the choice of specific penalty clauses; and they
specify the penalties using WS–Agreement specification. Paschke et al. [144] model an
SLA to automate its management. This SLA defines minimum and maximum thresh-
olds to compensate SLAs underfulfilling or overfulfilling, but this compensation is ad-
hoc modelled through event calls and without using any SLA specification with a pre-
cise semantics. Angelov et al. propose in [100] a formal representation for contracts to
detect and solve different kinds of conflicts. Although the proposed contracts repre-
sentation supports penalties and rewards by means of reparation clauses, they are not
validated against utility functions as proposed in the current paper. Recently, some
works can be found in which the authors propose models to calculate the penalty cost
of cloud services [112, 197]. Specifically, Xiaoyong et al. propose in [197] a competitive
penalty model and a corresponding penalty based profit maximization algorithm to
select the appropriate cloud providers for the consumers. In turn, Maarouf et al. pro-
pose in [112] a different formal model considering penalties of different metrics. Al-
though these works do not propose a model to automate the validation of penalties,
both mention the need for a penalty limit, that is one of our considerations to validate
compensations.

In business studies, utility function models are also analysed as they are strongly
dependent on customer preferences and behaviour. Bar-Isaac et al. in [10] describe

151

APPENDIX A. COMPENSABLES SLAS

a business scenario with cost, customer expectations and reputation variables where
reward function follows a non-monotonic behaviour (based on satisfying preferences
from different customers). Similarly, Fenghui Ren et al. analyse in [152] how utility
function is obtained from customer objective function (i.e., customers timetable prefer-
ences affect how transactions distribute through commercial opening hours).

Finally, in previous works of the authors [122, 126] the validity of SLAs is for-
malised by considering a set of conflict-free guarantee terms that define valid asser-
tions that can be fulfilled. In other words, an SLA is considered as valid in those works
if they are defined without conflicts between and within the SLOs (examples of con-
flicts are: Response Time < 100ms AND > 100ms; or MUP < 99.95%⇒MUP ≥ 99.95%).
However, the notion of validity introduced in these proposals does not consider com-
pensations.

152

A.7. RELATED WORK

Property 1: CSP for Consistent Compensable Function
cspCCF(schema,SLOm,P,R,U)

Variables {m1,m2,c1,c2}
Domains {schemam,schemam,schemac,schemac}

mapCF(SLOm1 ,P1,R1) AND
Constraints mapCF(SLOm2 ,P2,R2) AND

(c1 > c2) AND (U(m1) > U(m2))

Property 1 == ! SAT (cspCCF)

Property 2: CSP for Threshold Saturated Compensable Function
cspTSCF(schema,SLOm,P,R,τmax,τmin)

Variables {m,c}
Domains {schemam,schemac}

mapCF(SLOm,P,R) AND
Constraints (c > τmax) OR (c < τmin)

Property 2 == ! SAT (cspTSCF)

Property 3: CSP for Valid Compensable Function (P1 & P2)
Property 3 == ! SAT (cspCCF) AND ! SAT (cspTSCF)

Property 4: CSP for Consistent Compensable Guarantee
cspNCF(schema,SLOm,P,R)

Variables {m,c}
Domains {schemam,schemac}

mapCF(SLOm,P,R) AND
Neutral (c == 0 AND SLOm)

cspCCR(schema,SLOm,P,R)
Variables {m,c}
Domains {schemam,schemac}

mapCF(SLOm,P,R) AND
Constraints ((c > 0 AND SLOm) OR

(c < 0 AND NOT(SLOm)))

Property 4 == SAT (cspNCF) AND ! SAT (cspCCR)

Property 5: CSP for Valid Compensable Guarantee (P3 & P4)
Property 5 == ! SAT (cspCCF) AND ! SAT (cspTSCF)

AND SAT (cspNFC) AND ! SAT (cspCCG)

Table A.2: CSPs to evaluate compensation properties for Compensation Functions and
Guarantee Terms

153

B

SCU OPTIMIZATION

155

Alone we can do so little, together we can do so much

Hellen Keller (1880-1968),

B.1 INTRODUCTION

Organizations conduct business processes with the support of different software
systems and different human teams. Teams are self-managed (individual composition,
skills, task solving plan,...) to adapt tasks requirements so they can be viewed and
modelled as Social Computing Units (SCUs)[56]. SCUs are virtual units representing
multiple expert human-based resources that use software services for executing com-
plex tasks, in scenarios which require adaptability, such as IT Maintenance services. In
these services, heterogeneous tasks are assigned on demand to SCUs so they cannot
be planned in advance. Service managers are responsible to assign SCUs consider-
ing, e.g., the current work load, tasks attributes or SCU expertise, to guarantee the
best possible overall service performance. As each SCU performance impacts in over-
all performance, managers require each team commits certain performance objectives
depending on the tasks to enforce overall service performance. These objectives are
defined through the relevant performance measures and their expected values. These
values can be different for each SCU.

Although different SCUs commit to similar performance measures (for tasks re-
lated to the same maintenance domain), they perform tasks with their own tools and
procedures. Therefore, to measure their performance and evaluate comparably the
accomplishment of each SCU commitment, managers require a system which deals
with their heterogeneity. In doing so, SCU performances can be compared to make
optimal decisions about the assignment of SCUs regarding to the overall and SCU-
specific performance. A poor commitment accomplishment implies resources waste,
delays or application of penalties. Therefore, in this paper, we propose an architec-
ture to manage and monitor the commitments, where the processing of measures is
decoupled from the extraction of performance information from different process-aware
information systems. With this architecture, we can extend the processing mechanism
to adapt different external tools independently of performance evaluation. And, lastly,

APPENDIX B. SCU OPTIMIZATION

the decision making regarding teams assignment can be based on this monitoring to
improve the achievement of service performance commitments. Our proposal is based
on the combination of different modelling languages (PPINOT [40] for defining metrics
and iAgree [122] for commitments) and the adaptation of the Governify ecosystem1 to
develop a commitment management platform. Overall, we contribute developing an
architecture to model, monitor and evaluate commitments from heterogeneous SCUs
and describing strategies to assign SCU based on runtime performance.

The remainder of this paper is structured as follows: In the next section, the ad-
dressed service is described together with current problems. Our proposal and archi-
tecture to manage the scenario is introduced in Section §B.3 and extended in section
§B.4 to describe the details of commitment monitoring and a SCU assignment strategy.
In section §B.5, we describe the supporting tools developed together the validation of
the assignment proposal. In section §B.6, we review the most relevant contributions
to address similar problems. Finally, conclusions and possible work extensions are
described in Section §B.7.

B.2 SCENARIO AND RESEARCH PROBLEMS

B.2.1 Maintenance Scenario

Public organizations manage different work teams to solve issues related with the
maintenance of information technologies in public services. The issues can be from
different expertise fields, such as network equipment maintenance, software operation
or computing infrastructure management. As teams are responsible for all stages in the
resolution of their assigned issues (planning, logistics and technical solution), they are
formed by multidisciplinary-skilled people. The composition of teams is self-managed
to dynamically adapt to their tasks requirements so they can be seen as SCUs. This
scenario is depicted in Figure §B.1.

To evaluate the service performance and support the SCU assignment decision
making, the managers define templates of guarantees related to different kind of is-
sues. Depending on their expertise fields, SCUs have to commit these guarantees
(Point 1 in Figure §B.1). A guarantee includes a clear definition of the concept to mea-
sure, the related metric unit and the expected goal values. They can optionally include
related penalties and rewards terms to enforce their accomplishment.

Table §B.1 describes two examples of guarantees. The former, K01, aims to avoid
that a number of issues remains too long open as it affects to work loads decision, re-
sources allocation, etc., regardless of the issue relevance. The latter, K02, focuses on
the expected resolution times and depends on the issue priority. Both of them include
penalties to compensate the public organization when the guarantees are not accom-

1http://governify.io

156

B.2. SCENARIO AND RESEARCH PROBLEMS

Commitments A Commitments B Commitments C Commitments D

SCU A SCU B SCU C SCU D

2

3

4

5 6
Information
Systems

JIRAHP PPMEmailBPMS JIRABPMS

Commitments Definition1

Commitment
Monitor

Template
Measures 1

Template
Measures 2

Resolution
Processes

SCUs

Issue #1

HP PPM

Issue #2

Figure B.1: Maintenance Service

plished. The penalties in these examples are expressed as percentages of the issue
resolution cost but other types of penalties and rewards can be defined [162].

The service provision starts when an issue is detected and an intervention is re-
quested (Point 2 in Figure §B.1). Prior to its resolution, each issue is assigned to a
specific SCU (Point 3 in Figure §B.1). The assignment of SCUs is decided by the service
managers in accordance with (i) the type of incidents, (ii) geographical location, or (iii)
work load of the teams. To evaluate the commitments for each SCU, the performance
of their assigned issues has to be monitored in accordance with its measures (Point 4 in
Figure §B.1). Although SCUs can have similar objectives and guarantees, each one fol-
lows its own procedures to solve issues by using its own process management system,
such as Jira, HP Project and Portfolio Management Software or CA Service Desk Man-
ager and other custom software (Point 5 in Figure §B.1). Therefore, monitoring and
evaluating the status of commitments requires also tackling with these heterogenous
information sources (Point 6 in Figure §B.1).

B.2.2 Research Problems

The main research goal is to provide a platform to monitor and evaluate the com-
mitments in such above-mentioned scenarios, supporting the decision making of SCUs
assignment to improve overall service performance. However, the monitoring of a

157

APPENDIX B. SCU OPTIMIZATION

ID Term Priority Exp. Time Objective Penalties
K01 Rate of ≤ 2% ≤ 2,00%⇒ 0%

Open ≥ 2,00%⇒ 1%
Issues
over
a week

K02 Rate of Very High Time < 2h Rate≥ 95% Rate≥ 95%⇒ 0%
Closed 90%≥ Rate < 95%⇒ 2%
Issues 85%≥ Rate < 90%⇒ 3%
In Time 0%≥ Rate < 85%⇒ 5%

High Time < 4h Rate≥ 90% Rate≥ 0,90⇒ 0%
85%≥ Rate < 90%⇒ 1,5%

80%≥ Rate < 85%⇒ 2%
0%≥ Rate < 80%⇒ 3%

Normal Time < 10h Rate≥ 82,5% Rate≥ 82,5%⇒ 0%
77,5%≥ Rate < 82,5%⇒ 0,75%
72,5%≥ Rate < 77,5%⇒ 1,25%

0%≥ Rate < 72,5%⇒ 1,75%

Table B.1: Guarantees for Long-Time Open Issues and In-Time Closed Issues

measure requires, first, handling with the custom SCU systems which are related to
that measure and, then, evaluate comparably their accomplishment to present an over-
all picture of all SCUs performance. The commitments are reviewed periodically to
update guarantee goals or update measures so a commitment model independent is
required to avoid ad-hoc monitoring mechanisms and support the maintenance of the
monitoring systems. To achieve this goal we need to address the following challenges:

• R1: Define and formalize commitment from different SCUs where guarantees are
described independently of supporting tools and single SCU goals.

• R2: Handle with the heterogeneity of process management systems to monitor
homogeneously performance measures.

• R3: Correlate the performance of different SCUs and make decisions about as-
signments to enforce overall commitment.

B.3 ARCHITECTURE FOR THE MANAGEMENT OF SCUS

B.3.1 Architecture

For the management and monitoring of commitments, we propose the architecture
depicted in Figure §B.2. In this architecture, we separate the management of commit-
ments (Commitment Manager), the computation of their related business measures

158

B.3. ARCHITECTURE FOR THE MANAGEMENT OF SCUS

Performance Management
Measure
ProcessorInformation

Extraction

Event
Store

Inform
ation

W
rapper A

Inform
ation

W
rapper B

System A

System B

System C

Commitment
Manager

Commitment
Registry API

C
om

m
itm

en
t

M
on

ito
r A

P
I

Process A

Process B

M #2

M #1

External
Systems

External
Systems

Dashboard

Cloud

Commitment for SCU#B:
Average
 (Time FROM Event Open

TO now > 1w
 AND
 Issue NOT Closed) < 5%

Information
Adaptor A

Commitment 1:
 Average Open Issue for a
Week < 5%

Commitment 2:
Average Closed in Time > 95%

Commitment for SCU#A:
Average
 (Count Closed Issue IF
 (Time FROM Event Open
 TO Event Close < Goal))
 > 95%

Commitment
Modelling

Comm D
#1 CommD

#2 Coom D
#3 Comm D

#B

SCUs Commitments

B

A

SCU Monitor

S
C

U
 A

P
I

SCU
Manager

Figure B.2: Architecture for Commitments management

(Measure Processor) and the extraction of performance information (Information Ex-
traction).

To support that commitments from different SCUs but similar guarantees (similar
guarantees have identical measures but can have different goal values) are processed
independently on the procedure each SCU performs, the measures are modelled with
abstract process events before registering them in the system (Commitment Modelling
in Figure §B.2). More details about this modelling is addressed in next section. Once
they are formalized in this abstract model, commitments are registered in the system
with the Commitment Manager (CM). This component also evaluates the accomplish-
ment of the guarantees included in the commitment document (support the decision
making for SCU assignment and composition). To evaluate guarantees, CM uses the
Measure Processor (MP) to monitor measure values. The processing of Measures relies
on the data retrieved by the Information Extraction component, which decouples the
access to the performance information from the processing of such information by MP.
Although MP requires the performance information on monitoring demand, there are
supporting tools where information cannot be retrieved on demand, but it is provided
as an event stream at runtime. In these cases, we can capture this information during
resolution process in an intermediate central log or repository so MP can query from
it on demand. This central store can use some standard language to describe events
(such as MXML or XES[80]) or data objects.

The Commitment Manager exposes the different operations to manage and monitor

159

APPENDIX B. SCU OPTIMIZATION

Commitments through two different APIs:

• Commitment Registry: Provides operations to create new, update existing or
delete commitments in the system. Evaluation of the consistency of commitments
is performed before deploying new or updated commitments.

• Commitment Monitor: The results of monitoring and evaluating KPIs can be
queried through this API. This API can be consumed for different purposes: (i)
Creating visual dashboard to make business management decisions, (ii) Auto-
mate claiming of penalties, etc.

Finally, the component SCU Monitor (SM) handles performance evaluation from
Commitment Manager, to support decision making for SCU management, such as SCU
assignment or composition. The operations computed by SM are provided through an
API (SM API). In this paper, we focus on the analysis of SCU assignment which is
developed in Section §B.4.

B.3.2 Abstracting Business Measures

Although each SCU solves issues with its own mechanisms, different SCUs can be
responsible to solve similar issues and commit similar guarantees, so we have to deal
with their heterogeneity. In order to achieve that, the guarantees in the commitments
have to be modelled with business measures independent on the issue resolution pro-
cess. Therefore, first step to formalize commitments is defining these measures in terms
of the abstract events related to them so we can develop the computation of measures
independent of the specific SCU.

For the guarantees introduced in Section §B.2, we identify the following events:

• Rate of Closed Issues in Time: To measure this, we require the timestamp when
Issues are open and when are closed to measure their duration. Therefore, we
identify two relevant events: "Open Issue" and "Close Issue" and their property
"Execution Time".

• Rate of Long-Time Open Issues: To measure this, we require the timestamp when
Issues are open and to know IF they are closed, so we also use the previously
identified events: "Open Issue" and "Close Issue" and data "Execution Time" for
"Open Issue".

Any event instance or data should include the case identification data, i.e. the pro-
cess instance identification, to properly process different events instances, counting
processes instances, etc. The Measure Processor bases measure computation on the log
of these abstract events and the wrappers map the specific events from each tool to the
abstract events. This computation is further discussed in Section §B.4.

160

B.4. COMMITMENT ANALYTICS AND SCU ADAPTATION

There are a number of proposals related to the abstraction of business processes,
which are reviewed in the Related Work Section.

B.4 COMMITMENT ANALYTICS AND SCU ADAPTATION

In this section, we detail the model handled by the Commitment Manager com-
ponent, how the measures are processed with the Measure Processor and Information
Extraction components and the decision making of SCU assignment by the SCU Mon-
itor component based on commitments accomplishment.

B.4.1 Commitment Management

Commitment documents are composed of a set of guarantees, which are defined
with their measures, target values and optional penalties. In computational domain,
there are a number of proposals related to the management of commitments between
service customers and providers, named service level agreements (SLAs). We use iA-
gree [122], a syntax consistent with WS-Agreement, a widely used standard for SLAs,
which supports the definition of guarantees with penalties and rewards clauses. WS-
Agreement also proposes the use of agreement templates, so the creation of new docu-
ments can be fastened by reusing and modifying existing commitment document and
avoiding manual errors as we can check the consistency of commitments with their
corresponding template.

To formalise measures with abstract events, we use PPINOT [40], a notation with
declarative syntax to define performance indicators over processes. PPINOT enables
the development of generic processors to compute measures based on the notation, as
in [45, 82]. These processors are related to PPINOT data model, where the following
base measures are defined: (i) the duration between two time instants (time measures);
(ii) the number of times something happens (count measures); (iii) the fulfilment of
certain condition in both running or finished process instances (condition measures);
and (iv) the value of a certain part of a data object (data measures). The base measures
can be aggregated for more than a single process case. Furthermore, new measures can
be defined as a mathematical function of one or more measures.

B.4.2 Monitoring and Processing Measures

Individual systems used by SCUs are very diverse so performance information can
be stored either in accesible database or provided via some API. However, in some
systems performance information persisted data is not accesible with provided API or
through querying database so they have be extended to get it.

Therefore, first step in information extraction is wrapping system to have access to

161

APPENDIX B. SCU OPTIMIZATION

the performance information. Wrappers are responsible for handling with the specific
mechanisms to extract information from each tool.

Once the information is retrieved, it should be consistent with the abstract events
defined in guarantee measures. In some cases, it can be directly matched with their
abstract events and used by Measure Processor (System B Wrapper in Figure §B.2)
but, in most of the cases, there is a conceptual gap between them. In these cases, we
require adapting it to our abstract events (System A Wrapper in Figure §B.2). In trivial
cases, the differences between the business process and the tool workflows are just
different status names (e.g.: "Open Issue" instead of "New Issue"). In other cases, one
single status in business process relates to a complex workflow in external systems or,
opposite, a business process fragment is just one step in the external system workflow.
Some proposals related to the matching of process models are described in the Related
Work section.

To evaluate measures, Measure Processor starts collecting their measure definitions
in Commitment Document to process the performance information.

Besides indicators, Measure Processor requires additional information to determine
how to connect to the proper information system to extract performance information.
This information is not included in the commitment documents, to decouple commit-
ment management from their measurement, so it is defined with a manifest or configu-
ration file. Through this configuration, Measure Processor connects to the correspond-
ing wrapper to retrieve performance information.

B.4.3 Assigning SCUs to Issues

Currently, assignment decisions are taken considering the SCU affinity to each issue
and its current availability. These two values are linked in Suitability expression and
the evaluation of this expression proposes the next assigned SCU. Suitability is defined
as:

Suitability = Affinity×Availability (B.1)

where Affinity is a value between 0 and 1 which relates the SCU expertise to a type
of issue (for example, a network maintenance SCU has an affinity value of 1.0 to solve
network issues while a microcomputer maintenance SCU can deal with these issues
but its affinity value is 0.3) and other criteria regarding static suitability for a specific
issue (e.g.: geographical suitability). The Affinity value is defined by service managers
considering previous experience and it is included in the commitment.

Availability depends on the SCU work load. This work load can be modelled as the
current issue assignments (t) regarding a predefined maximum work volume (n) per
SCU:

162

B.5. TOOLING SUPPORT AND VALIDATION

Availability = 1−Workload = 1− t
n

(B.2)

where the current number of issues assigned to the SCU divided by the maximum
simultaneous issues is the current work load.

Assignments just based on Affinity and Availability do not consider current SCU
performance so corrective decisions cannot be automatically taken to increase the com-
mitment achievement rate. With our proposal to automatically monitor guarantees,
the automatic evaluation of their accomplishment can be used to evaluate Suitability.
Therefore, we propose a new Suitability expression to assign SCUs:

SuitabilityG = Affinity×Availability×GPerformance (B.3)

where GPerformance measures the success rate of Guarantees accomplishment. To
define GPerformance, a first approach is the current average Guarantee accomplishment
rate, but more complex approaches could include the number of agreed commitments
(if customer has signed a high number of commitments with the same SCU reflects
high "confidence") or ponder last n accomplishments (e.g.: last year evaluations are
more important than previous ones).

Simple GPerformance definition could be:

GPerformance =
n

∑
i=0

Ki ∗Gi (B.4)

where Ki is a constant value to ponder the importance of Guarantee Gi. To normal-
ize GPerformance value, ∑n

i=0 Gi should be 1 and Gi should be a value between 0 and 1.
E.g. If the "Rate of Issues accomplished on time" has to be higher or equal than 95%,
the normalized value for Gi would be:

Gi =

{
1 if Rate≥ 95%
Rate

95 if Rate < 95%

B.5 TOOLING SUPPORT AND VALIDATION

This work is supported with a complete component stack inside Governify Plat-
form2. This stack includes the development of the proposed architecture, with Mea-
sure Processor, Commitment Manager and three Wrappers for required issue track
tools. The Commitment Registry API is integrated with an editor for commitments

2http://www.governify.io

163

http://www.governify.io

APPENDIX B. SCU OPTIMIZATION

Figure B.3: Measure monitoring with Governify

and the Commitment Monitor API is consumed by an online dashboard to graphically
depict the KPIs values, the commitment status, etc.

The Governify editor supports SLA iAgree syntax and is integrated with the Com-
mitment Registry API to create, update or delete new commitment documents in the
system. In the Governify website, there is extensive information about commitment
modelling and analysis with a suite of the examples used in this work. Figure §B.3
depicts the main Dashboard of Governify, where the monitoring and evaluation of
commitments are graphically displayed.

B.5.1 Assignment Simulation

The advantage of including the performance information to increase commitment
achievement is evaluated through the comparison of the commitment achievement
rate with assignment based on monitoring performance or just based on availability
and affinity.

We consider the following simulation for this evaluation. A set of different SCUs
related to similar kind of issues (i.e. similar commitments) are assigned to appearing
issues through a year period. Time to solve each Issue follows a normal distribution

164

B.5. TOOLING SUPPORT AND VALIDATION

(a) High Workload (b) Low Workload

Figure B.4: Comparison of SLA Achievement rate with Similar Affinity

with different average values to goal different average work loads to reflect different
situations. Average issues are defined daily so work load range for the full year signif-
icantly varies in different simulations. SCUs have different guarantee accomplishment
rate (from 0.6 to 0.95) defined at the beginning of the simulation and similar maximum
work loads. To simulate the impact of experience on productivity trend, we also con-
sider that when an SCU successfully solves a number of issues, 100, it improves their
accomplishment in a small percentage, 0.001.

The simulation goals measuring the improvement of the commitment achievement
rate considering performance with different Affinity and Work Loads. The overall
achievement rate is the average of achievement rate per issue.

Figure B.4(a) (a) depicts the results of the simulation for a set of SCUs with similar
affinity and a high issue load (over 70% of total maximum work load for all the SCUs).
Figure B.4(b) (b) depicts simulation with similar affinity and a low issue load (about
12% of total maximum work load).

With low work load, our proposal significantly improves the commitment achieve-
ment rate as the SCU with best performance gets the most of assignments so the overall
rate increases about 12% regarding the assignment considering just Affinity and Avail-
ability. However, when there is a high issue work load, the issues are assigned very
homogeneously as differences in Guarantee accomplishment is not so significant as
availability to impact in the assignment decisions. Therefore, the achievement rate is
just slightly higher (between 1-2%).

We also evaluate the the case where an SCU with lower predefined Affinity has
better accomplishment rate than SCUs with higher predefined Affinity (Affinity value
goes from 0.7 to 1.0).

Figure §B.5 (a) depicts the results of the simulation for a set of SCUs with a high
issue load (over 66% of total maximum work load for all the SCUs), and Figure §B.5

165

APPENDIX B. SCU OPTIMIZATION

(a) High Workload (b) Low Workload

Figure B.5: Comparison of SLA Achievement rate with Different Affinity

(b) depicts simulation with a low issue load (about 12% of total maximum workload).

With high issue work load, the commitment achievement rate is similar with or
without our proposal as Availability is more significant than Guarantee Accomplish-
ment or Affinity to assign issues. However, with low issue work load, our proposal in-
creases significantly increases accomplishment rate regarding the assignment based on
Availability, over 15%. Furthermore, the rate based in Availability decreases regarding
the same assignment with high work load. This behaviour is due to Affinity is defined
without considering current SCU performance so an SCU with bad performance but
high affinity decreases commitment overall rate. This situation should be considered
abnormal and it is partially solved with our proposal, as the current performance is
included in the assignment decision.

B.6 RELATED WORK

Approaches to handle service level agreements have been studied as part of the ser-
vice oriented architectures and to deal with heterogeneous processes as part of Busi-
ness Process abstraction and matching. The assignment of teams to tasks based on
different criteria have been also proposed in a number of works.

B.6.1 Managing Service Level Agreements

The analysis of performance in services has been handled in several works. In [14]
a quality model is proposed to describe service level agreements in computational ser-
vices architectures. Developing and extending this approach, we consider iAgree, a
framework to describe agreements and their terms (based on WS-Agreement recom-
mendation) with support for the different stages in the agreement lifecycle: analysis
of consistency in the agreement definition, compliance of agreement to provided tem-

166

B.6. RELATED WORK

plates or evaluation of service execution [129], [126]. These works are used in [45], with
a notation to define process performance indicators, to propose an agreement model
for business process as a service (BPaaS). In [154] and [24], Riveni and Candra describe
quality models for SCUs and Hybrid Computing Units (Units composed of Software
and Human). These two works consider the quality attributes of singles units to dy-
namically compose in SCUs. The defined attributes for these kind of units are reliabil-
ity, willingness and reputation. Furthermore, this model are proposed to dynamically
create human units and adapt their provision to service requirements [61]. However,
they do not deal with the accomplishment of explicit commitments and how to enforce
them.

B.6.2 Business Process Abstraction and Matching

Regarding the matching of process models with other models, including sequences
of events, it has been extensively studied with a number of proposals using different
techniques in the last years. Van der Aalst et al. [178] analyse the matching between
event sequence and database schemas and proposes a model to map database to event
log. And, in [180], a model is proposed to classify different process cases or instances
related to temporal window or properties of interest. Baier et al. , [9], perform the pro-
cess matching based on CSP models to relate process fragments with events logs. The
consistency of these fragments with the events sequences provides a metric for process
matching. The work from Klinkmüller et al. , [96], defines and evaluates the results
of applying some techniques techniques for process model matching based on labels
identification. In [190], Weidlich et al. build a framework which a list of mechanisms
("searchers") to match two different processes. Then the results are processed to select
the best "matches".In the last years, surveys in the form of contest have appeared to
compare different proposals for process matching as [97]. As it mentioned before, the
issue information is captured in different information systems. These systems manage
information with explicit or implicit event sequence. Regarding to handling heteroge-
nous technologies, [82] proposes different mechanisms to extract information from
process-aware systems.

Smirnov et al. , [166], introduce a survey about proposals related to Business Process
Abstraction, analysing the different aspects considered in these proposals: motivation,
techniques and a list of common use cases considered for abstraction in the proposals
analysed. And Eshuis et al. , [59], discuss about the definition of different views of
a process based on privacy considerations. So they propose different process projec-
tions increasing or adding activities following different projection models: black box,
grey box, glass box, open box and white box. And defines a metric to measure the
relationship between the models.

167

APPENDIX B. SCU OPTIMIZATION

B.6.3 SCU Assignment

A number of works have proposed different strategies for team selection. Some of
them, [11, 23, 55], propose a model to allocate teams based on their capabilities, work
load and task requirements. Dorn et al. , [52], and Datta et al. , [36], include other
aspects as the bonds or cohesiveness between individual resources to compose teams.
However, none of them consider the current team performance so they can be only
considered to ponder affinity and work load to assign or compose teams.

B.7 CONCLUSIONS AND FUTURE WORK

In this paper we present our architecture for the management of SCUs supported
by commitments. Our architecture decouples the extraction and processing of perfor-
mance information from heterogeneous tools and processes to monitor these commit-
ments. This proposal enables the creation and monitor of new commitments avoiding
the development of ad-hoc mechanisms to process their guarantees. We also detail
how to support the assignment of SCU based on the relationship of guarantees in or-
der to adapt to current performance. Our work presented in this paper is part of our
ongoing research on the enforcement and governance of services in public organiza-
tion. We plan to develop more complex decision taking strategies as ponder different
trends or dynamically reevaluate affinity to enforce these services during runtime.

168

C

COMPLETE SLA EXAMPLES

169

C.1 SLA FROM AMAZON EC2 IN iAgree SYNTAX

Amazon provides an SLA for all its cloud services. Here we include the example
of Amazon EC2, commented in the Chapter §3, which is the computation platform
service. As Amazon does not provide any facility to measure the guarantee metrics,
we can not include the mechanism to monitor them in the SLA.

id : Amazon_EC2
version : ’ 1 . 0 ’
type : agreement

contex t :
provider : Amazon
consumer : Consumer
v a l i d i t y :

timeZone : Europe/Madrid
i n i t i a l : ’2018−07−13T00 : 0 0 : 0 0 . 0 0 0 Z’

d e f i n i t i o n s :
schemas :

S e r v i c e C r e d i t :
descr ipt ion : Percentage to decrease in the next b i l l
type : in teger
uni t : ’% ’

scopes : { region }
terms :

p r i c i n g :
b i l l i n g :

period : monthly
i n i t i a l : ’2017−11−12T10 : 3 5 : 3 6 . 0 0 0 Z’
p e n a l t i e s :
− over :

S e r v i c e C r e d i t :
$ r e f : ’#/ contex t/ d e f i n i t i o n s /schemas / . . . ’

metr i cs :
MUP:

schema :
descr ipt ion : Monthly Uptime Percentage
type : in teger
minimum : 0
maximum : 100 .00
uni t : ’% ’
computer :

$ r e f : ’ ht tp : //aws/Amazon_MUP/ ’
guarantees :
− id : Amazon_GT

scope :
region : *

of :
− o b j e c t i v e : MUP >= 99 .95

scope :
region : *

with :

APPENDIX C. COMPLETE SLA EXAMPLES

MUP: { }
window :

type : s t a t i c
period : monthly
i n i t i a l : ’2016−07−13T00 : 0 0 : 0 0 . 0 0 0 Z’

p e n a l t i e s :
− over :

S e r v i c e C r e d i t :
$ r e f : ’#/ contex t/ d e f i n i t i o n s /schemas / . . . ’

of :
− value : ’10 ’

condi t ion : MUP >= 99 .00 && MUP < 99 .95
− value : ’30 ’

condi t ion : MUP < 99 .00

C.2 SLA FOR FI SERVICE IN iAgree SYNTAX

The SLA template for the Field Intervention service is exposed here. The metrics
refer to computer definitions which are included below.

id : FI_Service_SLA
version : ’ 1 . 0 ’
type : agreement template
contex t :

process :

Co
nt

ra
ct

or

APC

FI requested

FI request

Plan FI Perform FI

FI
documentation

required?
Create and
submit FI

documentation
Documentation

Accepted

Correction
required

FI closed

no

FI documentation Correction
request

FI documentation
acceptation

Calendar : Local
c o n f i g u r a t i o n s :

DocRequired : [d e f a u l t : none]
PlanFI . r e s p o n s i b l e : [# $ r o l e $ # ; d e f a u l t : manager]
Timetable : O f f i c e
Calendar : Local

d e f i n i t i o n s :
schemas :

MonthlyFeePercentage :
descr ipt ion : Percentage a f f e c t i n g next monthly b i l l
type : in teger
uni t : ’% ’

DocRequired : . . .
Timetable : . . .
Calendar : . . .

scopes : { }

170

C.2. SLA FOR FI SERVICE IN IAGREE SYNTAX

terms :
metr i cs :

AFIP :
schema :

descr ipt ion : Average F i e l d I n t e r v e n t i o n s f i n i s h e d on time
computer :

$ r e f : ’#/ contex t/ d e f i n i t i o n s /computers/AFIP ’
type : consumption

guarantees :
− id : G1

scope :
{ region , node , p r i o r i t y }

of :
− o b j e c t i v e : AFIP > 95%

window :
type : s t a t i c
period : monthly

p e n a l t i e s :
− over :

MonthlyFeePercentage
of :
− value : ’95 − AFIP ’

condi t ion : 90% <= AFIP < 95%
− value : ’10 ’

condi t ion : AFIP < 90\%

The configured SLA for contractor A is exposed here.

id : FI_Service_SLA_ContratorA
version : ’ 1 . 0 ’
type : agreement
contex t :

. . .
terms :

c o n f i g u r a t i o n s :
DocRequired : high
PlanFI . r e s p o n s i b l e : manager

metr ics :
AFIP :

schema :
descr ipt ion : Average F i e l d I n t e r v e n t i o n s f i n i s h e d on time

computer :
$ r e f : ’#/ contex t/ d e f i n i t i o n s /computers/AFIP ’
type : consumption

guarantees :
− id : G1

scope :
{ region , node , p r i o r i t y }

of :
− o b j e c t i v e : AFIP > 95%

window :
type : s t a t i c
period : monthly

p e n a l t i e s :
− over :

MonthlyFeePercentage
of :
− value : ’95 − AFIP ’

condi t ion : 90% <= AFIP < 95%
− value : ’10 ’

condi t ion : AFIP < 90\%

171

APPENDIX C. COMPLETE SLA EXAMPLES

C.2.1 Metric examples for FI service SLA in iAgree syntax

Here we include an excerpt of the computer definitions for the Field Intervention
SLA service. Regarding the metrics corresponding to the different levels of FI Severity,
we only include the computer for Low Severity interventions, LevelLow, as the rest, Lev-
elHigh, LevelHigh and LevelCritical, are very similar and they only differ in the precise
committed times.

"name " : " FI " ,
" descr ipt ion " : " Measures for F i e l d I n t e r v e n t i o n s SLA" ,
" d e f i n i t i o n s " : [

{
" kind " : " DerivedMultiInstanceMeasure " ,
" id " : " AFIP " ,
"name " : " Percentage of I n t e r v e n t i o n s f i n i s h e d on time " ,
" descr ipt ion " : " This metr ic i s the number of f i n i s h e d i n t e r v e n t i o n s which

were accomplished on time divided by the t o t a l number of
f i n i s h e d i n t e r v e n t i o n s . " ,

" func t ion " : " AFI_Measure / FI_Measure " ,
" includeEvidences " : f a l s e ,
" usedMeasureMap " : {

" FI_Measure " : {
" kind " : " AggregatedMeasure " ,
" aggregat ionFunct ion " : "Sum" ,
" baseMeasure " : {

" kind " : " CountMeasure " ,
"when " : {

" kind " : " TimeInstantCondit ion " ,
" appliesTo " : " Event " ,
" changesToState " : {

" EventSta te " : {
"name " : " FI c losed " ,
" s t a t e " : " t r i g g e r e d "

}
}

}
}

} ,
" AFI_Measure " : {

" kind " : " AggregatedMeasure " ,
" aggregat ionFunct ion " : "Sum" ,
" baseMeasure " : {

" kind " : " DerivedSingleInstanceMeasure " ,
" func t ion " : " LevelLow AND LevelMild AND LevelHigh AND L e v e l C r i t i c a l " ,
" usedMeasureMap " : {

" LevelLow " : {
" kind " : " DerivedSingleInstanceMeasure " ,
" func t ion " : " Level = Low => ResponseTime < 5 AND

PresenceTime < 60 AND
ResolutionTime < 8 AND
DocumentationTime < 48 " ,

" usedMeasureMap " : {
" Level " : {

" kind " : " DataMeasure " ,
" dataContentSe lec t ion " : {

" s e l e c t i o n " : " S e v e r i t y "
}

} ,
" ResponseTime " : {

" kind " : " TimeMeasure " ,
" unitOfMeasure " : " hours " ,
" from " : {

" kind " : " TimeInstantCondit ion " ,
" appliesTo " : " Event " ,

172

C.2. SLA FOR FI SERVICE IN IAGREE SYNTAX

" changesToState " : {
" EventSta te " : {

"name " : " FI requested " ,
" s t a t e " : " t r i g g e r e d "

}
}

} ,
" to " : {

" kind " : " TimeInstantCondit ion " ,
" appliesTo " : " Event " ,
" changesToState " : {

" EventSta te " : {
"name " : " Plan FI " ,
" s t a t e " : " a c t i v e "

}
}

} ,
" timeMeasureType " : "LINEAR" ,
" considerOnly " : " $ { schedule } " ,
" computeUnfinished " : f a l s e ,
" f i r s t T o " : f a l s e

} ,
" PresenceTime " : {

" kind " : " TimeMeasure " ,
" unitOfMeasure " : " hours " ,
" from " : {

" kind " : " TimeInstantCondit ion " ,
" appliesTo " : " Event " ,
" changesToState " : {

" EventSta te " : {
"name " : " Plan FI " ,
" s t a t e " : " complete "

}
}

} ,
" to " : {

" kind " : " TimeInstantCondit ion " ,
" appliesTo " : " Event " ,
" changesToState " : {

" EventSta te " : {
"name " : " Perform FI " ,
" s t a t e " : " a c t i v e "

}
}

} ,
" timeMeasureType " : "LINEAR" ,
" considerOnly " : " $ { schedule } " ,
" computeUnfinished " : f a l s e ,
" f i r s t T o " : f a l s e

} ,
" ResolutionTime " : {

" kind " : " TimeMeasure " ,
" unitOfMeasure " : " hours " ,
" from " : {

" kind " : " TimeInstantCondit ion " ,
" appliesTo " : " Event " ,
" changesToState " : {

" EventSta te " : {
"name " : " Perform FI " ,
" s t a t e " : " a c t i v e "

}
}

} ,
" to " : {

" kind " : " TimeInstantCondit ion " ,
" appliesTo " : " Event " ,
" changesToState " : {

173

APPENDIX C. COMPLETE SLA EXAMPLES

" EventSta te " : {
"name " : " FI c losed " ,
" s t a t e " : " t r i g g e r e d "

}
}

} ,
" timeMeasureType " : "LINEAR" ,
" s ingleInstanceAggFunct ion " : "Sum" ,
" considerOnly " : " $ { schedule } " ,
" computeUnfinished " : f a l s e ,
" f i r s t T o " : f a l s e

} ,
" DocumentationTime " : {

" kind " : " TimeMeasure " ,
" unitOfMeasure " : " hours " ,
" from " : {

" kind " : " TimeInstantCondit ion " ,
" appliesTo " : " Event " ,
" changesToState " : {

" EventSta te " : {
"name " : " Create and submit FI doc " ,
" s t a t e " : " a c t i v e "

}
}

} ,
" to " : {

" kind " : " TimeInstantCondit ion " ,
" appliesTo " : " Event " ,
" changesToState " : {

" EventSta te " : {
"name " : " Create and submit FI doc " ,
" s t a t e " : " complete "

}
}

} ,
" timeMeasureType " : "LINEAR" ,
" s ingleInstanceAggFunct ion " : "Sum" ,
" considerOnly " : " $ { schedule } " ,
" computeUnfinished " : f a l s e ,
" f i r s t T o " : f a l s e

}
}

}
. . .

}
}

}
}

}
]

}

C.3 FRAME AGREEMENT FOR WORK ORDERS SERVICE

The Frame Agreement for the IT Development outsourcing is interpreted as a SLA
for BPs, where the Work Order Lifecycle is the service process, which is described as a
simple Task list (as a pipeline) and for the sake of exemplification, we only include two
different guarantees. One related to the aggregated metric constraint, Budget, which
constraints the sum of costs of all the work orders, and an atomic metric constraint,

174

C.3. FRAME AGREEMENT FOR WORK ORDERS SERVICE

DevelopTime < 48hours, which is mandatory for all the work orders.
id : WO_Service_SLA
version : ’ 1 . 0 ’
type : agreement
contex t :

p i p e l i n e :
Plan
Develop
Document
Del iver

terms :
metr i cs :

Budget : 10000
DevelopTime :

schema :
descr ipt ion : Time to Develop a Work Order

computer :
r e f : ’#/ contex t/ d e f i n i t i o n s /schemas/developtime ’
type : consumption

EstimatedCosts :
schema :

descr ipt ion : Estimated Cost for unfinished Work Orders
computer :

r e f : ’#/ contex t/ d e f i n i t i o n s /schemas/ec ’
type : consumption

Fina lCos ts :
schema :

descr ipt ion : F i n a l Cost for f i n i s h e d Work Orders
computer :

r e f : ’#/ contex t/ d e f i n i t i o n s /schemas/rc ’
type : consumption

guarantees :
− id : G1

of :
− o b j e c t i v e : DevelopTime < 48

with :
window :

type : s t a t i c
period : monthly

− id : G2
of :
− o b j e c t i v e : EstimatedCosts + Fina lCos ts < Budget

with :
window :

type : s t a t i c
period : monthly

C.3.1 Metric examples for Frame Agreement in iAgree syntax

The metrics for the Frame Agreement are listed here.
"name " : "FA" ,

" descr ipt ion " : " Measures for Work Orders SLA" ,
" d e f i n i t i o n s " : [

{
" id " : " F ina lCos ts " ,
" kind " : " AggregatedMeasure " ,
" aggregat ionFunct ion " : "Sum" ,
" baseMeasure " : {

" kind " : " DataMeasure " ,
" dataContentSe lec t ion " : {

" s e l e c t i o n " : " F inalCost "
}

175

APPENDIX C. COMPLETE SLA EXAMPLES

}
} ,
{

" id " : " EstimatedCosts " ,
" kind " : " AggregatedMeasure " ,
" aggregat ionFunct ion " : "Sum" ,
" baseMeasure " : {

" kind " : " DataMeasure " ,
" dataContentSe lec t ion " : {

" s e l e c t i o n " : " EstimatedCost "
}

}
} ,
{

" id " : " DevelopTime " ,
" kind " : " TimeMeasure " ,
" unitOfMeasure " : " hours " ,
" from " : {

" kind " : " TimeInstantCondit ion " ,
" appliesTo " : " Event " ,
" changesToState " : {

" EventSta te " : {
"name " : " Develop WO" ,
" s t a t e " : " a c t i v e "

}
}

} ,
" to " : {

" kind " : " TimeInstantCondit ion " ,
" appliesTo " : " Event " ,
" changesToState " : {

" EventSta te " : {
"name " : " Develop WO" ,
" s t a t e " : " complete "

}
}

} ,
" timeMeasureType " : "LINEAR" ,
" considerOnly " : " $ { schedule } " ,
" computeUnfinished " : f a l s e ,
" f i r s t T o " : f a l s e

}
]

}

176

BIBLIOGRAPHY

177

[1] 8 European partners. Assess Grid. A project funded by the EC. https://

cit-server.cit.tu-berlin.de/trac/negmgr/wiki, 2010. (page 46).

[2] W. M. P. v. d. Aalst. Verification of workflow nets. In Proceedings of the 18th In-
ternational Conference on Application and Theory of Petri Nets, ICATPN ’97, pages
407–426, London, UK, UK, 1997. Springer-Verlag. ISBN 3-540-63139-9. URL
http://dl.acm.org/citation.cfm?id=647744.733919. (page 20).

[3] W. V. D. Aalst. The application of petri nets to workflow management, 1998.
(page 20).

[4] R. Accorsi, L. Lowis, and Y. Sato. Automated Certification for Compliant Cloud-
based Business Processes. Business & Information Systems Engineering, 3(3):145–
154, Apr. 2011. ISSN 1867-0202. doi: 10.1007/s12599-011-0155-7. URL http:

//link.springer.com/10.1007/s12599-011-0155-7. (page 127).

[5] M. Acher, P. Collet, P. Lahire, and R. France. Managing variability in workflow
with feature model composition operators. In B. Baudry and E. Wohlstadter, ed-
itors, Software Composition, pages 17–33, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg. ISBN 978-3-642-14046-4. (page 103).

[6] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata, J. Pruyne,
J. Rofrano, S. Tuecke, and M. Xu. Web services agreement specification (ws-
agreement). Specification from the Open Grid Forum (OGF)., 03 2007. URL
http://www.ogf.org/documents/GFD.107.pdf. (pages 3, 13, 31, 32, 39, 42, 78,
131, 142).

[7] C. Augenstein, A. Ludwig, and B. Franczyk. Integration of service models - pre-
liminary results for consistent logistics service management. In 2012 Annual SRII
Global Conference, pages 100–109, July 2012. doi: 10.1109/SRII.2012.22. (pages
53, 54, 76, 77).

[8] C. Augenstein, A. Ludwig, and B. Franczyk. Integration of service models - pre-
liminary results for consistent logistics service management. In 2012 Annual SRII
Global Conference, pages 100–109, July 2012. doi: 10.1109/SRII.2012.22. (page
118).

https://cit-server.cit.tu-berlin.de/trac/negmgr/wiki
https://cit-server.cit.tu-berlin.de/trac/negmgr/wiki
http://dl.acm.org/citation.cfm?id=647744.733919
http://link.springer.com/10.1007/s12599-011-0155-7
http://link.springer.com/10.1007/s12599-011-0155-7
http://www.ogf.org/documents/GFD.107.pdf

BIBLIOGRAPHY

[9] T. Baier, A. Rogge-Solti, M. Weske, and J. Mendling. Matching of events and
activities - an approach based on constraint satisfaction. In The Practice of Enter-
prise Modeling, Lecture Notes in Business Information Processing, pages 58–72.
Springer Berlin Heidelberg, 12 Nov. 2014. (page 167).

[10] H. Bar-Isaac and J. Deb. What is a good reputation? career concerns with
heterogeneous audiences. International Journal of Industrial Organization, 34:
44 – 50, 2014. ISSN 0167-7187. doi: https://doi.org/10.1016/j.ijindorg.
2014.02.012. URL http://www.sciencedirect.com/science/article/pii/

S0167718714000253. (pages 55, 76, 77, 135, 151).

[11] A. Baykasoglu, T. Dereli, and S. Das. PROJECT TEAM SELECTION USING
FUZZY OPTIMIZATION APPROACH. Cybern. Syst., 38(2):155–185, 2007. (page
168).

[12] J. Becker, P. Delfmann, and R. Knackstedt. Adaptive Reference Modeling: Integrating
Configurative and Generic Adaptation Techniques for Information Models, pages 27–
58. Physica-Verlag HD, Heidelberg, 2007. ISBN 978-3-7908-1966-3. doi: 10.1007/
978-3-7908-1966-3_2. URL https://doi.org/10.1007/978-3-7908-1966-3_2.
(page 95).

[13] M. Benaissa, J. Boukachour, and A. Benabdelhafid. Web service in integrated
logistics information system. In Logistics and Industrial Informatics, 2007. LINDI
2007. International Symposium on, pages 173–178, 2007. doi: 10.1109/LINDI.2007.
4343534. (page 118).

[14] P. Bianco, G. A. Lewis, and P. Merson. Service level agreements in service-
oriented architecture environments. Technical report, DTIC Document, 2008.
(page 166).

[15] W. Bing and L. Zhongying. Decision-making in optimizing the contract of third
party logistic. In 2009 6th International Conference on Service Systems and Ser-
vice Management, pages 444–449, June 2009. doi: 10.1109/ICSSSM.2009.5174924.
(page 54).

[16] W. Bing and L. Zhongying. Decision-making in optimizing the contract of third
party logistic. In Service Systems and Service Management, 2009. ICSSSM ’09.
6th International Conference on, pages 444–449, 2009. doi: 10.1109/ICSSSM.2009.
5174924. (page 118).

[17] N. Bobroff, A. Kochut, and K. Beaty. Dynamic placement of virtual machines
for managing sla violations. In 2007 10th IFIP/IEEE International Symposium on
Integrated Network Management, pages 119–128, May 2007. doi: 10.1109/INM.
2007.374776. (page 56).

[18] C. Braga, F. Chalub, and A. Sztajnberg. A Formal Semantics for a Quality of
Service Contract Language. Electronic Notes in Theoretical Computer Science, 203
(7):103–120, 2009. (page 31).

178

http://www.sciencedirect.com/science/article/pii/S0167718714000253
http://www.sciencedirect.com/science/article/pii/S0167718714000253
https://doi.org/10.1007/978-3-7908-1966-3_2

BIBLIOGRAPHY

[19] I. Brandic, D. Music, P. Leitner, and S. Dustdar. Vieslaf framework: Enabling
adaptive and versatile sla-management. In J. Altmann, R. Buyya, and O. F.
Rana, editors, Grid Economics and Business Models, pages 60–73, Berlin, Heidel-
berg, 2009. Springer Berlin Heidelberg. ISBN 978-3-642-03864-8. (pages 57, 92,
93).

[20] M. G. Buscemi and U. Montanari. Cc-pi: A constraint-based language for speci-
fying service level agreements. In European Symposium on Programming (ESOP),
4421 of LNCS, pages 18–32, 2007. (page 52).

[21] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud computing
and emerging it platforms: Vision, hype, and reality for delivering computing as
the 5th utility. Future Generation Computer Systems, 25(6):599 – 616, 2009. ISSN
0167-739X. doi: https://doi.org/10.1016/j.future.2008.12.001. URL http://

www.sciencedirect.com/science/article/pii/S0167739X08001957. (page
56).

[22] R. Buyya, S. K. Garg, and R. N. Calheiros. Sla-oriented resource provisioning for
cloud computing: Challenges, architecture, and solutions. In 2011 International
Conference on Cloud and Service Computing, pages 1–10, Dec 2011. doi: 10.1109/
CSC.2011.6138522. (page 56).

[23] C. Cabanillas, M. Resinas, J. Mendling, and A. Ruiz-Cortés. Automated team
selection and compliance checking in business processes. In Proceedings of the
2015 International Conference on Software and System Process, pages 42–51, 2015.
(page 168).

[24] M. Candra, H. L. Truong, and S. Dustdar. Analyzing reliability in hybrid com-
pute units. In 1st IEEE International Conference on Collaboration and Internet Com-
puting October 28 - October 30, 2015, Hangzhou, China, 2015. (page 167).

[25] J. Cardoso, A. Barros, N. May, and U. Kylau. Towards a unified service descrip-
tion language for the internet of services: Requirements and first developments.
In Services Computing (SCC), 2010 IEEE International Conference on, pages 602–609,
July 2010. doi: 10.1109/SCC.2010.93. (pages 54, 76, 77).

[26] Carlos Müller et al. Supporting Compensations with WS-Agreement. In V Con-
greso Espanol de Informática (CEDI 2016) - XII Jornada de Ciencia e Ingeniería de Ser-
vicios, 2016. URL https://biblioteca.sistedes.es/wp-content/uploads/

2016/09/JCIS2016_paper_9.pdf. (page 149).

[27] F. Casati, S. Castano, and M. Fugini. Managing workflow authorization con-
straints through active database technology. Information Systems Frontiers, 3
(3):319–338, Sep 2001. ISSN 1572-9419. doi: 10.1023/A:1011461409620. URL
https://doi.org/10.1023/A:1011461409620. (page 17).

179

http://www.sciencedirect.com/science/article/pii/S0167739X08001957
http://www.sciencedirect.com/science/article/pii/S0167739X08001957
https://biblioteca.sistedes.es/wp-content/uploads/2016/09/JCIS2016_paper_9.pdf
https://biblioteca.sistedes.es/wp-content/uploads/2016/09/JCIS2016_paper_9.pdf
https://doi.org/10.1023/A:1011461409620

BIBLIOGRAPHY

[28] G. Chase, A. Rosenberg, R. Omar, J. Taylor, and M. Rosing. Applying Real-World
BPM in an SAP Environment. SAP Press. Galileo Press, 2011. ISBN 9781592293438.
(page 22).

[29] T. Chau, V. Muthusamy, H.-A. Jacobsen, E. Litani, A. Chan, and P. Coulthard.
Automating sla modeling. In Proceedings of the 2008 Conference of the Center for
Advanced Studies on Collaborative Research: Meeting of Minds, CASCON ’08, pages
10:126–10:143, New York, NY, USA, 2008. ACM. doi: 10.1145/1463788.1463802.
URL http://doi.acm.org/10.1145/1463788.1463802. (pages 53, 77, 91).

[30] M. Cho, M. Song, C. Müller, P. Fernandez, A. del Río-Ortega, M. Resinas, and
A. Ruiz-Cortés. A new framework for defining realistic slas: An evidence-based
approach. In International Conference on Business Process Management, pages 19–
35. Springer, 2017. (page 133).

[31] M. Comuzzi and B. Pernici. A framework for qos-based web service contracting.
ACM Trans. Web, 3:10:1–10:52, 2009. ISSN 1559-1131. (pages 31, 39).

[32] A. Correia, F. Brito e Abreu, and V. Amaral. Slalom: a language for sla specifica-
tion and monitoring. 09 2011. (page 55).

[33] K. Czajkowski, I. Foster, C. Kesselman, V. Sander, and S. Tuecke. Snap: A
protocol for negotiating service level agreements and coordinating resource
management in distributed systems. In D. G. Feitelson, L. Rudolph, and
U. Schwiegelshohn, editors, Job Scheduling Strategies for Parallel Processing, pages
153–183, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg. ISBN 978-3-540-
36180-0. (page 56).

[34] D. Daly, G. Kar, and W. H. Sanders. Modeling of service-level agreements for
composed services. In M. Feridun, P. Kropf, and G. Babin, editors, Management
Technologies for E-Commerce and E-Business Applications, pages 4–15, Berlin, Hei-
delberg, 2002. Springer Berlin Heidelberg. ISBN 978-3-540-36110-7. (pages 53,
54, 76, 77).

[35] A. V. Dastjerdi, S. G. H. Tabatabaei, and R. Buyya. A dependency-aware
ontology-based approach for deploying service level agreement monitoring ser-
vices in cloud. Softw. Pract. Exper., 42(4):501–518, Apr. 2012. ISSN 0038-0644. doi:
10.1002/spe.1104. URL http://dx.doi.org/10.1002/spe.1104. (page 53).

[36] A. Datta, J. Tan Teck Yong, and A. Ventresque. T-RecS: Team recommendation
system through expertise and cohesiveness. In Proceedings of the 20th International
Conference Companion on World Wide Web, WWW ’11, pages 201–204, New York,
NY, USA, 2011. ACM. (page 168).

[37] T. H. Davenport. Process Innovation: Reengineering Work Through Information Tech-
nology. Harvard Business School Press, Boston, MA, USA, 1993. ISBN 0-87584-
366-2. (page 18).

180

http://doi.acm.org/10.1145/1463788.1463802
http://dx.doi.org/10.1002/spe.1104

BIBLIOGRAPHY

[38] D. Davide Lamanna, J. Skene, and W. Emmerich. Slang: a language for defining
service level agreements. In Distributed Computing Systems, 2003. FTDCS 2003.
Proceedings. The Ninth IEEE Workshop on Future Trends of, pages 100–106, 2003.
doi: 10.1109/FTDCS.2003.1204317. (page 50).

[39] G. Decker. Design and analysis of process choreographies. In PhD thesis, Univer-
sity of Potsdam, pages 4, 16, 19, 2009. (pages 18, 19).

[40] A. del Río-Ortega. On the Definition and Analysis of Process Performance Indicators.
PhD thesis, University of Seville, 2012. (pages 86, 156, 161).

[41] A. del-Río-Ortega, M. Resinas, C. Cabanillas, and A. Ruiz-Cortés. On the Defi-
nition and Design-time Analysis of Process Performance Indicators. Information
Systems, 38(4):470–490, 2012. (pages xv, 13, 23, 26, 66, 67, 78).

[42] A. del-Río-Ortega, C. Cabanillas, M. Resinas, and A. Ruiz-Cortés. PPINOT tool
suite: A performance management solution for process-oriented organisations.
In Proc. of the 11th International Conference on Service-Oriented Computing (ICSOC),
pages 675–678, 2013. (pages 23, 67).

[43] A. del-Río-Ortega, M. Resinas, C. Cabanillas, and A. Ruiz-Cortés. Defining
and analysing resource-aware process performance indicators. In Proc. of the
CAiSE’13 Forum at the 25th International Conference on Advanced Information Sys-
tems Engineering (CAiSE), pages 57–64, 2013. (page 75).

[44] A. del-Río-Ortega, M. Resinas, A. Durán, and A. Ruiz-Cortés. Using templates
and linguistic patterns to define process performance indicators. Enterprise In-
formation Systems, In Press, 2014. doi: 10.1080/17517575.2013.867543. (pages 23,
67, 69).

[45] A. del Río-Ortega, A. M. Gutierrez, A. Durán, M. Resinas, and A. Ruiz-Cortés.
Modelling service level agreements for business process outsourcing services.
In International Conference on Advance Information Systems Engineering (CAiSE),
volume 9097 of LNCS, pages 485–500, 2015. (pages 161, 167).

[46] A. del-Río-Ortega, A. M. Gutiérrez, A. D. Toro, M. Resinas, and A. R. Cortés.
Modelling service level agreements for business process outsourcing services.
In Advanced Information Systems Engineering - 27th International Conference,
CAiSE 2015, Stockholm, Sweden, June 8-12, 2015, Proceedings, pages 485–500,
2015. doi: 10.1007/978-3-319-19069-3_30. URL http://dx.doi.org/10.1007/

978-3-319-19069-3_30. (page 9).

[47] A. del Río-Ortega, M. Resinas, A. Durán, B. Bernárdez, A. Ruiz-Cortés, and
M. Toro. Visual ppinot: A graphical notation for process performance in-
dicators. Business & Information Systems Engineering, Jun 2017. ISSN 1867-
0202. doi: 10.1007/s12599-017-0483-3. URL https://doi.org/10.1007/

s12599-017-0483-3. (page 65).

181

http://dx.doi.org/10.1007/978-3-319-19069-3_30
http://dx.doi.org/10.1007/978-3-319-19069-3_30
https://doi.org/10.1007/s12599-017-0483-3
https://doi.org/10.1007/s12599-017-0483-3

BIBLIOGRAPHY

[48] A. del-Río-Ortega, M. Resinas, and A. Ruiz-Cortés. Defining process perfor-
mance indicators: An ontological approach. In Proc. of the 18th International
Conference on Cooperative Information Systems (CoopIS). OTM 2010, Part I, pages
555–572, October, 2010. (page 22).

[49] A. Delgado, B. Weber, F. Ruiz, I. G. R. de Guzmán, and M. Piattini. An inte-
grated approach based on execution measures for the continuous improvement
of business processes realized by services. Information & Software Technology, 56
(2):134–162, 2014. (page 66).

[50] Dominic Battre et al. WS-Agreement Specification Version 1.0 Experience Docu-
ment (v. gfd-e.167), 2010. OGF - Grid Resource Allocation Agreement Protocol
WG. (page 46).

[51] G. T. Doran. There’s a s.m.a.r.t. way to write management’s goals and objectives.
Management Review, 70(11):35–36, 1981. (page 22).

[52] C. Dorn, F. Skopik, D. Schall, and S. Dustdar. Interaction mining and skill-
dependent recommendations for multi-objective team composition. Data Knowl.
Eng., 70(10):866–891, Oct. 2011. (page 168).

[53] H. Dresner. Business activity monitoring: BAM architecture, 2003. (page 21).

[54] M. Dumas, W. M. P. van der Aalst, and A. H. M. ter Hofstede. Process Modeling
Using Event-driven Process Chains. Wiley, Hoboken, New Jersey, 2005. (page 26).

[55] S. Dustdar. Caramba—A Process-Aware collaboration system supporting ad hoc
and collaborative processes in virtual teams. Distributed and Parallel Databases, 15
(1):45–66. (page 168).

[56] S. Dustdar and K. Bhattacharya. The social compute unit. Internet Computing,
IEEE, 15(3):64–69, May 2011. (page 155).

[57] J. Eder and W. Liebhart. Workflow recovery. In Proceedings of the First IFCIS In-
ternational Conference on Cooperative Information Systems, COOPIS ’96, pages 124–,
Washington, DC, USA, 1996. IEEE Computer Society. ISBN 0-8186-7505-5. URL
http://dl.acm.org/citation.cfm?id=525042.793753. (page 18).

[58] V. C. Emeakaroha, I. Brandic, M. Maurer, and S. Dustdar. Low level metrics
to high level slas - lom2his framework: Bridging the gap between monitored
metrics and sla parameters in cloud environments. In 2010 International Con-
ference on High Performance Computing Simulation, pages 48–54, June 2010. doi:
10.1109/HPCS.2010.5547150. (pages 57, 92, 93).

[59] R. Eshuis, A. Norta, O. Kopp, and E. Pitkanen. Service outsourcing with process
views. IEEE Trans. Serv. Comput., 8(1):136–154, Jan. 2015. (page 167).

[60] P. Fernandez. On the Automated Procurement of Service Agreements. PhD thesis,
University of Seville, 2013. (pages 3, 39, 79, 123).

182

http://dl.acm.org/citation.cfm?id=525042.793753

BIBLIOGRAPHY

[61] P. Fernandez, H.-L. Truong, S. Dustdar, and A. Ruiz-Cortes. Programming elas-
ticity and commitment in dynamic processes. Programming Elasticity and Com-
mitment in Dynamic Processes, (2):68–74, 1 Mar. 2015. (pages 132, 167).

[62] J. Forschungszentrum, Fraunhofer, CoreGRID, and Viola. UNICORE-VIOLA,
2009. http://packcs-e0.scai.fraunhofer.de/mss-project/wsag4j/index.

html. (page 46).

[63] A. Forster, G. Engels, T. Schattkowsky, and R. V. D. Straeten. Verification of busi-
ness process quality constraints based on visual process patterns. In First Joint
IEEE/IFIP Symposium on Theoretical Aspects of Software Engineering (TASE ’07),
pages 197–208, June 2007. doi: 10.1109/TASE.2007.56. (pages 76, 77, 91).

[64] Y. Foundation. YAWL 4.1 User Manual. 2016. (page 27).

[65] G. Grabarnik et al. Management of service process qos in a service provider -
service supplier environment. In IEEE Int. Conf. on Ent. Comp., E-Commerce, and
E-Services. (CEC/EEE)., pages 543–550, July 2007. doi: 10.1109/CEC-EEE.2007.63.
(pages 132, 151).

[66] A. Gamez-Diaz, P. Fernandez, and A. Ruiz-Cortes. An analysis of restful apis
offerings in the industry. In International Conference on Service-Oriented Computing,
pages 589–604. Springer, 2017. (page 132).

[67] Y. Gao, H. Guan, Z. Qi, T. Song, F. Huan, and L. Liu. Service level agreement
based energy-efficient resource management in cloud data centers. Computers
and Electrical Engineering, 40(5):1621 – 1633, 2014. ISSN 0045-7906. doi: https://
doi.org/10.1016/j.compeleceng.2013.11.001. URL http://www.sciencedirect.

com/science/article/pii/S0045790613002656. (page 56).

[68] J. M. Garcia. Improving Semantic Web Services Discovery and Ranking: A lightweight,
integrated approach. PhD thesis, University of Seville, 2012. (page 39).

[69] J. M. García, C. Pedrinaci, M. Resinas, J. Cardoso, P. Fernández, and A. Ruiz-
Cortés. Linked usdl agreement: Effectively sharing semantic service level
agreements on the web. In Proceedings of the 2015 IEEE International Conference
on Web Services, ICWS ’15, pages 137–144, Washington, DC, USA, 2015. IEEE
Computer Society. ISBN 978-1-4673-7272-5. doi: 10.1109/ICWS.2015.28. URL
http://dx.doi.org/10.1109/ICWS.2015.28. (page 51).

[70] J. M. García, P. Fernandez, C. Pedrinaci, M. Resinas, J. S. Cardoso, and A. R.
Cortés. Modeling service level agreements with linked USDL agreement. IEEE
Trans. Services Computing, 10(1):52–65, 2017. doi: 10.1109/TSC.2016.2593925.
URL http://dx.doi.org/10.1109/TSC.2016.2593925. (pages 51, 76, 77, 91).

[71] J. M. García, O. Martín-Díaz, P. Fernandez, A. Ruiz-Cortés, and M. Toro. Au-
tomated analysis of cloud offerings for optimal service provisioning. In Inter-
national Conference on Service-Oriented Computing, pages 331–339. Springer, 2017.
(page 132).

183

http://packcs-e0.scai.fraunhofer.de/mss-project/wsag4j/index.html
http://packcs-e0.scai.fraunhofer.de/mss-project/wsag4j/index.html
http://www.sciencedirect.com/science/article/pii/S0045790613002656
http://www.sciencedirect.com/science/article/pii/S0045790613002656
http://dx.doi.org/10.1109/ICWS.2015.28
http://dx.doi.org/10.1109/TSC.2016.2593925

BIBLIOGRAPHY

[72] S. K. Garg, S. K. Gopalaiyengar, and R. Buyya. Sla-based resource provisioning
for heterogeneous workloads in a virtualized cloud datacenter. In Proceedings of
the 11th International Conference on Algorithms and Architectures for Parallel Process-
ing - Volume Part I, ICA3PP’11, pages 371–384, Berlin, Heidelberg, 2011. Springer-
Verlag. ISBN 978-3-642-24649-4. URL http://dl.acm.org/citation.cfm?id=

2075416.2075451. (page 56).

[73] Gartner, Inc. Business Process as a Service (BPaaS). Gartner
IT Glossary, 2013. URL http://www.gartner.com/it-glossary/

business-process-as-a-service-bpaas. Available from http://www.

gartner.com/it-glossary/business-process-as-a-service-bpaas. (page
4).

[74] N. Goel, N. Kumar, and R. K. Shyamasundar. SLA monitor: A system for dy-
namic monitoring of adaptive web services. In 2011 Ninth IEEE European Confer-
ence on Web Services (ECOWS), pages 109–116, 2011. doi: 10.1109/ECOWS.2011.
22. (page 118).

[75] J. Goo. Structure of service level agreements (sla) in it outsourcing: The con-
struct and its measurement. Information Systems Frontiers, 12(2):185–205, Apr
2010. ISSN 1572-9419. doi: 10.1007/s10796-008-9067-6. URL https://doi.org/

10.1007/s10796-008-9067-6. (page 53).

[76] F. Gottschalk, W. M. P. Van Der Aalst, M. H. Jansen-Vullers, and M. La Rosa.
Configurable workflow models. International Journal of Cooperative Information
Systems, 17(02):177–221, 2008. doi: 10.1142/S0218843008001798. URL https:

//www.worldscientific.com/doi/abs/10.1142/S0218843008001798. (pages
95, 102).

[77] D. Grigori, F. Casati, M. Castellanos, U. Dayal, M. Sayal, and M.-C. Shan. Busi-
ness process intelligence. Computers in Industry, 53(3):321 – 343, 2004. ISSN
0166-3615. doi: https://doi.org/10.1016/j.compind.2003.10.007. URL http:

//www.sciencedirect.com/science/article/pii/S0166361503001994. Pro-
cess / Workflow Mining. (pages 21, 28).

[78] P. Grubitzsch, I. Braun, H. Fichtl, T. Springer, T. Hara, and A. Schill. ML-
SLA: multi-level service level agreements for highly flexible iot services. In
IEEE International Congress on Internet of Things, ICIOT 2017, Honolulu, HI, USA,
June 25-30, 2017, pages 113–120, 2017. doi: 10.1109/IEEE.ICIOT.2017.20. URL
https://doi.org/10.1109/IEEE.ICIOT.2017.20. (page 54).

[79] A. Grzech and P. Rygielski. Translations of service level agreement in systems
based on service oriented architecture. In R. Setchi, I. Jordanov, R. J. Howlett,
and L. C. Jain, editors, Knowledge-Based and Intelligent Information and Engineer-
ing Systems, pages 523–532, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.
ISBN 978-3-642-15390-7. (page 53).

184

http://dl.acm.org/citation.cfm?id=2075416.2075451
http://dl.acm.org/citation.cfm?id=2075416.2075451
http://www.gartner.com/it-glossary/business-process-as-a-service-bpaas
http://www.gartner.com/it-glossary/business-process-as-a-service-bpaas
http://www.gartner.com/it-glossary/business-process-as-a-service-bpaas
http://www.gartner.com/it-glossary/business-process-as-a-service-bpaas
https://doi.org/10.1007/s10796-008-9067-6
https://doi.org/10.1007/s10796-008-9067-6
https://www.worldscientific.com/doi/abs/10.1142/S0218843008001798
https://www.worldscientific.com/doi/abs/10.1142/S0218843008001798
http://www.sciencedirect.com/science/article/pii/S0166361503001994
http://www.sciencedirect.com/science/article/pii/S0166361503001994
https://doi.org/10.1109/IEEE.ICIOT.2017.20

BIBLIOGRAPHY

[80] C. W. Gunther. XES standard definition. www. xes-standard. org, 2009. Cited on,
page 72. (page 159).

[81] A. Gutiérrez, C. Cassales Marquezan, M. Resinas, A. Metzger, A. Ruiz-Cortés,
and K. Pohl. Extending ws-agreement to support automated conformity check
on transport and logistics service agreements. In S. Basu, C. Pautasso, L. Zhang,
and X. Fu, editors, Service-Oriented Computing, volume 8274 of Lecture Notes in
Computer Science, pages 567–574. Springer Berlin Heidelberg, 2013. ISBN 978-3-
642-45004-4. doi: 10.1007/978-3-642-45005-1_47. URL http://dx.doi.org/10.

1007/978-3-642-45005-1_47. (pages 4, 105, 107, 114, 118).

[82] A. M. Gutierrez, M. Resinas, A. del Río-Ortega, and A. R. Cortés. On the calcu-
lation of process performance indicators. In XI Jornadas de Ciencia e Ingeniería de
Servicios, 09/2015 2015. (pages 161, 167).

[83] Y. h. Mai, L. x. Miao, C. p. Teo, and X. Qingqing. Geometric approach for logis-
tics outsoursing contracting. In 2010 8th International Conference on Supply Chain
Management and Information, pages 1–7, Oct 2010. (page 54).

[84] A. Hallerbach, T. Bauer, and M. Reichert. Configuration and Management of Process
Variants, volume 1, pages 237–255. 05 2010. (page 95).

[85] M. Hammer and J. Champy. Reengineering the Corporation. HarperCollins,
1999. ISBN 9780887306877. URL https://books.google.es/books?id=

4UMXTn3NDisC. (pages 17, 18).

[86] A. F. M. Hani, I. V. Paputungan, and M. F. Hassan. Renegotiation in service
level agreement management for a cloud-based system. ACM Comput. Surv., 47
(3):51:1–51:21, Apr. 2015. ISSN 0360-0300. doi: 10.1145/2716319. URL http:

//doi.acm.org/10.1145/2716319. (page 56).

[87] M. Hayes and S. Shah. Hourglass: A library for incremental processing on
hadoop. In Big Data, 2013 IEEE International Conference on, pages 742–752, Oct
2013. doi: 10.1109/BigData.2013.6691647. (page 87).

[88] M. Hedwig, S. Malkowski, and D. Neumann. Dynamic service level agreement
management for efficient operation of elastic information systems. In Interna-
tional Conference on Information Systems (ICIS 2011), 2011. (page 57).

[89] A. R. Hevner, S. T. March, J. Park, and S. Ram. Design science in information
systems research. MIS Q., 28(1):75–105, Mar. 2004. ISSN 0276-7783. URL http:

//dl.acm.org/citation.cfm?id=2017212.2017217. (page 8).

[90] Y. Hoffner, S. Field, P. Grefen, and H. Ludwig. Contract-driven creation and
operation of virtual enterprises. Computer Networks, 37(2):111–136, 2001. (page
39).

185

http://dx.doi.org/10.1007/978-3-642-45005-1_47
http://dx.doi.org/10.1007/978-3-642-45005-1_47
https://books.google.es/books?id=4UMXTn3NDisC
https://books.google.es/books?id=4UMXTn3NDisC
http://doi.acm.org/10.1145/2716319
http://doi.acm.org/10.1145/2716319
http://dl.acm.org/citation.cfm?id=2017212.2017217
http://dl.acm.org/citation.cfm?id=2017212.2017217

BIBLIOGRAPHY

[91] S. Huang, H. Cai, and B. Xu. A resource state-based business process control
mechanism for bpm. In 2010 IEEE International Conference on Progress in Informat-
ics and Computing, volume 2, pages 1157–1161, Dec 2010. doi: 10.1109/PIC.2010.
5687985. (page 20).

[92] S. Kailasam, N. Gnanasambandam, J. Dharanipragada, and N. Sharma. Optimiz-
ing service level agreements for autonomic cloud bursting schedulers. In 2010
39th International Conference on Parallel Processing Workshops, pages 285–294, Sept
2010. doi: 10.1109/ICPPW.2010.54. (page 56).

[93] K. Kearney, F. Torelli, and C. Kotsokalis. Sla*: An abstract syntax for service
level agreements. In Grid Computing (GRID), 2010 11th IEEE/ACM International
Conference on, pages 217–224, 2010. doi: 10.1109/GRID.2010.5697973. (pages 50,
76, 77, 91).

[94] A. Keller and H. Ludwig. The wsla framework: Specifying and monitoring ser-
vice level agreements for web services. Journal of Network and Systems Manage-
ment, 11(1):57–81, 2003. ISSN 1064-7570. doi: 10.1023/A:1022445108617. URL
http://dx.doi.org/10.1023/A:1022445108617. (page 38).

[95] A. Kieninger, D. Baltadzhiev, B. Schmitz, and G. Satzger. Towards Service
Level Engineering for IT Services: Defining IT Services from a Line of Busi-
ness Perspective. 2011 Annual SRII Global Conference, pages 759–766, Mar.
2011. doi: 10.1109/SRII.2011.83. URL http://ieeexplore.ieee.org/lpdocs/

epic03/wrapper.htm?arnumber=5958157. (pages 54, 76, 77).

[96] C. Klinkmüller, I. Weber, J. Mendling, H. Leopold, and A. Ludwig. Increasing re-
call of process model matching by improved activity label matching. In Business
Process Management, Lecture Notes in Computer Science, pages 211–218. Springer
Berlin Heidelberg, 2013. (page 167).

[97] J. Kolb and Others. The process model matching contest 2015. (page 167).

[98] B. Koller, H. M. Frutos, and G. Laria. Service level agreements in brein. In
P. Wieder, R. Yahyapour, and W. Ziegler, editors, Grids and Service-Oriented Ar-
chitectures for Service Level Agreements, pages 157–165. Springer US, 2010. ISBN
978-1-4419-7320-7. URL http://dx.doi.org/10.1007/978-1-4419-7320-7_

14. 10.1007/978-1-4419-7320-7 14. (page 39).

[99] C. Kotsokalis, R. Yahyapour, and M. A. Rojas Gonzalez. Modeling service
level agreements with binary decision diagrams. In L. Baresi, C.-H. Chi, and
J. Suzuki, editors, Service-Oriented Computing, pages 190–204, Berlin, Heidelberg,
2009. Springer Berlin Heidelberg. ISBN 978-3-642-10383-4. (page 53).

[100] Krasimir Angelov et al. A framework for conflict analysis of normative texts
written in controlled natural language. The Journal of Logic and Algebraic Program-
ming, 82(57):216 – 240, 2013. ISSN 1567-8326. doi: http://dx.doi.org/10.1016/

186

http://dx.doi.org/10.1023/A:1022445108617
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5958157
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5958157
http://dx.doi.org/10.1007/978-1-4419-7320-7_14
http://dx.doi.org/10.1007/978-1-4419-7320-7_14

BIBLIOGRAPHY

j.jlap.2013.03.002. URL http://www.sciencedirect.com/science/article/

pii/S1567832613000143. (page 151).

[101] P. R. Krishna, K. Karlapalem, and D. Chiu. An erec framework for e-contract
modeling, enactment and monitoring. Data and Knowledge Engineering, 51(1):31
– 58, 2004. ISSN 0169-023X. doi: 10.1016/j.datak.2004.03.006. (page 39).

[102] A. Kumar and W. Yao. Process materialization using templates and rules to de-
sign flexible process models. In G. Governatori, J. Hall, and A. Paschke, edi-
tors, Rule Interchange and Applications, pages 122–136, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg. ISBN 978-3-642-04985-9. (page 103).

[103] L.-S. Lê, T.-V. Nguyen, T.-M. Truong, and K. Nguyen-An. Contractual spec-
ifications of business services: Modeling, formalization and proximity. In
A. Hameurlain, J. Küng, R. Wagner, T. K. Dang, and N. Thoai, editors, Trans-
actions on Large-Scale Data- and Knowledge-Centered Systems XXXI, pages 94–123,
Berlin, Heidelberg, 2017. Springer Berlin Heidelberg. ISBN 978-3-662-54173-9.
(page 55).

[104] P. Leitner, J. Ferner, W. Hummer, and S. Dustdar. Data-driven and auto-
mated prediction of service level agreement violations in service composi-
tions. Distributed and Parallel Databases, 31(3):447–470, Sep 2013. ISSN 1573-
7578. doi: 10.1007/s10619-013-7125-7. URL https://doi.org/10.1007/

s10619-013-7125-7. (pages 57, 92, 93).

[105] P. Leitner, J. Ferner, W. Hummer, and S. Dustdar. Data-driven and automated
prediction of service level agreement violations in service compositions. Dis-
tributed and Parallel Databases, 31(3):447–470, Sept. 2013. ISSN 0926-8782, 1573-
7578. (page 118).

[106] P. Leitner, W. Hummer, and S. Dustdar. Cost-based optimization of service com-
positions. Services Computing, IEEE Transactions on, 6(2):239–251, April 2013.
ISSN 1939-1374. doi: 10.1109/TSC.2011.53. (pages 132, 133, 136, 151).

[107] L. Li and Y. Yang. E-Business Process Modelling with Finite State Machine Based
Service Agents, pages 261–272. Springer Berlin Heidelberg, Berlin, Heidelberg,
2008. ISBN 978-3-540-92719-8. doi: 10.1007/978-3-540-92719-8_24. URL https:

//doi.org/10.1007/978-3-540-92719-8_24. (page 20).

[108] X. Li and J. Du. Adaptive and attribute-based trust model for service level agree-
ment guarantee in cloud computing. IET Information Security, 7(1):39–50, March
2013. ISSN 1751-8709. doi: 10.1049/iet-ifs.2012.0232. (pages 56, 92, 93).

[109] X. Li, S. J. Turner, K. H. Tong, H. M. Chan, and T. Hung. Design of an sla-driven
qos management platform for provisioning multimedia personalized services. In
22nd International Conference on Advanced Information Networking and Applications
- Workshops (aina workshops 2008), pages 1405–1409, March 2008. doi: 10.1109/
WAINA.2008.256. (page 56).

187

http://www.sciencedirect.com/science/article/pii/S1567832613000143
http://www.sciencedirect.com/science/article/pii/S1567832613000143
https://doi.org/10.1007/s10619-013-7125-7
https://doi.org/10.1007/s10619-013-7125-7
https://doi.org/10.1007/978-3-540-92719-8_24
https://doi.org/10.1007/978-3-540-92719-8_24

BIBLIOGRAPHY

[110] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano. A review of auto-scaling
techniques for elastic applications in cloud environments. Journal of Grid Comput-
ing, 12(4):559–592, Dec 2014. ISSN 1572-9184. doi: 10.1007/s10723-014-9314-7.
URL https://doi.org/10.1007/s10723-014-9314-7. (page 56).

[111] H. Ludwig, A. Keller, A. Dan, R. King, and F. R. Web service level agree-
ment language specification. In Services Computing, 2008. SCC ’08. IEEE In-
ternational Conference on, 2003. URL http://www.research.ibm.com/wsla/

WSLASpecV1-20030128.pdf. (pages 31, 41).

[112] A. Maarouf, B. E. qacimy, A. Marzouk, and A. Haqiq. A novel penalty model for
managing and applying penalties in cloud computing. In 2015 IEEE/ACS 12th
International Conference of Computer Systems and Applications (AICCSA), pages 1–
6, Nov 2015. doi: 10.1109/AICCSA.2015.7507243. (pages 132, 151).

[113] K. Mahbub and G. Spanoudakis. Monitoring ws-agreements: An event calculus-
based approach. In Test and Analysis of Web Services, Chapter 10, pages 265–306.
2007. (page 40).

[114] C. C. Marquezan, N. Ignaciuk, C. Alias, A. Rialland, O. Olsen, M. Turkay,
A. Koestler, M. Zahlmann, S. Heyne, and M. Stollberg. D8.1 - requirements anal-
ysis and selection of technology baseline for logistics contract manager. Deliver-
able D8.1 of FInest Project. Available online, September 2011. URL http://www.

finest-ppp.eu/files/deliverables/d08/finest_d8_1_final.pdf. (page
107).

[115] C. C. Marquezan, A. Metzger, R. Franklin, and K. Pohl. Runtime management
of multi-level slas for transport and logistics services. In X. Franch, A. Ghose,
G. Lewis, and S. Bhiri, editors, Service-Oriented Computing, volume 8831 of Lecture
Notes in Computer Science, pages 560–574. Springer Berlin Heidelberg, 2014. ISBN
978-3-662-45390-2. doi: 10.1007/978-3-662-45391-9_49. URL http://dx.doi.

org/10.1007/978-3-662-45391-9_49. (pages 4, 118).

[116] O. Martín-Díaz. Automated Web Services Matchmaking Using Constraint Program-
ming (in Spanish). PhD thesis, University of Seville, 2007. (page 3).

[117] F. Messina, G. Pappalardo, C. Santoro, D. Rosaci, and G. M. L. Sarne. An
agent based negotiation protocol for cloud service level agreements. In 2014
IEEE 23rd International WETICE Conference, pages 161–166, June 2014. doi:
10.1109/WETICE.2014.12. (page 55).

[118] P. J. Meyer. What would you do if you knew you could not fail? Creating S.M.A.R.T.
Goals. The Meyer Resource Group, 2003. ISBN 9780898113044. (page 22).

[119] M.J. Buco et al. Utility computing sla management based upon business ob-
jectives. IBM Systems Journal, 43(1):159–178, 2004. ISSN 0018-8670. doi:
10.1147/sj.431.0159. (pages 132, 151).

188

https://doi.org/10.1007/s10723-014-9314-7
http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf
http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf
http://www.finest-ppp.eu/files/deliverables/d08/finest_d8_1_final.pdf
http://www.finest-ppp.eu/files/deliverables/d08/finest_d8_1_final.pdf
http://dx.doi.org/10.1007/978-3-662-45391-9_49
http://dx.doi.org/10.1007/978-3-662-45391-9_49

BIBLIOGRAPHY

[120] C. Molina-Jimenez, J. Pruyne, and A. Moorsel. The role of agreements in it man-
agement software. In R. Lemos, C. Gacek, and A. Romanovsky, editors, Archi-
tecting Dependable Systems III, volume 3549 of Lecture Notes in Computer Science,
pages 36–58. Springer Berlin Heidelberg, 2005. ISBN 978-3-540-28968-5. doi:
10.1007/11556169_2. URL http://dx.doi.org/10.1007/11556169_2. (page
39).

[121] B. Motik, P. F. Patel-Schneider, and B. C. Grau. OWL 2 Web Ontology Language
Direct Semantics, 2009. Available from: http://www.w3.org/TR/2009/REC-
owl2-direct-semantics-20091027/. (page 22).

[122] C. Müller. On the Automated Analysis of WS-Agreement Documents. Applications
to the Processes of Creating and Monitoring Agreements. International dissertation,
Universidad de Sevilla, 2013. (pages 3, 6, 38, 44, 47, 66, 79, 123, 142, 152, 156,
161).

[123] C. Müller, M. Resinas, and A. Ruiz-Cortés. Explaining the non-compliance be-
tween templates and agreement offers in ws-agreement*. In Proc. of the 7th In-
ternational Conference on Service Oriented Computing (ICSOC), volume 5900, pages
237–252, Sweden, Stockholm, Nov 2009. Springer Verlag. ISBN 3-642-10382-0.
(page 145).

[124] C. Müller, J. G. Galán, A. Ruiz-Cortés, and M. Resinas. ADA: Agreement Docu-
ments Analyser. In Proc. of the 6th Jornadas CientÃfico-TÃ©cnicas en Servicios Web
y SOA (JSWEB 2010), 2010. (page 47).

[125] C. Müller, A. M. Gutiérrez, M. Resinas, P. Fernández, and A. Ruiz-Cortés. iagree
studio: A platform to edit and validate WS–Agreement documents. In Service-
Oriented Computing, Lecture Notes in Computer Science, pages 696–699. Springer
Berlin Heidelberg, 2 Dec. 2013. (page 66).

[126] C. Müller, M. Resinas, and A. Ruiz-Cortés. Automated Analysis of Conflicts in
WS-Agreement. IEEE Transactions on Services Computing, pages 1–1, Aug. 2013.
ISSN 1939-1374. URL http://dx.doi.org/10.1109/TSC.2013.9. (pages 13, 32,
67, 70, 78, 142, 144, 152, 167).

[127] C. Müller, A. M. Gutiérrez, O. Martín-Díaz, M. Resinas, P. Fernandez, and
A. R. Cortés. Towards a Formal Specification of SLAs with Compensa-
tions. In R. Meersman, H. Panetto, T. S. Dillon, M. Missikoff, L. Liu, O. Pas-
tor, A. Cuzzocrea, and T. Sellis, editors, On the Move to Meaningful Inter-
net Systems: {OTM} 2014 Conferences - Confederated International Conferences:
CoopIS, and {ODBASE} 2014, Amantea, Italy, October 27-31, 2014, Proceedings,
volume 8841 of Lecture Notes in Computer Science, pages 295–312. Springer,
2014. doi: 10.1007/978-3-662-45563-0_17. URL http://dx.doi.org/10.1007/

978-3-662-45563-0_17. (pages 67, 71).

189

http://dx.doi.org/10.1007/11556169_2
http://dx.doi.org/10.1109/TSC.2013.9
http://dx.doi.org/10.1007/978-3-662-45563-0_17
http://dx.doi.org/10.1007/978-3-662-45563-0_17

BIBLIOGRAPHY

[128] C. Müller, A. M. Gutiérrez, O. Martín-Díaz, M. Resinas, P. Fernandez, and A. R.
Cortés. Towards a formal specification of slas with compensations. In On the
Move to Meaningful Internet Systems: OTM 2014 Conferences - Confederated Interna-
tional Conferences: CoopIS, and ODBASE 2014, Amantea, Italy, October 27-31, 2014,
Proceedings, pages 295–312, 2014. doi: 10.1007/978-3-662-45563-0_17. (pages
131, 132, 139, 149, 151).

[129] C. Müller, M. Oriol, X. Franch, J. Marco, M. Resinas, A. Ruiz-Cortés, and M. Ro-
driguez. Comprehensive Explanation of SLA Violations at Runtime. IEEE Trans-
actions on Services Computing, 7(2):163–183, Sept. 2014. ISSN 1939-1374. doi:
10.1109/TSC.2013.45. (pages 70, 145, 167).

[130] C. Müller, H.-L. Truong, P. Fernandez, G. Copil, A. Ruiz-Cortés, and S. Dustdar.
An elasticity-aware governance platform for cloud service delivery. In Services
Computing (SCC), 2016 IEEE International Conference on, pages 74–81. IEEE, 2016.
(page 132).

[131] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the
IEEE, 77(4):541–580, Apr 1989. ISSN 0018-9219. doi: 10.1109/5.24143. (page 20).

[132] M. Netjes, H. A. Reijers, and W. M. van der Aalst. Supporting the bpm life-cycle
with filenet. 2006. (page 20).

[133] T. V. Nguyen, L. S. Lê, K. Nguyen-An, and T. M. Truong. Aligning service level
agreements with service-oriented enterprise architecture. In 2017 IEEE 21st Inter-
national Enterprise Distributed Object Computing Workshop (EDOCW), pages 8–14,
Oct 2017. doi: 10.1109/EDOCW.2017.11. (pages 53, 54, 77).

[134] O. Waldrich, H. Rasheed, and W. Ziegler. WS–Agreement for Java Framework
(WSAG4J) by Fraunhofer SCAI Institute, and members of GRAAP-WG of the
Open Grid Forum. http://packcs-e0.scai.fraunhofer.de/wsag4j/, 2012.
(page 38).

[135] OASIS. Collaboration-Protocol Profile and Agreement Specification Version 2.0,
2002. http://www.ebxml.org/. (pages 31, 51, 52, 77).

[136] OASIS. ebXML Business Process Specification Schema Technical Specification
v2.0.4, 2007. http://www.ebxml.org/. (page 51).

[137] OASIS and UN/CEFAT. Electronic business using XML (ebXML), 2007. (page
51).

[138] Object Management Group (OMG). Business process model
and notation (BPMN) version 2.0, Jan 2011. Available from:
http://www.omg.org/spec/BPMN/2.0/PDF. (pages 13, 78).

190

http://packcs-e0.scai.fraunhofer.de/wsag4j/
http://www.ebxml.org/
http://www.ebxml.org/

BIBLIOGRAPHY

[139] N. Oldham, K. Verma, A. Sheth, and F. Hakimpour. Semantic ws-agreement part-
ner selection. In Proceedings of the 15th International Conference on World Wide Web,
WWW ’06, pages 697–706, New York, NY, USA, 2006. ACM. ISBN 1-59593-323-9.
doi: 10.1145/1135777.1135879. URL http://doi.acm.org/10.1145/1135777.

1135879. (page 38).

[140] A. Omezzine, S. Tazi, N. Bellamine, B. Saoud, K. Drira, and G. Cooperman. To-
wards a dynamic multi-level negotiation framework in cloud computing. In 2015
International Conference on Cloud Technologies and Applications (CloudTech), pages
1–8, June 2015. doi: 10.1109/CloudTech.2015.7336999. (page 55).

[141] M. Oriol, X. Franch, J. Marco, and D. Ameller. Monitoring adaptable soa-systems
using salmon. In Workshop on Service Monitoring, Adaptation and Beyond (Mona+),
pages 19–28, 2008. (page 40).

[142] P. Leitner et al. Cost-Efficient and Application SLA-Aware Client Side Re-
quest Scheduling in an Infrastructure-as-a-Service Cloud. In Cloud Computing
(CLOUD), IEEE 5th International Conference on, pages 213–220, June 2012. doi:
10.1109/CLOUD.2012.21. (pages 136, 151).

[143] A. Paschke. Rbsla a declarative rule-based service level agreement language
based on ruleml. In Computational Intelligence for Modelling, Control and Automa-
tion, 2005 and International Conference on Intelligent Agents, Web Technologies and
Internet Commerce, International Conference on, volume 2, pages 308–314, 2005. doi:
10.1109/CIMCA.2005.1631486. (pages 52, 76, 77).

[144] A. Paschke and M. Bichler. Knowledge representation concepts for automated
SLA management. 23 Nov. 2006. (page 151).

[145] C. Pedrinaci, D. Lambert, B. Wetzstein, T. van Lessen, L. Cekov, and M. Dimitrov.
Sentinel: a semantic business process monitoring tool. In international Workshop
on Ontology-Supported Business Intelligence (OBI), pages 26–30, 2008. (page 66).

[146] K. Peffers, T. Tuunanen, M. Rothenberger, and S. Chatterjee. A design science
research methodology for information systems research. 24:45–77, 01 2007. (page
8).

[147] K. Pohl, G. Böckle, and F. van der Linden. Software Product Line Engineering:
Foundations, Principles and Techniques. Springer Berlin Heidelberg, 2005. ISBN
9783540243724. URL https://books.google.es/books?id=J4GqT4OUsSMC.
(page 95).

[148] V. Popova and A. Sharpanskykh. Formal analysis of executions of organizational
scenarios based on process-oriented specifications. Applied Intelligence, 34:226–
244, 2009. (page 22).

[149] V. Popova and A. Sharpanskykh. Modeling organizational performance indica-
tors. Inf. Syst., 35(4):505–527, 2010. (page 66).

191

http://doi.acm.org/10.1145/1135777.1135879
http://doi.acm.org/10.1145/1135777.1135879
https://books.google.es/books?id=J4GqT4OUsSMC

BIBLIOGRAPHY

[150] O. F. Rana, M. Warnier, T. B. Quillinan, F. Brazier, and D. Cojocarasu. Managing
violations in service level agreements. In Grid Middleware and Services Chapter
Title - Managing Violations in Service Level Agreements, pages 349–358, 2008. (page
151).

[151] O. F. Rana, M. Warnier, T. B. Quillinan, and F. M. T. Brazier. Monitoring and rep-
utation mechanisms for service level agreements. In Grid Economics and Business
Models (GECON), pages 125–139, 2008. (pages 36, 40).

[152] F. Ren and M. Zhang. Bilateral single-issue negotiation model considering non-
linear utility and time constraint. Decision Support Systems, 60(0), 2014. ISSN
0167-9236. doi: http://dx.doi.org/10.1016/j.dss.2013.05.018. URL http://www.

sciencedirect.com/science/article/pii/S0167923613001668. (pages 55,
152).

[153] M. Resinas. Automating the Negotiation of Agreements. PhD thesis, University of
Seville, 2008. (pages 3, 6, 40, 79, 123).

[154] M. Riveni, H. L. Truong, and S. Dustdar. On the elasticity of social compute units.
In Advanced Information Systems Engineering - 26th International Conference, CAiSE
2014, Thessaloniki, Greece, June 16-20, 2014. Proceedings, pages 364–378, 2014. doi:
10.1007/978-3-319-07881-6_25. (page 167).

[155] M. L. Rosa, W. M. P. V. D. Aalst, M. Dumas, and F. P. Milani. Business process
variability modeling: A survey. ACM Comput. Surv., 50(1):2:1–2:45, Mar. 2017.
ISSN 0360-0300. doi: 10.1145/3041957. URL http://doi.acm.org/10.1145/

3041957. (page 95).

[156] A. Ruiz-Cortés. A Semiqualitative Approach for the Automatic Management of Quality
Requirements (in Spanish). PhD thesis, University of Seville, 2002. (page 3).

[157] A. Ruiz-Cortés, R. Corchuelo, A. Durán, and M. Toro. Automated support for
quality requirements in web–services-based systems. In Proceedings of the 8th

IEEE Workshop on Future Trends of Distributed Computing Systems (FTDCS’2001),
pages 48–55, Bologna, Italy, Nov. 2001. IEEE CS Press. (page 51).

[158] A. Ruiz-Cortés, O. Martín-Díaz, A. Durán-Toro, and M. Toro. Improving the
automatic procurement of web services using constraint programming. Interna-
tional Journal of Cooperative Information Systems, 14(4):439–468, 2005. (page 31).

[159] J. Rumbaugh, I. Jacobson, and G. Booch. Unified Modeling Language Reference
Manual. Addison-Wesley-Longman, 1999. ISBN 978-0-201-30998-0. (page 20).

[160] J. Rumbaugh, I. Jacobson, and G. Booch. Unified Modeling Language Reference
Manual, The (2Nd Edition). Pearson Higher Education, 2004. ISBN 0321245628.
(page 20).

192

http://www.sciencedirect.com/science/article/pii/S0167923613001668
http://www.sciencedirect.com/science/article/pii/S0167923613001668
http://doi.acm.org/10.1145/3041957
http://doi.acm.org/10.1145/3041957

BIBLIOGRAPHY

[161] J. Sauvé, F. Marques, A. Moura, and M. Sampaio. SLA design from a business
perspective. Ambient Networks, pages 72–83, 2005. URL http://link.springer.

com/chapter/10.1007/11568285_7. (pages 54, 76, 77).

[162] O. Scekic, H.-L. Truong, and S. Dustdar. Incentives and rewarding in social com-
puting. Commun. ACM, 56(6):72–82, 1 June 2013. (page 157).

[163] A.-W. Scheer, O. Thomas, and O. Adam. Process Modeling Using Event-driven
Process Chains, pages 119–145. Wiley, Hoboken, New Jersey, 2005. (page 19).

[164] A. Schnieders and F. Puhlmann. Variability mechanisms in e-business process
families. In 9th International Conference on Business Information Systems (BIS 2006),
pages 583–601, 01 2006. (page 95).

[165] A. Shahin and M. A. Mahbod. Prioritization of key performance indicators: An
integration of analytical hierarchy process and goal setting. International Journal
of Productivity and Performance Management, 56:226 – 240, 2007. (page 22).

[166] S. Smirnov, H. A. Reijers, M. Weske, and T. Nugteren. Business process model
abstraction: a definition, catalog, and survey. Distrib Parallel Databases, 30(1):
63–99, 5 Jan. 2012. (page 167).

[167] S. Son, G. Jung, and S. C. Jun. An sla-based cloud computing that
facilitates resource allocation in the distributed data centers of a cloud
provider. The Journal of Supercomputing, 64(2):606–637, May 2013. ISSN
1573-0484. doi: 10.1007/s11227-012-0861-z. URL https://doi.org/10.1007/

s11227-012-0861-z. (page 52).

[168] V. Stantchev and C. Schröpfer. Negotiating and enforcing qos and slas in grid
and cloud computing. In N. Abdennadher and D. Petcu, editors, Advances in
Grid and Pervasive Computing, pages 25–35, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg. ISBN 978-3-642-01671-4. (page 52).

[169] W. Tan, W. Shen, L. Xu, B. Zhou, and L. Li. A business process intelligence system
for enterprise process performance management. IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), 38(6):745–756, Nov 2008.
ISSN 1094-6977. doi: 10.1109/TSMCC.2008.2001571. (page 56).

[170] Y. Tang, H. Lutfiyya, and V. Tosic. An analysis of web service sla manage-
ment infrastructures based on the c-mape model. International Journal of Business
Process Integration and Management, 4(3):209 – 218, 2009. ISSN 0004-3702. doi:
10.1504/IJBPIM.2009.030987. (page 39).

[171] S. Tata, M. Mohamed, T. Sakairi, N. Mandagere, O. Anya, and H. Ludwig. rsla:
A service level agreement language for cloud services. In 2016 IEEE 9th Inter-
national Conference on Cloud Computing (CLOUD), pages 415–422, June 2016. doi:
10.1109/CLOUD.2016.0062. (pages 51, 92, 93).

193

http://link.springer.com/chapter/10.1007/11568285_7
http://link.springer.com/chapter/10.1007/11568285_7
https://doi.org/10.1007/s11227-012-0861-z
https://doi.org/10.1007/s11227-012-0861-z

BIBLIOGRAPHY

[172] D. B. Terry, V. Prabhakaran, R. Kotla, M. Balakrishnan, M. K. Aguilera, and
H. Abu-Libdeh. Consistency-based service level agreements for cloud storage.
In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Prin-
ciples, SOSP ’13, pages 309–324, New York, NY, USA, 2013. ACM. ISBN 978-
1-4503-2388-8. doi: 10.1145/2517349.2522731. URL http://doi.acm.org/10.

1145/2517349.2522731. (page 55).

[173] Y. Tokairin, K. Yamanaka, H. Takahashi, T. Suganuma, and N. Shiratori. An ef-
fective qos control scheme for ubiquitous services based on context information
management. In The 9th IEEE International Conference on E-Commerce Technology
and The 4th IEEE International Conference on Enterprise Computing, E-Commerce and
E-Services (CEC-EEE 2007), pages 619–625, July 2007. doi: 10.1109/CEC-EEE.
2007.20. (page 56).

[174] U. University. Decentralized, cross-middleware Grid Job Submission Service
(JSS), 2010. (page 46).

[175] R. B. Uriarte, F. Tiezzi, and R. D. Nicola. Slac: A formal service-level-agreement
language for cloud computing. In 2014 IEEE/ACM 7th International Conference on
Utility and Cloud Computing, pages 419–426, Dec 2014. doi: 10.1109/UCC.2014.53.
(page 53).

[176] W. van den Heuvel. Survey on business process management. Technical report,
2008. (pages 19, 20).

[177] W. Van Der Aalst. Process mining: discovery, conformance and enhancement of busi-
ness processes. Springer Science & Business Media, 2011. (page 28).

[178] W. M. P. van der Aalst. Extracting event data from databases to unleash process
mining. (page 167).

[179] W. M. P. van der Aalst. Business process configuration in the cloud: How to
support and analyze multi-tenant processes? In 9th IEEE European Conference
on Web Services, ECOWS 2011, Lugano, Switzerland, September 14-16, 2011, pages
3–10, 2011. doi: 10.1109/ECOWS.2011.8. (pages 4, 61, 79).

[180] W. M. P. van der Aalst. Process cubes: Slicing, dicing, rolling up and drilling
down event data for process mining. In Asia Pacific Business Process Management,
Lecture Notes in Business Information Processing, pages 1–22. Springer Interna-
tional Publishing, 2013. (page 167).

[181] W. M. P. van der Aalst, A. H. M. ter Hofstede, and M. Weske. Business process
management: A survey. In Business Process Management, pages 1–12, 2003. (pages
18, 20).

[182] W. M. P. van der Aalst, B. F. van Dongen, J. Herbst, L. Maruster, G. Schimm,
and A. J. M. M. Weijters. Workflow mining: a survey of issues and approaches.

194

http://doi.acm.org/10.1145/2517349.2522731
http://doi.acm.org/10.1145/2517349.2522731

BIBLIOGRAPHY

Data Knowl. Eng., 47(2):237–267, Nov. 2003. ISSN 0169-023X. doi: 10.1016/
S0169-023X(03)00066-1. URL http://dx.doi.org/10.1016/S0169-023X(03)

00066-1. (pages 21, 28).

[183] W. M. P. van der Aalst, A. Dreiling, F. Gottschalk, M. Rosemann, and M. H.
Jansen-Vullers. Configurable process models as a basis for reference modeling.
In C. J. Bussler and A. Haller, editors, Business Process Management Workshops,
pages 512–518, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. ISBN 978-
3-540-32596-3. (pages 95, 102).

[184] W. M. P. van der Aalst, M. Pesic, and M. Song. Beyond process mining: From the
past to present and future. In Proc. of the 22nd International Conference on Advanced
Information Systems Engineering (CAiSE), pages 38–52, 2010. (pages 21, 28).

[185] C. Vercellis. Business intelligence: Data mining and optimization for decision
making. 03 2009. (page 21).

[186] J. Vonk and P. Grefen. Cross-organizational transaction support for e-
services in virtual enterprises. Distributed and Parallel Databases, 14:137–172,
2003. ISSN 0926-8782. URL http://dx.doi.org/10.1023/A:1024884626434.
10.1023/A:1024884626434. (page 39).

[187] W. Voorsluys, J. Broberg, S. Venugopal, and R. Buyya. Cost of virtual machine
live migration in clouds: A performance evaluation. In M. G. Jaatun, G. Zhao,
and C. Rong, editors, Cloud Computing, pages 254–265, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg. ISBN 978-3-642-10665-1. (page 55).

[188] W3C. Xml schema part 0: Primer second edition. http://www.w3.org/TR/

xmlschema-0/. (page 40).

[189] B. Weber, S. Sadiq, and M. Reichert. Beyond rigidity – dynamic process lifecycle
support. Computer Science - Research and Development, 23(2):47–65, May 2009.
ISSN 0949-2925. doi: 10.1007/s00450-009-0069-5. URL https://doi.org/10.

1007/s00450-009-0069-5. (page 26).

[190] M. Weidlich, R. Dijkman, and J. Mendling. The ICoP framework: Identification
of correspondences between process models. In Advanced Information Systems
Engineering, Lecture Notes in Computer Science, pages 483–498. Springer Berlin
Heidelberg, 7 June 2010. (page 167).

[191] M. Weske. Business Process Management: Concepts, Languages, Architectures.
Springer, 2007. ISBN 978-3-540-73521-2. (pages xv, 17, 18, 20, 22, 27).

[192] B. Wetzstein, Z. Ma, A. Filipowska, M. Kaczmarek, S. Bhiri, S. Losada, J.-M.
Lopez-Cob, and L. Cicurel. Semantic business process management: A lifecy-
cle based requirements analysis. In SBPM, 2007. (page 20).

195

http://dx.doi.org/10.1016/S0169-023X(03)00066-1
http://dx.doi.org/10.1016/S0169-023X(03)00066-1
http://dx.doi.org/10.1023/A:1024884626434
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
https://doi.org/10.1007/s00450-009-0069-5
https://doi.org/10.1007/s00450-009-0069-5

BIBLIOGRAPHY

[193] B. Wetzstein, Z. Ma, and F. Leymann. Towards measuring key performance in-
dicators of semantic business processes. Business Information Systems, 7:227–238,
2008. (pages 22, 66).

[194] P. Wieder, J. Butler, W. Theilmann, and R. Yahyapour, editors. Service Level Agree-
ments for Cloud Computing, volume 2506. Springer, 2011. ISBN 978-1-4614-1614-2.
(pages 51, 52).

[195] L. Wu, S. K. Garg, and R. Buyya. Sla-based admission control for a software-
as-a-service provider in cloud computing environments. Journal of Computer
and System Sciences, 78(5):1280 – 1299, 2012. ISSN 0022-0000. doi: https:
//doi.org/10.1016/j.jcss.2011.12.014. URL http://www.sciencedirect.com/

science/article/pii/S0022000011001590. JCSS Special Issue: Cloud Com-
puting 2011. (page 56).

[196] L. Wu, S. K. Garg, R. Buyya, C. Chen, and S. Versteeg. Automated sla negotiation
framework for cloud computing. In 2013 13th IEEE/ACM International Symposium
on Cluster, Cloud, and Grid Computing, pages 235–244, May 2013. doi: 10.1109/
CCGrid.2013.64. (page 55).

[197] Y. Xiaoyong, T. Hongyan, L. Ying, J. Tong, L. Tiancheng, and W. Zhonghai. A
competitive penalty model for availability based cloud sla. In 2015 IEEE 8th
International Conference on Cloud Computing, pages 964–970, June 2015. doi: 10.
1109/CLOUD.2015.142. (pages 132, 151).

[198] E. Yaqub, R. Yahyapour, P. Wieder, C. Kotsokalis, K. Lu, and A. I. Jehangiri. Op-
timal negotiation of service level agreements for cloud-based services through
autonomous agents. In 2014 IEEE International Conference on Services Computing,
pages 59–66, June 2014. doi: 10.1109/SCC.2014.17. (page 55).

[199] W. ZhenHua, H. Yousen, D. ZiYun, and Z. Wei. Soa - bpm based information
system for promoting agility of third party logistics. In Automation and Logistics,
2009. ICAL ’09. IEEE International Conference on, pages 248–252, 2009. doi: 10.
1109/ICAL.2009.5262920. (page 118).

[200] Q. Zhu and R. Fung. Design and analysis of optimal incentive contracts be-
tween fourth-party and third-party logistics providers. In Automation and Lo-
gistics (ICAL), 2012 IEEE International Conference on, pages 84–89, 2012. doi:
10.1109/ICAL.2012.6308175. (page 118).

[201] F. Zulkernine, P. Martin, C. Craddock, and K. Wilson. A policy-based middle-
ware for web services sla negotiation. In 2009 IEEE International Conference on
Web Services, pages 1043–1050, July 2009. doi: 10.1109/ICWS.2009.157. (page
55).

196

http://www.sciencedirect.com/science/article/pii/S0022000011001590
http://www.sciencedirect.com/science/article/pii/S0022000011001590

	I Preface
	Introduction
	Research Context
	Research Problems
	Contributions
	Research Methodology
	Publications
	Publications Supporting this Dissertation
	Further Publications
	Intellectual Property

	Outline of this dissertation

	II Background
	Business Process Management
	Introduction
	Business Processes
	Business Process Modelling
	Business Process Management Lifecycle

	Process Performance Indicators
	Process-Aware Information Systems
	Summary

	SLA Management
	Introduction
	WS-Agreement and iAgree
	Context
	Terms
	iAgree Configurations

	The SLA lifecycle
	Early SLA phases in iAgree/WS-Agreement
	Late SLA phases in iAgree/WS-Agreement

	SLA Analysis
	Compliance between Offer and Template
	Agreement validity

	Tooling Support: ADA and Governify
	ADA: SLA Analysis
	SLA Designer
	SLA Repository
	SLA Dashboard

	Other SLA Management proposals
	SLA Models
	Specific domain SLA metrics
	Decision making based on SLA Analysis

	Summary

	III Our Contributions
	SLA Model for BPs
	Introduction
	An example scenario
	Requirements for Modelling SLAs of BPs
	Business Processes
	SLA metrics
	Guaranteed SLO
	Compensations

	SLAs for BP Services with iAgree
	iAgree extension
	Modelling the SLA

	Applicability of our approach
	RQ1: Service Expressiveness
	RQ2: Metrics
	RQ3: Difficulties modelling SLAs

	Related Work
	Summary

	Management of SLA-Driven Business Processes
	Introduction
	SLA Monitoring
	Status of the SLA
	Infrastructure specification
	Monitoring component
	Alternatives for Monitoring
	Applicability of our proposal
	Related Work

	BPs configured by SLA
	Modelling configurable BPs based on SLAs
	Configuring BPs based on SLAs
	Architecture
	Applicability of our proposal
	Related Work

	Summary

	Frame Agreements
	Introduction
	An example scenario
	Service Agreements in Transport and Logistics
	Service Agreements in IT Development

	Frame Agreements
	A conceptual model for frame agreements
	Lifecycle of the agreements

	Operations
	Creation of a specific agreement
	Conformance between frame and specific agreements
	Evaluation of specific instance execution

	Interpreting Frame Agreements as SLAs for BP
	Materialising the operations

	Related Work
	Summary

	IV FinalRemarks
	Conclusions and Future Work
	Conclusions
	Application scenarios
	Limitations and extensions
	Summary

	V Appendices
	Compensables SLAs
	Introduction
	Running Examples
	AWS EC2 SLA
	GNWT SLA

	Compensation Functions
	Core Definitions
	Validity of Compensation Functions

	Compensable SLA
	Core Definitions
	Validity of Compensable Guarantees

	Materialising the Validity Checking
	iAgree as Specification Language
	Inferring the utility function and the saturation limit
	Solving Technique

	Validation in real-world scenarios
	RQ1: Expressiveness
	RQ2: Validation result
	RQ3: Modeling issues

	Related Work

	SCU Optimization
	Introduction
	Scenario and Research Problems
	Maintenance Scenario
	Research Problems

	Architecture for the management of SCUs
	Architecture
	Abstracting Business Measures

	Commitment Analytics and SCU Adaptation
	Commitment Management
	Monitoring and Processing Measures
	Assigning SCUs to Issues

	Tooling support and Validation
	Assignment Simulation

	Related Work
	Managing Service Level Agreements
	Business Process Abstraction and Matching
	SCU Assignment

	Conclusions and Future Work

	Complete SLA Examples
	SLA from Amazon EC2 in iAgree syntax
	SLA for FI service in iAgree syntax
	Metric examples for FI service SLA in iAgree syntax

	Frame Agreement for Work Orders service
	Metric examples for Frame Agreement in iAgree syntax

	Bibliography

