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RESUMEN

La inestabilidad genómica es una patología celular, la cual se produce cuando

una célula acumula variaciones genéticas que alteran su genoma. La acción de agentes

genotóxicos externos, así como el propio metabolismo celular dan lugar a daños en el

ADN. Esto daños pueden producir alteraciones genéticas que pueden abarcar desde

mutaciones puntuales a reordenaciones cromosómicas. La inestabilidad genómica se

asocia con el envejecimiento, la tumorigénesis y múltiples enfermedades genéticas.

Numerosos procesos celulares, como la transcripción o la replicación, actúan sobre el

ADN, siendo necesaria la coordinación de los mismos para evitar y/o solucionar

aquellos problemas que pueden comprometer la estabilidad del genoma.

Durante la transcripción, la acumulación de superenrollamientos negativos

detrás de la polimerasa de ARN, facilitan el desenrollamiento de la hélice del ADN.

Esta apertura transitoria del ADN favorece que el ARN naciente rehibride con la cadena

molde de ADN para formar un híbrido de ADN:ARN, dando lugar a una estructura

llamada bucle R (R loop). La formación de R loops conlleva que la cadena de ADN no

transcrita sea desplazada quedando como en forma de cadena sencilla. Los R loops se

producen de forma natural como un intermediario en procesos específicos que incluyen

la transcripción y la replicación del ADN mitocondrial o el cambio de isotipo de las

inmunoglobulinas en los linfocitos B. Sin embargo, la acumulación de estas estructuras

es una fuente de inestabilidad genómica asociada a la transcripción, como se ha

observado en bacterias, levaduras y células de mamífero. De hecho los R loops

constituyen un obstáculo para el avance de la horquilla de replicación del ADN.

Igualmente, la transcripción puede constituir un obstáculo para la progresión de la

horquilla de replicación. Estos conflictos entre la transcripción y la replicación pueden

desencadenar un incremento de las roturas de doble cadena como fuente de inestabilidad

genómica, que pueden ser agravados por los R loops.
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In living cells, DNA is continuously exposed to endogenous agents such as

cellular metabolism products or failures during cellular processes including replication,

transcription, DNA damage signalling and DNA repair. In addition, DNA is exposed to

exogenous agents such as ultraviolet light (UV), ionizing radiation or chemical agents.

The action of these different agents may lead to DNA damage such as modified bases,

DNA-protein adducts, abasic sites or DNA breaks. Unless repaired, these DNA lesions

may interfere with replication and finally lead to mutations. Although mutations and

changes in the DNA sequence are necessary for evolution and genetic variation, they

may be harmful for the cells and organisms. Genome instability is a general term that

refers to the accumulation of a high variety of genetic alterations that may occur on the

DNA, from changes in a unique nucleotide to changes at chromosomal scale.

Depending on the nature of the alteration, we can differentiate between base

substitutions, insertions or deletions of short sequences, micro and minisatellite

contractions or expansions, genome reorganization, loss of heterozygosity, copy number

variants or changes in the chromosome number. Pathological mutations and elevated

genome instability are associated with human diseases and a major predisposition to

cancer. Therefore, coordination between the cellular processes that use DNA as a

template, such as transcription, replication and DNA repair, is required to maintain

genome stability.

1. – DNA Damage Response

All kind of DNA lesions need to be detected and signalled to preserve the

integrity of the genome. The cellular response to DNA damage, which is called DNA

damage response (DDR), allows the signalling and repair of DNA lesions and facilitates

DNA replication restart (Harper and Elledge 2007). The DDR activates DNA repair and

promotes a phosphorylation signalling cascade that causes a cell cycle delay or block to

enable the repair of DNA damage. Moreover, if the damage is persistent, apoptotic

pathways can be engaged (Sertic, Pizzi et al. 2012).

Different repair mechanisms are required depending on the kind of DNA

damage. Base lesions are repaired by base excision repair (BER); lesions that distort the

DNA helix such as bulky adducts are repaired by nucleotide excision repair (NER) or
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by transcription-coupled NER (TC-NER) when the DNA lesion is recognized by the

RNA polymerase (RNAP) in the transcribed strand during transcription. DNA

mismatches occurring during replication are repaired by post replicative mismatch

repair (MMR). Finally, two principal pathways to repair double-stranded DNA breaks

(DSBs) have been reported, non homologous end joining (NHEJ) and homologous

recombination (HR).

Although all DNA lesions are injurious and need to be repaired, DSBs are the

most harmful kind of damage that may take place in the DNA because they affect both

strands of a given DNA molecule and are therefore difficult to repair. DSBs have the

potential to cause mutations, chromosomal rearrangements and finally genomic

instability. In Saccharomyces cerevisiae, DSBs are detected by a complex formed by

Mre11, Rad50 and Xrs2 (MRX, MRN in human). The MRX complex plays a role as a

bridge maintaining both DSB ends close to each other. This complex promotes the

recruitment of Tel1 (ATM in human cells). On the other hand, Mec1 (ATR in human

cells) is activated by replication impairments in which the generated single-stranded

DNA (ssDNA) is quickly coated by replication protein A (RPA). Mec1/ATR activation

may also be promoted by DNA breakage and the ssDNA resulting from 5´-end

resection. Both proteins, Tel1/ATM and Mec1/ATR trigger the activation of DDR. This

activation induces a signalling cascade mediated by the activation of the downstream

kinases Rad53 and Chk1 that allows the amplification of the DNA damage signal and

the repair of the later. As a consequence of DDR activation, C-terminal tails of histone

H2A are phosphorylated promoting chromatin remodelling. In addition, many proteins

implied in the repair of DSBs are phosphorylated (Pardo, Gómez-González et al. 2009;

Sulli, Di Micco et al. 2012; Gobbini, Cesena et al. 2013).

1.1.- DSB repair

NHEJ and HR are the principal pathways to repair DSBs. During NHEJ, direct

re-ligation of the two ends of the DSBs takes place. HR needs an intact homologous

donor sequence to repair the DSB. The sister chromatid is the preferred donor molecule

since it provides a sequence exactly identical to the damaged DNA. Therefore, HR is
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restricted to the S and G2 phases of the cell cycle, being the only ones in which a sister

chromatid is present.

The Ku complex, composed of yKu70 and yKu80, binds at DSB ends and may

play a role in protecting the DNA end. During NHEJ, the Ku complex prevents 5’-end

resection and promotes the ligation of the two ends by ligase Lig4. Additionally the

Xrs2 component of the MRX complex mediates the interaction with the Lig4 complex,

promoting NHEJ (Matsuzaki, Shinohara et al. 2008). However, during S/G2, if the Ku

complex is removed from the DSB, 5’-end resection takes places and repair becomes

committed to HR. The 5´-end resection generates a 3’-end ssDNA that is readily coated

by RPA. Rad51 is then incorporated and displaces RPA from the 3’-end ssDNA, a step

catalysed by the HR factor Rad52. The formation of this Rad51 filament promotes the

invasion of an homologous double stranded DNA (dsDNA), forming a DNA-DNA

hybrid called D-loop (Pardo, Gómez-González et al. 2009; Heyer, Ehmsen et al. 2010;

Shibata 2017). To repair the DSB, two principal HR pathways are distinguished,

synthesis-dependent strand annealing (SDSA) and double strand break repair (DSBR).

During SDSA, DNA synthesis of one resected DSB-end occurs at the D loop. The DNA

synthesis restores the damaged DNA and provides a complementary strand for the 3´-

end ssDNA of the other resected DSB-end, allowing D loop reversal and the re-

annealing of both strands (Figure I1). However, during DSBR the D loop is extended

and the second resected DSB-end hybridizes with the D loop promoting the DNA

synthesis of both resected DSB-ends using both strands of the template DNA molecule.

DNA synthesis from the D loop generates intermediate structures called Hollyday

junctions (HJ), which are then resolved by specific structure-dependent nucleases,

leading to crossover or non-crossover products depending on the specific cleavage

mechanism used. Additionally, other pathways have been described to repair DSB.

Break-induced replication (BIR), which can take place in the absence of the second end

of the DSB, is a mechanism in which the D-loop functions as a replication fork (RF)

initiating the DNA synthesis in one direction. Finally, if the DSB occurs between

repeated sequences, both DSB ends resected up to the repeats can anneal with each

other, in a process termed single strand annealing (SSA) (Pardo, Gómez-González et al.

2009; Heyer, Ehmsen et al. 2010).
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Figure I1 Double strand break repair
Double strand break (DSB) can be repaired by non-homologous end joining (NHEJ),
homologous recombination (HR), single-strand annealing (SSA) or break-induced replication
(BIR). In NHEJ, processed ends are joined by ligation. HR repair is initiated by 5′ to 3′ resection
at the DSB. If the DSB occurs between direct repeats, annealing of the direct repeats may follow
resection resulting in SSA repair. Alternatively, the resected 3′ overhang (green) may invade an
homologous template (blue) to initiate repair synthesis. In synthesis-dependent strand annealing
(SDSA) the newly synthesized strand (dashed blue) anneals back to the other end of the broken
DNA (green). In double strand break repair (DSBR), the second strand of the DSB (green)
anneals with the displaced strand of the donor DNA (blue), repair synthesis takes place, and
then the newly synthesized strands are ligated to form a double Holliday junction (dHJ).
Depending on how the dHJ is cleaved, resolution can result in a crossover or a non-crossover.

DSB
MRX and Ku recruitment

5´resection-RPA binding

NHEJ MRX, Ku + Lig4

Rad51 replaces RPA
D-loop formation

SSA

BIRHR-SDSA
HR-DSBR

Ku complex removal
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2. - Transcription associated genome instability

Transcription is the initial step in gene expression, in which genomic

information is converted into RNA by RNAP. The transcription process can be divided

in initiation, elongation and termination. During transcription, the DNA strands

transiently separate from each other to allow RNA synthesis, generating a transcription

bubble that contains the transcribed DNA strand (TS), approximately 9 ribonucleotides

from the nascent messenger RNA (mRNA), and the non transcribed strand (NTS),

which remains single-stranded (Aguilera and Gómez-González 2008; Gaillard, Herrera-

Moyano et al. 2013). Synthesis of the RNA molecule during eukaryotic gene expression

by RNAPII is coupled with maturation processes of pre-mRNAs that include 5´-

capping, splicing, 3´-cleavage and polyadenylation, as well as the binding of different

RNA-binding proteins (RBP), which together form the messenger ribonucleoprotein

particle (mRNP). Different protein complexes that act all along the path from the

transcription site to the nuclear pore complex (NPC) enable the coordination of mRNP

biogenesis and export (Perales and Bentley 2009).

Transcription of a DNA sequence enhances its propensity to suffer mutations,

in particular on the NTS, a process referred to as transcription-associated mutation

(TAM). First evidence of TAR was obtained in Escherichia coli in which transcription

activity was shown to modify the mutation rate within the lactose operon (Herman and

Dworkin 1971). Later work in S cerevisiae using an inducible promoter to control

transcription demonstrated that the rate of mutations is increased (35- fold) when

transcription is induced (Datta and Jinks-Robertson 1995). Similarly, increased

transcription levels of a gene encoding the green fluorescence protein (GFP) from the

repressible tet promoter caused an increased mutation rate in human cells (Bachl,

Carlson et al. 2001). Altogether, this data shows that transcription of DNA leads to an

increase in the rate of mutations, compromising genomic stability. On the other hand,

transcription also leads to increased recombination frequencies, a process referred to as

transcription-associated recombination (TAR). First evidence of TAR were provided by

λ phage recombination studies in E. coli (Ikeda and Matsumoto 1979). TAR is also

observed in S. cerevisiae, in which transcription by RNAPI, RNAPII and RNAPIII were

shown to lead to hyper-recombination (Thomas and Rothstein 1989; Huang and Keil

1995; Pratt-Hyatt, Kapadia et al. 2006). In addition, TAR has been described in higher
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eukaryotes (Nickoloff and Reynolds 1990). Altogether, TAM and TAR constitute two

types of genome instability that depend on active transcription and are referred to as

transcription-associated genome instability (TAGIN). Several conditions associated

with transcription such as topological changes associated with the advance of the

transcriptional machinery, the formation of R loops, the correct formation of the export-

competent mRNP or conflicts with the replication machinery may lead to TAGIN.

2.1.- Transcription-associated topological changes

During transcription, positive and negative supercoils accumulate ahead and

behind the advancing RNAP, respectively. Topoisomerases 1 (Top1) and 2 (Top2) are

needed to resolve the negative and positive supercoils. The action of topoisomerases is

particularly important at highly transcribed loci, such as the rDNA cluster. Indeed

topoisomerase mutants show higher recombination frequencies at the rDNA

(Christman, Dietrich et al. 1988) and the accumulation of DNA supercoils leads to

transcription blockage at the 18S rDNA (El Hage, French et al. 2010). A similar

situation has been observed at convergent transcription units, which accumulate positive

supercoils and show transcription defects as well as recombination increases in the

absence of Top1 and Top2 (García-Rubio and Aguilera 2012). On the other hand,

during transcription elongation negative supercoils lead to DNA double helix opening,

generating ssDNA. ssDNA is more susceptible to be damage than dsDNA, and

spontaneous deamination, which converts dCTPs into dUTPs, occurs more frequently in

ssDNA, thus implying that DNA unwinding sensitizes to deamination (Frederico,

Kunkel et al. 1990). Transcription also increases recombination induced by treatment

with 4-nitroquinoline 1-oxide (4-NQO) and methyl methanesulfonate (MMS) DNA

damaging agents supporting the idea that transcribed DNA is more susceptible to be

damaged as a consequence of the occurrence of negative DNA supercoiling and ssDNA

stretches (García-Rubio, Huertas et al. 2003). Another consequence of DNA supercoils

is that it favours non-canonical DNA conformation such as parallel four-stranded G

quartets (G-quadruplex) (Duquette, Handa et al. 2004). These structures stabilize the

ssDNA hindering the restoration of the dsDNA. The resolution of negative supercoils

by Top1 avoid the folding of the G-quadruplex in the NTS (Yadav, Owiti et al. 2016).
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Altogether, the action of topoisomerases thus plays a role in genome stability

maintenance.

2.2. R loops

The accumulation of negative supercoils in transcribed genes favours the

hybridization of the nascent mRNA with the DNA template behind the RNAP, forming

a DNA-RNA hybrid and a displaced ssDNA, a structure called R loop (Figure I2).

Beside negative supercoiling, another condition favouring R loop formation is the DNA

sequence itself, as a high guanine density in the displaced ssDNA strand promotes R-

loop formation (Roy and Lieber 2009). The presence of DNA nicks may also promote

the mRNA re-hybridization into the DNA (Roy, Zhang et al. 2010). DNA:RNA hybrids

are more stable than dsDNA (Roberts and Crothers 1992) and are naturally formed

during transcription and replication, short hybrid sequences (8-11 nucleotides) being

necessary intermediates inside the transcription bubbles and during replication. R loops

can occur naturally as a physiologically relevant intermediate in specific processes such

as E. coli plasmid replication, transcription regulation, mitochondrial DNA replication,

class switch recombination of immunoglobulin genes or telomere homeostasis.

However, in some circumstances, R loops can be generated as transcriptional by-

products that endanger the genome stability, generating replication problems and

chromatin alterations (Aguilera and García-Muse 2012; Bhatia, Herrera-Moyano et al.

2017).

Figure I2 R loop
An R loop is a three-strand nucleic acid structure formed by an DNA:RNA hybrid plus a
displaced DNA strand (ssDNA). In wild type cells (WT) the mRNA is co-transcriptionally
package into an mRNP. In the absence of the THO complex, which is involved in the mRNP
formation, the mRNA not properly packaged may lead to R loop formation.

RNAPII

RNAPII

WT

THO mutants
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2.2.1. - mRNP biogenesis and R loop-dependent TAR

During transcription by RNAPII, the nascent mRNA is coated by different

RBP. The binding of the RBPs and the processing of the nascent mRNA lead to the

formation of the mRNP and its co-transcriptional export to the cytoplasm (Köhler and

Hurt 2007). Several factors play an important role in this process, such as the THO

complex, an evolutionary conserved complex composed of the Tho2, Hpr1, Mft1, Thp2

and Tex1 proteins in yeast (Chávez, Beilharz et al. 2000; Peña, Gewartowski et al.

2012). Mutations in THO components lead to a transcription elongation impairment and

mRNA export defects. Moreover, deletions of these proteins confer transcription-

dependent hyper-recombination in S. cerevisiae (Prado, Piruat et al. 1997; Chávez,

Beilharz et al. 2000; Jimeno, Rondon et al. 2002; Rondon, Jimeno et al. 2003). The first

evidence that TAR may be dependent on the accumulation of co-transcriptional R loops

was obtained from studies of yeast THO mutants. TAGIN observed in these mutants is

suppressed by the over-expression of RNase H1, an enzyme which removes the RNA

moiety from the DNA:RNA hybrid, supporting the idea that co-transcriptional R loops

accumulate when mRNP biogenesis is deficient (Huertas and Aguilera 2003). R loop-

dependent TAR has also been shown in Caenorhabditis elegans THO mutants and

THO-depleted human cells (Domínguez-Sánchez, Barroso et al. 2011; Castellano-Pozo,

Santos-Pereira et al. 2013).

On the other hand, the THO complex can interact with the RNA helicases Sub2

and the RBP Yra1. Both proteins are conserved in human as UAP56 and ALY,

respectively. These proteins bound to the THO complex constitute the TREX complex

(transcription-export). The TREX complex is specifically recruited to transcribed genes,

travelling with the polymerase during transcription and binds to the nascent mRNA

during elongation (Sträßer, Masuda et al. 2002). Deletion of TREX components confer

similar phenotypes of transcription impairment (Jimeno, Rondon et al. 2002; Rondon,

Jimeno et al. 2003), mRNA export defects (Zenklusen, Vinciguerra et al. 2002) and

TAR than THO mutants.
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Figure I3 mRNP biogenesis
During transcription elongation, the THO complex is recruited at transcribed genes, facilitating
the binding of Sub2 and Yra1. Npl3 interacts with the RNAPII and it is loaded on the mRNA.
Mex67 is also recruited by interaction with THO and/or Npl3. The TREX2 complex is
associated with the nuclear pore complex (NPC) by interaction with Nup1. Nab2 is loaded on
the mRNP and interacts with Mlp1 at the NPC basket.

In addition to the TREX complex, different RBPs such as Tho1, Nab2 or Npl3

are recruited to mRNAs at the early stages of the transcription-export pathway (Luna,

Gaillard et al. 2008). Similarly to other mRNP biogenesis factors, mutations of Npl3

and Nab2, but not Tho1, show TAR phenotypes (Piruat and Aguilera 1998; Gallardo,

Luna et al. 2003; Santos-Pereira, Herrero et al. 2013). Although over-expression of

Sub2 or Tho1 rescues the genome instability phenotype observed in hpr1 mutants

(Jimeno, Luna et al. 2006), over-expression of Npl3 and Yra1 leads to hyper-

recombination in wild type cells (Santos-Pereira, Herrero et al. 2013; Gavaldá, Santos-

Pereira et al. 2016). Altogether, this data suggest that a proper stoichiometry of these

proteins is important to maintain genome stability. In addition to THO, mutations in

several RNA metabolism proteins have been involved in R loop formation. Thus,

Mlp1

RNAPIIRNAPII
THOSub2
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RNAPIIRNAPII
THO

RNAPIIRNAPII
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Yra1Yra1
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RNase H1-mediated rescue of hyper-recombination has been shown for mutations of

yeast Sub2, (González-Aguilera, Tous et al. 2008) or the RBP Npl3 (Santos-Pereira,

Herrero et al. 2013). Deletion of the human 5´-3´ exoribonuclease XRN2 leads to R

loop-dependent DSBs and genome instability (Morales, Richard et al. 2016). The

correct splicing of the nascent mRNA is also important to avoid R loop-dependent

genome instability, as seen by depletion of the ASF/SF2 splicing factor (Li and Manley

2005). Top1-mediated recruitment of the ASF/SF2 splicing factor in the mRNP avoids

the formation of R-loop (Tuduri, Crabbe et al. 2009). Additionally, the spliceosome U2

snRNP factor has also been related to the prevention of R loop-dependent genome

instability phenotypes (Tanikawa, Sanjiv et al. 2016). In agreement with the co-

transcriptional R loop accumulation observed in THO mutants and several other RNA

metabolism factors, different genome-wide screenings in yeast and human cells have

revealed that a growing number of factors working at different stages of mRNP

biogenesis and export function in preventing R loop formation and maintaining genome

integrity (Paulsen, Soni et al. 2009; Wahba, Amon et al. 2011; Stirling, Chan et al.

2012). Altogether, these observations support that an accurate formation of the mRNP is

necessary to prevent the R loop-dependent genome instability.

2.2.2.- R loops and chromatin

Histones are subjected to many different post-translational modifications such

as methylation, acetylation and phosphorylation, which participate in the regulation of

all DNA template processes and chromatin compaction. Genome wide analysis in

human cells has shown that histone H3 methylation (H3K14me1, H3K14me2 and

H3K36me3) and histone H3 (H3K9 and H3K27) acetylation are significantly enriched

over R loop containing regions (Sanz, Hartono et al. 2016). High levels of histone H3

acetylation facilitate R-loop accumulation as observed in human cells after treatment

with trichostatin A (TSA) or suberoylanilide hydroxamic acid, two different histone de-

acetylase inhibitors. Moreover, depletion of the THO complex or the Sin3A histone de-

acetylase complex leads to hyper-acetylated opened DNA that facilitates the formation

of R loops. THO and Sin3A physically interacts, suggesting that THO prevents the

formation of R loops by ensuring optimal mRNP biogenesis and by interacting with
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Sin3A, therewith promoting histone de-acetylation and chromatin closing after

transcription (Salas‐Armenteros, Pérez‐Calero et al. 2017).

Heterochromatin at centromeric region in Schizosaccharomyces pombe is

mediated by DNA:RNA hybrids formed by the association of ncRNAs with chromatin.

This association induces the transcriptional silencing complex, which involves the

accumulation of the H3K9me2, heterochromatin mark (Nakama, Kawakami et al.

2012). This H3 di-methylation is also observed in C. elegans THO mutants. In addition

to H3K9me2, the absence of C. elegans THO complex leads to pathological R loop

accumulation, which triggers the phosphorylation of histones H3 at serine10 (H3-

ser10P), a mark of chromatin condensation. A similar correlation between H3-ser10P

and R loops has also been observed in yeast and human cells (Castellano-Pozo, Santos-

Pereira et al. 2013). This data led to the proposal that R loops trigger local chromatin

condensation, which in turn represent an obstacle to the RF progression and leads to

genome instability. Importantly, not all mutations that lead to an increase in R loops

formation trigger the accumulation of H3-ser10P. Mutations in several yeast histone

residues lead to the accumulation of non-pathological R loops. H3K9-14-28-23A,

H3∆1-28 or H4K31Q mutants show no transcription or replication defects, moreover no

H3-ser10P accumulation are observed, in contrast to other mutants such as hpr1, in

which R loop-dependent genome instability and H3-ser10P accumulation are observed.

These results suggest that R loops by themselves are not always a threat to genome

integrity, and that H3-ser10P enrichment is necessary for R loop-dependent DNA

breaks (García-Pichardo, Cañas et al. 2017).

2.2.3. - Enzymatic activities that target R loops structures

A number of enzymatic activities can act on R loops, targeting either the

displaced ssDNA strand or the DNA:RNA hybrid. The activities acting on the displaced

ssDNA such as nucleases, deaminase or other base modifying enzymes have the

potential to increase the impact of R loops on TAGIN, as their action generates DNA

damage at such R loop structures. Activities acting on the DNA:RNA hybrid, however,

comprise ribonucleases and helicase activities that contribute to R loop removal and

therewith prevent the accumulation of pathological R loops.
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Figure I4 Enzymatic activities that target R loops
The ssDNA within an R loop is a substrate for enzymatic activities that target ssDNA, such as
the human cytidine induced deaminase (AID) that convert cytidine into uracil. Helicases such
as Sen1 play a role in unwinding DNA:RNA hybrids. RNase H1 (Rnh1) specifically degrades
the RNA moiety from the DNA:RNA hybrid.

AID

The human activation-induced cytidine deaminase (AID) is a protein that is

specifically expressed in B lymphocytes. AID converts dCTPs into dUTPs on the

displaced ssDNA but not on dsDNA substrates (Bransteitter, Pham et al. 2003;

Chaudhuri, Tian et al. 2003). Transcription through the B cells variable S regions

promotes R loop formation thereby exposing stretches of ssDNA on the NTS, providing

a substrate for AID (Yu, Chedin et al. 2003). AID is necessary for somatic

hypermutation and class switching recombination and thus playing a central role in

antibody diversification in B cells (Muramatsu, Kinoshita et al. 2000). Physical

interaction with RPA, which binds at ssDNA, enables the recruitment of AID to co-

transcriptional R-loops (Chaudhuri, Khuong et al. 2004). Ectopic expressed AID also

interacts directly with the elongation complex in E. coli, suggesting the transcriptional

machinery might recruit AID (Besmer, Market et al. 2006).

dUTPs within the DNA is excised by uracil DNA glycosylase leaving an abasic

site, which can be recognized by an apurinic/apyrimidic endonuclease that nicks the

DNA (Petersen-Mahrt, Harris et al. 2002; Guikema, Linehan et al. 2007). DSBs are

formed when these nicks occur in close proximity on opposite DNA strands.

Additionally DNA resection by Exo1 during MMR might generate a DSB from two

separated dUTPs (Ehrenstein and Neuberger 1999; Stavnezer, Guikema et al. 2009;

Fear 2013). Erroneous DSBs repair can lead to be resolved as chromosomal

translocations, providing a rationale for the predisposition of B cells to undergo

AID U U U U

Sen1 Rnh1
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tumorigenesis processes. DSBs induced by AID have been shown to be responsible for

translocations between c-myc and the Ig variable region (Ramiro, Jankovic et al. 2004;

Dorsett, Robbiani et al. 2007). AID expression in S. cerevisiae bearing heterologous S

region and c-myc transcribed sequences also leads translocations between both regions

(Ruiz, Gómez-González et al. 2011). Moreover, such AID-mediated translocations are

enhanced in THO mutants. Using a recombination system as a reporter, AID over-

expression was shown to increase recombination in R loop-accumulating yeast strains

such as the THO mutants (Gómez-González and Aguilera 2007), indicating that AID

expression can be used as a tool to detect R loops.

Ribonucleases

The main enzymatic activities preventing R loop accumulation is the RNase

H1 that breaks down the RNA moiety of DNA:RNA hybrids. This protein has two

different domains, which are conserved from yeast to human. The N-terminal domain

recognizes the DNA:RNA hybrids and is called hybrid binding domain (HBD). The C-

terminal domain contains the catalytic subunit. Although this protein is conserved from

yeast to human, some important differences exist across species. For example, both

domains are linked by a variable region. Notably, human RNase H1 has one N-terminal

domain, however, two copies of the domain are present in S. cerevisiae and C. elegans

RNase H1, both copies being necessary to bind the DNA:RNA hybrid. Double stranded

RNA (dsRNA) is also recognized by RNase H1, although with a lower efficiency

(Cerritelli and Crouch 1995; Evans and Bycroft 1999; Nowotny, Cerritelli et al. 2008).

Figure I5 Structure of human and yeast RNase H1
Human RNase H1 contains two domains, the hybrid-binding domain (HBD) and the catalytic
domain. Yeast RNase H1 presents a similar structure but it possesses two HBD domains that
share homologies to human HBD. The HBD and the catalytic domains are separated by a
variable region in both species.

Met HBD Catalytic domain ter

Met HBD Catalytic domain terHBD

yHBD

Human

Yeast
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Helicases

R loops can also be removed by the action of some DNA:RNA helicases, such

as yeast Sen1 and its human homologue SETX. This helicase is involved both in the

unwinding of co-transcriptional DNA:RNA hybrids formed during pause-dependent

transcription termination and in favouring RF progression through RNAPII-transcribed

regions (Mischo, Gomez-Gonzalez et al. 2011; Skourti-Stathaki, Proudfoot et al. 2011;

Alzu, Bermejo et al. 2012). Other helicases involved in R loop unwinding are the

human DDX21 and DDX23 helicases, which are recruited to DNA:RNA hybrids

throughout the gene body during transcription elongation (Song, Hotz-Wagenblatt et al.

2017; Sridhara, Carvalho et al. 2017). Human DDX19, which is relocated to the nucleus

under replication stress via ATR, was also shown to unwind DNA:RNA hybrids

(Hodroj, Recolin et al. 2017). Other helicases such as human RNA helicase Aquarius

(AQR) (Sollier, Stork et al. 2014), yeast DNA helicase Sgs1 and its human homolog

BML (Chang, Novoa et al. 2017) or human DHX9 as some examples of helicases

involved in DNA:RNA unwinding. DHX9 was also shown to be important for the

unwinding of DNA-bases at G-quadruplex (Chakraborty and Grosse 2011). The yeast

helicase Pif1 is another example related with G-quadruplex of an helicases able to

unwind DNA:RNA hybrids and to favour RF progression (Tran, Pohl et al. 2017).

2.3.- Transcription-replication conflicts

The replication and transcription machineries share the same template, the

DNA; therefore interference between both processes may occur. Transcription-

replication conflicts are an important source of genome instability as they may cause an

increase in RF stalling and DNA breaks (Mirkin and Mirkin 2007). Depending on the

orientation of transcription with respect to the direction of replication, transcription-

replication conflicts can be co-directional or in head-on orientation. Collisions between

replication and transcription were first studied in E. coli, with the conclusion that RF

movement rates are not affected by co-directional transcription but are reduced in the

case of head-on encounters (French 1992).



INTRODUCTION

17

Figure I6 Transcription-Replication Conflicts
Replication machineries advancing from a bi-directional replication origin lead to conflicts with
the transcription machinery at active genes. Depending on the orientation of transcription with
respect to the direction of replication, transcription-replication conflicts can be co-directional or
in head-on orientation.

Transcription of highly expressed genes such as those encoding rRNAs, which

are organized in repeats at the rDNA locus in yeast, may constitute a serious obstacle to

RF progression. To prevent these conflicts and their possible consequences, a specific

region called replication fork barrier (RFB) is present in the rDNA repeat and blocks RF

progression upstream of transcribed regions (Brewer, Lockshon et al. 1992). This RF

blockage is achieved through binding of the Fob1 protein to the RFB and prevents head-

on collisions between RNA and DNA polymerases at the rDNA locus (Kobayashi

2003). However, transcription-replication conflicts are not restricted to the rDNA.

Using different plasmid systems, in which transcription is orientated either in co-

directional or in head-on orientation from the replication origin, it has been observed

that transcription convergent to replication leads to a replication pause site (Prado and

Aguilera 2005). Furthermore, an increase in recombination was observed in these

conditions, indicating that transcription-mediated replication impairment may be

responsible for TAR. Subsequently, transcription of the lacZ gene was also shown to

lead to replication impairment in wild type cells. Moreover this replication impairment

at the transcribed lacZ sequence was exacerbated in the absence of the THO component

Hpr1 and was partially rescued by cleavage of the nascent mRNA, suggesting that the

presence of R loops is the cause of the observed replication impairments (Wellinger,

Prado et al. 2006). Consistently R loop-formation at an immunoglobulin S region,

cloned in a plasmid in both orientations, caused RF stalling and chromosomal

rearrangements (Gan, Guan et al. 2011), indicating that co-transcriptional R-loop

formation is a conserved threat for replication.

Head-On Co-directional
ARS



Ph.D. Thesis - Francisco García Benítez

18

Several mechanisms have been described that help the advance of RF through

transcribed sequences. For example, the Rrm3 helicase is involved in the progression of

RF through non-nucleosomal protein-DNA complexes (Ivessa, Lenzmeier et al. 2003).

Moreover, an accumulation of Rrm3 has been observed at highly transcribed genes

during S phase, supporting the idea that transcription is a obstacle to the RF progression

(Azvolinsky, Giresi et al. 2009). In the same line Rrm3 over-recruitment has been

observed in transcribed genes in THO mutants, which was suppressed by RNase H1

over-expression (Gómez-González, García-Rubio et al. 2011). On the other hand,

replication stress caused by treatment with hydroxyurea (HU), which inhibits the

ribonucleotides reductase causing dNTP depletion and slows down replication, trigger

RNAPII release from transcribed genes near firing origins of replication. This removal

depends on Mec1, the chromatin remodelling complex Ino80 and the RNAPII-

associated complex PAF1 (Poli, Gerhold et al. 2016). Furthermore, RNAPII can reduce

the effects of these conflicts on genome integrity facilitating its release from chromatin

after a putative collision with the RF and preventing RF collapse (Felipe-Abrio,

Lafuente-Barquero et al. 2015), supporting the idea that the transcription machinery is

an obstacle to RF progression which has to be overcomed to complete correctly the

replication of DNA.

In addition, different chromatin remodelling factors such as the FACT complex

whose deletion leads to R loop accumulation, may prevent conflicts assisting RF

progression at transcribed regions and is necessary for replication through R loop-

containing region (Herrera-Moyano, Mergui et al. 2014). Similarly, Fanconi anemia

factors, BRCA1, BRCA2 and FANCD2 are critical for RF progression on R loop-

containing DNA template. BRCA2 and FANCD2 have been proposed to bind to R

loop-containing regions where there is a replication problem and to promote replication

restart thus preventing R loop-dependent DNA damage (Bhatia, Barroso et al. 2014;

Hill, Rolland et al. 2014; García-Rubio, Pérez-Calero et al. 2015; Schwab,

Nieminuszczy et al. 2015). In addition, FANCM, may lead to the resolution of

DNA:RNA hybrids and replication blocks, and its yeast homologue Mph1 also plays a

crucial role in DNA:RNA hybrid resolution (Schwab, Nieminuszczy et al. 2015;

Lafuente-Barquero, Luke-Glaser et al. 2017). The replicative helicase MCM has been

also been related with R loop formation and RF progression. Mutation of Mcm2 shows

R loop accumulation only in S phase, suggesting that replication defects in this mutants
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lead to R loop accumulation (Vijayraghavan, Tsai et al. 2016). In addition, a number of

interactions between replisome-associated proteins and different factors that remove R

loops have been described. For example, the recruitment of BRCA1 to R loops mediates

the recruitment of Senataxin (Hatchi, Skourti-Stathaki et al. 2015) while RPA contribute

to the recruitment of RNase H1 (Nguyen, Yadav et al. 2017). Thus different pathways

involving different replisome-associated proteins participate in R loop removal to

facilitate RF progression and avoid TAR.

In conclusion, the capacity of R loops to stall RF progression may be a major

cause of DNA breaks, therefore the coordination between the replication and

transcription machineries and the ability of RF to replicate correctly the DNA through

transcribed genes and R loops is a guarantee to preserve the stability of the genome.
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3.- The Nuclear Pore Complex

The nuclear pore complex (NPC) is a macromolecular structure embedded in

the nuclear membrane that is composed of a set of approximately 30 different proteins

called nucleoporins, most of which are conserved from yeast to human. The NPC is

composed of two octameric symmetric outer rings, one on the cytoplasmatic side and

the other one on the nuclear side of the nuclear envelope. Both rings are connected by

linker nucleoproteins and a third ring that allows anchoring to the nuclear membrane. In

addition, phenylalanine-glycine repeats-rich FG nucleoporins are located in the NPC

central channel. These FG nucleoporins form a selective barrier and regulate

nucleocytoplasmatic transport. Different filament nucleoporins, such as Nup82 and

Nup159 that binds different mRNA binding factors, are anchored to the symmetric core

of the NPC on the cytoplasmic side. A nuclear basket structure that is composed of

Nup1, Nup2, Nup60, Mlp1 and Mlp2 (NUP50, NUP153 and TPR in human cells) is

located on the nuclear side of the NPC. These asymmetrically located nucleoporins are

key components in establishing the directionality of the nucleocytoplasmic transport

(Alber, Dokudovskaya et al. 2007; Hoelz, Debler et al. 2011; Beck and Hurt 2017;

Sakiyama, Panatala et al. 2017). In human cells, a nuclear scaffold called lamina is

located on the nucleoplasmic side of the nuclear envelope. This lamina is formed of a

net of proteins covering the nuclear envelope and acts as a bridge between different

pores, whose primary function is to assist the re-assembly of the nucleus after mitosis.

No lamina is found in S. cerevisiae, in which the nuclear envelope is not disrupted

during mitosis. However, several lamina-associated proteins are conserved from yeast to

human, and locate at the nuclear envelope in yeast, such as the nuclear envelope protein

Mps3 (Taddei and Gasser 2012).

NPC has functions beyond the control of nucleo-cytoplasmic transport, such as

chromosome organization, transcription and DNA repair. NPCs coincide with

heterochromatin exclusion areas suggesting that the NPCs and nuclear envelope-

associated proteins play a determinant role in chromatin organization. In agreement with

this idea, yeast centromeres are clustered together at the nuclear periphery-associated

spindle pole body, while chromosome arms are located in the nucleoplasm and

telomeres anchored at three to six nuclear envelope-associated locations. In addition, the

yeast nucleolus, which contains the single rDNA locus located on chromosome XII, is
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located close to the nuclear envelope and opposite to the spindle pole body. The

location of the human nucleolus with respect to the nuclear envelope is not as well

defined as in yeast. In human cells, nucleoporins are not spatially restricted to the NPC

and rDNA is located at several chromosomes (Vaquerizas, Suyama et al. 2010; Gay and

Foiani 2015; Ibarra and Hetzer 2015; Beck and Hurt 2017).

Figure I7 Nuclear pore complex
Each NPC is a cylindrical structure comprised of eight spokes surrounding a central tube that
connects the nucleoplasm and cytoplasm. The NPC is anchored to the nuclear envelope by a
trans-membrane ring structure. Linker nucleoporins (Nups) help to anchor the Phe-Gly (FG)
Nups which fill the central tube. NPC-associated peripheral structures consist of cytoplasmic
filaments, the basket and a distal ring. The Nups that are known to constitute each NPC sub-
structure are listed. Both inner and outer ring Nups are known to form biochemically stable
NPC sub-complexes, which are thought to have a role in NPC biogenesis and nuclear envelope
assembly. Figure taken from (Strambio-De-Castillia, Niepel et al. 2010).

The NPC complex also plays a role in mRNA biogenesis. Concomitant with

transcription, the mRNA is exported to the cytoplasm. To facilitate the export, the RBP

Yra1, Nab2 and Npl3 mediate the interaction between the export receptor Mex67-Mrs2

and the mRNP. The mRNA is transferred to the Mex67-Mtr2, which interacts with FG

repeat-containing nucleoporins, essential for mRNA translocation through the NPC



Ph.D. Thesis - Francisco García Benítez

22

(Köhler and Hurt 2007; Luna, Gaillard et al. 2008; Iglesias, Tutucci et al. 2010).

Additionally to Mex67-Mtr2, the TREX2 complex that is composed of Sac3, Thp1,

Sus1, Cdc31 and Sem1 is also involved in the export of the mRNA (Luna, Gaillard et al.

2008; Faza, Kemmler et al. 2009). This complex integrates earlier steps in the gene

expression pathway with the last one, the export of mature transcripts. Sus1 is also a

component of the SAGA histone acetylase complex, which has a function in

transcription initiation (Rodrı́guez-Navarro, Fischer et al. 2004), although the role of the

TREX2 complex in transcription elongation was shown to be independent of SAGA

(González-Aguilera, Tous et al. 2008). TREX2 localizes on the inner side of the nuclear

envelope, binding to the NPC through the interaction between Sac3 and Nup1. In

addition, Sac3 interacts with Mex67 to promote mRNP translocation through the NPC

(Lei, Stern et al. 2003; Ellisdon, Dimitrova et al. 2012; Jani, Valkov et al. 2014). Others

RNA binding proteins are important for RNA processing and export through the NPC.

Nab2, which is functionally related with TREX2 complex, can bind to Mex67 and Mlp1

in the basket of the NPC playing a determinant role in the RNA export. Nab2 is

necessary to protect the nascent mRNA against decay by the nuclear exosome

(Gallardo, Luna et al. 2003; Fasken, Stewart et al. 2008; Iglesias, Tutucci et al. 2010;

Schmid, Olszewski et al. 2015). Worthy of note that mutations of Mex67, Nab2 or the

TREX2 components Thp1, Sac3, Sus1 or Sem1 proteins induce RNase H1-sensitive

TAR (Gallardo and Aguilera 2001; Jimeno, Rondon et al. 2002; Gallardo, Luna et al.

2003; González-Aguilera, Tous et al. 2008; Faza, Kemmler et al. 2009), similarly to

THO complex, suggesting that the correct formation and export of the mRNP is a key

aspect in the genomic stability maintenance.

Transient localization of transcribed DNA in the proximity of the NPC has

been proposed to serves as a scaffold to build and assemble the mRNP, coordinating

transcription, processing, and export of mRNAs, this transient localization is referred as

the gene gating hypothesis (Blobel 1985). This process can be important for inducible

genes that require a rapid and high level of expression and efficient mRNA export.

Indeed a handful of loci (INO1, GAL genes, HSP104, HXK1, MFA2, TSA2 and SUC2)

were shown to be recruited from the nucleoplasmic interior to the NPC upon

transcriptional RNAPII activation in yeast (Brickner and Walter 2004; Casolari, Brown

et al. 2004; Cabal, Genovesio et al. 2006; Dieppois, Iglesias et al. 2006; Schmid, Arib et

al. 2006; Taddei, Van Houwe et al. 2006; Sarma, Haley et al. 2007). In addition to
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RNAPII inducible genes, tRNA genes transcribed by RNA polymerase III have been

shown to re-localize to the NPC as a consequence of their transcriptional increase in M

phase (Chen and Gartenberg 2014). Several factors with functions in mRNP biogenesis

and export, such as Mex67 (Dieppois, Iglesias et al. 2006), TREX-2 (Drubin, Garakani

et al. 2006), SAGA (Cabal, Genovesio et al. 2006; Luthra, Kerr et al. 2007), some

nucleoporins and the nuclear basket proteins Mlp1/2 have been shown to be required for

efficient gene gating, helping the preferential processing and export of mRNA

(Dieppois, Iglesias et al. 2006). In some cases gating at the NPC seems to rely on

specific DNA sequences. Upstream of the GAL1 genes there is an upstream activating

sequences (UAS) involved in GAL1 transcription activation. When cells are grown in

the absence of glucose and presence of galactose, SAGA is recruited at the UAS. This

interaction leads to SAGA-dependent recruitment of Mlp1 to the UAS, showing that

UAS is necessary for the physical association with Mlp1 at the NPC (Luthra, Kerr et al.

2007). Interestingly, two sequences that target the INO1 and TSA2 genes to the nuclear

periphery have been identified, one at the promoter and the other are upstream of the

gene. Mutations of both sequences abolish the nuclear periphery location of these genes

and impair their transcription. However, introduction of these sequences at the GAL1

gene have no effect on its activation (Ahmed, Brickner et al. 2010). In addition, another

sequence has been described at the HSP104 which is necessary to target this gene to the

nuclear periphery. Moreover introduction of the recruitment sequences of INO1 or

HSP104 at the URA3 gene, leads to recruitment of URA3 at the same location of this

respective introduced sequences gene (Brickner, Ahmed et al. 2012) supporting an

additional level of genetic information that controls the spatial gene organization and

expression.

3.1.- Mlp1/Mlp2/TPR

The yeast myosin-like protein 1 and 2 (Mlp1 and Mlp2) and their human

ortholog ‘translocated promoter region’ (TPR) are major structural components of the

nuclear pore basket that form fibers anchored at the NPC that protrude toward the

nucleoplasm (Cordes, Reidenbach et al. 1997; Strambio-de-Castillia, Blobel et al.

1999). Mlp1/2 might form an extended interacting network radiating from the basket

and interlinking neighbouring NPCs suggesting that these basket projections might play
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the role of the eukaryotic lamina in yeast and being the docking site to spindle pole

body organizer, silencing factors, the proteasome, and components of mRNP (Niepel,

Molloy et al. 2013). The N-terminal domain of Nab2 mediates physical interactions

with the C-terminal domain of Mlp1 (Green, Johnson et al. 2003; Grant, Marshall et al.

2008). Mlp1 physically interacts with Esc1 and is necessary for the correct Esc1

localization at the NPC (Niepel, Molloy et al. 2013). Mlp1 is also found to interact with

Sub2 (Sträßer, Masuda et al. 2002) and Yra1, the TREX-2 components Sac3, Thp1 and

Cdc31, the Mex67 export receptor (Niepel, Molloy et al. 2013) and the Npl3 RBP

(Green, Johnson et al. 2003). These physical interactions between mRNP and Mlp1/2

proteins allows the preferential NPC association with highly transcribed genes in an

RNA-dependent manner contributing to gene NPC anchoring by interacting with

nascent transcripts (Casolari, Brown et al. 2004; Casolari, Brown et al. 2005;

Vinciguerra, Iglesias et al. 2005; Niepel, Molloy et al. 2013). Interestingly, Mlp2 binds

directly to spindle pole body components Spc110, Spc42 and Spc29 (Niepel, Strambio-

de-Castillia et al. 2005).

Figure I8 Mlp proteins form the nuclear basket and an interaction network underlying the
nuclear envelope.
Mlp1 and Mlp2 assemble into coiled-coil dimers that form the nuclear pore complex (NPC)
basket and extend horizontally to link adjoining NPCs. The basket serves as a site for mRNP
binding (presumably facilitating mRNA proofreading), keeps the area beneath the NPC central
tube free from dense chromatin, and might aid in the organization of these structures around the
NPC. Mlps underlying the nuclear envelope (NE) connect NPCs and the spindle pole body
(SPB) into a network and physically support the structure of the nucleus. Esc1p is integrated
into the network and anchors silenced telomeric DNA and the proteasome to the NE. Taken
from (Niepel, Molloy et al. 2013).
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Over-expression of Mlp1 or TPR block the export of polyadenylated mRNA

from the nucleus in yeast and human cells, respectively (Bangs, Burke et al. 1998;

Kosova, Pante et al. 2000; Galy, Gadal et al. 2004). On the other hand, yeast strains

lacking Mlp1/2 proteins show mild or no export defects (Kosova, Pante et al. 2000;

Powrie, Zenklusen et al. 2011). However, deletions of Mlp/TPR present a failure in

retaining unprocessed or faulty mRNA in the nucleus (Galy, Gadal et al. 2004; Rajanala

and Nandicoori 2012). In the retention of unprocessed mRNA, ubiquitination of Yra1

by Tom1 promotes the dissociation of Yra1 from the Nab2-bound mRNPs. Yra1 has to

be removed from the mRNPs prior to its export to the cytoplasm. This release facilitates

the binding of mRNPs to the NPC and their export, where Nab2 helps to target the

mRNP complex to the nuclear pore via its interaction with Mlp1 (Iglesias, Tutucci et al.

2010). Additionally, des-phosphorylation of Npl3 in the nucleus promotes the

interaction with the export receptor Mex67 (Gilbert and Guthrie 2004). Therefore,

different modifications of RBPs such as Yra1, Nab2 or Npl3, modify the affinity of

theses protein to the export receptor Mex67 and to Mlp1, enabling to recognize and

retain aberrant mRNAs in the nucleus (Vinciguerra, Iglesias et al. 2005; Fasken, Stewart

et al. 2008; Soheilypour and Mofrad 2016). Similar behaviours were observed in human

cells (Saroufim, Bensidoun et al. 2015), indicating the participation of Mlp1/2 and TPR

proteins in mRNPs quality control.

Mlp1 has been shown to be required for gene gating of the GAL locus and

HSP104 gene upon transcriptional activation (Dieppois, Iglesias et al. 2006). GAL1

gene exhibits a transcriptional memory process of the previous transcriptional state.

This memory confers the ability to re-induce faster GAL1 transcription initiation and

thus faster gene expression when re-induced following a short intervening period of

repression (Kundu, Horn et al. 2007). Mlp1 is also necessary for the maintenance of

transcriptional memory after transcription induction (Tan-Wong, Wijayatilake et al.

2009), supporting a role for Mlp1 in gene gating. A predicted consequence of the

association of transcribed genes at the NPC is the possible increase of torsional stress at

the concerned chromosomal loci. Indeed, the association to a fixed structure might

impede the free rotation of the DNA, leading to the accumulation of positive

supercoiling and therefore constituting a topological barrier to RF progression. During

replication stress, the checkpoint activities of Mec1 and Rad53 are necessary to stabilize

RF and promote RF restart. Deletion of Mlp1, which abolishes gene gating, was shown
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to suppress the HU-sensitivity of Rad53-deficient cells (Bermejo, Capra et al. 2011).

This data suggest that S-phase checkpoint activation is necessary to resolve topological

barriers that can arise at sites where transcribed genes are associated to fixed nuclear

envelope structures. Furthermore, Bermejo and colleagues have shown that Rad53-

dependent Mlp1 phosphorylation takes place in such situations, leading to the release of

the DNA from the NPC and replication resumption.
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The main goal of this thesis was to improve our understanding of the

mechanisms underlying R loop-mediated genome instability. To this end, we have

pursued the following objectives:

1.- Identification of new proteins involved in the control of R loop formation

using AID expression as a tool to potentiate R loop-dependent recombination.

2.- Analyse the consequences of Mlp1 and/or Mlp2 mutations on R loop

accumulation and genome stability.

3.- Gain new insights into the role of physical proximity of chromatin to the

nuclear pore in preventing R loop-mediated genome instability.

4.- Explore the function of TPR in the maintenance of genome stability in

human cell lines.

5.- Develop a new tool for the detection and quantification of R loops in S.

cerevisiae.
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1.- Growth media and conditions

1.1- Bacteria culture media

Rich medium LB: 0.5% yeast extract, 1% bacto-tryptone, 1% NaCl. LB was

supplemented with 100 μg/ml ampicillin when it was necessary for plasmid selection.

1.2.- Yeast culture media

Rich medium YPAD: 1% yeast extract, 2% bacto-peptone, 2% glucose, 20

mg/L adenine.

Minimum medium SD: 0.17% yeast nitrogen base (YNB) without amino acids

nor ammonium sulphate, 0.5% ammonium sulphate, 2% glucose.

Complete medium SC: SD medium supplemented with amino acids leucine,

tryptophan, histidine, lysine, methionine, aspartate and threonine and the nitrogen bases

adenine and uracil at concentrations described in (Sherman, Fink et al. 1986). The

absence of one or more of the requirements is specified when required.

Complete medium SGal: identical to SC but containing 2% galactose instead of

glucose as carbon source.

Complete medium SRaff: identical to SC but containing 2% raffinose instead of

glucose as carbon source.

Complete medium SG/L: identical to SC but containing 3% glycerol and 2%

sodium lactate instead of glucose as carbon source.

Sporulation medium (SPO): 1% potassium acid, 0.1% yeast extract, 0.005%

glucose, supplemented with a quarter of the concentration of requirements described for

SC medium.

Solid mediums were prepared adding 2% agar before autoclaving.
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1.3.- Cell culture media

Human cells were cultured in DMEM (Gibco, USA) supplemented with 10%

heat inactivated fetal bovine serum (FBS), 2 mM L-glutamine, 100 μg/ml streptomycin,

60 μg/ml penicillin and 0.25 μg/ml amphotericin B.

1.4.- Growth conditions

Yeast strains were incubated at 30°C. Bacteria strains were incubated at 37°C.

Human cells were incubated at 37ºC and 5% CO2. Bacteria and yeast liquid cultures

were incubated on horizontal orbital shakers at 200rpm. Diploid yeast strains were

sporulated at 26°C in SPO medium for 3-4 days.

2.- Antibiotics, drugs, inhibitors, enzymes and antibodies

2.1.-Antibiotics

Ampicillin, Amp (Sigma): β-lactam antibiotic that inhibits cell division in E.

coli, preventing the cell wall synthesis. It was used for plasmid selection in E. coli.

Working concentration: 100 μg/ml.

Geneticin, G418 (USB): aminoglycoside antibiotic that inhibits protein

synthesis by binding to the ribosome. It was used in yeast strains to select, follow and

maintain the kanamycin resistance marker KanMX4. Working concentration: 100 μg/ml.

Hygromycin B, Hyg (Roche): aminoglycoside antibiotic from Streptomyces

hygroscopicus that inhibits protein synthesis. It was used in yeast strains to select,

follow and maintain the hygromycin resistance cassette HhpMX4. Working

concentration: 250 μg/ml.

Nourseothricin, Nat (Werner BioAgents): aminoglycoside antibiotic from

Streptomyces noursei. It was used in yeast strains to select, follow and maintain the

nourseothricin resistance NatMX4 cassette. Working concentration: 100 μg/ml.
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Penicillin, streptomycin, and amphotericin B (Biowest): antibiotics used to

prevent growth of bacteria, yeast and fungi in human cell culture. Penicillin inhibits

bacterial cell wall synthesis (Concentration: 60 μg/ml). Streptomycin inhibits

prokaryote protein synthesis by preventing the transition from initiation complex to

chain-elongating ribosome and causes miscoding (Concentration: 100 μg/ml).

Amphotericin B interferes with fungal membrane permeability (Concentration: 0.25

μg/ml).

2.2.- Drugs and inhibitors

Phenylmethanosulfonyl fluoride PMSF (Sigma): inhibitor of serine (trypsin and

chymotrypsin) and cysteine proteases. Concentration: 1 mM.

Complete Protease Inhibitor cocktail (Roche): mix of several protease

inhibitors including serine, cysteine and metalloproteases. Used according to

manufacturer’s recommendations.

Diethyl pyrocarbonate DEPC (Sigma): RNase inhibitor. Concentration: 1/1000

v/v.

Hydroxyurea HU (USB): compound that inactivates ribonucleotides reductase

by forming a free radical nitroxide that binds a tyrosyl free radical in the active site of

the enzyme. This blocks the synthesis of deoxynucleotides, which inhibits DNA

synthesis.

5-fluorotic acid, FOA (USB): toxic analogue of uracil that poisons URA3 yeast

cells but not ura3 mutants (Boeke, La Croute et al. 1984). Concentration: 500mg/L.

Bromodeoxiuridine BrdU (Sigma): synthetic nucleoside analogue of thymidine

(Lengronne, Pasero et al. 2001). Concentration: 200 μg/ml.

Cordycepin (SIGMA): adenosine antagonist 3’ deoxyadenosine, inhibitor of

RNA chain elongation. Concentration: 50 μM.
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2.3.- Enzymes

Spermidine (Sigma): polyamine involved in cell metabolism. It binds and

precipitates DNA and protein-bound DNA. Concentration: 0.5 mM.

Spermine (Sigma): polyamine involved in cell metabolism present in all

eukaryotic cells. It binds nucleic acids and contributes to stabilize the helix structure.

Concentration: 0.15 mM.

Klenow (Roche): major fragment of the E. coli DNA polymerase I, with 5’-3’

polymerase and 3’-5’ exonuclease activities. Used for labelling radioactive probes.

Alkaline phosphatase (Roche): hydrolyzes 5’-monophosphate groups from

DNA ends generated after an enzymatic cut. Dephosphorylation hampers religation of

cut vector, favouring insertion of the fragment of interest.

T4 phage DNA ligase (Roche): enzyme that catalyzes the covalent union of

dsDNA ends.

Expand®High-Fidelity DNA polymerase (Roche): mix of Taq (from Thermus

aquaticus) and Pwo (from Pyrococcus woesei) polymerases. It was used for high

fidelity PCRs with 5’-A overhang ends.

Phusion®High-Fidelity DNA polymerase (Finnzymes): a Pyrococcus-like

polymerase fused with a processivity-enhancing domain. It was used for high fidelity

PCRs with blunt ends.

Go-Taq®Flexi DNA polymerase (Promega): it was used for DNA probes and

checking PCRs.

MyTaqTM DNA polymerase (Bioline): it was used for DNA probes and

checking PCRs.

iTaq™ Universal SYBR® Green Supermix (Biorad): mix for quantitative PCR

amplification that contains the ampliTaq Gold®DNA polymerase and the LD DNA

polymerase, dNTPs with a dUTP/dTTP mixture and the ROX fluorochrome, used in an

optimized buffer for the qPCR reaction.
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Pronase (Sigma): Streptomyces griseus proteases.

Proteinase K (Roche): serine protease from Pichia pastoris.

Restriction enzymes (New England Biolabs and Takara): sequence-specific

DNA endonucleases.

RNase A (Sigma): endonuclease that degrades single-stranded RNA.

RNase H (New England Biolabs): endonuclease that specifically hydrolyzes

the phosphodiester bonds of RNA which is hybridized to DNA. This enzyme does not

digest single or double-stranded DNA.

Zymolyase 20T (USB): mix of enzymes from Arthrobacter luteus used to

digest S. cerevisiae cell wall. Concentration: 2 mg/ml.

Lysozyme (Sigma): enzyme from chicken egg white that hydrolyzes bacterial

peptidoglycans.

Protein A/G Dynabeads (Life Technologies): magnetic beads with recombinant

Protein A or G coupled to its surface. Protein A/G binds to the Fc region of IgG, IgA

and IgM immunoglobulins. It was used for immunoprecipitation assays.

pGEM®-T Easy Vector Systems (Promega): kit used to clone PCR products

that contains pGEM®-T vector, T4 DNA ligase and the appropriate buffer for rapid

ligation.

2.4.- Antibodies

Antibodies used in this thesis are listed in Table M1 and Table M2

Table M1 Primary antibodies
Antibody Source Epitope Reference Use
Anti-FLAG Mouse N-Asp-Tyr-Lys-Asp-Asp-Asp Asp-

Lys-C
F3165
(SIGMA)

ChIP (3μl)

RNA Pol II
(8WG16)

Mouse C-terminal heptapeptide repeat
present on the largest subunit of PolII

MMS-
126R
(Covance)

ChIP (20μl)
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H3ser10-P Rabbit Linear peptide corresponding to
human Histone H3 at Ser10. It
recognizes Histone H3 when
phosphorylated at Ser10

06-570
(Millipore)

ChIP (20μl)
in 10μl of
Protein A

S9.6 Mouse DNA-RNA hybrids Hybridoma
cell line
HB-8730

DRIP (10μg)

BrdU Mouse BrdU MBL ChIP (3μl)
Anti-GFP Mouse A mixture of two monoclonal

antibody (7.1 and 13.1 clones) that
recognizes both wild type and mutant
forms of GFP

118144600
01
(Roche)

IF (3μg)
ChIP (3μg)

Anti Nsr1 Mouse C-terminal yeast Nsr1 ab4642
(Abcam)

IF (1/500)

antiHA (Abcam)
β-Actin Rabbit Synthetic peptide derived from

within residues 1-100 of Human beta
Actin

ab8227
(Abcam)

WB (1:1000)

Anti TPR Mouse N-terminal amino acids 1-99 of
Human TPR

ab58344
(Abcam)

IF (1/500)
WB (1/500)

Anti TPR Rabbit C-terminal amino acids 2300-2349 of
Human TPR

ab84516
(Abcam)

IF (1/500)
WB (1/500)

Phospho-
H2A.X
(Ser139),
JBW301

Mouse Synthetic peptide corresponding to
amino acids 134-142 of human
histone H2A.X

05-636
(Millipore)

IF (1:500)

53BP1 Rabbit Amino acids 350 and 400 of Human
53BP1

NB100-304
Novus
Biologicals

IF (1:500)

Nucleolin Rabbit Synthetic peptide conjugated to
KLH, corresponding to N terminal
amino acids 2-17 of Human
Nucleolin with a C-terminal added
cysteine

ab50279
(Abcam)

IF (1:1000)

WB: Western Blot; IF: Immunofluorescence; ChIP: Chromatin Immunoprecipitation

Table M2 Secondary antibodies

WB: Western Blot; IF: Immunofluorescence

Specificity Conjugation Reference Use
Rabbit Peroxidase A6154 (Sigma) WB (1/2000)
Mouse Peroxidase A4416 (Sigma) WB (1/2000)
Rabbit Alexa fluor 488 Molecular Probes IF (1/1000)
Rabbit Alexa fluor 568 Molecular Probes IF (1/1000)
Rabbit Alexa fluor 647 Molecular Probes IF (1/1000)
Mouse Alexa fluor 488 Molecular Probes IF (1/1000)
Mouse Alexa fluor 546 Molecular Probes IF (1/1000)
Mouse Alexa fluor 594 Molecular Probes IF (1/1000)
Mouse Alexa fluor 647 Molecular Probes IF (1/1000)



MATERIALS AND METHODS

45

3.- Strains and plasmids

3.1.- Bacterial strains

All experiments with E. Coli were carried out using the DH5α strain: F- endA1

gyr96 hsdR17 ∆lacU169(f80lacZ∆M15) recA1 relA1 supE44 thi-1 (Hanahan 1983).

3.2.- Yeast strains

Yeast strains used for the screening are listed in Table M3.
Table M3 Mini KO collection

ORF Name ORF Name ORF Name
YAL040C CLN3 YOR038C HIR2 YKL032C IXR1
YAL021C CCR4 YPL167C REV3 YKL054C DEF1
YAL015C NTG1 YPL164C MLH3 YKL057C NUP120
YAL011W SWC3 YPL139C UME1 YKL068W NUP100
YAR002W NUP60 YPL138C SPP1 YKL110C KTI12
YAR003W SWD1 YPL121C MEI5 YKL114C APN1
YLL019C KNS1 YPL116W HOS3 YKL149C DBR1
YLR013W GAT3 YPL101W ELP4 YKL160W ELF1
YLR014C PPR1 YBR188C NTC20 YGR044C RME1
YLR016C PML1 YBR195C MSI1 YGR057C LST7
YLR085C ARP6 YBR223C TDP1 YGR066C ---
YLR095C IOC2 YBR228W SLX1 YGR067C ---
YLR113W HOG1 YBR233W PBP2 YGR102C GTF1
YML081W TDA9 YBR245C ISW1 YGR104C SRB5
YML062C MFT1 YDR108W TRS85 YOR111W ---
YMR153W NUP53 YDR117C TMA64 YOR123C LEO1
YML060W OGG1 YDR121W DPB4 YOR144C ELG1
YML011C RAD33 YDR146C SWI5 YOR166C SWT1
YMR044W IOC4 YDR359C EAF1 YOR197W MCA1
YMR019W STB4 YDR399W HPT1 YOR213C SAS5
YML061C PIF1 YDR419W RAD30 YOR228C MCP1
YMR167W MLH1 YDR423C CAD1 YOR246C ENV9
YMR179W SPT21 YDR432W NPL3 YOR258W HNT3
YMR190C SGS1 YEL037C RAD23 YOR288C MPD1
YMR201C RAD14 YEL056W HAT2 YJL206C ---
YMR219W ESC1 YER032W FIR1 YJL176C SWI3
YMR224C MRE11 YER041W YEN1 YLR381W CTF3
YMR284W YKU70 YER045C ACA1 YLR385C SWC7
YNL330C RPD3 YER051W JHD1 YLR392C ART10
YNL309W STB1 YER068W MOT2 YLR398C SKI2
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YNL253W TEX1 YER085C --- YLR401C DUS3
YOR023C AHC1 YGR123C PPT1 YLR407W ---
YOR032C HMS1 YGR129W SYF2 YLR418C CDC73
YPL178W CBC2 YGR200C ELP2 YLR247C IRC20
YOR051C ETT1 YGR212W SLI1 YLR318W EST2
YOR080W DIA2 YHL009C YAP3 YDR163W CWC15
YOR083W WHI5 YHR087W RTC3 YDR169C STB3
YOR339C UBC11 YHR124W NDT80 YDR192C NUP42
YOR344C TYE7 YHR134W WSS1 YDR217C RAD9
YOR346W REV1 YHR206W SKN7 YGL222C EDC1
YOR386W PHR1 YCL061C MRC1 YGL241W KAP114
YOL001W PHO80 YCR014C POL4 YGL244W RTF1
YOL004W SIN3 YLR451W LEU3 YGL251C HFM1
YOL051W GAL11 YLR135W SLX4 YGR001C EFM5
YPL230W USV1 YLR154C RNH203 YGR006W PRP18
YPL216W --- YKL009W MRT4 YPL086C ELP3
YPL213W LEA1 YKL020C SPT23 YPL064C CWC27
YPL055C LGE1 YIL079C AIR1 YJL127C SPT10
YPL048W CAM1 YIL084C SDS3 YJL115W ASF1
YPL042C CDK8 YIL008W URM1 YJL092W SRS2
YPL037C EGD1 YFL049W SWP82 YJL065C DLS1
YPL015C HST2 YFL052W ZNF1 YJL056C ZAP1
YPL008W CHL1 YGR270W YTA7 YJL049W CHM7
YPL001W HAT1 YGR275W RTT102 YJL047C RTT101
YPR135W CTF4 YGR288W MAL13 YER063W THO1
YPR164W MMS1 YIR018W YAP5 YHR041C SRB2
YPR179C HDA3 YIR033W MGA2 YJR078W BNA2
YPR196W --- YKL033W-A --- YJR082C EAF6
YDR363W-A SEM1 YKR077W MSA2 YJR147W HMS2
YFR034C PHO4 YKR080W MTD1 YKR092C SRP40
YGR249W MGA1 YMR075W RCO1 YKR099W BAS1
YBL006C LDB7 YMR078C CTF18 YKR101W SIR1
YBL008W HIR1 YMR080C NAM7 YLR435W TSR2
YBL019W APN2 YMR091C NPL6 YML021C UNG1
YBL032W HEK2 YOL090W MSH2 YNR063W ---
YBL066C SEF1 YOL100W PKH2 YJR094C IME1
YBL088C TEL1 YOL104C NDJ1 YJR124C ---
YGL025C PGD1 YER064C VHR2 YJR140C HIR3
YGL013C PDR1 YER088C DOT6 YKL005C BYE1
YPL022W RAD1 YER092W IES5 YDL200C MGT1
YGL043W DST1 YER095W RAD51 YDL214C PRR2
YGL082W --- YGR134W CAF130 YDR004W RAD57
YGL087C MMS2 YHR191C CTF8 YBR271W EFM2
YGL096W TOS8 YHR193C EGD2 YBR274W CHK1
YNL236W SIN4 YLR032W RAD5 YCR065W HCM1
YNL230C ELA1 YLR035C MLH2 YCR066W RAD18



MATERIALS AND METHODS

47

YNL218W MGS1 YLR052W IES3 YCR077C PAT1
YNL156C NSG2 YMR312W ELP6 YJR035W RAD26
YKL213C DOA1 YNL250W RAD50 YJR043C POL32
YKL214C YRA2 YML095C RAD10 YJR050W ISY1
YDR253C MET32 YML102W CAC2 YJR060W CBF1
YDR255C RMD5 YML103C NUP188 YNL004W HRB1
YDR273W DON1 YML109W ZDS2 YNL021W HDA1
YDR279W RNH202 YML113W DAT1 YNL025C SSN8
YDR295C HDA2 YML121W GTR1 YNL046W ---
YDR307W PMT7 YMR106C YKU80 YNR010W CSE2
YDR314C RAD34 YMR125W STO1 YNR024W MPP6
YDR317W HIM1 YPR018W RLF2 YBL103C RTG3
YDR334W SWR1 YPR051W MAK3 YBR065C ECM2
YIL017C VID28 YPR052C NHP6A YNL136W EAF7
YIL024C --- YPR068C HOS1 YNL133C FYV6
YIL040W APQ12 YPR070W MED1 YIL128W MET18
YIL072W HOP1 YPR101W SNT309 YIL130W ASG1
YIR005W IST3 YJL184W GON7 YIL149C MLP2
YIR009W MSL1 YPR072W NOT5 YIR002C MPH1
YIR013C GAT4 YLR226W BUR2 YGR056W RSC1
YNL072W RNH201 YNL059C ARP5 YOR141C ARP8
YNL076W MKS1 YMR263W SAP30 YOR162C YRR1
YNL082W PMS1 YCR081W SRB8 YOR161C PNS1
YNL085W MKT1 YBR278W DPB3 YOR172W YRM1
YNL090W RHO2 YBR285W --- YOR191W ULS1
YNL107W YAF9 YNL146W --- YOR208W PTP2
YNL121C TOM70 YBR112C CYC8 YBR033W EDS1
YDR174W HMO1 YLL054C --- YCR084C TUP1
YGR040W KSS1 YLR011W LOT6 YLR399C BDF1
YGR063C SPT4 YLR098C CHA4 YGL240W DOC1
YKR023W --- YML080W DUS1 YGR229C SMI1
YKR029C SET3 YMR280C CAT8 YGR252W GCN5
YBR131W CCZ1 YOR001W RRP6 YAL027W SAW1
YBR150C TBS1 YOR006C TSR3 YNL278W CAF120
YBR275C RIF1 YOR295W UAF30 YOR290C SNF2
YBR289W SNF5 YOR297C TIM18 YOR363C PIP2
YLR394W CST9 YOL028C YAP7 YOR368W RAD17
YML027W YOX1 YOL043C NTG2 YDR066C RTR2
YML036W CGI121 YOL068C HST1 YDR069C DOA4
YML041C VPS71 YPL194W DDC1 YDR075W PPH3
YMR048W CSM3 YPL129W TAF14 YDR092W UBC13
YMR137C PSO2 YPL096W PNG1 YDR099W BMH2
YIL030C SSM4 YBR175W SWD3 YDR369C XRS2
YOR270C VPH1 YBR182C SMP1 YKL113C RAD27
YOR274W MOD5 YBR184W --- YHR034C PIH1
YOR276W CAF20 YDR050C TPI1 YHR079C IRE1
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YOR179C SYC1 YDR076W RAD55 YGL058W RAD6
YKR095W MLP1 YDR078C SHU2 YJL103C GSM1
YLR442C SIR3 YDR097C MSH6 YHR204W MNL1
YNR052C POP2 YDR123C INO2 YCL011C GBP2
YPR023C EAF3 YDR364C CDC40 YGR036C CAX4
YDR443C SSN2 YDR392W SPT3 YOL148C SPT20
YGL151W NUT1 YDR408C ADE8 YGR258C RAD2
YGL173C XRN1 YDR414C ERD1 YGL070C RPB9
YER161C SPT2 YER035W EDC2 YDR296W MHR1
YDL074C BRE1 YGR159C NSR1 YGR262C BUD32
YFL013C IES1 YGR180C RNR4 YJL013C MAD3
YJR047C ANB1

Other strains used in this work are listed in Table M4. mlp mutants were

generated by replacement of the MLP1 or MLP2 genes with the KanMX cassette in

strain SYRB1-4C. The URA3/GPD-Tk (7x) sequence integrated at the ura3 locus was

popped out by growing the strains in FOA-containing SC-URA plates to generate

yFGB04, yFGB05 and yFGB06 strains. Strains baring the chromosomal his3-based

recombination system were obtained by genetic crosses with strain 344-15B-Leu+

(García-Pichardo, Cañas et al. 2017). Strains baring the artificial anchoring construction

were obtained by genetic crosses with strains FSY5216 and FSY5217 (Texari, Dieppois

et al. 2013).

Strains yFGB13, were obtained by genetic crosses with FSY5216 and BY4741

YOR128C (Ade2Kan). The strain obtained was back-crossed twice with FSY5216 to

get an isogenic W303 background. Then, the LlacZ-Ade2 recombination system was

amplified by PCR and the TRP1 marker replaced by homologueous recombination with

the recombination system in FSY5216. The LlacZ-ADE2 was generated by

amplification of the ADE2 gene with primers containing Aor51HI restriction sites. This

construction was cloned into the Aor51HI site of pSCH204 (Chávez and Aguilera

1997). The mlp1 mutant strain was obtained by direct disruption of the MLP1 gene with

the NatMX cassette. The hpr1 mutant strain was obtained by genetic crosses.
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Table M4 Yeast strains used in this thesis.

Strain Relevant genotype Reference
SYRB1-4C MATa ura3-1 ade2-1 his3-11,15 leu2-3,112 trp1-1 can1-

100 RAD5 bar1Δ::HygMX ura3::URA3/GPD-TK (7x)
J.M.Santos-
Pereira

yFGB01 MATa ura3-1 ade2-1 his3-11,15 leu2-3,112 trp1-1 can1-
100 RAD5 bar1Δ::HygMX ura3::URA3/GPD-TK (7x)
mlp1Δ::KanMX

This study

yFGB02 MATa ura3-1 ade2-1 his3-11,15 leu2-3,112 trp1-1 can1-
100 RAD5 bar1Δ::HygMX ura3::URA3/GPD-TK (7x)
mlp2Δ::KanMX

This study

yFGB03-1A MATa ura3-1 ade2-1 his3-11,15 leu2-3,112 trp1-1 can1-
100 RAD5 bar1Δ::HygMX ura3::URA3/GPD-TK (7x)
mlp1Δ::KanMX mlp2Δ::KanMX

This study

yFGB04 MATa ura3-1 ade2-1 his3-11,15 leu2-3,112 trp1-1 can1-
100 RAD5 bar1Δ::HygMX

This study

yFGB05 MATa ura3-1 ade2-1 his3-11,15 leu2-3,112 trp1-1 can1-
100 RAD5 bar1Δ::HygMX mlp1Δ::KanMX

This study

yFGB06 MATa ura3-1 ade2-1 his3-11,15 leu2-3,112 trp1-1 can1-
100 RAD5 bar1Δ::HygMX mlp2Δ::KanMX

This study

yFGB07 MATa ura3-1 ade2-1 his3-11,15 leu2-3,112 trp1-1 can1-
100 RAD5 bar1Δ::HygMX mlp1Δ::KanMX mlp2Δ::KanMX

This study

HPBAR-1R MATa ade2-1 can1-100 his3-11 trp1-1 ura3-1 leu2-3,112

hpr1Δ3::HIS3, bar1, RAD5
M. San Martín

CY11555 MATa ura3-1 his3-11,15 leu2-3,112 trp1-1 ADE2 CAN1
RAD5 mlp1S1710A

(Bermejo, Capra
et al. 2011)

CY11531 MATa ura3-1 his3-11,15 leu2-3,112 trp1-1 ADE2 CAN1
RAD5 mlp1S1710D

(Bermejo, Capra
et al. 2011)

FSY5216 MATa ura3 ade2 his3 leu2 trp1 Nup49-GFP LacI-GFP-
HIS3 LexA BS LacO at GAL10 TRP

(Texari, Dieppois
et al. 2013)

yFGB07-1A MATα ura3 ade2 his3 leu2 trp1 Nup49-GFP LacI-GFP-
HIS3 LexA BS LacO at GAL10 TRP

This study

yFGB07-1B MATα ura3 ade2 his3 leu2 trp1 Nup49-GFP LacI-GFP-
HIS3 LexA BS LacO at GAL10 TRP mlp1Δ::KanMX

This study

yFGB08 MATα ura3 ade2 his3 leu2 trp1 Nup49-GFP LacI-GFP-
HIS3 LexA BS LacO at GAL10 TRP hpr1Δ::HIS3

This study

344115B leu+ Matα his3-513::TRP1::his3-537 ura3-52 trp1 (García-Pichardo,
Cañas et al. 2017)

yFGB09 Mata his3-513::TRP1::his3-537 ura3 trp1
bar1Δ::HygMX

This study

yFGB10 Mata his3-513::TRP1::his3-537 ura3 trp1
bar1Δ::HygMX mlp1Δ::KanMX

This study

yFGB11 Mata his3-513::TRP1::his3-537 ura3 trp1
bar1Δ::HygMX mlp2Δ::KanMX

This study

yFGB12 Mata his3-513::TRP1::his3-537 ura3 trp1
mlp1Δ::KanMX mlp2Δ::KanMX

This study
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yFGB13 MATα ura3 ade2::KanMX his3 leu2 trp1 Nup49-GFP
LacI-GFP-HIS3 LexA BS LacO at GAL10 L-lacZ-ADE2

This study

yFGB14 MATα ura3 ade2::KanMX his3 leu2 trp1 Nup49-GFP
LacI-GFP-HIS3 LexA BS LacO at GAL10 L-lacZ-ADE2
mlp1Δ::NatMX

This study

yFGB15 MATα ura3 ade2::KanMX his3 leu2 trp1 Nup49-GFP
LacI-GFP-HIS3 LexA BS LacO at GAL10 L-lacZ-ADE2
hpr1Δ::HIS3

This study

3.3.- Human cell lines

Human cells used in this study are listed in the Table M5

Table M5 Human cell lines used in this thesis.

Cell Line Description Medium Source
HeLa Human cervical adenocarcinoma epithelial cells DMEM ECACC
U2OS Human bone osteosarcoma epithelial cells DMEN ATCC

ECACC: European Collection of Authenticated Cell Cultures.

3.4.- Plasmids

Plasmids used in this work are listed in Table M6.Plasmid p313LZGAID was

generated by cloning the HIS3-containing ApaI-DraIII fragment from pRS313 into

ApaI-DraIII digested pLZGAID (García-Pichardo, Cañas et al. 2017).

HBD from yeast (yHBD) was amplified by PCR using specific primers with

two different restriction sites (BglII and SalI) to replace the human HBD for the yHBD

in frame with GFP and the tetracycline repressible promoter in plasmid pCM198. On

the other hand, the yeast HBD was amplified by PCR using specific primers containing

a PacI restriction site to allow its cloning into the PacI site of pFA6a-TRP-pGAL1-

3xHA. After that, the construction was amplified in E. coli and digested with BglII and

SalI and cloned into the pRS314 expression vector digested with BamHI and SalI .
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Table M6 Plasmids used in this thesis

Plasmids Description Source
pLZGAID YCp containing the pL-lacZ system and the human

AID gene under the GAL1 promoter
(García-Pichardo,
Cañas et al. 2017)

pRS313 YCp vector based on the HIS3 marker (Sikorski and
Hieter 1989)

p313LZGAID YCp containing the pL-lacZ system and the human
AID gene under the GAL1 promoter

This study

pRS313-
GALRNH1

YCp containing the RNH1 gene under the GAL1
promoter

B. Gómez-
González

pRS416 YCp vector based on the URA3 marker (Sikorski and
Hieter 1989)

pRS416
GALRNH1

YCp containing the RNH1 gene under the GAL1
promoter

(Epshtein,
Potenski et al.
2016)

pRS414GALAID-
FLAG

YCp p414GALAID with FLAG epitope adding in
AID C-terminus protein

M. García Rubio

pRS314GLlacZ YCp containing the L-lacZ system under the GAL1
promoter

(Piruat and
Aguilera 1998)

pCM184 YCp plasmid containing the tetO promoter and TRP1
marker

(Gari, Piedrafita
et al. 1997)

pCM189 YCp plasmid containing the tetO promoter and URA3
marker

(Gari, Piedrafita
et al. 1997)

pCM184AID YCp containing the AID ORF cloned from
pRS316GALAID (Gómez-González and Aguilera
2007) into pCM184 NotI site

D. García-
Pichardo

pCM189AID YCp containing AID ORF under the tetO promoter (Santos-Pereira,
Herrero et al.
2013)

pCM184RNH1 YCp containing RNH1 ORF under the tetO promoter (Santos-Pereira,
Herrero et al.
2013)

pWJ1213 YCp containing the RAD52-YFP fusion (Feng, During et
al. 2007)

pWJ1344 YCp containing the RAD52-YFP fusion (Lisby, Rothstein
et al. 2001)

p414GAL YCp containing the GAL1 promoter (Mumberg,
Muller et al.
1994)

pRS414-GALAID YCp containing the human AID ORF under the GAL1
promoter

(Gómez-González
and Aguilera
2007)

pRS315 YCp vector based on the LEU2 marker (Sikorski and
Hieter 1989)

pRS315-
GALRNH1

YCp carrying the RNH1 ORF under the GAL1
promoter

(Gómez-
González, García-
Rubio et al. 2011)

pARSGLB-OUT YCp containing the OUT recombination system under
the GAL1 promoter

(Prado and
Aguilera 2005)

pARSGLB-IN YCp containing the IN recombination system under
the GAL1 promoter

(Prado and
Aguilera 2005)

pCM189 GFP-
HBD

YCp containing GFP-HBD construction under the
tetO promoter

This study
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pRS314
GHBDHA

YCp containing HBD-HA construction under the
GAL1 promoter

This study

pBTM116-URAr-
LexA

Yeast vector containing LexA DNA-binding ORF (Texari, Dieppois
et al. 2013)

pBTM116-URAr-
LexA-Nup60

Yeast vector containing NUP60 ORF fused to LexA
DNA-binding ORF

(Texari, Dieppois
et al. 2013)

pCDNA3 Mammalian expression vector  containing the
cytomegalovirus promoter (PCMV)

(ten Asbroek, van
Groenigen et al.
2002)

pCDNA-
RNaseH1

Mammalian expression  vector  containing human
RNase H1 gene under the control of  PCMV

(ten Asbroek, van
Groenigen et al.
2002)

pEGFP-C2 Mammalian expression vector to express N-terminal
EGFP fusion protein under the control of the PCMV

Clontech

pEGFP-M27-H1 RNase H1 coding sequence starting at M27 (w/o the
putative mitochondrial localization signal)

(Cerritelli,
Frolova et al.
2003)

4.- Yeast methodology

4.1.- Transformation

Yeast transformation was performed as previously described using the lithium

acetate/single-stranded DNA/polyethylene glycol method (Gietz, Schiestl et al. 1995).

Large-scale transformation was performed as previously described (García-

Pichardo, Cañas et al. 2017). Briefly, cells were grown in 200 μl 2x YPAD for 2 days at

30ºC. Cells were diluted into fresh 2X YPAD media and incubated 3-4 h at 30ºC with

shaking. Then cells were centrifuged 5 min at 2000 rpm and washed in 150 μl 0.1 M

LiAc 10 mM TE before transformation. Cells were resuspended and incubated 30 min

at 30ºC and 20 min at 42ºC in the transformation mix (500 ng plasmid DNA, 30% PEG,

100 mM LiAc, 1x TE, 80 µg/ml salmon sperm DNA). Transformed cells were washed

and grown in appropriate selective medium.

4.2.- Recombination assays

Recombination frequencies were determined as the average value of the

median frequencies obtained from at least three independent fluctuation tests with the

indicated recombination systems. Recombinants were obtained by platting appropriate
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dilutions in applicable selective medium. To calculate total number of cells, they were

plated in the same media as the original transformation used. Each fluctuation test was

performed from six independent colonies according to standard procedures (Gomez-

Gonzalez, Ruiz et al. 2011).

4.2.1.- Recombination systems

L-lacZ. This system is based on leu2∆3’and leu2∆5’ truncations of the LEU2

gene that share 600 bp of homology. The sequence of the 3 kb long lacZ gene from E.

coli was cloned between the direct repeats. Recombinants are selected in plates without

leucine. Recombinants are selected in plates without leucine (Chávez and Aguilera

1997).

pLZGAID. Plasmid with the direct-repeat recombination system L-lacZ

combined the AID gene under the GAL1 inducible promoter. Recombinants are selected

in plates without leucine.

his3-513::TRP1::his3-537. This system is based on the duplication of a 6.1-kb

EcoRI-SalI DNA fragment at the HIS3 locus on the right arm of chromosome XV. One

copy of this sequence carries the allele his3-513, generated by mutation of the KpnI at

the 3’ site of HIS3 coding region, and the other copy carries the allele his3-537

generated by mutation of a HindIII site his3-51 distal to the KpnI site. Between the

duplications, the sequence of the pBR322 plasmid containing yeast ARS1-TRP1

sequence has been inserted at the unique EcoRI site. This system allows to measure

gene conversion and recombination between the repeats. Recombinants are selected in

plates without histidine (Aguilera and Klein 1988).

GLB IN/OUT. This system is based on leu2∆3’and leu2∆5’ truncations of the

LEU2 gene under the GAL1 inducible promoter. The leu2 repeats are oriented according

to their transcription either inward (IN) or outward (OUT) with respect to the unique

ARSH4 replication origin contained in the plasmid. Recombinants are selected in plates

without leucine (Prado and Aguilera 2005).
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LlacZ-ADE2. This chromosomal system inserted at the GAL locus is based on

the LlacZ recombination system and contains the ADE2 gene cloned into the Aor57HI

restriction site. Recombinants are selected in plates without leucine.

4.3.- Detection of Rad52-YFP foci

Rad52-YFP foci were visualized in cells transformed with plasmid pWJ1213 or

pWJ1344 with a DM600B microscope (Leica) as previously described (Lisby, Rothstein

et al. 2001) with minor modifications. Individual transformants were grown to early-

log-phase, fixed for 10 minutes in 0.1 M KiPO4 pH 6.4 containing 2.5% formaldehyde,

washed twice in 0.1 M KiPO4 pH 6.6, and resuspended in 0.1 M KiPO4 pH7.4. At least

200 S/G2 cells were analyzed for each transformant. Average values obtained from at

least 3 independent transformants are plotted for each genotype.

4.4.- Plasmid loss assay

Percentage of plasmid loss was determined as the average value of the median

percentages of cells that lost the centromeric plasmid pRS315 upon growth in non-

selective media obtained from at least three independent fluctuation tests. Each test was

performed with six independent colonies.

4.5.- Cell cycle synchronization and FACS analysis

For cell cycle synchronization, overnight cultures were diluted to an OD600nm

of 0.2 and grown until mid-log at 30ºC in synthetic medium. Cells were synchronized in

G1 adding 0.125 μg/ml of α-factor (Biomedal) for bar1∆ mutants. After 2.5 h, cells

were released from G1 in rich medium with 1 μg/ml pronase. Samples were taken at the

indicated times.

For FACS analysis, cells were processed as previously described (Moriel-

Carretero, Tous et al. 2011). Briefly, 1mL of the culture was centrifuged and washed

with 1 ml 1x PBS, resuspended in 1 ml 70% ethanol and stored at 4ºC. Cells were

washed with 1 ml 1x PBS, resuspended in 100 μl 1x PBS-RNase A 1 mg/ml and
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incubated overnight at 37ºC. Then, cells were washed again with 1x PBS and

resuspended in 1 ml of 5 μg/mL propidium iodide in 1x PBS, incubated in the dark for

30 min, sonicated 5 seg at 10% of amplitude and scored in a FACScalibur (Becton

Dickinson, CA).

4.6.- Pulse-Field gel electrophoresis (PFGE)

For DNA extraction, mid-log cultures grown in YPAD were centrifuged and

washed with 5 ml EDTA 50 mM pH 8. Each sample was resuspended in 180 μl CPES

(40 mM citric acid pH 6, 10 mM sodium phosphate pH 6, 20 mM EDTA pH 8, 1.2 M

sorbitol, 1 mg/ml zymoliase 20T), and mixed with 300 μl 2% low-melting-point agarose

dissolved in CPE (40 mM citric acid pH 6, 120 mM sodium phosphate pH6, 20 mM

EDTA pH 8). This mix was poured into moulds and allowed to solidify for 10 min at

4ºC. Plugs were subsequently incubated as follows: overnight in 5 ml CPE with 1% v/v

β-mercaptoethanol at 30ºC, then overnight in 3 ml buffer L (0.1 M EDTA pH 8, 0.01 M

Tris-Cl pH 7.6, 0.02 M NaCl, 0.5 mg/ml proteinase K, 1% w/v sarkosyl) at 50ºC, and

finally washed twice 1 h at 50ºC in 10 ml TE pH 7.6 containing 40 μg/ml PMSF, and 1h

at RT in 10 ml TE pH 7.6. Electrophoresis was performed at 12ºC in a Bio-Rad CHEF

Mapper, using a voltage gradient of 5.5 V/cm, switch times from 5 to 30 s, switch angle

of 115º, in 1% agarose gel in 0.5X TBE for 30 h, as previously described (Cha and

Kleckner 2002). Gels were treated and transferred to a Hybond XL membrane (GE

Healthcare) by standard procedures.

4.7.- Chromatin Immunoprecipitation (ChIP)

ChIP was performed as previously described (Gaillard, Wellinger et al. 2015).

Briefly asynchronous or G1-synchronized mid-log cultures grown in YPAD or synthetic

medium at 30ºC were used. 50 ml of the cultures were cross-linked in 1% formaldehyde

after 15 min, glycine was added to a final concentration of 125 mM, washed twice with

cold PBS. Pellets were resuspended in 500 μl of lysis buffer (50 mM HEPES/KOH, 140

mM NaCl, 1 mM EDTA pH 8. 0, 1% Triton X-100, 0.1% sodium deoxicholate)

supplemented with protease inhibitors (1 mM PMSF and 1X Complete protease

inhibitor cocktail). Cells were broken in an orbital shaker (Vibrax VXR basic, IKA)
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using glass beads. Samples were separated from the beads. The precipitate was

resuspended in lysis buffer supplemented with protease inhibitors and sonicated using a

Bioruptor (Diagenode). Samples were centrifuged to eliminate cell debris. 20 μl were

used as a control of total DNA (Input) and 300 μl were processed for

immunoprecipitation.

The immunoprecipitation was performed overnight at 4ºC using Dynabeads

Protein A/G (Life Technologies) previously incubated with the antibody. Samples were

washed twice with every following buffer: lysis buffer, lysis buffer with 500 mM NaCl,

buffer III (10 mM Tris-HCl pH8, 1 mM EDTA pH8.0, 250 mM LiCl, 0.5% NP40

(IGEPAL), 0.5% sodium deoxicolate) and TE (10 mM Tris-HCl pH7.6, 1 mM EDTA

pH8.0). Proteins were eluted in 250 μl elution buffer (10 mM Tris-HCl pH7.6, 1 mM

EDTA pH8.0, 1% SDS) at 65ºC for 10 min. Samples were treated with 6 μl of 50 mg/ml

pronase for 1 h at 42ºC to remove proteins and decrosslinked for 5 h at 65ºC.

MACHEREY-NAGEL DNA kit was used to clean DNA that was eluted in 100 μl of

MQ water.

4.7.1.- Replication analysis

Incorporation of BrdU was performed by ChIP with some modifications. Cells

were grown in SC medium and synchronized with α-factor, washed twice in pre-

warmed SC medium and released from G1 arrest in the presence of 200 μg/ml BrdU

(Sigma) by addition of 1 μg/ml pronase. Where indicated, release was performed in the

presence of 20 mM hydroxyurea. Addition of formaldehyde and glycine was replaced,

0.1% Sodium Azide was added to each sample after samples were collected.

Immunoprecipitation was performed using Protein A-Dynabeads coated with

monoclonal anti-BrdU antibody (MBL). Input and immunoprecipitated DNA were

analyzed by real-time qPCR. Relative BrdU incorporation at a given region was

calculated relative to the signal at a late replicating region (Chr. V, position 242210-

242280, (Gómez-González, García-Rubio et al. 2011)) in the same sample.
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4.8.- DRIP assays

DNA-RNA Immunoprecipitation was performed as previously described

(Garcia-Rubio, Barroso et al. 2018). Cells were resuspended in spheroplasting buffer (1

M sorbitol, 2 mM Tris–HCl pH 8.0, 100 mM EDTA pH 8.0, 0.1% v/v beta-mercapto-

ethanol. 0.2% w/v zymoliase 20T). DNA was treated with RNase A (30 min at 37ºC)

and Proteinase K (1h at 56ºC) in G2 buffer (0.8 mM Guanidine HCl, 30 mM Tris–HCl

pH 8.0, 30 mM EDTA pH 8.0, 5% Tween20, 0.5% Triton X-100) and carefully

extracted with chloroform:isoamylalcohol (24:1) followed by isopropanol precipitation.

Precipitated DNA was spooled on a glass rod, washed twice with 70% EtOH, gently

resuspended in TE and enzymatically digested with HindIII, EcoRI, BsrGI, XbaI and

SspI in an appropriate commercial buffer. Samples were split and treated with E. coli

RNase H (NEB) or mock treated. DNA:RNA hybrids immunoprecipitation was

performed by overnight incubation with Protein A-Dynabeads (Invitrogen) coated with

the S9.6 antibody at 4ºC using 1x binding buffer (100 mM NaPO4 pH 7.0, 1.4 M NaCl,

0.5% Triton X-100). DNA was eluted with elution buffer (50 mM Tris pH 8.0, 10 mM

EDTA, 0.5%SDS), treated with proteinase K and purified with the MACHEREY-

NAGEL DNA kit. Real-time qPCR was performed at the indicated regions. S9.6 signal

was determined by dividing the immunoprecipitated signal to the input for each sample.

4.9.- Northern Blot

Yeast cell were grown in SRaff medium and were transferred to galactose-

containing medium for GAL1 gene activation. RNA was extracted from mid-log

cultures using acidic phenol (Köhrer and Domdey 1991). Total RNAs were separated by

agarose gel electrophoresis and transferred to Hybond-N nitrocellulose membranes (GE

Healthcare), which were subsequentially hybridized with 32P-labelled DNA probes. The

DNA primers used to amplify the probes are listed in Table M7. Radioactive signals

were acquired using a FLA-5100 Imager Fluorescence Analyzer (Fujifilm) and were

quantified using the MultiGauge 2.0 analysis software (Science Lab). In Northern blot

analyses, signals were normalized to the SCR1 gene, transcribed by RNAPIII and whose

transcripts are very stable. Signal was plotted as arbitrarily units (A.U.).
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5.- Human cells methodology

5.1.- siRNA and plasmid transfection

All assays were performed 48 or 72 hours after small interfering RNA (siRNA)

transfection and 48 hours after plasmid transfection. The siRNA pool used to deplete

TPR was purchased from Dharmacon (010548) and contains the four individual siRNA

listed in Table M7. Cells were transfected with siRNA using DharmaFECT 1

(Dharmacon) at 30-50% confluence. 24 hours before transfection, cells were cultured in

antibiotic-free medium. Transfection in one well of a 6-well plate was performed using

a combination of two mixtures. The first one contains 50 μl culture serum-free medium

(medium without antibiotics or FBS), 36 μl H2O, 9 μl 5X siRNA buffer (Dharmacon)

and 5 μl siRNA 20 μM (100 nM). The second one contains 95 μl serum-free medium

and 5 μl DharmaFECT 1. Each mixture was incubated at room temperature (RT) for 5

min, mixed and incubated for 20 min. Meanwhile, medium was replaced by 800 μl

serum-free medium. Transfection solution was added carefully drop by drop to the cell

culture that was then incubated for 4-5 hours. Afterwards, 2 ml of a high-concentrate

complete medium was added to have a final normal concentration of all the medium

components.

For plasmid transfection, cells were transfected at 80% confluence. 24 h before

transfection cells were cultured in antibiotic-free medium (3 ml for 6-well plates).

Transfection in one well of a 6-well plate was performed using a mixture (final volume

150 μl) with 9 μl FuGENE 6 (Roche) in Opti-MEM, incubated for 5 min at RT. Then, 3

μg of DNA was added and the mixture was incubated for 20 min at RT. Transfection

solution was finally added drop by drop to the cell culture.

5.2.- Human cells protein extraction

Cells were collected using accutase, washed in cold PBS and resuspended in

ice-cold lysis buffer (10 mM Tris-HCl pH7.5, 150 mM NaCl, 0.5 mM EDTA pH8,

0.5% v/v NP-40, 1 mM PMSF, and 1x protease inhibitor cocktail) (100 μl/1x106 cells)

during 30 min on ice. The lysate was centrifuged 10 min at 16000g and the supernatant
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was transfered to a new tube. Prior to gel loading, 4X laemmi buffer (200 Mm Tris-

HCl, 40% glycerol, 8% SDS, 0.4% Bromophenol Blue, 400 mM β-mercaptoethanol)

was added to 1X final concentration and samples were boiled for 5 min.

Proteins were separated in 29:1 acrylamide:bis-acrylamide gels with

concentrations appropriate to the molecular size of the proteins of interest and SDS-

PAGE was performed according to previously described method (Laemmli 1970).

Electrophoreses were performed in a Mini-PROTEAN 3 Cell with Running Buffer (25

mM Tris base pH 8.3, 194 mM glycine, 0.1% SDS buffer at 100 V). Page RulerTM

(Fermentas) was used as a protein marker.

For Western blot, proteins were wet-transferred using Trans-Blot system

(Biorad) in 1X Transfer Buffer (6 g/L Tris base, 28.8 g/L glycine and 0.5% SDS) with

20% methanol o/n at 30V 4°C. Proteins were transferred to a nitrocellulose membrane

(Hybond-ECL, GE Healthcare). Membranes were blocked (1X TBS, 0.1% Tween 20,

5% milk) for 1 h. Primary antibodies were incubated overnight at 4 °C (1X TBS, 0.1%

Tween 20, 5% milk). After 3 wash of 10 min each one, membranes were incubated with

the corresponding secondary antibodies conjugated with the horseradish peroxidase for

1h hour and washed again. Finally, Immobilon Western Chemiluminescent HRP

Substrate (Millipore) was used for chemiluminescence detection depending on the

expected strength of the signal.

5.3.- Immunofluorescence

Cells were cultured on glass coverslips, fixed in formaldehyde or methanol and

specific target molecules were visualized in a fluorescence microscope DM600B

(Leica) or confocal CS SP5 (Leica) after incubation with specific primary antibodies

and with fluorophore-conjugated secondary antibodies.

For TPR, γH2AX and 53BP1 antibodies, cells were fixed in 2% formaldehyde

in PBS for 20 min at RT and permeabilized with 70% ethanol for 5 min at -20 °C, 5 min

at 4 °C, and washed twice in PBS. Only for TPR antibody cells were pre-permeabilized

with Triton-X 100 before blocking. After blocking with 3% bovine serum albumin

(BSA) in PBS, the coverslips were incubated with primary antibodies diluted in 3%
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BSA in PBS for 2 h at RT. For antibody dilutions see Table M1. Then cells were

washed three times in PBS for 5 min. Secondary antibodies conjugated with Alexa

Fluor diluted (1:1000) in 3% BSA in PBS were incubated for 1 h at RT. Coverslips

were washed twice in PBS before and after the staining of the DNA with 1 μg/ml DAPI

(2-(4-Amidinophenyl)-6-indolecarbamidine dihydrochloride) for 5 min. Finally,

coverslips were washed in water and a drop of Immu-mount mounting medium

(Thermo) was used for mounting.

For S9.6 and nucleolin immunofluorescence, cells were fixed in cold absolute

methanol for 7 min at -20 °C and washed twice in PBS. Coverslips were blocked in 2%

BSA in PBS overnight at 4 °C, incubated with anti-S9.6 (1:100) and anti-nucleolin

(1:1000) primary antibodies diluted in 2% BSA in PBS o/n at 4 °C, washed in PBS and

incubated with secondary antibodies conjugated with Alexa Fluor diluted in 2% BSA in

PBS (1:1000) for 1 h at RT. Washes, DAPI staining and mounting were performed as

described above.

5.3.- Human DRIP

DRIP was performed as previously described (Garcia-Rubio, Barroso et al.

2018). Briefly, cells were treated with SDS and proteinase K, then DNA was carefully

extracted with phenol:chloroform:isoamylalcohol (24:24:1) followed by isopropanol

precipitation. From this step on, the protocol is the same as for the yeast DRIP assay.

5.4.- Single cell gel electrophoresis (Comet assay)

Comet assay was performed using a commercial kit (Trevigen, Gaithersburg,

MD, USA) following the manufacturer´s protocol, 48 h after siRNA transfection. When

indicated, RNase H1 was overexpressed or 50 μM cordycepin was added to the culture

4 hours before the experiment. Comet assay with RNaseH1 or cordycepin were

performed 72h after transfection.
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5.4.1.- Alkaline comet assay

Cells were collected using accutase, washed and resuspended in ice cold PBS,

combined with low melting agarose, immobilized on CometSlides (30 min at 4 °C) and

lysed for 30 min at 4 °C. Then, DNA was unwound and denatured in freshly prepared

alkaline unwinding solution (200 mM NaOH, 1 mM EDTA pH˃13) for 30 min at RT

and electrophoresis was performed in prechilled alkaline electrophoresis solution (200

mM NaOH, 1 mM EDTA pH˃13) at 21 V for 30 min. Next, slides were immersed twice

in dH2O for 5 min each, then in 70% ethanol for 5 min and dried at RT. DNA was

stained with SYBR Green at 4 °C for 5 min.

5.4.2.- Neutral comet assay

Cells were collected and immobilized on CometSlides as in alkaline comet

assay. Cells were lysed for 1 h at 4 °C and immersed in prechilled 1X neutral

electrophoresis buffer (for 500ml, 60.57 g Tris Base and 204.12 g of sodium acetate

were dissolved in H2O and the pH adjusted to 9.0 with glacial acetic acid) for 30 min at

4 °C. Electrophoresis was performed in prechilled 1X neutral electrophoresis buffer at

35 V for 15 min and then immersed in DNA precipitation solution (1M NH4Ac in 70%

ethanol) for 30 min at RT. Finally, slides were immersed in 70% ethanol for 30 min at

RT and dried. DNA was stained with SYBR Green at 4 °C for 30 min.

6.- Polymerase chain reaction (PCR)

6.1.- Non-quantitative PCR

DNA amplification with temperature-stable polymerases for probe generation,

strain verification or cloning were performed following standard protocols with the

DNA polymerases listed in chapter 2.3. (Materials and Methods).
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6.2.- Real-time quantitative PCR (qPCR)

For this thesis, real-time qPCRs were performed using the iTaq™ Universal

SYBR® Green Supermix (Biorad). Reactions were set with 6 μl H2O, 2 μl primer mix

(0.1 mM each), 2 μl template and 10 μl SYBR® Green Supermix (Biorad). Runs were

always performed with the following program: 1 cycle (10 min 95ºC), 40 cycles (15 s

95ºC and 1 min 65ºC) with a final dissociation stage (15 s 95ºC, 1 min 65ºC, 15 s 95ºC

and 15 s 60ºC). Samples were run in 7500 Fast Real-Time PCR system (Applied

Biosystem). Results were analyzed with 7500 System Software V2.0.6. A calibration

curve with five 10-fold serial dilutions for yeast experiments and four 5-fold serial

dilutions for human experiments of a standard DNA sample was calculated for absolute

quantification.

ChIP samples were diluted in H2O. 2 μl of 1:25 and 1:5 dilutions of the Input

and the IP respectively were typically used. IP/INPUT ratios were calculated for each

analysed region. In the case of yeast DRIP experiments, 2 μl of a 1:25 dilution for Input

and 2 μl of undiluted sample for IP were used for qPCR. For human DRIP experiments

4 μl of a 1:5 dilution for Input and 4 μl of undiluted sample for IP were used. The

relative abundance of DNA:RNA hybrid immunoprecipitated in each region was

normalized to the Input signal obtained. Real-time qPCR primers were designed using

Primer Express 3.0 Software (Applied Biosystem). Primers used in this thesis, for non-

quantitative and quantitative PCR, are described in Table M7.

Table M7 Primers used in this thesis

Primers Sequence Use
MLP1 A CTGATAGATATATTGCTGCC Primers to check

Mlp1 strainMLP1 B AACATTCAAAACACAAACCG
MLP2 A AAGAAGAAAACAATATCGGCG Primers to check

Mlp2 strainMLP2 B ATACTTAACTACTAGTACGG
SCR1 A GTTCAGGACACACTCCATCC SCR1 probe
SCR1 B AGGCTGTAATGGCTTTCTGG
GAL1 A ACGAGTCTCAAGCTTCTTGC GAL1 probe
GAL1 B TATAGACAGCTGCCCAATGC
GCN4 3´ A TTGTGCCCGAATCCAGTGA DRIP and ChIP

GCN4GCN4 3´ B TGGCGGCTTCAGTGTTTCTA
PDC1 A CCTTGATACGAGCGTAACCATCA DRIP and ChIP

PDC1PDC1 B GAAGGTATGAGATGGGCTGGTAA
PDR5 A TACGTCTTGTTTCGGCCTTAATC DRIP and ChIP

PDR5PDR5 B GTCAGAGGCTATATTTCACTGGAGAA
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ARS508 A AGATTCTTTGAACACGGTCTGTCA ChIP BrdU
ARS508 B TGTGCTAAACCACTCAGTTGGAA
ARS508 +3508 A CCCGTGGTAAACCTTTAGAAA ChIP BrdU
ARS508 +3508 B ATATGAACGGCAAATTGAGAC
ARS508 +510 A AGTCATTAATAGCAAAGCCGT DRIP and ChIP

SPF1ARS508 +510 B GGTCCTTTGATGTAACGATCA
ARS1211 A CGGCTTACCGGTCTTGAAAAT ChIP BrdU
ARS1211 B GGAATACTTTTGCTTGAGTTGTTTAGTTT
ARS1211 +125 A GTTTCCTCCACCTCCTTTGTGT ChIP BrdU
ARS1211 +125 B TGACCGATATATTGTGTTTCTATACTGTGT
ARS1211 +2505 A CGTTCAATTCGTTGGCGTTAC ChIP BrdU
ARS1211 +2505 B TTAACACCGTTTTCGGTTTGC
ARS1021 A CCCATTTCGGCGGCTAAT ChIP BrdU
ARS1021 B TAGAAGCCATTGATGGTATTGTACATT
ARS1021 +4597 A GGTTGCCCTAACGGTTGTTC ChIP BrdU
ARS1021 +4597 B TGGAGCTTTACCAACAAGAGCTAA
ARS1021 +625 A TGCTCCCCAAAATAAAGTGTTCTAC ChIP BrdU
ARS1021 +625 B AGCCCTTTGAAGGATGAATGAC
Chr. V A TGCCTGCACGCCATTGT ChIP BrdU
Chr. V B TTCCCCACGGAAAGTTGTATCT
HXT1 A AGCTGGCAGAATCGACGAA ChIP HXT1
HXT1 B GGTCAGGTGGGCATTTGTTAA
GAL1 3´ A AAAGAAGCCCTTGCCAATGA DRIP and ChIP

GAL1GAL1 3´ B CATTTTCTAGCTCAGCATCAGTGATC
GAL1 5´ A TGAGTTCAATTCTAGCGCAAAGG ChIP GAL1
GAL1 5´ B TTCTTAATTATGCTCGGGCACTT
INT A TGTTCCTTTAAGAGGTGATGGTGAT ChIP intergenic

regionINT B GTGCGCAGTACTTGTGAAAACC
TRP1 A CGTCCAACTGCATGGAGATG DRIP

recombinationTRP1 B TGGCAAACCGAGGAACTCTT
rDNA 18S A TCAACTTTCGATGGTAGGAT DRIP rDNA
rDNA 18S B GGAATCGAACCCTTATTCCC
ADE2 A
+Aor51HI

TTTGCCGACCGCACGCCGCATCCAGCGCTGACGC
AAGAAAAACAAGAAAATCGG

Cloning

ADE2 B
+Aor51HI

CCGTACAGCGCTTACTTGTTTTCTAGATAAGCTTC
GTAACCGACA

INS REC SYS A ATGTCTGTTATTAATTTCACAGGTAGTTCTGGTCC
ATTGGTGAAAGTTTGCGGCTTGCAGAGCACAGAG
GAAGTAATTGTTGTTTGGCC

Cloning

INS REC SYS B AGCATTTTTGACGAAATTTGCTATTTTGTTAGAGT
CTTTTACACCATTTGTCTCCACACCTCCGCTTACA
CGACTACGTCGTTAAGGCCG

yHBD-GFP-BglII TCCGGACTCAGATCTGGGATGTTCCGAAGGAACT
ATCGATTCCTAATT

Cloning

yHBD-GFP-SalI GATGCGGCCCTCCTGCAGGGCCCTGAGCTTGTAA
TCATGCGCACTCAT

yHBD-HA A ATGTCTTTAATTAACATGGCAAGGCAAGGGAACT
TCTAC

Cloning

yHBD-HA B GTTAATTAAAGACATCGTGCCGTTTCCAAAACTT
GAACC
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7.- Statistical analyses

Statistical tests (Student’s t-test, Mann-Whitney U-test or Wilcoxon signed-

rank test) were calculated using GraphPad Prism software. In general, a p-value<0.05

was considered as statistically significant.
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