
0

Analysis of Error Mechanisms in Switched-Current
Sigma-Delta Modulators

José M. de la Rosa, Belén Pérez-Verdú, Fernando Medeiro, Rocío del Río and

Angel Rodríguez-Vázquez

Instituto de Microelectrónica de Sevilla, IMSE-CNM (CSIC)
Edificio CICA-CNM, Avda Reina Mercedes S/N, 41012-Sevilla, SPAIN

Phone: +34 955 056666; FAX: +34 955 056686
E-mail: (jrosa,belen,medeiro,rocio,angel@imse.cnm.es)

ABSTRACT

This paper presents a systematic analysis of the major switched-current (SI) errors and

their influence on the performance degradation of Σ∆ Modulators (Σ∆Ms). The study is pre-

sented in a hierarchical systematic way. First, the physical mechanisms behind SI errors are

explained and a precise modeling of the memory cell is derived. Based on this modeling, the

analysis is extended to other circuits of higher level in the modulator hierarchy such as integra-

tors and resonators. After that, the study is extended to the modulator level, considering two fun-

damental architectures: a 2nd-order LowPass Σ∆M (2nd-LPΣ∆M) and a 4th-order BandPass

Σ∆M (4th-BPΣ∆M). The noise shaping degradation caused by the linear part of SI errors is stud-

ied in the first part of the paper. This study classifies SI non-idealities in different categories

depending on how they modify the zeroes of the quantization noise transfer function. As a

result, closed-form expressions are found for the degradation of the signal-to-noise ratio and for

the change of the notch frequency position in the case of 4th-BPΣ∆Ms. The analysis is treated

considering both the isolated and the cumulative effect of errors. In the second part of the paper

the impact of non-linear errors on the modulator performance is investigated. Closed-form

expressions are derived for the third-order harmonic distortion and the third-order intermodula-

tion distortion at the output of the modulator as a function of the different error mechanisms. In

addition to the mentioned effects, thermal noise is also considered. The most significant noise

sources of SI Σ∆Ms are identified and their contributions to the input equivalent noise are cal-

culated. All these analyses have been validated by SPICE electrical simulations at the memory

cell level and by time-domain behavioural simulations at the modulator level. As an experimen-

tal illustration, measurements taken from a 0.8µm CMOS SI 4th-BPΣ∆M silicon prototype val-

idate our approach.
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Analysis of Error Mechanisms in Switched-Current
Sigma-Delta Modulators

I. Introduction

The ‘vertiginous’ scaling-down of CMOS VLSI technologies and the tendency towards

systems-on-chip are prompting the development of new digital telecommunication devices

spanning from portable gadgets (cellular phones, digital radio receivers, personal digital assist-

ants) to modems for digital subscribe line (xDSL). In such systems, Σ∆ Modulators (Σ∆Μs)

have been demonstrated that are very well suited to implement the Analog-to-Digital (A/D)

interface. This type of A/D Converters (ADCs), composed of a low-resolution quantizer embed-

ded in a feedback loop, uses oversampling (a sampling frequency much larger than the Nyquist

frequency) to reduce the quantization noise and Σ∆ modulation [1] to push this noise out of the

signal band. The combined use of redundant temporal data (oversampling) and filtering (Σ∆

modulation) results in high-resolution, robust ADCs, which have lower sensitivity to circuitry

imperfections and are more suitable than traditional Nyquist-rate ADCs for the implementation

of A/D interfaces in modern standard CMOS technologies [2][3].

In last years, the principle of Σ∆ modulation has been extended to bandpass signals, lead-

ing to another type of Σ∆Μ ADCs, named BandPass Σ∆Μ ADCs (BPΣ∆Μ-ADCs) [4]. These

new converter architectures make it possible an early A/D conversion at Radio-Frequencies

(RF) or Intermediate-Frequencies (IF) in radio systems, thus allowing digital control and pro-

grammability of both the gain and the filter coefficients of the IF stage. On the one hand, this

enables the receiver to support multiple communication standards, as has been shown by a large

number of CMOS BPΣ∆Μ Integrated Circuits (IC’s) [5]-[10]. On the other hand, the use of such

ADCs facilitates the integration of a whole digital radio receiver onto a mixed-signal chip.

The analog portion of these chips must feature the required analog performance levels in

standard ‘digital-oriented’ VLSI, what has motivated exploring analog design techniques com-

patible with standard CMOS. This is the case of switched-current (SI) circuits [11], which dur-

ing the last decade have been explored for the construction of different analog functions,

including filtering [12] and ADCs [13][14], in digital CMOS.

The SI technique is based on the principle that, by storing the gate voltage of an MOS tran-

sistor, the current flowing through it can be memorized. In addition to its obvious compatibility

with a standard process (poly-poly capacitors are not needed), the SI technique offers other

advantages. On the one hand, as signal carriers are currents instead of voltages, the signal range
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is not limited by supply voltages. This fact makes SI a suitable technique for low-voltage sup-

plies. On the other hand, as operational amplifiers are not needed, fast operation can be achieved

with low power consumption [12].

The mentioned advantages have been barely demonstrated through actual practical cir-

cuits. Thus, in the case of Σ∆Ms, performances featured by reported SI ICs are well bellow those

of Switched-Capacitor (SC) counterparts, even if the latter are realized in standard technologies

without good passive capacitors. Such poorer performances are partly due to the larger influence

of SI non-idealities, as well as to the incomplete modeling of their influence on the performance

of Σ∆Ms.

This paper aims at solving these problems by means of a systematic analysis of error

mechanisms in SI Σ∆Ms. The study is treated with two well-different objectives: on the one

hand, the obtainment of behavioural models that support a fast and precise time-domain simu-

lation; on the other hand, the attainment of approximate equations which, in closed-form,

express the effect of each non-ideality at different levels of the modulator hierarchy as a function

of itself and other design variables. As a result, closed-form expressions are found for the quan-

tization noise transfer function deviations, the in-band noise power, and the harmonic distortion.

This allows the designer to control the non-idealities either through the choice of MOS transis-

tor sizes and bias currents (sizing) or by means of proper circuit techniques.

The analysis described here will focus on two fundamental single-loop architectures: a

2nd-order LowPass Σ∆M (2nd-LPΣ∆M) and a 4th-order BPΣ∆M (4th-BPΣ∆M).

These modulators are easy to understand and simple to design, are capable of providing high

resolution together with large tolerance to imperfections and robust stable operation [2]. Never-

theless, this study can be easily extended to other architectures such as multi-stage cascade

modulators [2][5]. In these architectures, the error contributions due to the first stage − usually

a single loop Σ∆M like those treated in this work − constitute the most significant degrading fac-

tor of the overall modulator performance.

The paper is organized as follows. Section II describes the modulator architectures under

study. Section III analyses the non-idealities of SI memory cells, putting special emphasis on

signal-dependent error mechanisms. In particular, a new model for the non-linear transient

behaviour is presented. Section IV extends the analysis to other higher hierarchical level SI cir-

cuits − integrators and resonators − in order to study the effect of SI errors on the in-band noise

power of Σ∆Ms. The impact on the harmonic distortion is carried out in Section V and Thermal

noise is treated in Section VI. Section VII validates the study through measurements taken from

1-bit 1-bit
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a 4th-BPΣ∆M IC realized using fully differential SI regulated-folded cascode circuits in a stand-

ard 0.8µm CMOS technology. Finally, conclusions are given in Section VIII.

II. Modulator Architectures

Fig.1 shows the block diagram of the Σ∆Ms under study: Fig.1(a) is a

2nd-LPΣ∆M and Fig.1(b) is a 4th-BPΣ∆M. The latter has been obtained by applying the

transformation to the former. Assuming that the quantization error is modelled as a

white, additive noise, the  output of both modulators is given by [2]:

(1)

where and are respectively the of the input signal and the additive

quantization noise source. The ideal Signal Transfer Function, ( ) is of the all-pass type

for both modulators. On the other hand, the ideal quantization Noise Transfer Function ( )

is of the high-pass type for the 2nd-LPΣ∆M and bandstop type for the 4th-BPΣ∆M, respectively,

(2)

By making − with being the sampling frequency − it can be seen that

has transmission zeroes at dc for the 2nd-LPΣ∆M which are shifted to for the

4th-BPΣ∆M − a consequence of the transformation . Fig.2(a)-(b) illustrate the fil-

tering performed by both modulators. The input signal is allowed to pass while, at the same

time, most of the quantization noise power is “shaped” so that it is pushed out of the signal band.

In both cases, the quantization noise is rejected with a second-order filter.

The in-band quantization noise power can be calculated by integrating the output noise

Power Spectral Density (PSD) within the signal band, ,

(3)

Fig. 1. Architecture of the modulators in this paper: (a) 2nd−Σ∆LPM, (b) 4th−Σ∆LPM.1-bit
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where is the PSD of the quantization noise error, is the quantization step,

and is the oversampling ratio. From (3), and assuming that the modulator input

is a sinewave of amplitude , the Signal-to-Noise Ratio ( ) at the output results in:

(4)

The modulator Dynamic Range ( ) is obtained by making in the above expres-

sion. In this ideal scenario, the resolution increases with at a rate of about as

illustrated in Fig.2(c) where  is displayed as a function of .

The first step towards the design of Σ∆Ms is choosing a suitable architecture to realize the

integrators and resonators. Regarding the latter, several alternatives have been described in the

literature [4]-[10]. Among the others, we will adopt a structure consisting of a feedback cascade

of two Lossless Discrete Integrators (LDIs) because it keeps the poles inside the unit circle upon

changes due to errors of the feedback loop gain. For that reason, this has been the resonator −

and consequently the integrator − structure chosen to implement the modulators in this paper†1,

whose architectures are depicted in Fig. 3. Note that, in both modulators, the required feedback

loop delay has been realized through two additional delay blocks. Also, the scaling factors have

been optimized to obtain a similar signal range for both integrators (resonators), giving

; (5)

†1 All analyses described in this paper for LD integrators can be extended to FE integrators following the

same methodology described here.

(b)

Fig. 2. Filtering functions in: (a) 2nd-LP-Σ∆Ms; (b) 4th-BPΣ∆Ms. (c) .DR vs. M
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The modulators in Fig. 3 present the given in (4). However, such an ideal feature can only

be achieved provided that the building blocks in Fig.3 are realized without errors. Modeling of

these errors and circuit optimization are needed to cope with the degradation observed in

actual circuits realized using SI memory cells.

III. Fundamental limitations in SI memory cells

According to [11], the main errors responsible for the non-ideal behaviour are: finite out-

put-input conductance ratio error, charge injection error, incomplete settling error, mismatch

error†2 and thermal noise. Although the physical mechanisms behind all of them have been

described in literature [12]-[17], their influence has been studied only at the memory cell level.

Bearing this in main, this section analyses the effect of each of the above-mentioned errors with

two objectives; on the one hand, to provide precise closed-form expressions for the offset, linear

gain error and Harmonic Distortion (HD) caused by SI non-idealities at the memory cell level;

on the other hand, to build analytical models which allow us to extend this analysis to other cir-

cuits of higher hierarchy level in Σ∆Ms such as integrators and resonators.

A. Finite output-input conductance ratio error

Let us consider the second-generation SI memory cell shown in Fig.4(a). The drain node

of the memory transistor, M, will be at different voltages on both clock phases, and . This

voltage variation, , is translated into an error on the memorized drain-source current, ,

basically through two mechanisms [15]. The first is caused by the channel length modulation

†2 The study described here is based on second-generation memory cells [11]. These cells do not exhibit

mismatch errors because the same transistor is used to implement both the sink and source currents. How-

ever, general SI circuits require scaling coefficients which are implemented by current mirrors thus being

subject to mismatches in the large signal transconductance and the threshold voltage. Their effects, ana-

lysed in [34], will be taken into account in the study of SI integrators and resonators of the next section.

Fig. 3. Block diagram of the LDI-based Σ∆Ms. (a) 2nd-LPΣ∆M. (b) 4th-BPΣ∆M.
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effect of both M and the bias current source transistor, MB. The second one is due to the charge

which flows through the drain-gate overlap capacitance, , into the gate-source capacitance,

, thus causing an error on the gate-source voltage, , and consequently on . These two

mechanisms of error can be modelled as a finite output conductance, , connected in parallel

with the memory transistor [11][15].

Assuming ideal switches, a memory cell can be modelled by the equivalent circuit shown

in Fig.4(b). In this circuit and represent the input and output conductances of the cell,

respectively given by [16][17]:

(6)

where ; and are the small-signal

and large-signal transconductances of M, respectively; and

are the small-signal output conductances of M and MB respectively; and are respectively

the channel length modulation parameter for M and MB; and , with and

 being the input and bias current, respectively.

Let us consider the connection of two cells in series shown in Fig.4(c). Assuming that both

cells are modelled by Fig.4(b), and that the stationary state is reached during the sampling phase

(  is neglected), it can be shown that the equation governing the behaviour of cell1 is:

(7)

where †3.

Assuming that the memory cell operates under mild distortion conditions [18], i.e,

, and performing a Taylor series expansion of (7), yields†4:

†3 The notation  is used to represent , where  and  is the sampling period.
†4 In the ideal case . On the other hand, in the regime of mild distortion, .

Fig. 4. Linear model for the memory cell with finite output-input conductance error. a) Simple second-gener-

ation memory cell. b) Equivalent circuit. c) Connection of two cells in series.
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(8)

where

(9)

(with ) is defined as the linear finite output-input conductance

ratio error and for represents the -order non-linear gain error, the most significant

being:

(10)

Assuming that is a sinewave of amplitude , the output current will contain harmonics of the

input signal frequency . The most significant HD terms are the second- and the third-order,

respectively given by:

(11)

where is the modulation index and has been assumed − as it occurs in

most practical cases. Note that, as and are proportional to , they can be reduced

by using the same strategies to attenuate : either by increasing [20] or by reducing [21].

The above analysis has been verified through a transient simulation of the series connec-

tion of two memory cells using HSPICE with BSIM3v2 MOS transistor models [19]. Fig.5(a)

represents and vs for , ,

, , and ideal bias current sources of . The

effect of is shown in Fig.5(b) by plotting vs for and . A

good agreement is obtained between electrical simulation and (11).
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B. Charge injection error and clock feedthrough

In practice, switches in Fig.4(a) are realized through MOS transistors. During the turn-off

transient of , the channel mobile charges of the memory switch, Sm, (see Fig.4(a)) flow out

of its drain, substrate, and source. Part of this charge is dumped on the memory transistor gate-

source capacitance, . In addition, the fast changing of the gate voltage causes the channel

charge to flow through the gate-diffusion overlap capacitances, , into both the source and

drain of Sm. These two phenomena cause a variation on the memory gate-source voltage of M

− often known as charge injection or clock feedthrough error − which can be expressed as

[11][23],

(12)

with

(13)

where and are the switch-on and switch-off voltages of Sm; is the fraction of chan-

nel charge injected into (typically )†5; is the body effect coefficient; and

 and  are the effective width and length of Sm, respectively.

Assume that the cell in Fig.4(a) is ideal except for the charge injection error. At the end of

clock phase  of period , the  voltage of M can be expressed as

(14)

where  stands for the operating-point overdrive voltage.

When Sm turns off, its channel charge causes an error in the gate voltage memorized at the

end of clock phase . In the clock phase  of period , the output current is given by:

(15)

Substituting (12) in (15) and performing a Taylor expansion series for  yields:

(16)

where

(17)

†5 Assuming fast clock transitions, the channel charge splits equally between source and drain [23].
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is the linear charge injection error, and

(18)

represents the output offset current, the second- and the third-order gain error, respectively.

Assuming , the corresponding HD coefficients can be approximated by:

(19)

which, as in the case of , can be attenuated by reducing . For this purpose, several compen-

sation techniques have been proposed in literature [24]-[27]. Among the others, the so-called

S2I [28] has been the most extensively used by SI designers. The S2I cell divides the sampling

time into two steps; in the first step, the input current is memorized with an error by a coarse

memory transistor; in the second step, that error is sampled by a fine memory transistor with an

error .

The S2I technique is not well suited for BP-Σ∆Ms because the input signal is not stationary

during the sampling phase since is typically located at . Hence, unless a Sampling-and-

Hold (S/H) circuit is placed at the modulator front-end, the advantages of S2I memory cells are

destroyed. An alternative is using Fully Differential (FD) cells which, in combination with

dummy switches, notably reduce as compared to the single-ended case [11]. FD cells also

cancel even-order harmonics, thus achieving higher level of performance than their single-

ended counterparts. For that reason, in what follows, special emphasis will be put on FD cells.

C. Incomplete settling error

During the sampling phase the input current which is applied to a memory cell charges (or

discharges) . This transient evolution reaches the steady state when the value of is such

that is equal to . However, if the charging process is not completed during the

sampling period, an error voltage is stored into , thus causing an error in the memorized ,

which is often referred to as an incomplete settling error − represented in the SI context by .

There have been several attempts to analyse [29]-[32]. Among the others, a precise

study was presented in [32], but its mathematical complexity precludes to extend its usage to

Σ∆Ms. The approach in this section enables hierarchical systematic analysis of SI circuits con-

taining heavily coupled memory cells as will be demonstrated in Section V.
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the cell is ideal except for . Besides, in most practical cases the time constant formed by the

drain-source capacitance and the switch-on resistance is much smaller than . In

such a case, the cell can be modelled by the equivalent circuit in Fig.6(b) during the sampling

phase, . In this circuit, the large-signal behaviour is modelled by , which represents the

transconductances of M+,−, given by , where and

 [30].

Assuming that keeps stationary during , and that the switch becomes OFF at

the differential drain current, , can be calculated by solving the circuit

in Fig.6(b) for the initial condition , giving:

(20)

where and .

At the end of the hold phase, , the differential output current, , is given by:

(21)

where  has been considered.

To calculate the HD, the function could be approximated by a polynomial inside a

given interval. For that purpose, we have combined Taylor series expansion for and

numerical fitting for , , to obtain:

(22)

where

(23)

is the linear settling error, with , and

is a fitting parameter. Fig.7(a) shows a good agreement between (22) and the exact

expression of  for different values of . From (21) and (22):

Fig. 6. FD memory cell with settling error. a) Schematic. b) Equivalent circuit during the sampling phase.
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(24)

The analysis of (the dominant HD coefficient in FD circuits) can be simplified if is

approximated by its first-order harmonic, such that . Thus, performing

a Fourier series expansion of (24) it can be shown that

(25)

where .

Predictions given by (25) agree with HSPICE and the model in [32] as shown in Fig.7(b)

where vs. is plotted for , , ,

and − the same example as in [30][32]. However, as a difference to

[32], the approach here can also be used for predicting the HD of higher-level SI blocks as will

be demonstrated in Section V.

D. Non-linear sampling process

In the previous analysis it has been assumed that the input signal remains constant during

the sampling phase. This assumption applies in the following cases:

• The input signal is supplied by another cell.

• The memory cell follows a S/H circuit.

• The ratio  is small (less than ).

Let us consider that is a continuous-time sinewave with and

†6. Fig.8(a) shows the transient evolution of for the FD cell of Fig.6. Observe that,

in this case, will change during the sampling phase up to †7, thus causing an additional

error to . This additional error, dominantly non-linear, will cause an extra HD which cannot

†6 This is the typical case of a front-end cell in a BP-Σ∆Μ.
†7 The maximum signal variation during sampling phase is given by: .

Fig. 7. Settling error. a) Approximation of .b) Comparison with HSPICE and previous models.Ψ mi( )

HD3 (dB)

1/128 1/32 1/8 1/2
-80

-70

-60

-50

-40

-30

HSPICE

Crawley&Roberts [30]

Helfenstein&Moschytz [32]

New Model

f i f s⁄

M i 0.5=

(a) (b)

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

Ψ mi( )

mi

Exact expression
Approximation εs 10%=

εs 0.5%=

εs 0.05%=

εs 0.005%=

io n, 1 εs–( ) ii n 1 2⁄–, εs2 ii n 1 2⁄–,
3

ii n 1 2⁄–,
2

io n 1–,+( )–[ ]– εsio n 1–,+≅

H D3 io

io n, I i– 2π f inT s( )sin≅

H D3

α sεsks 1 ks+( )
16 1 εs–( )

-----------------------------------M i
2 π

f i

f s
----- 

 sin≅

M i I i 2I bias( )⁄=

H D3 f i f s⁄ gmQ 82.8µA/V= Cgs 22.1pF= I bias 20µA=

M i 0.5= f s 512kHz=

f i f s⁄ 1 10⁄
ii I i I bias 2⁄=

f i f s 4⁄≅ id

ii I i 2⁄

I i 2π f i t T s 2⁄+( )[ ]sin 2π f it[ ]sin–
f i f s 4⁄=

I i 2⁄≤

εs



12
be explained by analysing the step-response of the cell, i.e, considering stationary input signals

during the sampling phase. This is shown in Fig.8(b) by comparing the simulated (HSPICE)

output spectra of the FD cell in Fig.6 (with , , ,

, and ), corresponding to both a sampled-and-held

(stationary) and a continuous-time (non-stationary) input tone. It is clear that the latter presents

much more HD ( ) than the former ( ). However, in both cases

is negligible ( , and ), meaning that the extra is caused by the non-

linear sampling process and, as illustrated in Fig.8(c), becomes lower as is reduced. This

phenomenon is analysed in Appendix I by using the Volterra series method [33], showing that

 due to the non-linear sampling is approximately given by:

(26)

which is in close agreement with HSPICE as shown in Fig.8(d) where is plotted vs.

and different values of . Note that, although for , high lev-

els of HD appear: .

Fig. 8. Non-linear sampling error. a) Transient evolution of for an input sinewave with , and

. Comparison between caused by a non-stationary input signal and a stationary input

signal. b) Output spectra for . c)  vs.  (HSPICE). d) Theory vs HSPICE.
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E. Thermal noise

The electrical noise of a MOS transistor can be modelled by a noisy current source, ,

connected in parallel with a noiseless transistor, with a PSD given by:

(27)

where the first term in the right-hand side represents the thermal noise PSD and the second term

is the flicker noise with being a technology-dependent parameter. Fig.9(a) shows a simple

second-generation memory cell including its noise sources. The equivalent noise current at the

output of the cell can be derived by determining the equivalent noise voltage at the gate of M1,

, and multiplying its PSD by , where stands for the small-signal transconductance

of M1. To do this, the equivalent PSD of each noise source at the gate of M1 is derived by com-

puting the transfer function from said noise source to the gate of M1. Assuming that they are not

correlated they can be added to obtain the PSD of . However, because of the discrete-time

nature of memory cells, the transfer function from each noise source to the gate of M1 will differ

from one clock phase to the other. Hence, the output equivalent noise is found by analysing the

equivalent circuit in Fig.9(b) for each clock phase and adding them − assuming they are not cor-

related . Doing this, it is shown that the total output noise PSD of the cell is given by [27]:

(28)

where ; and are the duration of the sampling and the hold

phases, respectively; represents the equivalent noise bandwidth and it has been assumed

that flicker noise sources are removed as a consequence of the autozero effect [11].

The above result is valid not only for basic memory cells like that shown in Fig.9, but also to

more advanced cells by simply replacing the corresponding value of  in (28).
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Fig. 9. Noise analysis of a memory cell. a) Noise sources of the cell. b) Equivalent circuit.
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IV. Effect of SI errors on the noise-shaping of Σ∆ modulators

In the following sections, the previous analysis will be extended from the memory cell

level to other higher hierarchical level circuits such as integrators, resonators and finally, Σ∆Ms.

This study will be separated into two parts. In the first part, shown in this section, only the con-

tribution of linear errors will be considered and closed-form expressions will be derived for the

degradation. In the second part, described in Section V, the non-linear contribution of the

SI errors will be taken into account.

A. Cumulative effect of SI errors on the performance of SI memory cells

The isolated influence of main SI errors on the memory cell performance has been ana-

lysed in Section III. For our study we are interested not only in the separate effect but also on

their cumulative influence on the degradation of SI circuits.

Let us consider the cascaded memory cells shown in Fig.10(a). During clock phase ,

Cell1 is in hold phase while Cell2 is in sampling phase. The small-signal equivalent circuit for

such a configuration is shown in Fig.10(b) †8− obtained from models described in Section III.

The stationary drain current of the memory transistor in Cell2, , is given by:

(29)

The above expression applies only if the memory cell reaches the steady state before the end of

the sampling phase. Otherwise, an additional error is generated as a consequence of . Solving

the equivalent circuit of Fig.10(b) for with as the initial condition

of  yields

(30)

†8 To simplify the notation,  and  are used instead of  and  respectively.
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where represents the memorized drain current in the previous sampling phase. When the

memory switch of Cell1 opens, the charge injected in introduces an additional error term

( ), so that

(31)

Fig.10(c) shows the equivalent circuit for the Cell2 in the hold phase. Considering all errors

above, the  of  is given by:

(32)

It can be seen from the above equation that the ideal transfer function of the memory cell,

, is modified by a gain error which is the sum of , and . This is illustrated in

Fig.10(d) where the transient evolution of  is represented during both clock phases.

B. Effect on LD Integrators and LDI-based Resonators

Let us consider the LDI whose block diagram is shown in Fig.11(a) and its SI

realization is shown in Fig.11(b). For the analysis that follows it will be assumed that memory

cells which form the integrator are subject to three linear errors: , and and the output

current mirror will be considered ideal. On clock phase of period , the small-signal

equivalent circuit is that shown in Fig.11(c). The steady state drain current of M2, is given
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by

(33)

with . Due to the incomplete settling,

(34)

On clock phase of period , the small-signal equivalent circuit for the integrator

is shown in Fig.11(d). The drain current of M1 is given by

(35)

and the output current will be

(36)

From (33)-(36) and after taking the  we obtain:

(37)

The isolated effect of each error on the LDI transfer function − already found in [11]− can

be obtained from the above equation by simply nullifying the rest of errors. From (37) it is clear

that all error mechanisms contribute as an error gain but the settling error is the only one that

changes the poles in a different way as compared to the other errors.

Let us consider now the conceptual SI realization of the LDI-loop resonator block shown

in Fig.12. In addition to the memory cell errors (εg, εq and εs), there are some errors due to non-

idealities in the connection of the integrators, defined as follows†9:

; (38)

where is the steering switch on-resistance and , are the output conductances of

the current mirrors, as stated in Fig.12. Using the equivalent circuit shown in Fig.11 for the inte-

†9 Mismatch errors also contribute to the scaling stage errors [34]. Therefore, the scaling coefficients of

the resonator are modified by the cummulative effect of  and mismatch errors.
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grators and following a similar procedure as in the case of LDIs, it can be shown that the transfer

function for the non-ideal resonator is:

(39)

where

(40)

C. Non-Ideal Quantization Noise Shaping in SI Σ∆ Modulators

Substituting (37) and (39) in the transfer functions of the integrators and the resonators in

Fig.3, the erroneous quantization noise transfer function of the 2nd-LPΣ∆M ( ) and

the 4th-BPΣ∆M ( ) are respectively,

(41)

The zeroes of in the 2nd-LPΣ∆M (and of in the 4th-BPΣ∆M) are shifted

from their nominal positions at ( ), thus degrading the filtering performed by the inte-

grators (resonators) and making the quantization noise floor to increase in the signal band, and

correspondingly, the  to decrease.

We can group SI errors in different families attending to the way they degrade the zeroes

of , which map into different increases of the in-band quantization noise power .

Note that, in the lowpass case, the only effect of linear SI errors is to increase . However, in

the bandpass case there is a combined effect of increasing and a shifting of the position of

the signal band center frequency, often called notch frequency − represented by parameter .

As this combined effect is more complex than by simply increasing , we will discuss in more

detail the bandpass case. A similar discussion can be done for 2nd-LPΣ∆Ms.

Table I shows the non-ideal in-band quantization noise power in 4th-BPΣ∆Ms for each

family of errors − obtained from substituting (41) into (3). This table provides insight on the

influence of each error source. Thus, assuming typical variations of the error parameters

between  and , the following conclusions are drawn from (41) and Table I:
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• The only effect of errors and consists in reducing the of the resonator

transfer function, thus lowering the bandstop attenuation of the modulator bandpass

filtering. For these errors, the deviation in is dominated by the term up

to ; beyond this limit the term dominates, thus practically

destroying all the benefits of the oversampling.

• The errors and just change . However, does not significantly increase.

For these errors, the term  dominates up to .

• The errors and degrade the position of and increase . For , the

term dominates up to , while for , dominates up to

.

• For similar values of errors, produces larger deviations in the noise transfer func-

tion than the rest of errors − illustrated in Fig.13(a). This forces using larger oversam-

pling ratios to achieve the ideal level as is shown in Fig.13(b) by plotting

degraded by the different errors as a function of .

In addition to the mentioned SI errors, other scaling errors are found at the modulator

level. However, they do not influence neither the integrator nor the resonator transfer function,

and simply affect the scaling gains in the modulator loop, i.e: , , . As

these errors do not shift the zeroes but the poles of , their impact on is negligible

for typical values (below ).
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All these results have been validated by simulation using a time-domain SI behavioural

simulator described in [35]. As an illustration, Fig.14 shows several simulated modulator output

spectra obtained for a 4th-BPΣ∆M with a sinewave input signal of amplitude and

centered at . This figure compares the degradation of in the presence of

, obtained with the theoretical model (solid line) with that obtained

through simulation. A good agreement can be observed between both approaches.

In order to compare the noise-shaping degradation in lowpass and bandpass Σ∆Ms we will

center on the effect of , because these errors only cause an increase of . Fig.15(a)-(b)

show the output spectra of both 2nd-LPΣ∆Ms and 4th-BPΣ∆Ms using memory cells with

, ; and . In this simulation the

only non-ideal effect was . The comparison between both types of Σ∆Ms is better illustrated

in Fig.15(c) where a (obtained for a sinewave of amplitude ) is plot-

ted as a function of for . It is shown that the effect of on 4th-BPΣ∆Ms

is two times larger than on 2nd-LPΣ∆Μs as confirmed by theory.

D. Cummulative influence of SI errors on the quantization noise power of SI Σ∆Ms

In practical applications, the designer should consider not only the isolate effect but also

the cumulative influence of errors on the modulator performance. This will allow us to know the

maximum error bound that is allowed for a given resolution. To illustrate this discussion, let us

consider the in-band quantization noise power degraded by all errors in 4th-BPΣ∆Ms†10 which
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can be derived from (3), and (41), giving:

(42)

Making all errors equal to an error bound named  the following expression is obtained:

(43)

This equation allows us to express the quantization noise power degradation in terms of . Thus,

forcing all SI errors in the modulator to be smaller than  bounds  with (43).

The control of is also critical. We can derive by solving (41) for the frequency of

the zeroes. Assuming that  the error in , denoted as , is given by:

(44)

From (40) it is seen that and therefore for all SI BPΣ∆Ms. On the other hand,

considering that the quantization noise power is minimum at , we define a maximum error

. From (44) and assuming all errors to be equal to , that condition is satisfied

if . For instance, if , yields .

V. Harmonic distortion in SI Σ∆ modulators

In the previous study, SI errors have been assumed to be linear. However, practically all SI

errors are signal-dependent and hence, introduce HD as demonstrated in Section III. There, the

influence of each SI non-linearity on the HD was analysed and closed-form expressions were

derived at the memory cell level. Based on that study, closed-form expressions will be derived

in this section for the HD coefficients of FD SI integrators, resonators and Σ∆Ms.

A. Harmonic distortion due to static non-linear errors

In the analysis that follows, it will be assumed that SI memory cells reach the steady state

before the end of the sampling phase and, consequently, will not be considered†11. As shown

in Section III, the output current of a memory cell can be generically expressed as:

†10 We can proceed similarly for 2nd-LPΣ∆Ms.
†11 As described in Section III, the output current of a SI memory cell is not only a function of the input

current at the sampling instant, but also of the output current at the last sampling instant. This is due to the

fact that the value of reached at the end of the sampling phase depends on the initial condition of .

In this sense, we will refer to as a dynamic error. Otherwise, the remaining SI errors will be referred to

as static errors because they only depend on the input signal at the sampling instant.
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(45)

where stands for the offset current at the output, is the linear gain error, is the ther-

mal noise contribution and represents the non-linear gain error. Note that (45) can

be particularized for each SI error (except for ) by simply substituting the corresponding

expressions of .

Thermal noise will not be considered in the following analysis because it does not contrib-

ute to HD. Also, even powers of the input current in (45) can be considered negligible because

FD SI cells will be assumed. Taking into account these considerations, (45) simplifies into:

(46)

where it has been assumed that  is the dominant non-linear term.

The model in (46) can be used to analyse other SI circuits of higher level in the hierarchy

of Σ∆Ms. Let us consider the LDI-based SI circuits shown in Fig.16. Fig.16(a) shows a FD SI

LDI. In the following, it will be assumed that the operation of memory cells is described by (46).

Although these cells are simple, our analysis can be extended to enhanced memory cells − cas-

code, regulated-cascode or folded regulated-cascode − by conveniently changing the expres-

sions of  and  in (46).

The operation of the integrator is as follows. After clock phase , which goes on for ,

the differential drain current of cell2 is given by:

(47)

where  represents the differential drain current of cell1.

After clock phase ,

(48)
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Assuming that the output stage (represented in Fig.16 as a simple current mirror) is ideal,

the output current of the integrator is given by:

(49)

From (47)-(49) it can be derived that the output current of the integrator is

(50)

where .

Assuming that  and performing a Taylor series expansion of (50), obtains:

(51)

where

(52)

Thus, the analysis of an SI integrator formed by memory cells with static non-linear errors

can be accomplished considering an integrator formed by memory cells with linear gain errors

whose input signal is equal to (52). The equivalent HD at the integrator input can be estimated

by analysing the harmonic content of such an expression. For this purpose, let us assume that

the input current is a sinewave signal of amplitude and frequency . In this case, will be

a periodic signal, with the amplitude of its fundamental harmonic given approximately by:

(53)

On the other hand, we will suppose that  can be approximated by its first harmonic, so that:

(54)

Substituting (53)-(54) in (52) and performing a Fourier series expansion, it can be shown that

the amplitude of the third-order harmonic at the integrator input is approximately given by:

(55)

The above expression will allow us to calculate at the output of a 2nd-LPΣ∆M like

that shown in Fig.3(a). For this purpose, the following considerations will be taken into account:

• The HD referred to the first integrator input is added directly to the input signal. Thus,
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it is not attenuated in the base band. However, the contribution of the second integrator

to HD is attenuated by the gain of the first integrator. For this reason, only the first inte-

grator contribution has to be considered for the analysis.

• The HD referred to the modulator input is equal to the HD referred to the modulator

output. This is because the gain of  is unity.

Assuming that the transfer function of the first integrator in Fig.3 is given by (53), and

obviating the quantization noise, it can be shown that for , the expression for the first

integrator output amplitude is:

(56)

Substituting (56) in (55) and dividing the result by the amplitude of the modulator

input, , obtains the expression for  at the modulator output as follows:

(57)

where  is the DAC output current,  and .

The above expression has been derived for the general case and hence, it can be used to

predict in SI FD 2nd-LPΣ∆Ms due to any static error. As an application, let us assume

that the integrators in Fig.3(a) are ideal except for . In such a case, the theoretical prediction

of is computed by substituting the corresponding expressions of and (see Section

III) in (57). Fig.17(a) plots vs. ( ) for different values of

and compares the theoretical model with time-domain simulations. Fig.17(b)

shows a simulated output spectrum for and %. The

theoretical and simulated data, respectively  and , agree.

Similarly, the analysis of the HD in 4th-BPΣ∆Ms like that shown in Fig.3(b) can be

accomplished by analysing the harmonic content of the first resonator. This is because the con-
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tribution of the second resonator is attenuated by the gain of the first one in the signal band.

Let us consider that the first resonator in Fig.3(b) is realized as shown in Fig.16(b). In the

presence of non-linear static errors, the LDIs which form the resonator can be described by (51)

and, hence, the difference equations which describe the behaviour of the resonator are:

(58)

(59)

where and are respectively the input and the output of the first integrator in the loop (see

Fig.16(b)) while  and  are respectively the input and the output of the resonator.

Solving for  in (59), substituting it in (58) and assuming that , results

(60)

where

(61)

And the amplitude of the third-order harmonic at the resonator input is approximately given by:

(62)

where , and

has been assumed.

Following the same procedure as in the lowpass case, we can obtain at the output of

4th-BPΣ∆Ms. However in bandpass signal processing, the third-order intermodulation distor-

tion, , is more appropriate for measuring distortion than . It can be shown that

(63)

As an application of the previous analysis, let us assume that the modulator in Fig.3(b) is

formed by FD Regulated Folded-Cascode (RFC) memory cells like that shown in Fig.18. In this

cell, the current source named has to be taken as large as possible in order to obtain an over-

damped settling response. However, large values of may force some transistors to leave the

saturation region, thus causing a non-linear dependence of the input voltage on the input signal

which can be modelled as , where coefficients and ,

which are function of , are extracted from dc HSPICE simulations. Fig.19(a) plots vs
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for different values of . Fig.19(b) shows the output spectrum of the modulator for

and . The predicted value for is which agrees with

the simulated value ( ).†12

B. Harmonic distortion due to non-linear settling error

Let us consider that memory cells which form the modulators in Fig. 5 are ideal except for

the settling error. Fig.20(a) and (b) illustrate the effect of the non-linear settling on the HD of

†12 In the analysis described here, the integrator output stages (see Fig.16(a)) have been considered ideal.

In practice, the current mirror used to realize those gain stages have non-linear output conductances and

mismatch, which according to Section III, will cause HD. Following a similar methodology to that pre-

sented here it can be demonstrated that the caused by the current mirror errors can be obtained by

replacing the corresponding value of  (see Section III) in (63).
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the modulators in Fig.3 by showing some modulator output spectra for different values of

and keeping constant. As expected, the in-band quantization noise and increase with

. However, as shown in Fig.20(c), that effect is considerably larger in 4th-BPΣ∆Ms. For that

reason, and to not be repetitive, in the analysis that follows we will focus in the bandpass case.

A similar procedure can be followed for the lowpass case.

Let us assume that memory cells which form the modulator are ideal except for the non-

linear settling, and according to Section III, they can be modelled by (21). Let us consider the

ideal operation of the integrator shown in Fig.16(a). After clock phase , the differential drain

current of cell 2 in Fig.16(a), is:

(64)

where . After clock phase ,

(65)

Assuming that the output stage (represented in Fig.16(a) as a simple current mirror) is ideal, the

output current of the integrator is:

(66)

Following a similar procedure as in the case of static errors, it can be shown that at

the modulator output in Fig.3(b) is given by [36]:

(67)

Note that, due to the oversampling, it is , and hence practically does not depend

on the input frequency as happens at the cell level.

The expression (67) has been validated by time-domain simulation as shown in Fig.21(a) by

representing vs. †13 for different values of with ,

, and . The input signal consisted on two tones of

†13 The simulation was carried out by varying  such that .
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amplitude and frequencies and . As an illustration,

Fig.21(b) shows the output spectrum corresponding to and . Note

that, other intermodulation products appears − not critical since they are outside the signal band.

C. Effect of the sampling process at the front-end of bandpass Σ∆ modulators

In Section III it was demonstrated that the non-linear transient of a memory cell with an

non-stationary input signal will cause large values of HD even if . In a BPΣ∆M, only the

memory cell connected to the input node presents that behaviour. As shown in Appendix I, that

cell can be modelled as an ideal cell with an input signal having a third-order harmonic of ampli-

tude:

(68)

In order to calculate at the modulator output in Fig.3(b), it is necessary to express

as a function of . The analysis of the input section of the modulator gives . Sub-

stituting this expression in (68), and proceeding as in previous sections, we obtain that

(69)

where has been assumed. Fig.22(a) compares (69) with time-domain behaviour al

simulation by plotting vs. for different values of , and .

The theoretical model accurately predicts the simulation results except for some cases where a

maximum error of occurs. In these cases a more exact analysis using the exact expressions

resulting from the analysis in Appendix I should be used.

To conclude this study, Fig.22(b) compares caused by the non-linear settling error

and the S/H process for and . Note that, for , both

expressions approximately converge. However, for practical designs, i.e, for ,

due to the S/H process dominates, limiting the performance of SI BP-Σ∆Ms unless a S/H circuit

will be used at the front-end. This will be confirmed by measurements in Section VII.
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VI. Thermal noise in SI Σ∆ Modulators

Thermal noise constitutes the ultimate limiting factor of Σ∆Ms [2]. As for the rest of SI

errors, only the thermal noise contributions at the modulator input will be important because

they are added directly to the input signal, thus appearing without filtering in the output spec-

trum.

Let us consider the 2nd-LPΣ∆M of Fig.3(a). Assuming the noise contribution of DAC1

negligible, the input-equivalent noise PSD is approximately given by:

(70)

where is the input-equivalent noise PSD of the first integrator which, according to [21], is

twice the noise PSD of the cell − given by (28).

The analysis of noise contributions in the 4th-BPΣ∆M shown in Fig.3(b) shows that, by neglect-

ing the noise contributions of DAC1, the input-equivalent noise PSD is approximately given by:

(71)

where is the input-equivalent noise PSD of the second integrator. Note that the contribu-

tion to the input-equivalent current noise source of the second integrator is twice that of the first

integrator because in the signal band, , and hence:

(72)

The in-band thermal noise power is calculated by integrating and , into

the signal band,

(73)

and in case that the thermal noise dominates the quantization noise, the and the for a

sinewave input signal of amplitude  are respectively given by:

(74)

VII. Experimental Results

To conclude this paper, in this section some measured results are given which demonstrate

experimentally the performance degradation of Σ∆Ms caused by SI errors. As a case study,

measurements were taken from a 0.8µm CMOS SI 4th-BPΣ∆M IC realized using FD RFC
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memory cells [37]. These measurements are compared with time-domain behavioural simula-

tions and theoretical results, thus validating the study described in this paper.

For practical reasons in the experimental set-up, we only have off-chip control of the bias

currents, supply voltages, input signal parameters (amplitude and frequency) and the sampling

frequency. Taking into account these limitations, the results here will center on the effect of:

• Static errors, mainly the linear and non-linear part of , , and . This

will be done by varying the bias current source of the RFC stage, − see Fig.18.

• Dynamic errors, by varying the sampling frequency, .

A.  Effect of static errors

As discussed in Section V, both the linear and the non-linear part of the input impedance

in the cell of Fig.18 increase with , thus degrading the noise shaping of the modulator and

increasing the HD according to Table I and (63), respectively. Fig.23(a) illustrates this by plot-

ting two measured output spectra corresponding to different values of , showing the cumu-

lative effect of errors , and . These effects are predicted by time-domain

simulations using the models presented in this paper as Fig.23(b) shows. Note that a similar deg-

radation is obtained by comparing Fig.23(a) and Fig.23(b). However, in the simulations this

degradation appears for higher values of , because nominal conditions were used. Fig.23(c)

compares two simulated output spectra for considering both nominal and worst-

case speed conditions, showing that the latter are closer to experimental results than the former.

The effect of static errors on is illustrated in Fig.24. Fig.24(a) shows the central part

of several measured modulator spectra for different values of and an input signal consisting

of two tones at and when clocked at . These results con-

firm the degradation of with which was analysed in detail in Section V. In that section

theoretical analyses were validated by time-domain behavioural simulations using nominal con-

ditions. Those results have been validated by measurements as Fig.24(b) demonstrates by rep-
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Fig. 23. Performance degradation due to the non-linear static errors. Output spectra for different values of .
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resenting both measured and simulated  vs. , showing a good agreement.

Other effect of changing is to shift . This phenomenon is mainly due to the variation

of (see Fig.12), thus causing errors and to increase. Fig.25 represents the

approximated variation of (see (44)) as a function of , comparing both simulations and

measurements.

B.  Effect of dynamic errors

Fig.26 shows two measured output spectra corresponding to different values of , and

hence, of the settling error, . As discussed in Section IV, has two main effects: increasing

the in-band quantization noise power and shifting . Both effects are demonstrated in the out-

put spectra shown in Fig.26. Observe that the notch frequency position has been shifted

from its nominal position as predicted by theory in (44) (data inset Fig.26).

Another important effect of raising is the increase of HD. This phenomenon is caused

by two error mechanisms: the non-linear part of , and the non-linear sampling process. As

demonstrated in Section V, for practical values of , the HD in BPΣ∆Ms is dominated by the

non-linear sampling. Fig.27 confirms this by showing two measured output spectra for

when clocked at and , obtaining
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and respectively. In this case, and

( at ), which according to (69) gives and

 respectively.

VIII. Conclusions

A hierarchical systematic analysis of the impact of SI errors on the performance of Σ∆Ms

has been presented. Precise analytical models have been derived for SI circuits of different hier-

archy levels: memory cells, integrators and resonators. Based on the analysis of these blocks,

closed-form expressions have been obtained for the noise-shaping degradation and the har-

monic distortion of both lowpass and bandpass Σ∆Ms. Electrical and time-domain behavioural

simulations at the block level and experimental results at the modulator level validate our

approach.

Appendix I

Let us consider the simple SI memory cell shown in Fig.4(a). For the analysis that follows,

these approximations will be considered:

• The transient response corresponds to a first-order dynamics, dominated by .
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• The charge injection error and the finite output resistance will be neglected.

• Memory transistor, M, operates in the saturation region and can be modelled by:

(75)

where .

Under the above-mentioned conditions, the cell in Fig.4(a) can be modelled by the equiv-

alent circuit shown in Fig.28(a). Note that, this circuit can be viewed as the cascaded connection

of two circuits as illustrated in Fig.28(b): one of them consists of the equivalent circuit of a sim-

ple current mirror and the other one is an ideal S/H circuit.

Except for the half clock period delay, the analysis of Fig.28(b) during the sampling phase

gives us all information needed to analyse the non-linear transient behaviour of the cell and

hence, to get a closed-form expression of the HD. Therefore, in what follows, we will consider

for our analysis the circuit in Fig.28(b) during . By applying Kirchoff’s current law to node

n1 (see Fig.28(b)), we obtain:

(76)

By making equal to a quiescent voltage, , plus an incremental voltage, , i.e,

, (76) simplifies into:

(77)

where  and  has been considered.

The incremental voltage, , can be expressed in its Volterra series as [33]:

(78)

where stands for the term of . Substituting (78) into (77) and keeping only

the most significant terms, it can be shown that the differential equations corresponding to the

first, second and third-order kernels are, respectively:

id
β
2
--- vgs V T–( )2

=

β µoCoxW L⁄=

Cgs

+

−
vgs

φ1

φ1 φ2

ii io

I bias
id

Fig. 28. (a) Equivalent circuit of the memory cell. (b) Equivalent circuit for the analysis of HD.

(a)
Cgs

+

−
vgs(t)

ii (t)

I bias id t( )

ioc t( ) Ibias id t( )–=

φ2

io t( )

φ1(b)

φ1

φ1

Simple Current Mirror Ideal S/H

(n1) (n2)

φ1

ii t( ) I bias+ id t( ) Cgs td
d

vgs t( )+=

vgs t( ) V gs v t( )

vgs V gs v t( )+=

ii t( ) gmv t( ) β
2
---v

2
t( ) Cgs td

d
v t( )+ +=

gm 2I bias V gs V T–( )⁄= I bias β V gs V T–( )2
2⁄=

v t( )

v t( ) v1 t( ) v2 t( ) v3 t( ) … vn t( )+ + + +=

vn t( ) nth-order v t( )



33
(79)

Performing the same analysis for node n2 yields:

(80)

where , represents the term of the Volterra series expansion of . Using

fasorial analysis and solving for , and

 in the above expressions yields:

(81)

(82)

(83)

where .

In this paper, we are mainly interested in the analysis of FD SI circuits. Thus, even-order har-

monic coefficients can be neglected and hence,  is given by [18]:

(84)

where  for a FD SI memory cell, with  being the input signal amplitude.

Assuming  in (83), and ,  and  are given by:
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