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Abstract: The recognition of dynamic textures is fundamental in processing image sequences as they are very common

in natural scenes. The computation of the optic flow is the most popular method to detect, segment and analyse

dynamic textures. For weak dynamic textures, this method is specially adequate. However, for strong dynamic

textures, it implies heavy computational load and therefore an important energy consumption. In this paper,

we propose a novel approach intented to be implemented by very low-power integrated vision devices. It

is based on a simple and flexible computation at the focal plane implemented by power-efficient hardware.

The first stages of the processing are dedicated to remove redundant spatial information in order to obtain

a simplified representation of the original scene. This simplified representation can be used by subsequent

digital processing stages to finally decide about the presence and evolution of a certain dynamic texture in the

scene. As an application of the proposed approach, we present the preliminary results of smoke detection for

the development of a forest fire detection system based on a wireless vision sensor network.

1 INTRODUCTION

A temporal texture or dynamic texture (DT) is a

spatially-repetitive time-varying visual pattern whose

temporal variation presents certain stationarity (Nel-

son and Polana, 1992). An additional feature of a

DT is its indeterminate spatial and temporal extent.

Smoke, waves, a flock of birds or tree leaves swaying

in the wind are some examples of DTs.

The recognition of DTs plays an essential role in

image processing as they are very common in natu-

ral scenes. Different methods have been proposed to

realize this process of recognition, as described in a

recent review (Chetverikov and Péteri, 2005). The

methods based on optic flow are currently the most

popular. Optic flow is a computationally efficient and

natural way to characterise the local dynamics of a

temporal texture. Specially, this is the case for weak

dynamic textures, that is, textures defined by a lo-

cal moving coordinate system in which they become

static. However, the recognition of strong dynamic

textures implies a much greater computational effort.

For these textures, possessing intrinsic dynamics, the

brightness constancy assumption associated to stan-

dard optical flow algorithms cannot be applied. More

complex approaches must be considered in order to

overcome this problem. Recently, interesting results

have been achieved by applying the so-called bright-

ness conservation assumption (Amiaz et al., 2007).

However, this method means heavy computational

load and the subsequent high energy consumption.

There are certain systems where a power-efficient

implementation of DT recognition is totally manda-

tory. Wireless multimedia sensor networks (Akyildiz

et al., 2007) is an obvious example. These networks

are composed of a large number of low-power sen-

sors that are densely deployed throughout a region

of interest in order to capture and analyse video, au-

dio and environmental data from their surroundings.

The massive and scattered deployment of these sen-

sors makes them quite difficult to service and main-

tain. Therefore, energy efficiency must be a major de-

sign goal of this kind of systems in order to prolong

the lifetime of the batteries as much as possible.

In this paper, we propose a novel approach to de-

tect DTs in scenes surveilled by very low-power inte-



grated vision devices. It is based on a signal process-

ing architecture where redundant spatial information

is removed at the very first stages of the processing by

means of a simple, flexible and power-efficient com-

putation at the focal plane. The final decision about

the presence of a certain DT in the scene is realized

by analysing the reduced representation of the origi-

nal data obtained from the focal plane. Thus, the com-

putational load is greatly alleviated.

As an application of this approach, we study the

smoke detection within a wireless vision sensor net-

work devoted to forest fire detection. The results point

to a very high reliability and robustness in the process

of detection.

2 BINNING PROCESS

In general, existing research on DT recognition is

based on global features computed over the whole

scene. A clear sign of this fact is that practically all

of the sequences composing the reference database

DynTex (Péteri et al., 2006) contain only close-ups of

DTs. For these sequences, it does make sense to apply

strategies of global feature recognition over the whole

scene. However, there are interesting applications of

DT recognition, e.g. video-surveillance, where tex-

tures can appear at any location of the scene. In this

case, a previous detection and subsequent analysis of

candidate regions to contain a certain DT could re-

duce the computational load by progressively reduc-

ing the amount of data to process. To detect such can-

didate regions, we can take advantage of the spatial

repeatability of patterns in DTs. In this way, we are

going to divide the scene into blocks, or bins, whose

size SB is defined, in pixels, as:

SB = W ×H (1)

The fundamental concept of the proposed ap-

proach is that each bin of the scene, labelled as (i, j),
can be considered as an independent entity capable

of detecting the presence of a determined spatial pat-

tern within it. When a bin detects the spatial pattern,

it is marked as a candidate bin to contain a part of a

DT whose spatially-repetitive pattern coincides with

the detected pattern. A subsequent phase of spatio-

temporal analysis of the candidate bins will eventu-

ally confirm or dismiss the presence of the DT. Note

that, during this phase, the amount of data to be pro-

cessed is reduced by a factor W ×H with respect to

the previous phase of candidate bin detection.

Every bin will be represented by only one value.

This value must be defined in such a way that the pres-

ence of a certain spatial pattern within it can be eas-

ily detected. We propose to define the representative

value of the bins in terms of spatial frequency infor-

mation. For example, consider the detection of a flock

of birds passing along the sky. A flock of birds in con-

trast with sky entails significant information at spatial

frequencies greater than 0, which expresses the origin

of coordinates in the Fourier space. Let us suppose

that each bin (i, j) of the scene is represented by the

following value:

Bi j =
Pi j(k > 0)

Pi j(k)
(2)

where Pi j(k > 0) is the power at the bin (i, j) for all

of the spatial frequencies other than k = 0 and Pi j(k)
is the power at the bin (i, j) for all the spatial fre-

quencies including k = 0. The bidimensional vector

k represents the 2π-normalized wavenumber vector.

Applying this expression, the recognition of a spatial

pattern similar to that of a flock of birds is straightfor-

ward. In Fig. 1 a grayscale binned image of a flock of

birds is depicted along with its representation using

Eq. 2. It can be seen that even a recognition of zones

with different density of birds can be carried out from

the value of Bi j. A global pixel-based analysis is not

necessary.
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Figure 1: Example of processing to detect candidate bins.

This example allows to understand how the detec-

tion of DTs can be simplified by means of a binning

process. However, a thorough analysis to establish an

optimum value of SB has not been realized. It is an es-

sential aspect of the proposed approach. The value of

SB must be adequate to detect a certain spatial pattern

as well as to track its temporal dynamics across the



scene. Therefore, it will depend not only on the spa-

tial pattern but also on the spatio-temporal dynamics

of the texture. Later in this paper we describe the tun-

ning of SB, along with other parameters, for smoke

detection within the framework of forest fire detec-

tion.

3 SIGNAL PROCESSING

ARCHITECTURE

The only element missing now is an efficient compu-

tation of the spatial frequency components present in

each and every bin. Thus, moving part of the heaviest

computational effort to the focal plane would result in

a flexible and power-efficient architecture. This ap-

proach is inherent to biological vision systems, like

the human retina, where visual information is cap-

tured and preprocessed, alleviating the data flow sent

to the visual cortex (Roska and Werblin, 2001). In

this way, low-level tasks, according to the classifica-

tion in (Pirsch and Stolberg, 1998), whose require-

ments of accuracy are not too demanding, are realized

in parallel by highly efficient, although moderately

coarse, analog hardware at the focal plane. Physi-

cal implementations based on this processing archi-

tecture achieve higher performance with less cost and

power (Carmona et al., 2003). In our case, we are go-

ing to convey the detection of candidate bins to the

focal plane. A microprocessor would make the final

decision about the presence or absence of the DT by

analysing the preprocessed and therefore reduced in-

formation represented by these candidate bins. Note

that this processing architecture simply removes re-

dundant data at the focal plane in order to deliver to

the microprocessor just the necessary information to

track and detect the texture.

At this point, we need to define a flexible hardware

structure at the focal plane in order to be able to detect

any DT. Such a structure must satisfy two conditions:

1. The size of the bins SB can take any value

2. Information about any particular band of spatial

frequencies can be extracted at every bin

A structure fulfilling both conditions is depicted

in Fig. 2. It consists of a M ×N grid where the value

of each pixel is stored in a capacitor. These capaci-

tors are 4-connected to the neighboring capacitors by

means of analog switches. These switches are con-

trolled by the corresponding row or column selection

signal. When selected, i. e. the control signal is high,

the switch behaves as a resistor connecting the two

nodes, whose utility will be explained in short. If the

control signal is low the switch is in the boundary of

a bin. Thus the particular distribution of 0’s and 1’s

in the set of row and column selection signals estab-

lishes the size and amount of bins in which the image

plane is divided.

Figure 2: Processing structure at the focal plane.

Once SB is determined, a resistive grid is estab-

lished within every bin taking into account the resis-

tance of the switches when they are on. Such a re-

sistive grid can carry a linear diffusion of the pixel

values within the bin as long as the switches remain

ON, let us say a period of time ∆t. Consider yi j(x,y)
as a function defining the values of the pixels within

the bin (i, j). The linear diffusion can be expressed as

(Jahne et al., 1999):

Yi j(k,∆t) = Yi j(k,0)e−4π2D∆t|k|2 (3)

where Yi j(k,∆t) is the spatial Fourier transform of the

subimage contained in the bin after ∆t seconds and

Yi j(k,0) is the transform at time t = 0, that is, just

before starting the diffusion. The constant D is the

diffusion coefficient.

From Eq. 3, the power of each frequency compo-

nent during the process of diffusion is:

|Yi j(k,∆t)|2 = |Yi j(k,0)|2e−8π2D∆t|k|2 (4)

which can be expressed as:

|Yi j(k,∆t)|2 = [1−α(k,∆t)]|Yi j(k,0)|2 (5)

where α(k,∆t) is the attenuation undergone by each

component at frequency k after ∆t seconds of linear



diffusion. This attenuation increases along time and

is more significant for higher frequencies.

Therefore, by controlling ∆t we can obtain infor-

mation at different bands of spatial frequencies. Con-

sider the simplest case, a lowpass filter. We can spec-

ify a maximum attenuation for the passband αP, with

a cut-off spatial frequency of |kP|. At the same time,

for the stopband, a minimum attenuation αS is re-

quired starting at frequency |kS|. Then, the period of

time after which the linear diffusion must be stopped

in order to carry out the so defined filtering is between

these two bonds:

| ln(1−αS)|

8π2D|kS|2
≤ ∆t ≤

| ln(1−αP)|

8π2D|kP|2
(6)

Then, providing the means for storing and com-

bining two consecutive samples of the diffused im-

age, taken after ∆t1 and ∆t2 from the starting point of

the diffusion, we can compute a bandpass, a highpass

or a bandreject filter. Keep in mind, however, that the

highest frequency feature that can be considered is de-

termined by the size of the pixel, and therefore a real

highpass filter is actually a bandpass filter.

A crucial property of the structure just defined is

that the diffusion operation is really a simple charge

redistribution which does not consume energy, i. e. it

is realized by a passive network. That is to say, the

signal processing within the structure just described

is massively parallel and ultra power-efficient.

4 AN APPLICATION TO SMOKE

DETECTION

As an application of the approach previously ex-

plained, we present a vision algorithm suitable for a

forest fire detection system based on a wireless vision

sensor network. The vision sensors will be placed on

top of poles in order to focus the canopy of small veg-

etation areas. Each sensor of the network will run

on-site a vision algorithm in order to detect smoke

arising among the vegetation. When a sensor detects

smoke, a warning message is sent to a control center

by multihopping. This structure of the system, based

on a careful placing of the sensors, reduces signifi-

cantly the sources of false alarms with respect to its

counterparts based on lookout towers with automatic

surveillance. On the contrary, because of the neces-

sary dense deployment of vision sensors, energy effi-

ciency is a key point impacting the system cost.

The smoke detection algorithm is based on the

analysis of the sequence of images captured by each

sensor. We define the time interval between two con-

secutively captured images as TC. These images are

compared to a reference image, the background, in or-

der to detect changes generated by smoke dynamics.

This method of motion detection, called background

subtraction (Hu et al., 2004), is suitable for scenes

with a relatively static background. In the case of the

proposed system, the visual field is basically com-

posed of vegetation, and therefore the background

will hardly suffer significant sudden changes. It will

experience, however, gradual illumination changes

throughout the day. Taking this fact into account, the

reference image will be updated every time interval

TR.

Regarding the binning process, note that the ap-

pearance of smoke in any scene means the equaliza-

tion of the R, G and B components in the pixels af-

fected by smoke (Chen et al., 2006). Therefore, it

could be a criterion to detect candidate bins. How-

ever, we propose a more data-efficient option based

only on the detection of sudden increases in the B

component with respect to the background. The use

of the B component is owing to its greater sensitiv-

ity in natural scenarios with vegetation to the changes

generated by smoke when compared to the R and G

components and combined luminance. This will also

discard changes introduced by sources different than

smoke, like the motion of tree leaves.

Consider Fig. 3. We have highlighted different

zones in three scenes where the background is mainly

constituted by vegetation. These frames correspond

to different parts of the associated sequences, before

and after a trace of smoke has appeared in the field of

view. Table 1 shows the normalized average increase,

referred to the image without smoke, undergone by

each RGB component and the combined luminance

of the pixels within the marked zones in presence of

smoke. It can be seen that, in all cases, the appearance

of smoke among vegetation conveys a greater increase

in the B component than that observed in the R and G

components and the combined luminance.

Therefore, each bin will be represented by the av-

erage value of the B component of its pixels. In terms

of spatial frequencies, it is equivalent to say that we

are interested in the information contained at k = 0.

The value of SB will depend on the average variation

in the number of smoke pixels during their appear-

ance in the scene: the less the average variation, the

smaller the necessary size of the bins to track the dy-

namics. Consider a sequence of k consecutive images

containing smoke captured by a sensor. The average

variation in the number of smoke pixels will be:

V̄ =
∑k

i=1 |UT [i]−UT [i−1] |

k
(7)

where UT [i] is the total number of smoke pixels of the



(a) (b) (c)

Figure 3: Three typical scenes with vegetation background without smoke and in presence of smoke.

Table 1: Normalized average increase, referred to the case without smoke, suffered by each component in the zones marked
in Fig. 3.

R component G component B component Luminance

Scene (a) 13.8% 14.5% 20% 14.9%

Scene (b) 12.5% 13.4% 19.5% 13.8%

Scene (c) 11% 12.8% 16.4% 12.7%

i− th image of the sequence (suppose UT [0] = 0). Ac-

cording to this expression, the smoke dynamics repre-

sented by these images can be correctly tracked when-

ever SB fulfills the following condition:

SB ≤ V̄ (8)

Finally, the condition which must be satisfied in

order to consider a foreground bin BFi j
as a candidate

bin to contain smoke is:

BFi j
−BBi j

>
pth

100
(BMAX −BMIN) (9)

where pth represents the threshold percentage of the

B component signal range, set by (BMAX − BMIN),
which the B component of a foreground bin BFi j

must

rise with respect to the corresponding background bin

BBi j
.

Once the candidate bins are detected, the algo-

rithm analyses them looking for the spatio-temporal

dynamics which is characteristic of smoke. This stage

of the algorithm is divided into two phases: the detec-

tion and the confirmation phase. The detection phase

starts when the first candidate bins are discovered, an

instant denoted as t0, and finishes at t = tD. Then the

confirmation phase is started, and will finish, if the

result is positive, at time t = tF , by sending an alarm

message. The internal processing at both phases is

described next.

First of all, in order to consider that smoke is

present at the scene, a minimum number of candi-

date bins must exist. Let us define N(t) as the number

of candidate bins at time instant t. This parameter

changes every TC, that is, with every captured image.

During the confirmation phase, the following expres-

sion must be fulfilled:

N(t) ≥ NMIN {t ∈ [tD,tF ]} (10)

where NMIN represents the minimum necessary num-

ber of candidate bins to consider smoke.

Another important element of the smoke dynam-

ics is its gradual appearance into the scene. Once the

first candidate bins are detected, new candidate bins

must gradually appear until reaching at least NMIN at

t = tD. This fact can be described by means of two

conditions. The first one is:

tD − t0 ≤ TDMAX
(11)

where TDMAX
represents the maximum time interval

within which smoke must appear into the scene once

the first candidate bins are detected. The second con-

dition is:

N(t)−N(t −TC) ≤ GMAX {t ∈ [t0,tF ]} (12)

where GMAX expresses the maximum permitted

growth of candidate bins between two consecutive

captured images during the smoke dynamics.

Finally, smoke does not appear as candidate bins

scattered throughout the scene. On the contrary, it



is formed by compact regions of candidate bins. Let

us define Z(t) as the number of 8-connected regions

of candidate bins. Just like N(t), Z(t) changes with

every captured image. The compactness of smoke can

be described as:

Z(t) ≤ ZMAX {t ∈ [t0,tF ]} (13)

being ZMAX the maximum permitted number of 8-

connected regions during the smoke dynamics.

The duration of the confirmation phase will be

fixed, that is:

tF − tD = TF (14)

Therefore, the spatio-temporal dynamics of

smoke can be summarised as follows: a minimum

number of candidate bins NMIN must appear once the

first candidate bins are discovered at t = t0. The time

instant at which NMIN is reached, t = tD, establishes

the end of the detection phase and the beginning of the

confirmation phase. Besides, tD must fulfill Eq. (11),

accounting in this way for the time scale of the grad-

ual appearance of smoke in the scene. If the limit es-

tablished by TDMAX
is reached without having accom-

plished the minimum candidate bins fixed by NMIN,

then the process starts again as the detection was trig-

gered by something that was not smoke. If the de-

tection is correct confirmation phase starts. During

this phase, whose duration is determined by Eq. (14),

the number of candidate bins must be always above

NMIN, i. e. they must satisfy Eq. (10). In this way,

we take into account that smoke does not disappear

suddenly from the scene. Finally, the growth rate of

smoke, defined in Eq. (12), and the compactness of

the smoke traces in the scene, represented by Eq. (13),

are checked during both the detection phase and the

confirmation phase. Failure in holding these condi-

tions means tracking some dynamics belonging to a

source different from smoke, what stops the process

returning to the beginning of the detection cycle.

5 PRELIMINARY TESTS

In order to test the vision algorithm, we realized some

recordings in natural scenarios. They were carried

out in 9 different locations under different illumina-

tion conditions using three different cameras. Ap-

proximately 80 minutes were recorded containing 16

sequences of gradual appearance of smoke following

its natural evolution in scenes whose background is

basically composed of vegetation and numerous se-

quences without smoke in order to check the false

alarm rate. The resolution of the frames is 720×576

px and the frame rate is 25 frames per second in all

the recordings. As an example, the images in Fig. 3

correspond to three different tests.

To set the values of the parameters of the algo-

rithm, we analysed 9 of the 16 different sequences

where smoke appears gradually (Fernández-Berni,

2008). The other 7 sequences will be employed to test

the algorithm later. Specifically, 25 seconds of every

sequence were analysed. The starting point is just be-

fore smoke begins to appear. Only the B component

of the frames was used for the adjustment.

The proposed algorithm presents a basic parame-

ter: TC. It establishes the temporal scale of the smoke

dynamics. In order to determine its value, we first de-

tected the pixels affected by smoke. Indeed, smoke

is the most significant foreground motion in the 9 se-

quences analysed. Therefore, we can consider that a

pixel represents smoke if:

pF(x,y)− pB(x,y) > ε (15)

where pF(x,y) is the foreground value of the pixel

(x,y), pB(x,y) is its background value and ε is the

pixel noise of the camera.

Once the smoke pixels are detected, the parame-

ter TC must reflect the temporal scale of its dynam-

ics. At the same time, this parameter must be as large

as possible to reduce the processing load. Consider

Fig. 4. It shows a magnitude that is very sensitive

to the smoke dynamics: the number of smoke pix-

els per frame of every sequence. If we examine the

evolution of these curves in the frequency domain, it

can be seen that most of the power is concentrated at

very low frequencies. In fact, at f = 0.5Hz the power

of the DFT is approximately three orders of magni-

tude smaller than the power at f = 0Hz for all the

sequences. This means that the essential characteris-

tics of the dynamics can be tracked by only analysing

the frequency interval [0,0.5]Hz. In terms of TC, it is

translated into TC = 1s, that is, a sample frequency of

1Hz. Therefore, the adjusment of the rest of parame-

ters will be realized taking into account that TC = 1s.

To determine SB, we represent V̄ for each se-

quence in Fig. 5. It can be seen that the minimum

value is approximately 200 smoke pixels per second.

According to Eq. (8), this is the maximum number of

pixels which must contain every bin in order to track

the smoke dynamics. Taking into account the resolu-

tion of the frames, the size of the bins must be 15×12

pixels (180 pixels). It is important to emphasize that,

thanks to the binning process, the initial information

composed of 0.4Mpx is reduced to only 2.3Kbins .

Besides, in this case, every bin can be represented by

only one bit indicating if it is marked as a candidate

bin or not.



Regarding the percentage pth, consider Fig. 6. It

represents the average increase, normalized to the sig-

nal range, of the pixels affected by smoke with regard

to the background. It can be seen that the average

increase exceeds 10% for most of the time. We are

going to extrapolate this result to the candidate bins

by setting pth = 10%.

Applying Eq. (9) with the values of SB and pth just

set, we obtain the number of candidate bins of the se-

quences, as depicted in Fig. 7. According to this rep-

resentation, the minimum number of candidate bins

reached in the sequences is 17. We set NMIN = 14

in order to concede a margin of three candidate bins.

This choice implicitly sets TDMAX
= 20s and TF = 4s.

Therefore, the detection of smoke will be carried out

within a maximum interval of 24s after the discovery

of the first candidate bins.

At this point, it is easy to adjust the value of

GMAX. Consider Fig. 8, where the maximum growth

rate of candidate bins is represented for each se-

quence. Among these maximum rates, the greatest

is 47 bins per second. We set GMAX = 50, adding a

small margin of three bins.

There are two parameters left: ZMAX and TR. To

determine ZMAX, consider the Fig. 9 where the num-

ber of 8-connected regions of candidate bins is de-

picted throughout the sequences. We can see that the

maximum value is 6. Besides, it is only reached once

in one of the sequences. Therefore, we set ZMAX = 6,

without additional margin.

Finally, with respect to TR, longer recordings are

mandatory in order to estimate an approximate value

of this parameter. Even for the longest sequence anal-

ysed, whose duration is 458s (around 8 minutes),

smoke detection was possible without updating the

initial reference image.

Once the parameters were set, we applied the al-

gorithm, to all the recordings. Smoke was detected

in the 16 smoke sequences, the 9 employed to set the

parameters, obviously, and the other 7. Besides, in

the rest of sequences where smoke was not present,

no false alarm was detected. Therefore, the algorithm

achieves the highest reliability when applied to all our

recordings.

6 CONCLUSIONS

A new generic approach to detect dynamic textures

has been presented. It is specially suitable for real-

time applications where the power requirements de-

mand very low energy consumption. As an applica-

tion, we propose the smoke detection within a forest

fire detection system based on a wireless vision sen-
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sor network. A set of recordings was carried out in

natural scenarios in order to validate the feasibility of

the proposed approach for this application. The re-

sults point to a very high reliability and robustness

in the process of detection. Our primary next objec-

tive is the physical implementation of a vision chip

whose focal plane includes the structure proposed in

this paper. We also intend to extend the applicabil-

ity of the proposed approach by defining new vision

algorithms which can take significant advantage of in-

cluding both binning and spatial filtering within each



bin.
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