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This paper presents a simple and fully digital solution to correct the effect of amplifier finite gain  in 

cascade Σ∆ modulators. The main contribution of this letter is a simple digital method to evaluate the 

integrator pole errors, which are further taken into account to modify the reconstruction filter. The 

method is applied to a 2-1 cascade modulator.  

 

Cascade modulator: The operation of cascade Σ∆ modulators is similar to that of a 

pipeline converter in the sense that the first modulator makes a coarse conversion of 

the signal and the successive modulators are used to digitize the quantization error of 

the preceding stage. Signal reconstruction is achieved by mean of the proper digital 

filter that takes into account the shaping applied to each conversion [1]. Figure 1 shows 

a 2-1 Σ∆ cascade modulator topology that consists of a 2nd order double-loop modulator 

with single-bit quantizer as a first stage and a 1st order modulator with single-bit 

quantizer as a second stage. 

The governing equations of such a modulator are, 
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where E1 and E2 are the quantization errors of the first and second stage respectively. 

The reconstruction filter needed to obtain a 3rd order noise shaping is described by, 
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Amplifier finite gain compensation: In the previous description, the reconstruction filter 

has been derived assuming ideal integrators. But real integrators present pole errors 

that are related to amplifier finite gain. These pole errors modify the actual shaping of 

the quantization error. As a result, the cancellation of the 1st stage noise will not be 

complete unless the real shaping is taken into account.  

Let the first, second and third real integrator z-domain transfer function be  

 

1
3

1

1
2

1

1
1

1

1
,

1
,

1 −

−

−

−

−

−

−−− zp
z

zp
z

zp
z  (3) 

respectively. Parameters p1, p2 and p3 represent the real integrator poles. 

In order to obtain a third order behaviour, the reconstruction filter has to be modified to 

take into account the real integrator poles. Nevertheless, a Taylor development of the 

error introduced using the ideal reconstruction filter of (2) shows that the main 

degradation can be compensated by simply taking, 
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Pole error evaluation: One of the key points for the efficiency of the digital correction is 

the evaluation of the corrective parameters (p1 and p2 in our case). Most proposals 

describe adaptive solutions that can follow drifts in the parameter values [2] [3]. 

However, such solutions are usually costly as they require the introduction of an error 

signal to be minimized as well as a correlation filter. The former can have an impact on 

the modulator performance and the latter can represent an important amount of 

hardware. In [4] a correction mechanism is proposed but an efficient method to 

determine the correction terms is lacking.   

In this letter, a solution is proposed to evaluate integrator pole errors. The principle of 

operation is illustrated in figure 2. In a first step (see figure 2), the normal input path to 

the modulator is disabled and a periodic digital sequence is sent to the modulator re-

using the feedback DAC during the sampling phase. Notice that the sequence can be 

stored in a recycling register. In this situation, it has been shown in [5] that the mean 

value of the output bit-stream deviates from the input sequence mean value in an 

amount that is proportional to the pole error. Hence, the pole evaluation is carried out 

by up/down counters and simple logic that perform the sum of the difference between 

input and output bit-streams over a given number of samples. The counter output for 

the test of the first integrator pole error (see figure 2) is, 

 

)1(21 1pNQcounter −≈  (5) 

 

where Q is the input sequence mean value, and N the number of summed samples 



In a second step (see figure 2), the normal input to the second integrator is disabled 

and a delay is introduced in the digital feedback path. Here again, a periodic digital 

sequence is sent to the 2nd integrator re-using the feedback DAC during the sampling 

phase. For an input sequence of the form [1 1 … 1 0] (with a number L-1 of 1s and one 

0, and L>5), it has been shown [6] that the counter output is, 
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For both the first and second integrator pole error evaluation, the impact of an input-

referred offset on the counter value can be compensated performing an additional 

evaluation using in this case the opposite sequences. The result of the second 

evaluation has just to be subtracted from the result of the first one. 

From the two counter outputs, estimators of the pole errors p1 and p2 can easily be 

derived, in particular if the equation parameters (N, L and Q) are chosen such that the 

required division can be approximated by register shift.  

The proposed method has been validated using a realistic MATLAB Simulink model of 

the cascade 2-1 modulator that takes into account the major shortcomings of Σ∆ 

modulators [7]: thermal noise, amplifier finite gain, slew-rate and bandwidth, saturation, 

etc. All the parameters other than the amplifiers gain were set to acceptable values 

such that the influence of amplifier finite gain could be isolated. A Monte-Carlo 

simulation of 200 runs was performed, randomly varying the amplifier gains in the range 

[30;70]dB. For each run, the pole errors were evaluated as explained above for an input 



sequence of the form [1 1 1 1 1 0] for both integrators. We thus have Q=2/3, L=6, and 

N was set to 33000 points. Furthermore, the modulator Signal-to-Noise Ratio (SNR) for 

an input sine wave of amplitude 70% of full-scale was evaluated for the uncorrected 

case (equation (2)) and the corrected case (equation (6)). This was done by filtering 

and decimating the modulator output by 128 and calculating an FFT over 1024 points. 

Figure 3 represents a histogram of the corrected and uncorrected SNR. The impact of 

pole errors can be seen as the uncorrected SNR is dispersed over a wide range. The 

efficiency of the proposed correction method is also demonstrated. Indeed, the 

corrected SNR is centred near the maximum achievable value and the average 

improvement over the 200 runs is as high as 2.8 effective bits.  

 

Conclusions: A simple and fully-digital correction scheme has been proposed to take 

into account the finite amplifier gain effects in cascade Σ∆ modulators. The integrator 

pole errors are evaluated in foreground. The corrective action is carried out by 

modifying the reconstruction filter, which has been shown to greatly improve the 

modulator signal-to-noise ratio.  

Moreover, the proposed technique could very well be extended to self-correction, 

provided that the reconstruction filter be automatically updated using the evaluation 

counter outputs. This could be realized at power up or periodically when the modulator 

is idle, with no need of external circuitry or signals.  
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Figure 1: Model of a cascaded 2-1 Σ∆ modulator  
 
Figure 2: configuration for the evaluation of pole errors 
 Step 1: modifications for first integrator  
 Step 2: modifications for second integrator  
 
Figure 3: Histogram of SNR for the uncorrected and corrected modulators 
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