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Abstract:  
The efficiency of two coupling formulations, the boundary element method (BEM) - meshless 

local Petrov-Galerkin (MLPG) versus the BEM- finite element method (FEM), used to 

simulate the elastic wave propagation in fluid-filled boreholes generated by a blast load, are 

compared. The longitudinal geometry is assumed to be invariant in the axial direction (2.5D 

formulation). The material properties in the vicinity of the borehole are assumed to be 

nonhomogeneous as a result of the construction process and the ageing of the material. In 

both models, the BEM is used to tackle the propagation within the fluid domain inside the 

borehole and the unbounded homogeneous domain. The MLPG and the FEM are used to 

simulate the confined, damaged, nonhomogeneous, surrounding borehole, thus utilizing the 

advantages of these methods in modeling nonhomogeneous bounded media. In both 

numerical techniques the coupling is accomplished directly at the nodal points located at the 

common interfaces. Continuity of stresses and displacements is imposed at the solid-solid 

interface, while continuity of normal stresses and displacements and null shear stress are 

prescribed at the fluid-solid interface. The performance of each coupled BEM-MLPG and 

BEM-FEM approach is determined using referenced results provided by an analytical 

solution developed for a circular multi-layered subdomain. The comparison of the coupled 

techniques is evaluated for different excitation frequencies, axial wavenumbers and degrees 

of freedom (nodal points).   
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1. Introduction 

Numerical simulations of various physical phenomena have become an inseparable part of 

engineering design and scientific research in almost all disciplines. Numerical analysis of 

partial differential equations using computer modeling has gained special attention. Once 

validated, numerical models enable advanced design, optimization and control of new 

products, processes or development of new research theories. Elastic wave propagation in 

nonhomogeneous media is a significant research topic in various fields of engineering and 

science. Several numerical tools have been developed for elastic wave propagation analysis, 

including the well-known boundary element method (BEM) [1-3], the finite element method 

(FEM) [4-5], the hybrid numerical method [6], and meshless methods such as the meshless 

local Petrov-Galerkin method (MLPG) [7-9]. 

The BEM is particularly useful for problems involving large scale unbounded domains since 

the far field boundary conditions are automatically satisfied. However, the BEM can only be 

used for analyzing more general geometries and media when the relevant fundamental 

solutions or Green’s functions required in the boundary integral equation are known. But for 

problems involving nonhomogenous media where the elastic material properties vary the 

fundamental solution is generally unavailable in the closed form. The BEM also requires the 

correct integration of the resulting singular and hypersingular integrals to guarantee its 

efficiency. Domain discretization methods such as the FEM or MLPG also have some 

disadvantages, related mainly to discretization of complex and large geometries. The coarse 

discretization might restrict the models to low frequencies if we wish to maintain accuracy. 

The meshless methods have their own disadvantages and limitations. The interpolations and 

the algorithm implementation of meshless methods tend to be computationally expensive and 

these methods can be inefficient for problems with infinite and semi-infinite domains [10]. 

Evaluation of the efficiency, convergence and accuracy of different numerical methods and 

approaches is an inevitable part of numerical modeling. A patch test was developed to assess 

the different elements used in FEM [11]. Satisfaction of the patch test can be considered a 

necessary and sufficient condition of convergence of FEM [12]. Convergence analysis and 

asymptotic error estimates of BEM were performed by Schmidt and Strese [13] for a mixed 

boundary value problem. Vavourakis, Sellountos and Polyzos [14] provided a detailed 

comparative study of five different MLPG (LBIE) formulations and concluded that 

derivatives of shape functions decrease solution accuracy and that a uniform distribution of 

nodes gives the best results. The effect of nodal distribution on the accuracy of MLPG 

formulations was also presented in [15]. Sladek et al. [16] compared the stability, 

convergence of accuracy and cost efficiency of four meshless formulations for the solution of 

boundary value problems in nonhomogeneous elastic solids. Application of the MLPG 

method to the analysis of a broad range of scientific problems is summarized in the review 

article by Sladek et al. [17]. 

In recent years, increased attention has been given to the development of theoretical and 

numerical models to simulate systems that incorporate both homogeneous and 

nonhomogeneous media and account for the interaction between them. Elastic wave 

propagation in nonhomogeneous media is a significant research topic in certain fields of 

engineering and science including geotechnics, earthquake engineering and non-destructive 



testing. It is also of interest in acoustic wave propagation and thermal diffusion problems. In 

many cases, the nonhomogeneous inclusions are placed or buried in a homogeneous 

surrounding medium. The analysis of wave propagation phenomena in elastic media and the 

interaction between different solid heterogeneous inclusions and different host domains has 

been an important research subject. However, since no single numerical method can properly 

handle such computational problems because of their increasing complexity, the idea of 

combining different numerical methods and computational techniques emerged, aiming to 

utilize their individual advantages while at the same time minimizing their disadvantages. 

That is why many researchers have been interested in coupling various numerical methods. 

The MLPG method has been coupled with FEM to tackle elasticity problems [18], potential 

problems [19] and electromagnetic field computations [20]. FEM was coupled with BEM in 

[21-23]. Other examples include combining BEM with the method of fundamental solutions 

(MFS) [24], BEM with meshless Kansa’s method [25], FEM with EFG method [26], FEM 

with MFS [27] and MFS with MLPG [28]. Tadeu et al. [29] used a coupled BEM-MLPG 

approach for the thermal analysis of nonhomogeneous media. A similar technique was also 

used for the acoustic analysis of nonhomogeneous inclusions [30]. Elastic wave propagation 

in nonhomogeneous media was examined in [31]. Direct coupling with the use of a moving 

least squares (MLS) approximation scheme was employed. This direct coupling method does 

not require the concept of overlapping “double nodes” for mutual BEM-MLPG coupling. 

Iterative coupling can be used instead of direct coupling. In the iterative coupling approach, 

each subdomain of the global model is analyzed separately as an uncoupled model, and the 

variables are successively renewed at the common interfaces until convergence is achieved 

[32]. 

Researchers have been studying the accuracy and convergence of various coupling 

formulations. Wendland [33] presents a survey on the corresponding current mathematical 

analysis in the framework of asymptotic convergence and error estimates of combined BEM 

and FEM. Godinho and Soares [32] performed a numerical analysis of interacting acoustic–

elastodynamic models using the BEM and the MFS to model the acoustic sub-domains, while 

the FEM, the collocation method and the MLPG method were used to model the 

elastodynamic sub-domains. The performance and advantages of these methods were 

investigated. 

Because of the range of modeling and solution possibilities, it could be useful to determine 

the efficiency and accuracy of various coupling procedures for a given problem. The 

interaction between a fluid and the heterogeneous material buried in elastic host media are 

important research issues in civil, geophysical or oil-drilling engineering. Wave propagation 

in fluid-filled boreholes from sources inside and outside the borehole has been studied by 

many researchers [34-38] and thus may be regarded as a good study case for comparing 

coupling approaches.  

In this paper two numerical methods are utilized to discretize the nonhomogeneous elastic 

subdomains and one for homogeneous elastic and fluid subdomains, as recently analyzed in 

[39]. A two-and-a-half-dimensional (2.5D) approach [40] is applied to this problem, 

assuming longitudinally invariant structures. The numerical analysis of fluid-solid coupled 



systems is a complex task, requiring the proper treatment of subdomains in which different 

physical phenomena are involved. In this context, the BEM is used to discretize the fluid and 

homogeneous elastic subdomains and the FEM and a meshless method based on the MLPG 

are used to model the nonhomogeneous elastic subdomain. The BEM-FEM and BEM-MLPG 

coupled techniques are thus considered.  

The two coupled approaches are tested against the results provided by an analytical solution 

developed for a circular multi-layered subdomain, in which the material properties within the 

circular nonhomogeneous region are assumed to vary in the radial direction. The continuity 

conditions for the displacements and tractions are specified for nodes at the interface between 

the unbounded solid and the damaged solid medium. Four boundary conditions must be 

prescribed at the interface between the fluid and solid phase: continuity of normal stresses 

and displacements, and null shear stress. The mutual direct coupling between the BEM and 

the MLPG is accomplished by inserting the coupling conditions discretized by the MLS 

scheme into the boundary integral equations for displacements and fluid pressure. For the 

BEM-FEM coupling, the element shape functions are used to discretize the coupling 

conditions. The imposition of these conditions leads to a system of equations that can be 

solved for the nodal solid displacements and fluid pressures. All calculations are performed in 

the frequency domain. Final responses in the time domain may be obtained by means of the 

fast inverse Fourier transformation. By using these different numerical approaches we are 

able to assess the relative advantages and disadvantages of each coupling methodology. This 

allows the effectiveness and accuracy of these different methodologies to be compared when 

analyzing a given fluid-structure interaction coupled problem. 

 

2. Governing equations for 2.5D analysis 

Elastic wave propagation in a nonhomogeneous isotropic medium is governed by the 

following well-known equilibrium equation: 

   , , ,ij j it u t x x  (1) 

where ij  is the stress tensor, iu  are mechanical displacements and   is the mass density. A 

comma followed by an index denotes partial differentiation with respect to the coordinate 

associated with the index , 1,2,3i j  . The dots over the quantity indicate the derivative with 

respect to time t .  

Applying the Fourier transform     i tF f t e dt




   to equation (1) yields the 

transformation to frequency domain as: 

   2

, , ,ij j iu     x x  (2) 

where   is the angular frequency and a dependence of the type 
i te 

is implicit. 

Stress tensor ij  is defined by means of Hooke’s law as 



ij ijkl klC   (3) 

where ijklC  and kl are the stress-strain matrix in an isotropic medium and elastic strain tensor 

defined as follows: 

 ijkl ij kl ik jl il jkC          ,  , ,

1

2
kl k l l ku u    (4) 

where ,   are the Lame material constants and ij is the Kronecker delta symbol. ,   

depend on the shear sc  and dilatational pc  wave velocities  according to  

sc



 , 

2
pc

 




  (5) 

Numerous engineering problems can be characterized by the continuous nonhomogeneity of 

isotropic material with varying Young’s modulus  E x , while the Poisson ratio   is 

assumed to be constant. Spatially varying the Lame constants can be defined as: 

 
 

 2 1

E







x
x ,  

 

  1 1 2

E 


 


 

x
x  (6) 

One can see that by omitting the component notation of the vector quantities, Eq. (2) can be 

easily transformed into the following well-known governing equation for the elastic wave 

propagation in the frequency domain: 

      2[ 2 ] 2              u u u u   (7) 

In the 2.5D analysis, the geometry of the media is constant in one direction and the load can 

be 3D. The response is expressed by applying a spatial Fourier transform in that direction 

(usually the z-axis - index 3).  

Taking Eq. (2), we can separate the third component (thus 1,2  ) as 

     2

, 3,3, , ,i i iu         x x x  (8) 

Performing the spatial Fourier transformation     i zk z

zf k f z e dz







  on Eq. (8) we obtain the 

governing equations for Fourier transforms: 

     2

, 3, , i , , , ,i z z i z i zk k k u k         x x x  (9) 

where zk is the axial wave number, ( , )x yx and a dependence of the type 
i zk z

e


is again 

implicit. 

For a fluid medium, the wave propagation is governed by the well-known Helmholz equation, 



2 2 2( , ) ( , ) 0pp c p    x x  (10) 

where ( , )p x represents the pressure field. Again performing the spatial Fourier 

transformation     i zk z

zf k f z e dz







  on Eq. (10), the governing equation for Fourier 

transforms is obtained as 

2 2
2 2 2

2 2
( , , ) ( ) ( , , ) 0z p z zp k c k p k

x y
  

  
    

  
x x  (11) 

This equation will be used in the analysis of the fluid-filled bounded domain, as shown in the 

next sections. 

 

3. Numerical formulations 

Let us now consider a two dimensional fluid-filled borehole 1  with a damaged 

nonhomogeneous zone 2 , having density 2 , buried in a homogeneous unbounded elastic 

domain 3  with density 3 , as shown in Figure 1. 
mpc , 1,2,3m  , is the longitudinal wave 

velocity, and the shear wave velocity of each medium 2,3n   is denoted by 
ns

c . Interfaces 

between the media are denoted as 1 and 2 . 

This problem is chosen to evaluate the performance of a coupling of the BEM and the MLPG 

vs. the BEM and the FEM. The purpose is to exploit the advantages of each numerical 

method for the appropriate part of the problem. MLPG and FEM is used for the 2  domain 

since it is best suited to analyzing nonhomogeneous media. The BEM, meanwhile, is used to 

analyze the 1  and 3  domains, which have homogeneous material properties. Domain 2  

is discretized by nodal points uniformly distributed over the analyzed domain, while domains 

1  and 3  are discretized by constant boundary elements at 1  and 2  as indicated in 

Figure 1. 



 

Figure 1: Problem definition 

 

 

 

3.1. BEM formulation 

3.1.1 BEM formulation for domain𝛀𝟑 

The BEM solution of Eq. (2) for the 2.5D problem in medium 3 , bounded by surface 2  

and subjected to an incident displacement field 
inc

iu is presented next. By applying the 

reciprocity theorem we obtain the following boundary integral equations: 

     

     

2

2

0 0

0 0

, , , , , , , ,

, , , , , , , , ,

ij j z j n z ij z

inc

j z ij n z i s z

p u k t k G k d

u k H k d u k

  

  





  

  





x x n x x

x x x n x x
 

                                                   

(12) 

 

In this equation, the coefficient ijp  is equal to 2ij  when the boundary 2  is smooth, 

 , ,j zu k x represents the displacement field at  ,x yx ,   , , ,j n zt k x n specifies nodal 

tractions in direction j on the boundary at  ,x yx , nn  is the unit outward normal vector on 

the boundary 2  at  ,x y  defined by  cos ,sinn n n n .  0, , ,ij zG k x x  and 

 0, , , ,ij n zH k x x n  correspond to the fundamental solutions for displacement and traction 

(Green’s functions) for the elastic medium in 3 , in direction j at x , caused by a unit point 

load in direction i applied at the collocation point   0 0 0,x yx . The derivation of the 

Green’s functions for 2.5D problems can be found in [31,40].  0 , , ,inc

i s zu k x x represents the 

incident displacement field in direction i  at 0x  with the source located at  ,s s sx yx . 



The boundary 2 is then discretized into 
2

beN constant boundary elements, with each having 

one nodal point. Each of the three loads (aligned in the horizontal, vertical and z directions) is 

applied sequentially to all nodal points to obtain 
23 beN  equations.  

 

3.1.2 BEM formulation for domain 
1  

The BEM is also used to analyze the fluid-filled domain 
1  placed within the 

nonhomogeneous domain 
2  in the same way as described in the previous section. However, 

in this case the integral equation for the pressure p  is written as: 

     

   

1

1

2

0 1 0

0

, , , , , , ,

, , , , , ,

z nf z f z

z f n z

cp k u k G k d

p k H k d

    

 





   

 





x x x x

x x x n
 

                                                   

(13) 

 

In this equation, c  is equal to 0.5  when the boundary 1  is smooth,  , ,nf zu k x represents 

the normal displacement field at  ,x yx  on the boundary,  , ,zp k x specifies the 

pressure on the boundary at  ,x yx and the subscript f  is used for fluid.  0, , ,f zG k x x  

and  0, , , ,f n zH k x x n  are the fundamental solutions for pressure and displacement: 

      1

2 2

0 0 0 0

i
, , ,

4 pf z cG k H k x x y y     x x  
                                                   

(14) 

 

      1

1

2 2

0 1 0 0

i
, , , ,

4

p

p

c

f n z c

k r
H k H k x x y y

n



   


x x n  

                                                   

(15) 

 

where   ...nH  are second kind Hankel functions of the order n  and 
1 1

2 2 2

pc p zk c k   is 

assumed with  
1

Im 0
pck  .  

The boundary 1 is then discretized into 
1

beN constant boundary elements, each with one 

nodal point. The necessary integrations over the boundary elements can generally be 

performed by means of standard Gaussian quadrature. To ensure that the method is accurate, 

when the loaded element coincides with the integrated element the resulting singular 

integration should be performed analytically, following the expressions in [41, 42], for 

example. 

 

3.2. BEM – MLPG 

3.2.1 MLPG formulation for domain 2  



The MLPG technique [7] was chosen for the meshless analysis of elastic wave propagation in 

the domain 
2 , assuming the MLS approximation for the definition of the trial functions and 

the Heaviside unit step function as a test function in each local subdomain 
S . Instead of 

writing the global weak form, the MLPG is based on the local weak form of the governing 

equations. The shape of the local integration domain 
S  can be arbitrary, and we adopted a 

cylindrical shape aligned in the longitudinal z=3 direction. Since the problem is assumed 

infinite in the longitudinal direction, the volume integral can be decomposed as an integral 

over the z-coordinate and the cross section of cylinder S . The local integration domain 
S  

is shown in Fig. 2 for the 2D example. 

 

Figure 2: Local boundaries for the weak formulation, the x  domain for MLS 

approximation of the trial function, and the support area of weight function around a node. 

 

The local weak form of Eq. (9) is then written over each subdomain S  as: 

       2 *

, 3, , i , , , , 0

S

i z z i z i zk k k u k w d       


      x x x x  (16) 

Applying the Gauss divergence theorem to the left-hand side integral in Eq. (16) leads to: 

         

     

* *

,

2 *

3

, , , ,

i , , , , 0

S S

S

i z i z

z i z i z

n k w d k w d

k k u k w d

      

    

 



  

     

 



x x x x x

x x x
 (17) 



where  jn x  is the unit normal vector and 
S  is the boundary of the subdomain 

S . 

Assuming the Heaviside unit step function for the test function, 

 

 
*

1 at
( )

0 at

s s

s s

w
  

 
  

x
x

x
 (18) 

the following local integral equation (LIE) is finally obtained: 

       2

3, , i , , , , 0

S S

i z z i z i zn k d k k u k d       
 

       x x x x  (19) 

The integrand in the first boundary integral in Eq. (19) can be identified as the Fourier 

transform of the traction vector      , , , ,i z i zt k n k   x x x . 

The Fourier transform of the stress tensor ij  in the axial z-direction can be expressed in 

terms of the Fourier transforms of displacements for , , 1,2     as: 

     , 3 , , 3 3,i ii i z i zu k u u u u k u                      
  ,   ( 


 )  (20) 

   3 3, 3 , 3i i 2i i z i zu k u u k u                  ,      ( 

 ) (21) 

Thus, LIE (19) for i   takes the form: 

     2 2

, 3 , , 3,i i 0

S S

z z zn u k u n u u d k u k u d              
 

                (22) 

while for  3i   we obtain:       

  2 2

3, , 3i i 2 0

S S

z z zn u k u d k u k u d         
 

               (23) 

We have formulated the MLPG method using the moving least-squares method (MLS) to 

approximate the displacement field over a number of nodal points randomly distributed over 

the domain 2  and the interfaces 1 and 2 , by using a set of nodes across the domain of 

influence. According to the MLS method [7], the approximation ( , , )h

zk u x  of the 

displacement field ( , , )zk u x  over a number of randomly located nodes  ix , 1,2,...i N , is 

given by the following equation: 

 
1

ˆ( , , ) ( , , ) ( ) ,
N

h i i

z z z

i

k k k   


 u x u x x u . (24) 

where  ˆ ( , )i
zk u  are so called fictitious nodal values of approximated field [7] and ( )i x  is 

the MLS shape function. The MLS shape function is defined using the monomial basis vector 

of order m=6 (for the 2D case), with quadratic polynomials. 



For the approximation of derivatives of displacements (strains), we can use 

 , ,

1

ˆ( , , ) ( ) ,
N

i i

z z

i

k k   


u x x u ,  (25) 

The number of nodes N used for the approximation is determined by the weight function

( )iw x . A 4th order spline-type weight function is applied in the present work as follows: 

  

2 3 4

1 6 8 3 , 0
( )

0,

i i i
i i

i i i i

i i

d d d
d r

w r r r

d r

      
                 




x ,                                               (26) 

where 
i id  x x  and ir  is the size of the support domain. In fact, it is the number of nodes 

lying in the support domain with radius ir which determines the value of N .  It is seen that 

the 
1C  continuity is ensured over the entire domain, and therefore the continuity of 

gradients of the approximated displacement fields is satisfied. In the MLS approximation, the 

rate of convergence of the solution may depend upon the nodal distance as well as the size of 

the support domain [43]. It should be noted that a smaller subdomain size could induce larger 

oscillations in the nodal shape functions [7]. A necessary condition for a regular MLS 

approximation is that at least m weight functions are non-zero (i.e. N m ) for each sample 

point 2x . This condition determines the size of the support domain.  

Discretized LIEs are obtained by substitution of expressions (24) and (25) for spatial MLS 

approximations of displacements and their derivatives into Eqs. (22) and (23) considered for 

each subdomain 2
c
s   as: 

       
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 (27) 
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Eqs. (27, 28) are applied to all interior nodes ,( 1,2,..., )c
inc Nx  located inside the domain 

2 and surrounded by the subdomain 2
c
s  , leading to 3 inN  equations. The BEM 

approach is used for the nodes on the boundary. Boundary elements with one node at the 

center of the element are used. These nodes are also used for the MLS approximations (24) 

and (25). 

3.2.2 Coupled BEM-MLPG formulation for interface 2  

This section describes how the mutual coupling of the BEM and the MLPG is formulated to 

obtain the elastic wave field generated by a dynamic load. This approach exploits a direct 

coupling between the BEM and MLPG. It can be done when the nodes used by the BEM 

match the nodes used by the MLPG. If the boundary nodes coincide, then the continuity of 

displacements and the equilibrium of tractions can be imposed directly. 

The following coupling conditions should be considered on the mutual interface, 2 : 

2 3( , , ) ( , , )i z i zu k u k x x , 
2 3( , , ) ( , , ) 0i z i zt k t k  x x  (29) 

which should be valid at any point on the interface 2 3   . The association of boundary 

densities to domains 2  and 3 is denoted by the left superscripts 2 and 3, respectively. The 

problem in the domain 2  is described using the MLPG, while in the domain 3  it is 

simulated using the BEM.   

The displacement and traction fields at the interface 2  can be approximated using the MLS 

approximations (24) and (25). The tractions are then given as: 
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(30) 
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3 3 ,

1

ˆ ˆ, , , ,
N
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z z z z

a

t k n u k ik u k       


    x x x x x  
                               

(31) 

 

where the unit normal vector ( )n x at 2x  is taken to be outward from the point of view of 

the domain 3 .  

The mutual direct coupling between the BEM and the MLPG is accomplished by inserting the 

coupling conditions (29) into the boundary integral equation (12), which leads to: 
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(32) 

 



Finally, the numerical solution of Eq. (32) involves discretizing the boundary 2 into a set of 

2

beN boundary elements q  with constant approximation of boundary densities, leading to:  
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(33) 

 

Taking into account Eq. (33) at nodal points on the interface  
2

2 1

beN
l q

q
  x x  with 

22

beN N


 , we obtain the set of discretized boundary integral equations: 
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(34) 

 

which replace the boundary conditions at nodal points on 2 2   in the numerical 

treatment of the problem in 2  by the MLPG. The boundary densities 
2

ju  and 
2t , 

2

3t at the 

boundary nodes 2, ( 1,..., )q
beq Nx  are expressed according to Eqs. (24) and  (30), (31), 

respectively, in terms of nodal unknowns  ˆ ,a

i zu k  used in the numerical solution in 2  by 

the MLPG. 

 

3.2.3 Coupled BEM-MLPG formulation for interface 1  

At any point x  on the interface 1 1    we must impose four boundary conditions between 

the solid and fluid: continuity of normal stresses and displacements and null shear stress. 

2 ( , , ) ( ) ( , , )z nf zu k n u k  x x x , 
2 ( , , ) ( ) ( , , ) 0z zt k n p k   x x x  (35) 

2 2 2

1 2 2 1( , , ) ( , , ) ( ) ( , , ) ( ) 0t z z zt k t k n t k n     x x x x x  (36) 

2

3( , , ) 0zt k  x . (37) 

The procedure is the same as in the previous section. The displacement and traction fields at 

the interface 1  can be approximated using the MLS approximations (24) and Eqs. (30), (31) 

with the unit normal vector ( )n x at 1x  now being considered as outward from the point of 

view of the domain 1 . The numerical solution of Eq. (13) together with (35) involves 

discretizing the boundary 1 into a set of 
1

beN ( 1 1

beN N
 ) boundary elements, leading to:  
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 (38) 

Taking into account Eqs. (36)-(38) at nodal points  
1

1

beN
j q

q
x x on the interface 1 with 

11

beN N 
 , we obtain the set of discretized equations: 

2 2

1 2 2 1( , , ) ( ) ( , , ) ( ) 0j j j j

z zt k n t k n  x x x x   (39) 

2

3( , , ) 0j

zt k  x  (40) 
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which replace the boundary conditions at nodal points on 2 1   in the numerical treatment 

of the problem in 2  by the MLPG. The boundary densities 
2

ju  and 
2t , 

2

3t  at the boundary 

nodes 1, ( 1,..., )q
beq Nx  are expressed according to (24) and (30), (31), respectively, in terms 

of the nodal unknowns  ˆ ,a

i zu k  used in the numerical solution in 2  by the MLPG. 

Finally, we have 3 inN equations given by Eqs. (27), (28), 
23 beN  equations given by Eq. (34), 

and 
13 beN  equations given by Eqs. (39)-(41) which should be solved for 

 1 23 3total in be beN N N N   nodal unknowns  ˆ ,a

i zu k  distributed in 2 1 2( ) ( )     . 

Note that these nodal unknowns are complex variables. 

 

3.3. BEM – FEM 

3.3.1 FEM formulation for domain 2  

The 2.5D solid FEM formulation is based on the virtual work principle [44]: 
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(42) 

where u  is the displacement vector, ε  and σ are respectively the strain and stress tensors, 

2 b  is the body force and q  is the traction at the boundaries, 1  and 2 . A variable 

preceded by   denotes a virtual change of this magnitude.   



Once the displacements at the cross section of 2  are approximated within element 

interpolation shape functions, the stress and strain vectors are derived from displacements 

through the constitutive law of material, assuming linear behavior and a homogeneous 

medium. The spatial derivatives involved in the strain-displacement relation are solved by 

means of a Fourier transform, as described in the previous section. 

After these procedures, Equation (42) is written as [45]:  

   2 0 1 2 2 , , , ,z z z zik k k k        Μ K K K u x f x  (43) 

where M is the mass matrix, 
0

K , 
1

K  and 
2

K  are stiffness matrices, u is the nodal 

displacement, and f  is the external force. The meanings of these matrices are well 

established in References [44-46]. The FEM matrices are computed considering 

nonhomogeneous material properties. 

Equation (43) is rewritten as shown below if an equivalent dynamic stiffness matrix, D , is 

considered: 

     , , , , ,z z zk k k  D u x f x  (44) 

 

3.3.2 Coupled BEM-FEM formulation for interfaces 1  and 2  

Equations (12) and (44) are coupled when force equilibrium and displacement continuity are 

imposed at the interface Γ2 as it was indicated in Section 3.2.2. Equations (13) and (44) are 

coupled by the equilibrium of normal pressure, null shear stresses and the compatibility of 

displacement at the interface Γ1 as presented in Section 3.2.3. These equations are assembled 

into a single system [46].  

 

4. Performance of the proposed numerical procedure 

The performance comparison of the proposed model is verified by taking a nonhomogeneous 

elastic annular circular fluid filled borehole region, 2 , with an internal radius int 0.75 mr   and  

an external radius 1.5 mextr  , centered at  0.0 m; 0.0 mcen cenx y   and buried in an 

unbounded homogeneous elastic medium, 1 . The system is excited by a blast line load 

whose amplitude may vary sinusoidally in the third dimension ( 0.0 rad/mzk   and 

2.0 rad/mzk  ), located at a given point  0 04.0 m; 0.0 mx y    in the outer homogeneous 

domain, as illustrated in Figure 3. 



 

Figure 3: Geometry of the model used to verify the algorithm 

The host medium, with an elasticity modulus of 0 11689288.6 kPaE  , a Poisson ratio of 

0.29593  and density of 32140 kg/m , allows P and S wave velocities of 2696.5 m/s and 

1451.7 m/s , respectively. Inside the nonhomogeneous circular annular region the density of 

32500 kg/m and the Poisson ratio of 0.15  are assumed to be constant. However, a radial 

variation of the elasticity modulus is assumed as follows, 

 0 1 int
1

int

( )
( ) 1 cos

2

d
E E r r

E r E
r

 
   

     
  

, (50) 

with 1 28980000.0 kPaE   and    
2 2

d cen cenr x x y y     (see Figure 4).  

 

 

 

Figure 4: Elasticity modulus variation. 

 



Thus, the annular medium allows P-wave and S-wave velocities in the close vicinity of the 

fluid borehole wall of 3498.6 m/s  and 2244.9 m/s , respectively. The fluid medium, 1 , is 

water with a density of 31000 kg/m  that allows P-wave velocities of 1500.0 m/s  

The system is loaded by the incident field source located at  0 0 0,x yx , which is given as: 
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   0 0, , ,
2 p

inc z
z s z c

k
u k H k r x x  

(51) 

with 2 2

0 0(x x ) (y )s sr y     and  2 2 2 , assuming Im 0
p pc p z ck c k k   . The 

analytical solution of this system can be found in Tadeu et al. [39]. 

The pressure and displacement fields generated by harmonic sources with frequencies of 

500.0 Hz, 1000.0 Hz and 4000.0 Hz were used to verify the performance of both the coupled 

BEM-MLPG and BEM-FEM approaches. The convergence was studied using different nodal 

mesh densities. The limiting interfaces 1  and 2 within the unbounded fluid subdomain and 

the solid subdomain, respectively, were represented with 
1

beN and 
2

beN  (
2 1

be beN N ) 

boundary elements. 

 

The MLPG nodes were distributed evenly on a number of radii 
1

int( ) / (2 )r be ext extN N r r r   

according to the boundary nodes shown in Figure 5. The numerical MLPG calculations were 

performed using a radius of the local support domain ( ir ) that was three times the nodal 

point distance ( 3h ). This relation was found to provide the best results in a previous work by 

the authors [39].  Moreover, the computations with the FEM-BEM approach were done with 

a FEM discretization of the damaged solid subdomain 2 , which uses the same nodal 

distribution as the MLPG. In this way, both the structured quadrilateral and unstructured 

triangular meshes were obtained as shown in Figure 6.  The problem solution was computed 

at the MLPG or FEM nodal points and over a grid of 5999 equally spaced receivers between (

2.25m 2.25m, 2.25m 2.25mx y      ) (5388 in the exterior solid media 3   and 

611 in the fluid medium 1 ). 

 



 

Figure 5: MLPG-BEM problem discretization: boundary nodes (circles), internal nodes (black 

points) and receivers grid (grey nodes) for
1 80beN  . 

 

 

 

 
(a) 

 
(b) 

Figure 6: (a) Structured quadrilateral mesh and (b) unstructured triangular mesh for the FEM-

BEM discretization with 
1 80beN  . 

 

 

As the number of the nodal points influences the accuracy of the response, the external and 

the internal interfaces,  1  and 2 , were discretized with a varying number of boundary 

elements, 80 to 200, while 400 to 2800 regularly distributed internal nodes were used. The 

number of the internal nodes was set so that the distance between them was the same as that 

between the boundary nodes. The error for each receiver is calculated as the difference 



between the analytical and the numerical result. The global performance of the solution is 

assessed by the normalized average error, computed in the solid media and fluid medium as 

follows: 
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(52) 

where  , ,i zu k x  and  , ,zp k x  are the analytical displacements and pressure solutions; 

 ,max , ,i zu k x  and  max , ,zp k x  are the maximum absolute response over the grid of 

receivers;  , ,i zu k x  and  , ,zp k x  are the numerical results. 

Figures 7 and 8 illustrate the average normalized errors when structured quadrilateral FEM 

meshes were used, while Figures 9 and 10 display the results provided in the presence of  

unstructured triangular FEM meshes.  A logarithmic scale is used to enhance the average 

amplitude errors.  As expected, the analysis of the results shows that the error is higher at 

higher frequencies, and in general decreases as the number of nodes increases.  

Figure 7 displays the average normalized errors of the numerical solution for 0.0 rad/mzk  . 

The analysis of the fluid pressure results (Figure 7a) shows that at 4000.0 Hz and for a lower 

number of nodes the best results are provided by the BEM-MLPG coupling model. As the 

number of nodes increases the BEM-FEM coupling model tends to ensure better results. For 

500.0 Hz and 1000.0 Hz, the BEM-FEM coupling model provides the best results for the full 

range of nodes. When we move from 0.0 rad/mzk   to 2.0 rad/mzk   (Figure 8a) it can be 

seen that the pressure results retain the same behavior at 4000.0 Hz. For excitation 

frequencies of 500.0 Hz and 1000.0 Hz, the best results are provided by the BEM-FEM 

coupling model. However, the BEM-FEM convergence is poor for the frequency of 500.0 Hz 

when a higher number of nodes are used because the coupled system of equations becomes 

ill-conditioned. Analyzing the average normalized displacement errors, it can be concluded 

that for 0.0 rad/mzk   the best results tend to be provided by the BEM-MLPG model. For 

2.0 rad/mzk  , the BEM-FEM model exceeds the BEM-MLPG results at 500.0 Hz and 

1000.0 Hz, particularly when a smaller number of nodes are used. At 4000.0 Hz the best 

results are provided by the BEM-MLPG model. It should be noted that the convergence of the 

BEM-FEM does not exhibit a monotonic decrease of the error. A minimum error is reached 

for a certain number of nodes and the problem is poorly approximated due to numerical error 

for finer discretization. 



The use of unstructured triangular FEM meshes leads to similar behavior (see Figures 9 and 

10) to that found for structured quadrilateral FEM meshes. However the pressure results 

obtained for a frequency of excitation of 4000.0 Hz by the BEM-FEM coupling model come 

out best when very few nodes are used for both 0.0 rad/mzk   and 2.0 rad/mzk  .  As the 

number the nodes increases, the BEM-MLPG leads to the best results. The displacement 

results obtained in the solid media and generated by a high frequency of excitation 

(4000.0 Hz) are better when computed by the BEM-MLPG coupling model.  

Comparing the BEM-FEM results provided from both kinds of meshes it can be concluded 

that the problem approximation with structured quadrilateral meshes presented an error 

slightly lower than that for unstructured triangular discretization. In both cases, the errors 

have similar behavior. However, unstructured triangular meshes could be desirable from time 

to time when the discretization does not allow a structured quadrilateral mesh. 
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Figure 7: Average normalized errors of the numerical solution for a harmonic source at 

frequencies of 500.0 Hz , 1000.0 Hz  and 4000.0 Hz , with wavenumbers 0.0 rad/mzk  , when 

structured quadrilateral FEM meshes are used: a) fluid pressure; b) xu displacements; c) uy 

displacements. 
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Figure 8: Average normalized errors of the numerical solution for a harmonic source at 

frequencies of 500.0 Hz , 1000.0 Hz  and 4000.0 Hz , with wavenumbers 2.0 rad/mzk  , when 

structured quadrilateral FEM meshes are used: a) fluid pressure; b) xu displacements; c)  uy 

displacements; d) zu displacements. 
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c)  

Figure 9: Average normalized errors of the numerical solution for a harmonic source at 

frequencies of 500.0 Hz , 1000.0 Hz   and 4000.0 Hz , with wavenumbers 0.0 rad/mzk  , when 

unstructured triangular FEM meshes are used: a) fluid pressure; b) xu displacements; c)  uy 

displacements. 
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Figure 10: Average normalized errors of the numerical solution for a harmonic source at 

frequencies of 500.0 Hz , 1000.0 Hz  and 4000.0 Hz , with wavenumbers 2.0 rad/mzk  , when 

unstructured triangular FEM meshes are used: a) fluid pressure; b) xu displacements; c)  uy 

displacements; d) zu displacements. 

 

5. Conclusions  

This paper compares the efficiency of two different coupling formulations (the boundary 

element method (BEM) - meshless local Petrov-Galerkin (MLPG) and the BEM- finite 



element method (FEM)) used to simulate the propagation of elastic and pressure waves in 

fluid-filled boreholes with damaged, nonhomogeneous, bounded media, when subjected to 

the field generated by a 2.5D blast source. The BEM was used to simulate the wave 

propagation in the outer medium and the inner fluid-filled domain, while the MLPG and the 

FEM were used to model the localized regions with nonhomogeneous properties, for which 

the BEM is not suitable. Structured quadrilateral and unstructured triangular FEM meshes 

were both used. A detailed formulation description of the two models in the frequency 

domain has been provided. The efficiency of the proposed coupling formulations consists in 

localization of unknowns to nodal points in the domain with nonhomogeneous properties and 

its boundary. The boundary integral equations from homogeneous subdomains play the role 

of un-prescribed boundary conditions on interfaces. 

The performance of each coupled model was assessed using a circular multi-layered system 

to simulate the damaged zone, for which analytical solutions are known. The results 

confirmed the suitability of both models, for different frequencies and axial wavenumbers. It 

was found that in general the BEM-MLPG model led to better results than the BEM-FEM at 

high frequencies of excitation.  

Although the BEM-FEM discretisations based on unstructured meshes gave good 

approximations, the BEM-MLPG would be much suitable to overcome the difficulties to 

represent irregular domains due to the inherent advantages of the meshless method. 
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