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A Spatial Contrast Retina With On-Chip Calibration
for Neuromorphic Spike-Based AER Vision Systems

Jesus Costas-Santos, Teresa Serrano-Gotarredona, Rafael Serrano-Gotarredona, and Bernabé Linares-Barranco

Abstract—We present a 32 X 32 pixels contrast retina microchip
that provides its output as an address event representation (AER)
stream. Spatial contrast is computed as the ratio between pixel
photocurrent and a local average between neighboring pixels ob-
tained with a diffuser network. This current-based computation
produces an important amount of mismatch between neighboring
pixels, because the currents can be as low as a few pico-amperes.
Consequently, a compact calibration circuitry has been included
to trimm each pixel. Measurements show a reduction in mismatch
standard deviation from 57 % to 6.6 % (indoor light). The paper de-
scribes the design of the pixel with its spatial contrast computation
and calibration sections. About one third of pixel area is used for a
5-bit calibration circuit. Area of pixel is 58 ym X 56 pm, while its
current consumption is about 20 nA at 1-kHz event rate. Extensive
experimental results are provided for a prototype fabricated in a
standard 0.35-um CMOS process.

Index Terms—Address-event representation (AER), analog cir-
cuits, artifical retina, calibration, contrast computation, current-
mode circuits, imagers, low-power circuits and systems, mismatch,
neuromorphic circuits, sensory systems, trimming, vision systems,
weak inversion circuits.

1. INTRODUCTION

RADITIONAL CMOS imagers operate under a

frame-based philosophy. That is, the image information
(intensity, contrast,...) of each pixel is sequentially scanned
out with a constant periodicity. After a complete period, the
whole image has been read. For consumer video systems, the
whole image is usually scanned out in a 20-30-ms period. This
restriction becomes a problem when image resolution increases,
as the time allocated to read each pixel decreases. The problem
of this scanning approach is that the communication bandwidth
is equally allocated for each pixel regardless of its relevance.
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Thus, communication bandwidth (and power) is wasted on
nonrelevant or little relevant pixels.

The retina presented in this paper follows an address-event-
representation (AER) communication strategy. AER was first
introduced in [1]-[5] as a communication strategy for neuro-
morphic chips, where a large population of neurons inside a
chip have to transmit their state to another population of neu-
rons located in another chip. A common output digital bus is
multiplexed and shared by all the chip neurons. Each neuron is
coded with a particular address. When a particular neuron ac-
cesses the output bus, it identifies itself in the bus by writing its
address on the bus. There are many ways to code information
(like intensity, contrast, motion, or any feature) into a sequence
of spiking events [6]. The most widely used so far, specially for
hardware systems, is the so-called rate-coding scheme. In this
scheme the density of spikes per unit time produced by a pixel
is proportional to the information to be transmitted (intensity,
contrast, . ..). The spatial contrast retina described in this paper
uses this rate coding principle to transform the continuous time
spatial contrast information computed at each pixel into a se-
quence of spikes. Consequently, the activation level (contrast)
of each neuron is coded as the time interval between two con-
secutive appearances of that neuron address on the output AER
bus. This way, a relevant pixel uses more communication band-
width than a less relevant one.

In traditional integration-based CMOS imagers, a photo gen-
erated current is integrated on a capacitor during a fixed integra-
tion time. After that time, the capacitor voltage is read out and
the pixel capacitor is reset to its initial value. In rate-coded AER-
based imagers, the current representing the image information
(intensity, contrast, etc.) is integrated on a capacitor not during a
fixed time but until a certain voltage reference is reached (vari-
able integration time). Thus, the image information is coded
as the time needed to charge the capacitor up to the threshold
voltage level. When the threshold voltage is reached, an output
address event or “spike” is sent out for that pixel, and the pixel
capacitor is reset to its initial value. That way, the image infor-
mation is not coded using the pixel voltage read (as for tradi-
tional imagers) but using the time between consecutive spikes
of each particular pixel.

This AER approach has the advantage that the output band-
width is assigned to each pixel according to its demand of
information transmission. That way, nonactive pixels do not
demand transmission bandwidth, thus, saving bandwidth and
power. Furthermore, after a change of scene, the more active
pixels will spike first, so that the more relevant information is
transmitted first. It has been demonstrated that for this scheme,
object recognition is possible when only a small portion of
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events have been transmitted, both for a software system [7]
and a hardware one [8], [9].

Since its introduction in 1991 [1]-[5] AER has been used
by a wide community of neuromorphic hardware engineers.
Unarbitrated event read-out has been used [10], [11], and more
elaborate and efficient arbitrated versions have also been pro-
posed, based on winner-takes-all [12], or the use of arbiter trees
[13], which have evolved to row parallel [14] and burst-mode
word-serial [15]-[17] read-out schemes. AER has been used
fundamentally in image sensors, for simple light intensity to
frequency transformations [18], time-to-first-spike codings
[8], [9], [19], [20], foveated sensors [21], [22], and more
elaborate transient detectors [23]-[25] and motion sensing
and computation systems [26]-[30]. But AER has also been
used for auditory systems [3], [31]-[33], competition and
winner-takes-all networks [34]-[36], and even for systems
distributed over wireless networks [37]. A very interesting and
emerging AER research line is its exploitation for complex pro-
cessing of sensory information, in a way similar to biological
brain cortex [38]—-[48].

Concentrating on spatial contrast computation AER retinae,
there have been several prototypes published in the literature.
The original concept proposed by Mahowald and Mead [49]
was based on a diffuser grid for computing a local average with
respect which compute spatial contrast. Boahen and Andreou
developed further this concept using more elaborate biological
models [50], using two coupled diffuser grids. At CSEM [8],
[9] a very interesting work has been reported recently on spa-
tial contrast (vector) computation retinae (among other func-
tionalities). However, spatial contrast computation is based on
nearest neighbor pixels only. It is not a fully AER device, but
rather a mixture between event and frame based vision sensor.
There is a frame time, but within each frame, pixel information
is sent out as ordered event representation. Recently, Zaghloul
and Boahen have reported an AER retina which performs spatial
and temporal filtering that adapts to illumination and spatiotem-
poral contrast [51], [52].

The main problem limiting the performance of CMOS
spatial contrast retinae is the time-independent fixed pattern
noise (FPN) or mismatch due to random variations of the elec-
trical parameters of CMOS transistors. In traditional CMOS
imagers (where there is no contrast computation), this FPN
is mainly due to random variations in the threshold voltages
of the read out transistors that cause random variations in the
output voltage read [53]. Some compensation mechanisms have
been proposed in the literature for the correction of the output
voltage [53]-[56]. AER-based spatial contrast retinae share this
FPN problem, and is the main cause limiting its performance
[9], [52]. In this paper, we propose a calibration mechanism,
adapted from earlier work [46], [57], to compensate for these
random variations.

Some retinae have been reported in the literature which have
succeeded in providing low mismatch performance, without
using trimming/calibration. For example, Ruedi [8] minimizes
mismatch by comparing large voltage integrations of uncopied
photocurrents between nearest neighbor pixels. Culurciello’s
retina [18] operates similarly, although it codes directly light
intensity. In the case of Lichtsteiner [24], [25] mismatch is
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cleverly minimized by accurately amplifying changes to a large
voltage before quantizing. However, in all these three exam-
ples, where mismatch is reduced by a smart design, none of the
retinae computes spatial contrast over a larger-than-one-pixel
neighborhood. Surprisingly, such retinae were one of the first
ones to be conceived and reported [63], but seem to present an
inherent difficulty for reduced mismatch. In the present paper
we provide a viable solution.

The visual information transmitted in the implementation
presented here is the local spatial contrast. This contrast
contains the most relevant information for object recognition,
because the relevant information of an object is in the difference
of luminance between its different regions and surroundings.
It is known that a spatial contrast extraction operation is done
in the human retina. This optimizes information transmission
through the optic nerve between the retina and the visual
cortex area [58], [59]. This contrast can be safely coded with
a dynamic range of 4-5 bits (around 20-25 levels), while
image intensity is usually transmitted with 8 bits (256 levels)
[53]-[55] in present day image and video consumer electronics.
Consequently, for artificial vision systems, it is much more
efficient to transmit directly spatial contrast information rather
than intensity. This is what the brain does [59] and many
artificial vision algorithms [60].

The paper is structured as follows. The contrast extraction op-
eration is explained in Section II. The implemented calibration
mechanism is contained in Section III. Experimental results are
provided in Section IV. Section V describes an experimental
setup to reduce AER activity while maintaining the contrast in-
formation. Finally, Section VI concludes the paper.

II. SPATIAL CONTRAST EXTRACTION

Let us call Iphoto(,y) the local photocurrent sensed by the
detector at position (x,¥), which is proportional to the abso-
lute light intensity incident at that spot at any time. Let us call
Ivg(z,y) the representation of the local average of the pho-
tocurrent over a certain region centered at position (z,y). We
will define a measurement of the local image contrast as! [58]

Iavg ($7 y)

1
Iphoto(‘T7 y) ( )

Icont (.1177 ?J) = Iref
where [,..¢ is a global reference current level common for all the
retina pixels. The contrast is defined as the ratio between the
background average intensity and the local intensity value. The
inverse of this relation is used by physiologists to fit responses
of the retina cones [59]. In other more mathematical models for
image processing, contrast is expressed using subtractions. For
example, Michelson contrast is defined as

Iphoto(gj~/ y) - Ia\'g($7 y)
Iphoto(a;-/ y) + Iavg(xv y)

I(‘,ont (:Ua y) = dref (2)

I'The inverse can also be defined, equivalently. For example, consider a step
in light Jiese — Iiigne. If we define the average as the geometric mean .., =
V/ Dictt Irigne , then (1) or its inverse would provide symmetric contrast outputs.
However, in our circuit implementation I, approximates more an arithmetic
average. Consequently, (1) and its inverse will not be perfectly symmetric, al-
though the behavior is similar. We chose to use (1) because this way the output
tends to be larger.
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Fig. 1. Electrical circuit simulation of contrast computation in a region with
two contrast edges: a step in light intensity of a factor 5 and another step of
factor 10. Vertical axis represents current (circles are photocurrents, crosses are
computed local average currents, triangles are output contrast currents which
vary around global bias I,.r). Horizontal axis represents pixel position.

or Weber contrast as

Iphoto(aja y) - Iavg(xa y)
Iavg($a y)

Icont(x7y) = Iref . (3)

For these models, zero contrast results in zero output current,
and the output current includes a sign depending on whether
Iphoto 18 larger or smaller than the local average I,g. In the
retina described in this paper and others reported previously in
the literature [58], the contrast follows the computation of (1)
or its inverse. This will simplify our calibration circuitry, as will
be explained later in Section III. Under these circumstances, the
output contrast current will have a dc level equal to I,.f for zero
contrast, and it will be always positive. At the end of the paper,
in Section V, we will show an AER-based post-processing setup
to provide a signed contrast output that corresponds better to the
definition in (3).

For the contrast definition of (1), consider first a region of uni-
form illumination. Since all the neighborhood pixels are evenly
illuminated, the average illumination equals the local illumina-
tion value, Iuvg(2,y) = Iphoto(Z,y). Thus, all the pixels in
that region exhibit the same contrast measurement Ieont (2, y) =
I;et. Now consider a region where a contrast exists. The local
current average I,s (, y) near the contrast edge will differ from
the locally sensed current Ipnoto(2, ). Thus, the output of the
contrast measurement I.on¢ (2, y) will depart form the reference
level I,of. Output Ieont (2, y) will be higher than I,.¢ at one side
of the edge, whereas I.ont(z,y) will be lower than I,.¢ at the
other side of the edge. Fig. 1 shows circuit simulation results
of the contrast computation in a one dimensional region of 64
pixels where two contrast edges exist. The trace marked with cir-
cles plots the distribution of photoreceptor input currents. The
smoother curve marked with plus signs is the computed local av-
erage. The upper curve marked with triangles is the computed
contrast according to (1). The output of the flat illuminated re-
gions is a constant current /.., whereas the output current de-
parts from that level in the neighborhood of the contrast edges.

Fig. 2(a) depicts the schematic of the pixel circuitry doing
the contrast computation. The photodiode is a pTtdiffusion
n-well diode with its well connected to the positive supply. The
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Fig. 2. (a) Schematic of the pixel circuitry for contrast computation. (b)
Schematic of the diffuser network. (c) Schematic of the translinear circuit. (d)
Simplified schematic of pixel output.

photocurrent [pot0 is replicated 3 times through an nMOS-type
sub-pico-ampere current mirror formed by transistors M; — M5
[61], [62]. This current mirror is able to reliably replicate input
currents below the pico-ampere range. Three (mismatched)
replicas of current Iphoto are delivered through the three output
transistors My — My.

The third output branch (the M, branch) is disabled during
the normal computation of the contrast. During the normal con-
trast operation mode of the retina, switch sw1 is open and switch
sw2 is closed, so that no current flows through transistor M.
The retina can also be operated in a mode where no contrast
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extraction is performed. In that mode, swl is closed and sw2
is open, so that a replica of the photocurrent Ippoto is delivered
through transistor M,. As we will see below, in that noncontrast
extraction mode the output of the translinear multiplier block
(see Fig. 2) is cut off, so that the output of the pixel I, is only
the copy of the photocurrent delivered by M.

The replica of Iynoto delivered by transistor M, flows into
a diffuser network whose schematic is shown in Fig. 2(b)
[63]-[67]. The transistors in the diffuser network operate in the
subthreshold region. Each diffuser cell receives an input current
Iphoto(2,y) and produces as output a current I,,(x,y). The
operation of the diffuser network has been described in terms
of “pseudo-conductances” [65]. The current diffused through
each “pseudo-conductance” transistor [My — M3 in Fig. 2(b)]
verifies a nonlinear exponential relation in the node voltages,
but a linear relation between the currents (as long as devices
operate in subthreshold). As a consequence, the linear range
of operation of the diffuser network extends to several orders
of magnitude in the current domain. The diffuser network
implements the discrete approximation of the following current
diffusion equation in an exact manner [67]:

82
Iphoto(x7 y) = Iavg(x7 y) - /\.r wlavg(xv y)
2

_/\ywlavg(xvy)' (4)

Parameter )\, is a tunable “horizontal diffusion length”
given by A\, = exp((k(V; — V.))/Ur), which can be
tuned through voltage difference V; V.. Parameter
Ay = exp((k(V; — V))/Ur) is a tunable “vertical diffu-
sion length” which can be controlled independently through
voltage difference V; — V.

For a step type input image (Iphoto(2,y) = liets for z < 0,
and Iphoto (%, y) = Iright for > 0) the solution of (4) yields

Liigne — 1 _
right left e A
2

Tiight — et o3 )

x>0: ILug(z,y) = ILight —

z<0: Iavg($7y) :Ileft +

Parameter A defines the diffusion length. Large values of A
(Viyj > V.) imply diffusion length is large, and the local
average will be computed for a large neighborhood. For small
values of A (V; /i < V..), diffusion length is small, and the local
average will be computed for a small neighborhood.

Instead of computing the solution to the continuous time
equation approximation of (4), one can compute directly the
discrete solution to the finite difference equation, using the
Z-transform. The solution would be given by

Liight — Jiete 1
2 a®
Liight — Dot o,
5 a
where a = 14+1/(20)+X~1 /X + 1/4, which is always greater
than “1” because A > 0. For large values of \ (‘/i/]' > V), a
will be slightly larger than “1” but close to “1,” which according
to (6) will produce long diffusion lengths. For small values of

x>0: Iavg(x7y) :Iright -

z<0: Iavg(x7y) :Ileft + (6)
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A (Viy; < Vo), a will be much greater than “1,” which results
in small diffusion lengths. According to our circuit simulations,
the diffuser circuit of Fig. 2(b) can provide a spatial range of
over 30 pixels. However, in practice, we found this range lim-
ited to about 10 pixels. Discrepancies between (5) and (6) are
noticeable only for z < 2 and short diffusion lengths (less or
equal than 2 pixels). Consequently, in practice, the continuous
and discrete solutions are equivalent.

As depicted in Fig. 2(a), the average current Loy, (, y) is fed
to a translinear circuit. Fig. 2(c) shows the schematics of the
translinear circuit. The translinear circuit also receives a copy
of the locally photo generated current I,hot0 (2, y) and delivers
an output current I .ot (, y). Transistors My — My in Fig. 2(c)
form the translinear loop, so that their currents verify the rela-
tion defined by (1) for contrast computation [66]. As explained
previously, switches swl and sw2 in Fig. 2(c) have been added
to allow the pixel to have two operation modes. During the
contrast extraction mode switches sw2 [in Fig. 2(a) and (c)]
are closed and switches swl [in Fig. 2(a) and (c)] are open,
so that the output of the pixel is the Icont(x,y) current deliv-
ered by the translinear multiplier. During the photodiode mode
switches swl [in Fig. 2(a) and (c)] are closed and switches
sw2 [in Fig. 2(a) and (c)] are open,? so that the output of the
pixel is directly a copy of the locally photo generated current
Iphoto(, ).

In order to be able to stack the translinear circuit of Fig. 2(c),
the diffuser network of Fig. 2(b), and photocurrent mirroring
transistors My and M3, voltage V in Fig. 2(c) has to be tied to a
higher voltage than ground. The optimum value for V, depends
on the biases used for V;, V;, and V. in Fig. 2(b). This stacking
arrangement allows to reduce the number of current mirrors, and
therefore, mismatch.

The pixel output current Io,¢(z,y) is integrated on a capac-
itor C' as shown in Fig. 2(d), which shows a simplified schematic
of the pixel integrate and fire block. Initially, the pixel capac-
itor is reset to a high voltage level Vieset- The pixel output cur-
rent Iy (2, y) integrated on the capacitor decreases its voltage
until a certain voltage level V.. is reached. When the capacitor
voltage goes below that level, an event is sent to the periphery
by activating the pixel request signal Rgst. Upon reception of
the corresponding acknowledge from the periphery (Ack signal
gets active low) the capacitor is reset to the initial level Vies.
Assume that the delay caused by the periphery (in the order of
nanoseconds) is negligible compared to the pixel operation pe-
riod (in the order of micro or milli seconds), then the frequency
of the events generated by a given pixel is

Iout (.T, y)

f(xy) - C(V;csot - I/vrcf) (7)

which is directly proportional to the pixel output current.

2Note that for proper sub-pico-ampere operation [61], [62] switches sw1 in
Fig. 2(c) and sw2 in Fig. 2(a) should connect the respective gates to ground in-
stead of to the transistor sources. However, this is not necessary in this particular
case and we can make a more compact layout by connecting to the sources. In
Fig. 2(a) when transistor M} is cut off, the output current I, is usually sev-
eral hundreds of nano-amperes. And in Fig. 2(c), since voltage V is far from
ground, the off current for transistor M is several femto-amperes for this par-
ticular transistor size and technology.
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Fig. 3. Compact calibration mini-DACs included in each pixel.

III. CALIBRATION

In this AER-based retina the fixed pattern noise appears as
a random variation of the pixels output frequencies under uni-
form illumination conditions. Several sources of fixed pattern
noise can be discerned in the present design. One source is the
random offset voltage of the pixel output comparator in the
integrate and fire circuit. The second source is the mismatch
due to the variations of the integrating capacitors. Another
source of mismatch is the one generated by the sub-pico-am-
pere current mirror that reflects the photo generated current.
The current mismatch of this reflection is going to be of the
order o(AI/T) = 20%, as this current mirror is designed with
1 pm/1 pm nMOS transistors operating with extremely low
currents [68]. The diffuser network and the translinear multi-
plier are also designed with reduced area transistors operating
with low currents. The current domain operations/replications
are the dominant mismatch sources. Experimental results of
the retina operating under uniform illumination in the contrast
extraction operation mode when no calibration technique is
applied show that the precision is well below one bit. The
measured output frequency spread fiax/fmin iS about 25.
Thus, system calibration is essential for any application.

A calibration technique is designed that equalizes all the pixel
frequencies under flat illumination conditions. Rewriting (7), we
can express a pixel output frequency in the contrast extraction
mode as

Iref Ian(‘T7 y)

T,y) = .
f( y) C(V;eset - I/vref) Iphoto(.r,y)

®)

Considering that all the terms in the above equation are affected
by some deviation from their nominal values due to mismatch,
and doing a first-order Taylor expansion we can re-express the
equation in the following terms:

Ircf Iavg
C(‘/reset - ‘/ref) Iphoto

flz,y) =

nominal

Alet AV AC
< (1+ - - =
Iref ‘/reset - ‘/ref c
AIavg AIphoto
— A
Iavg Iphoto AT

= f|nomina1 (1 + A(J}/ y)) (9)

where Arp, is the mismatch introduced by transistors My — My
of the translinear circuit in Fig. 2(c). We observe that doing a
first-order approximation, all the error terms combine in an ad-
ditive way. This is because in (8) they appear either multiplying
or dividing, but without additions nor subtractions. The calibra-
tion technique proposed here consists of adding a term I,/ et
in (9) independently tunable for each pixel.3 This term has to
compensate independently for each pixel its random total devi-
ation A(z,y). A tunable current Ioo) = I,a(z,y) (0 < a < 2)
for each pixel is added in parallel to current I,.¢ in such a way
that we equalize all the pixel firing frequencies under flat illu-
mination conditions

f(xy) = f|n0minal <1 + A(l',?/) + M) . (10)

Irof

The generation of the tunable calibration current /., is based
on the mini-DAC:s calibration technique proposed in [S7], which
exploits the linear current division technique of MOS transistors
[69], [70]. Fig. 3 plots the schematic of the compact mini-DACs
used to generate the calibration current I.,; for each pixel. A
careful compromise has to be made between precision after
calibration, calibration circuitry area, and calibration circuitry
power consumption. Following the suggestions in [57], and after
performing extensive simulations, we reached the conclusion to
use five calibration bits with mini-DACSs unit transistors M,, of
size W/L = 1 pm/1 pm for the current ranges we needed.
Trying to achieve extra bits in precision would result in an ex-
ponential growth in area.

Voltage V., is applied from the periphery to generate a copy
of I,,, which controls the calibration range of the mini-DACs.
Each successive mini-DAC branch generates a current which
equals the current of the preceding branch divided by 2. Each
mini-DAC is controlled by a 5-bit calibration word w., =
{wqwswewiwg}, which is stored locally in each pixel using
static latches. Calibration words are loaded row by row. A pe-
ripheral shift register with 33 5-bit registers is loaded serially
from an outside port using a 10-kHz clock. 32 5-bit words are
copied in parallel into the registers of the selected array row,
and the 33rd register indicates this selected row. The current
generated in each branch of the pixel mini-DAC goes either to a
dummy node common to all the pixels or is summed to the pixel

3If we had implemented the contrast definition of (2) or (3), then we would
need to include two independent calibration currents per pixel.
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calibration current /.,; depending on the state of the stored bit
w;. Thus, the calibration current can be expressed as,

4
L= 1.y 57 (11
=0

After introducing a calibration current I ,; in parallel with
the I, current, each pixel frequency becomes a function not
only of the pixel (z,y) but also of its calibration word. That is,
f(z,y, wea)- The calibration procedure consists of identifying
for each pixel (z,y) the optimum calibration word wept(,y),
such that the frequency dispersion among the pixels is mini-
mized under a condition of uniform illumination.

During calibration, it is also important to tune properly the
global bias current [,,. This current has to be comparable to the
maximum pixels dispersion Alpax = max(, ) (lLetA(z,y)).
If I, is set to a very low current (compared to the maximum
pixels dispersion Al,,x) the calibration range is very small
compared to the pixels dispersion range. On the contrary, if I,
is set to a high value (compared to the maximum pixel deviation
AT max), then the granularity of the calibration gets very coarse.
In (10), if A(x,y) varies between a maximum positive value
of M, and a minimum negative value of —M,,, then pixels are
equalized by setting

Loa(z,y)
T ha
ref

If A(z,y) = M, then for this pixel we set a(z,y) = 0. On the
other hand, if A(x,y) = —M,, then a(z,y) is set such that

Az, y) + 12)

Iuamax(x7 y)
Iref B Mp
= L,a"(z,y) = (M, + M,)Ler. (13)
According to (11), for a 5-bit mini-DACs, a™**(z,y) = 1 +
15/16. An example procedure for proper selection of I, is il-
lustrated in the next section.

IV. EXPERIMENTAL RESULTS

A test prototype retina of 32 x 32 pixels has been fabri-
cated in the AMS-0.35-um double-poly triple-metal CMOS
technology. The whole system occupies an area of 2.88 mm
x 2.88 mm. Fig. 4 shows a microphotograph of the fabricated
retina. Table I summarizes chip specifications.

Chip power consumption is basically determined by the
output event rate. If no output events are produced by the
retina, standby current consumption is around 10 pA for the
biasing conditions we set. However, current consumption grows
quickly with output event rate, and reaches 3 mA at 1.6 Meps.
Fig. 5 shows the measured retina current consumption as func-
tion of its output event rate. For the AER out circuit we used
Boahen’s row parallel burst mode circuits [14]. When shorting
Ack and Rqgst, we measured handshaking cycles of 30 ns per
event outside bursts and 15 ns per event within bursts.

The area of each pixel is 58 pum x 56 pm. The layout
of an assemble of four pixels is shown in Fig. 6. The dif-
ferent pixel parts are highlighted in one of the pixels: pho-
todiode (100m2—3% of pixel area), contrast computation

1449
-
2
.
|
I
I
i
!
|
i
I
Fig. 4. Microphotograph of the 32 X 32 retina.
TABLE 1
array size 32x32
pixel size 58um x S56um
pixel components 104 transistors + 1 capacitor
photodiode quantum efficiency 0.34 @ 450nm
fill factor 3%
pixel current consumption 20nA @ lkeps, 1nA @ standby
matching before calibration 57%
(indoor light)
matching after calibration 6.6%
(indoor light)
contrast sensitivity 10 Hz / %relative contrast @
400Hz DC
range of diffusers ~10 pixels
noise standard deviation ~6% fluctuation of spike rate
dark current ~500fA
Handshaking cycle 15ns/ev (shorting Ack and Rqst)

10—2 o

Current Consumption (A)

107

10 10 10° 10° 10

Output Event Rate (events/s (eps))

Fig. 5. Retina current consumption as function of its output event rate (in eps).

circuitry (300 pm%—9%), mini-DAC (300 pm?—9%), cali-
bration registers (500 um?—15%), integrate-and-fire circuit
(600pm>—18%), AER-out circuit (300 um?—9%). The rest
of the area goes to routing. The routing channels are shared
by contiguous pixels. The digital input and output signals
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Fig. 6. Layout of an assemble of 2 X 2 pixels. In one of the pixels we show the
area of the photodiode, the contrast computation circuitry, the mini-DACs and
calibration registers, the i&f circuit, and the AER-out event generation circuit
for communication with chip periphery.

for the transmission of the pixel events are laid out as far as
possible from the pixel analog parts (i.e., integrating capacitors,
sub-pico-ampere current mirrors, etc.).

The fabricated retina has been extensively tested. In the fol-
lowing, we provide results of different experiments that we de-
signed to investigate the performance of the retina under dif-
ferent conditions.

A. Calibration Experiments

We have calibrated our contrast retina under three different
illumination conditions: darkness, ambient laboratory illumina-
tion, and bright illumination. The retina bias currents and volt-
ages were kept the same in the three cases. In the three cases,
we obtained a great improvement in the performance after doing
calibration. Fig. 7 summarizes the performance of the retina be-
fore and after optimum calibration in the three experiments. In
Fig. 7, the histograms of the pixels output frequencies under
uniform illumination are represented. Each row in Fig. 7 cor-
responds to a different illumination condition. The left column
represents the output frequencies before calibrating the retina,
while the right column represents the pixels output frequencies
after optimum calibration. We can observe that the performance
of the retina is very similar for the indoor illumination and for
the illumination under a bright light source. However, the mis-
match is higher for darkness. The reason is that in dark condi-
tions the Alphoto /Iphoto in (9) contains the mismatch due to
the sub-pico-ampere current mirrors plus the mismatch of the
photodiodes dark currents which becomes significant under this
condition. When light shines on the retina, the I,pot, denomi-
nator increases and the mismatch due to dark current becomes
negligible. From our experiments, we have also verified that the
retina performance is not severely degraded when the retina is
calibrated under a given light condition and that illumination
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Fig. 7. Frequency histograms of the retina before and after calibration under
different illumination conditions. Separate calibration is done for each row. Hor-
izontal axes represent pixel frequency, and vertical axes number of pixels per
bin.

condition changes. However, the retina performance is severely
degraded if the calibration was done for darkness.

Fig. 8(a) plots the measured output frequencies of all the
retina pixels before calibration when the retina is under uniform
ambient laboratory light. The maximum measured output fre-
quency i8S fmax = 526 Hz and the minimum measured output
frequency is fmin = 20.4 Hz. As explained in Section III, it is
important to appropriately set the value of current I, to optimize
the performance of the calibrated chip. We did this I,, optimiza-
tion in two stages.

In the first stage, we followed the following procedure.

1) For the uncalibrated retina, we identified the slowest pixel

(the pixel with the lowest output frequency).

2) We adjusted current I,, so that the frequency of the slowest
pixel for the maximum calibration word (wc, = 31)
equals the frequency of the fastest pixel ( fmax), when its
calibration is disabled (wea = 0).

3) For the determined I,, value, we measured all the pixels
calibration curves. That is, we measured for each pixel its
output frequency as a function of the calibration word w;.

4) We computed the optimum calibration words. That is, we
determined the optimum pixels calibration words w¢, =
Wopt (2, y) that minimize the dispersion in the output fre-
quencies.

Calibration tries to set all pixel frequencies equal to the max-
imum pixel frequency. Consequently, before calibration, the



COSTAS-SANTOS et al.: SPATIAL CONTRAST RETINA WITH ON-CHIP CALIBRATION

600

'<—fm(n‘:526Hz
500f .

fastest pixel
400 . . . »

*
300F v i R
.

. s .
8ol W A Ral Tl s h
':’,‘ g ;%‘:;‘“M A
100 ‘ﬁ(’w## ﬁ}'@
*; é‘} 4 v Py :g”
f'"""zzo'mzo*"—’(‘ﬁcrzuw.:,i';f’z A

0 200 4000 600 800
pixel number

frequency (Hz)

200, " ¢

(a)

600

500}

400f

300

frequency (Hz)

200}
(b)

100

frequency (Hz)

(©)

550

500

450f

4001

350

frequency (Hz)

300}
(d)

250} |

Fig. 8. (a) Measured pixels output frequencies of the uncalibrated retina under
uniform indoor illumination. (b) Calibration curve of the slowest pixel for I,, =
0.3 nA. (c) calibration curves for all the retina pixels for 7, = 0.3 nA. (d)
Detail of the region of fitted frequencies.

global bias current It should be adjusted such that the fastest
pixel frequency is the one desired for the whole array (after
calibration).

Fig. 8 shows some plots that illustrate the first stage of this
calibration procedure. Fig. 8(b) plots the output frequency of
the slowest pixel as a function of the calibration word for cur-
rent I,, = 0.3 nA. As can be observed, its maximum frequency
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Fig. 9. (a) Calibration curves of all the retina pixels for current J,, = 0.25 nA.
(b) Detail of the optimum fitted frequency region. (c) Measured pixels frequen-
cies before and after calibration divided by the mean output frequency in each
case.

equals approximately the frequency of the fastest uncalibrated
pixel fiax. Fig. 8(c) plots superimposed the calibration curves
for all the pixels. In these measurements, current I, is set to 0.3
nA and the output frequency of each pixel is measured versus
the calibration word. Fig. 8(d) shows a detail of Fig. 8(c). The
asterisks show the selected optimum calibration word and op-
timum output frequency for each retina pixel. The upper and
lower horizontal lines mark the maximum and minimum se-
lected frequencies. The middle horizontal line marks the target
optimum output frequency f,p which in this case is 400 Hz.
The precision achieved after calibration is ¢ = 10.2%. We can
observe in Fig. 8(d) that the upper range of calibration words
remained unused after the optimization. Thus, we can increase
the precision after calibration by reducing current I,,.
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To optimize the setting of current /,,, we take a second cali-
bration stage. In this second calibration, we reduce current I,, so
that the maximum output frequency of the slowest pixel (with
Weal = 31) equals the optimum frequency of the previous cal-
ibration stage. After that, current I,, was reduced to 0.25 nA.
Then, we go to step 3 of the previous calibration stage. Fig. 9(a)
plots superimposed the calibration curves of all retina pixels for
I, = 0.25 nA. Fig. 9(b) shows a detail of Fig. 9(a). The aster-
isks show the fitted optimum calibration words and fitted output
frequencies. The upper and lower horizontal lines mark the max-
imum and minimum fitted output frequencies. The middle hori-
zontal line signals the target optimum frequency fop¢ = 433 Hz.
In this case, the precision achieved after calibration has been im-
proved to o = 6.6%. We can observe, that now we are making
use of the whole range of calibration words. Fig. 9(c) repre-
sents with circles the output frequencies of all retina pixels be-
fore calibration. The output frequencies of the same pixels after
calibration are represented with asterisks. The frequency spread
before calibration is fmax/ fmin = 41, while after calibration is
fmax/fmin = L.6.

An interesting issue is how long can it take in production
to calibrate a retina. The slowest step is to characterize all
pixels for all calibration words. Calibration words are loaded at
10-kHz clock rate. This implies about 0.1 s to load all of them.
To read out the pixel frequencies, one should take a minimum
of ten events per pixels. This will take around 1 s before first
calibration [since minimum pixel frequency can be as low as
10 Hz—see Fig. 7 and Fig. 8(b)] and about 50 ms after first
calibration (since minimum frequency is easily above 200 Hz).
All this has to be repeated 32 times. Then one also needs to
add the computation time to calculate the optimum calibration
words. Under optimized conditions in production, calibrating
one single retina can take around one minute.

B. Contrast Extraction Experiments

We have done experiments where we presented to the retina a
sheet of printed paper (laser printer) composed of half black and
half white/gray regions separated vertically. The relative con-
trast between the two regions varied from a 100% contrast (for
half black and half white) to a 10% contrast (half black and half
dark gray). For the left half we used always full black ([js = 1)
while for the right half we changed from full white (Iyight = 0)
to dark gray (Iyigns = 0.9). In this experiment we define “rela-
tive contrast between the two regions” as (Iiegy — Iyight)/ lieft-
The pieces of paper of about 5 cm x 5 cm were hold 3-5 cm
away from the lens, which was a wide angle one. Illumination
was based on conventional fluorescent ambient laboratory light.
The input images presented to the retina are plotted on the first
column of Fig. 10. We captured the image with the retina set to
its contrast extraction mode but with different calibration con-
ditions: uncalibrated retina, retina with the optimum calibration
weights and current I,, obtained for the indoor light conditions,
retina with the calibration weights and current I,, optimized for
the illumination with a bright light source.

Fig. 10 shows some of the images obtained from these
experiments. In Fig. 10, the pixels output frequencies were
mapped linearly to a gray scale. These images are reconstructed
by capturing 2 x 10° timestamped events from the retina using a
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Fig. 10. Images acquired by the contrast extraction retina when an image of
half white and half black regions separated vertically is presented to the retina
with different levels of contrast between the two regions. The different rows cor-
respond to images presented with different contrast levels, while the different
columns correspond to different settings of the retina. The first column shows
the input stimulus. The second column shows directly the photocurrents. The
third column shows the uncalibrated retina output. In the fourth column, the
retina was calibrated under indoor light. In the fifth column, the retina was cali-
brated under a bright light source. All the images were acquired under the same
illumination conditions, which correspond to the calibration conditions of the
last column.

special purpose hardware [72], which stores them into computer
memory for later analysis. From these captured timestamped
events, we can determine for each pixel its average frequency
and jitter. On average, frequency jitter standard deviation was
around 6% of the mean frequency. Each row in Fig. 10
corresponds to a different input image presented to the retina.
The first row are the reconstructed output images when the
retina sees an image with 100% contrast. The contrast is
reduced progressively. The last row corresponds to the retina
seeing an image with low (10%) contrast. The first column
plots the input stimulus printed on the papers. The second
column shows the acquired photocurrents, when setting retina
pixels swl and sw2 in Fig. 2 to integrate directly the mirrored
photocurrents. In this case, there is no calibration. The third
column in Fig. 10 plots the output images obtained with
the uncalibrated retina. The fourth column plots the images
obtained with the retina calibrated for indoor light conditions.
And the fifth column shows the images obtained with the retina
calibrated for bright illumination. All the images in Fig. 10
were obtained under bright illumination conditions, so that
the illumination conditions match the calibration conditions
of the last column of images.

We can make the following observations. Images acquired
with the uncalibrated retina have high fixed pattern noise
(FPN), as can be expected from the measurements shown
in Section IV-A. Calibration not only reduces FPN but also
allows to clearly recognize edges when low contrast images are
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Fig. 11. Numerical representation of the output images shown in Fig. 10. Each row is the output obtained for different contrast input images. The four columns
correspond to the right most columns in Fig. 10. For each subplot, horizontal axes represent the pixel column number in a row (from 1 to 32). Vertical axes represent

the pixel output frequency. Circles indicate the average computed for all rows.

presented to the retina. In the 10% contrast image, edge recog-
nition is impossible with the uncalibrated retina. Finally, as
we already claimed in Section I'V-A, resolution is not severely
degraded when the illumination conditions do not match the
calibration conditions (except when calibrating in darkness).

Fig. 11 represents the same information plotted in Fig. 10.
However, in this case, we have represented numerically the
output frequency of each retina pixel as a function of its position
along a row. The output frequencies of the pixels located in the
same retina columns are superimposed.

The minimum contrast we could measure without calibration
was 30%, while with calibration it was* 10%. In Fig. 11, we also
show the average contrast frequency computed among all rows.
At the regions without contrast, the standby output frequency is
about 400 Hz (after calibration). By looking at the difference be-
tween the central pixel frequencies and the standby frequency,
as a function of input image relative contrast, we can estimate
the contrast sensitivity of the retina. This sensitivity is approxi-

“Note that this 10% contrast limit is estimated with a “by-eye” judgement
using a stimulus with an extended edge covering the whole imaging area.
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Fig. 12. Retina output acquired: (a) by the uncalibrated retina under indoor
illumination, (b) by the calibrated retina under indoor illumination, (c) by the
uncalibrated retina under bright illumination, and (d) by the calibrated retina
under bright illumination. For (b) and (d) retina was calibrated only once, under
indoor illumination.

mately independent of illumination conditions, and has a value
of around 10 Hz for every percentage change of input image
“relative contrast between the two regions.” In the upper range,
output frequency tends to saturate.

C. Performance Under Different llluminations

To examine the retina performance under different illumi-
nation conditions, we acquired the same static input under
different illumination conditions. These results are shown in
Fig. 12. Fig. 12(a) and (b) were acquired under indoor illumina-
tion. Fig. 12(a) was acquired by the uncalibrated retina, while
in Fig. 12(b) the retina was calibrated. The calibration used in
Fig. 12(b) was the optimum for indoor illumination conditions.
Fig. 12(c) and (d) were acquired under bright illumination. In
Fig. 12(c), the retina was uncalibrated, and in Fig. 12(d) we
were using the same calibration than for Fig. 12(b).

D. Photosensor Optical Characterization

In order to characterize the pixel photo sensing p-diffusion
n-well diode, we mounted the retina chip without lenses on an
optical characterization bench. The retina was exposed to uni-
form light of controlled illumination power and wavelength. The
retina was configured to operate in its direct photosensing mode
(swl ON and sw2 OFF in Fig. 2), and the pixels events were
recorded. For each measurement, a total of 10° retina events
were recorded, and the average pixel event frequency was com-
puted. This way, the effect of current mirrors mismatch, ca-
pacitors mismatch, and comparators voltage mismatch is aver-
aged out over all pixels in the array. The average total capaci-
tance of the integrate-and-fire node in Fig. 2(d) was estimated,
using layout extraction, to be around 280 fF. This way, photocur-
rent can be directly estimated from the average pixel frequency.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 54, NO. 7, JULY 2007

0.35

0.3

0.25

0.2

0.15

Quantum Efficiency

0.1

0.05

0 1 1 1 1 1 1 1 1 1
400 450 500 550 600 650 700 750 800 850 900

Wavelength (nm)

Fig. 13. Measure photodiode quantum efficiency as function of light wave-
length.

1071 . :

]0—12> |

Photo Current (A)

1073 - -
107! 10 10" 10°
Incident Light Power (WW/cm?)

Fig. 14. Pixel photocurrent as function of incident light power at A = 55 nm.

Knowing the average pixel photocurrent I,,0¢, and the incident
light power per unit surface Pyignt at a given wavelength A, the
quantum efficiency QE of the photosensor is given by

1 photo he
QE PiigneA Agq (19
where h = 6.6 x 10734 Js is the Plank constant, ¢ = 3 X
108 ms~! is light speed, ¢ = 1.6 x 107! C is the electron
charge, and A = 100 um? is the photodiode area. This QE is
shown in Fig. 13 as function of incident light wavelength. As
expected, this photodiode is more sensitive to light in the blue
range [71]. Its peak QE is 0.34 at 450-nm wavelength.
Similarly, the pixel average frequency was obtained for dif-
ferent light intensities at a fixed wavelength (A = 550 nm).
Fig. 14 shows the measured photocurrent as function of incident
light power. When there is no light, we obtained a dark current
of approximately 500 fA. By exposing the retina directly to sun-
light we obtained an average photodiode current of 1.3 nA.
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Fig. 15. Setup used to convert the unsigned AER retina output with dc level to
a signed AER stream with no dc level.

V. TRUE CONTRAST AER OUTPUT

The retina chip presented in this paper suffers from a funda-
mental limitation, also present in other contrast retinae chips
[58]: when the input is uniform there is a nonzero output.
This means that there is an output dc level around which the
output changes. If contrast is negative, the output goes below
this dc level, while when contrast is positive the output goes
above it. In our case, since the retina output is given as an
AER signal, this is an inconvenience because the retina will
consume communication bandwidth even when there is no
output signal (zero contrast). A true AER contrast retina should
provide a zero event frequency output for those pixels with
zero contrast, and a signed nonzero event frequency for those
pixels with a nonzero contrast. This is specially important if the
output of the retina is going to be fed to an AER-based spike
event processing system composed of several AER transceiver
stages, each with many chips working in parallel. In this case,
a significant amount of energy and communication bandwidth
would be consumed when no signal (contrast) is present at the
sensor output. Consequently, this plays against the AER scheme
fundamental advantage. To overcome this problem, we use
the setup illustrated in Fig. 15. This setup includes four AER
independent point-to-point channels. These channels are signed
AER channels, which means that the event address includes a
sign bit. Our AER retina output goes to AER channel-1, for
which we set the sign bit constant and negative for all events.
This channel goes to a merger block [72]. A merger block is a
simple logic circuit, easy to program on a field-programmable
gate array (FPGA), which takes input events from several
AER channels, arbitrates them and manages their handshaking
signals, and copies every input event coming from any input
channel to its output channel while generating conveniently
its handshaking signals. The second AER input of the merger,
channel-2, comes from a uniform image generator. This is an
AER sender with 32 x 32 pixels, all generating output events
of constant frequency. Their event frequency is set to the same
than the dc level of the retina, and the sign bit is set positive
for all pixels. A uniform AER image generator can easily be
implemented on an FPGA using any of the algorithms reported
elsewhere [73]. At the output of the merger, at AER channel-3,
there will be all events generated by the retina and all events
generated by the uniform image generator, conveniently ar-
bitrated. The event activity on channel-3 will be high. Note
that for a pixel with zero contrast in the retina there will be a
number of negative events per second (eps) which corresponds
to the retina output frequency dc level, plus the same number
of positive events. Those events can be subtracted by proper

1455

200 | 20
g [ 1
i 300 Fa B .
4 -400 | 9
| -500 . 20
.F " -600 -
= 700 | . o 40
| }  _ | | T
o L 800 i B o
" ! 900 | w u
= g | w
IIIL a u'n -1000 ‘ -& “ 'm 80
1100
| 1200 1 -100
(a) (b)

Fig. 16. Experimentally obtained outputs from the setup of Fig. 15. (a) Image
reconstructed from the AER flow at channel-1, and (b) Image reconstructed from
the AER flow at channel-4. Vertical sidebar indicates gray level coding of pixel
frequency.

integration for each pixel. This is accomplished by the AER
convolution chip [38], [74] receiving events from channel-3.
This convolution chip has been programmed with a convolution
kernel of size 1 x 1. This way, its operation will be equivalent
to a simple array of integrators. Consequently, it will just copy
the input visual flow to its output. Since each pixel of the
convolution chip includes an integrate-and-fire pixel capable
of handling signed events, each pixel will produce output
events with a frequency proportional to the difference of the
event frequencies between channel 1 and 2. Therefore, the
AER output of the convolution chip, channel-4, will show zero
event frequency for those pixels with zero contrast, and signed
events for those pixels with nonzero contrast, while reducing
significantly the overall event flow in channel-4 with respect to
channel-1 (and channels 2 and 3).

The setup of Fig. 15 was assembled in our lab using the
present AER retina, a 32 x 32 convolution chip developed in our
labs [38], [74], the FPGA-based synthetic AER image generator
reported in [73] and the FPGA-based AER merger and splitter
reported in [72]. The results are shown in Fig. 16. Fig. 16(a)
shows the image reconstructed from the events coming out di-
rectly from the AER contrast retina (events on channel-1). The
contrast retina produces unsigned events. Therefore, the sign bit
at the channel-1 input of the merger was shorted to ground (neg-
ative sign) permanently. The total event rate at channel-1 was
384 keps (kilo eps). The event rate spread for the retina pixels
varied between 160 eps and 1300 eps. The dc level (zero con-
trast) of the pixels was 368 eps. Consequently, the synthetically
generated AER stream at channel-2 was such that for all pixels
its constant event rate was 368eps, with its sign bit set to “1”
(positive). The total event rate at channel-2 was 377 keps. At
channel-3, the total event rate was 761 keps. The reconstruc-
tion of the convolution chip AER output, channel-4, is shown in
Fig. 16(b). As one can see, the information content difference
between the images in Fig. 16(a) and Fig. 16(b) is negligible.
However, the total event rate at channel-4 has been significantly
reduced, down to 9.89 keps. The signed event rate of the pixels
varied between +27 eps and —110 eps. The average absolute
value event rate of the pixels was 9.66 eps, while the average
signed event rate of the pixels was —0.88 eps. Consequently,
this setup allows to reduce the total retina event rate by a factor
of approximately 40 while adding a sign at the same time, and
without eliminating any (contrast) information. This is of crucial
importance for assembling multi-layer event-based bio-inspired
processing systems, since this allows to reduce significantly the
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information flow and energy budget at all subsequent stages, and
allows to separate positive and negative information flow which
is characteristic of many bio-inspired processing systems [60]
and biology itself [59].

VI. CONCLUSION

We have presented a contrast retina chip that provides its
output as an AER stream. The contrast is computed as a result of
multiplying and dividing currents at each pixel. This fact allows
to calibrate mismatch by using one unique trimmable current
per pixel. The drawback however is that such approach results
in a contrast output with a nonzero dc level. This is particu-
larly negative for AER-based systems, since this introduces a
significant extra event flow when information is absent. How-
ever, this drawback can be overcome by adding an extra pro-
cessing before sending contrast information to a more complex
AER-based processing system. This also shows the great power
and potential of AER processing when one has available a small
set of AER blocks (such as synthetic generators, mergers, split-
ters, and convolution processors) and connects them in an ap-
propriate configuration. In the present paper we have provided
detailed descriptions of the design of the retina pixel and how
calibration capability has been included. We have also provided
extensive experimental results illustrating the correct operation
of the retina and how it benefits from its calibration capability.
Presently, we are working in the development of a new contrast
retina that directly provides signed events and zero output ac-
tivity when there is zero contrast.
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