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ABSTRACT

This work presents a simple and low-cost method for on-chip evaluation of test signals coming

from the application of the Oscillation-Based-Test (OBT) technique. This method extracts the main

test signal features (amplitude, frequency and DC level) in the digital domain requiring just a very

simple and robust circuitry. Experimental results obtained from an integrated chip demonstrate the

feasibility of the approach.

1.INTRODUCTION

Testing embedded building blocks is much more difficult than testing their stand-alone

counterparts, and usually this cannot be done by replicating conventional test techniques. In mixed-

signal ICs, the most affected components are the analog cores, since analog testing is based on

checking functional specifications, which can be conflictive when the test time has to be kept short,

the number of available pins is reduced (as it normally happens in SOCs) and full access to input/

output core terminals cannot be granted. Furthermore, functional test techniques greatly differ

depending on the involved analog components, making it almost impossible to define a general

(functional) test methodology applicable to any analog block. Additionaly, mixed-signal testers

need to cope with demanding requirements of speed, accuracy and memory storage, which means

a high cost. As a consequence, analog cores play a crucial role in the feasibility of a complex

system, and their market appeal depends on the development of test strategies that can be used in

very different application environments.
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During the last years, the test community has centered its attention on the structural test solution

called Oscillation-Based-Test (OBT) [1-8]. Several reasons can be outlined:

a) The Built-In Self-Test (BIST) implementation of the OBT (Oscillation BIST or OBIST)

avoids the need of extra resources dedicated to the test stimuli generation.

b) It can be applied to many kinds of circuits with a wide variety of different specifications

(filters, A/D, etc.). 

c) The test parameters are reduced to the oscillation parameters independently of the type of

the Circuit Under Test (CUT). In this sense, it provides a way to the standardization of the

testing approaches.

d) Complex analog or mixed-signal circuits can be split into simpler blocks where OBT can be

applied separately.

Although the OBT is mainly a fault-driven approach, it can be shown that the oscillation

parameters are closely related to the behaviour and performance of the circuit under normal

operation [3, 6], making possible to extract functional specifications from them [4]. Nevertheless,

it has been demonstrated elsewhere [6] that the oscillation frequency may not be enough to achieve

a reasonable fault coverage. In general, it can be improved drastically when taking into account the

oscillation amplitude. Although undoubtedly the amplitude measurement will require additional

dedicated efforts, the accuracy needed in the measurements can be relaxed if both parameters are

considered [6]. Moreover, the test quality can also be improved using additional oscillation

parameters such as the distortion of the generated waves, their DC level, etc.

Thus, one of the crucial issues to be considered is concerned on how to give support to the

evaluation of the test signals, that is, to the measurement of the oscillation parameters. In this sense,

it would be preferable to encode the information into a single digital signal. To solve this problem,

Roh and Abraham recently proposed the use of a Time-division Multiplexing comparator [8] which

provides a digital signature related to the frequency and amplitude characteristics of the test signal.

A solution based on oversampling modulators has been proposed by the present and other authors

in [4,7]. In these works, the OBT output signal is digitally coded by a SD modulator, and can be

processed either internally using a digital algorithm or externally by a pure digital tester. The work
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in [7] discusses the problem of internal node access and provides possible procedures for on-chip

decision mechanisms. 

The present paper proposes a more elaborated and practical solution. Its aim is to discuss a

practical and low-cost mechanism for the on-chip evaluation of the OBT signals and the test

interpretation. The provided solution is based on the use of a first order sigma-delta () modulator

for analog to digital code conversion of the test output signals. Exploring both the properties of the

test signals and the behavior of the first order SD modulator allows to extract the amplitude,

frequency and DC level of the oscillation waveforms using simple and low-cost pulse digital

counters. In addition, a low-cost digital decision mechanism can easily be implemented on-chip. 

For the sake of simplicity, we will restrict our discussions along the paper to the discrete-time

domain. However, it can be formally extended to the continuous case. The paper is organized as

follows. Section 2 briefly reviews the use of a  modulator for the Analog to Digital conversion

of the test signals. Sections 3 details the principles of a novel, low cost and robust approach for a

digital evaluation and interpretation of the test signal and, in Section 4, the basic algorithm is

modified in order to improve the measurement accuracy. The extraction of the main oscillation

parameters, like the frequency, amplitude and DC-level are addressed. Experimental results from

an integrated prototype and its application to an industrial demonstrator like a Dual Tone

Multifrequency Detector (DTMF) are shown in Section 5. And finally, Section 6 presents some

conclusions.

2.USING A  MODULATOR FOR ANALOG TO DIGITAL CONVERSION

Figure 1 shows the basic use of a  modulator for general evaluation purposes. The test signal

x(n) coming from the Circuit Under Test (CUT) is fed to a  modulator to obtain a train of

modulated pulses d(n) containing all the information of x(n). Thus, the output d(n) can be seen as

a digital encoding of the test output signal x(n). Depending on the modulator characteristics in terms

of factors like the oversampling ratio, order, quantizer levels, etc. this digital encoding has a higher

or lower accuracy. Normally, practical modulators must be preceded by an antialiasing filter to

ensure that band-limited signals are processed. However, it is not necessary when x(n) is close to a

pure tone. To extract the oscillation parameters, d(n) can be processed either externally using a pure

digital tester or internally using a Digital Signal Processor (DSP). But the last procedure usually
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requires complex processors that may be very important in terms of area and power and even

intolerable for many applications.

3.A LOW-COST A/D CODE CONVERSION AND EVALUATION UNIT

Figure 2-a illustrates the proposed approach for a simple on-chip evaluation of the test signals

coming from the application of the OBT technique. For convenience, it has been considered that

the CUT is a filter (or a part of it) represented by its transfer function H(z). The oscillator has been

built following the guidelines given in [6], where a comparator followed by a 1-bit Digital to

Analog converter is used as a feedback loop during the test mode to obtain an oscillator where the

amplitude is controlled by limitation. The block named Evaluation unit is composed by a 

modulator and a set of digital counters (count-freq, count-amp and count-DC). The  modulator

is used to obtain a digital encoding d(n), of the oscillation signal, x(n). The counters extract the

oscillation parameters by processing the train of the modulated pulses d(n) together with the signal

q(n), coming from the non-linear feedback loop, which indicates the sign of the oscillation signal.

Finally, a digital decision mechanism will provide the final result of the test evaluation. 

The different waveforms are depicted in Figure 2-b. The test signal, x(n), is characterized by its

frequency, amplitude, DC level, distortion, etc. that are directly related to the operation of the filter

[5,6]. 

The clock that rules the operation of the oscillator and the modulator is assumed to be the same.

It is convenient to remark that the use of the comparator that provides the signal q(n) is not

mandatory in the implementation of the oscillation mode. However, it would be necessary to

include it as an additional block in the evaluation unit.  

CUT

x n 
d n 


Modulator

DSP core
or

external Tester

(Test Signal)
(Output bit stream)

Figure 1:Basic use of a  modulator for the evaluation of a test signal.
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To explain how the proposed approach works, we will consider the first order modulator depicted

in Figure 3. The response d(n) can be expressed, [9] as a function of the input x(n) and the

quantization error as,

(1)

The modulator model described by Eq (1) considers that the signal x(n) is normalized to the

modulator Full-Scale (FS). As can be deduced, the output of the modulator contains all the

information about the test signal, x(n). Thus, all the test parameters of the oscillation waveform can

be ideally extracted from it. 

Now, let us make some considerations about the oscillation wave x(n):
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Figure 2: Illustration of the proposed on-chip evaluation solution. a) Block diagram.

b) Waveforms. 
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1.- x(n) is a periodic signal of frequency , where Ts is the sampling

period and Tosc the oscillation period. Thus it can be described by its Fourier series expansion as,

(2)

where B represents its DC level, Ak the amplitude of the k-th harmonic and k its corresponding

phase shift.

2.- From Figure 2, it is clear that the input signal of the filter  is a square-shaped wave, so it

contains no harmonics of even order (or at least their contribution is very small). As the filter

behaves as a linear system, even harmonics in Eq (2) can be neglected. So,

(3)

3.- Moreover, following the guidelines to build the oscillator given in [6], a Low-Pass or Band-

Pass filter is involved, and a low distorted signal ( ) results at the output of the filter. Let us

then consider that x(n) can be approached by,

(4)

The last part of this section describes the set of operations implemented by the counters in order

to extract a digitally encoded measure of the main oscillation parameters (frequency, amplitude and

DC-level).

count-freq

The oscillation frequency can be extracted by counting the number of clock periods that lie

between two positive (or negative) edges of q(n) (see Figure 2). Thus, the block named count-freq

is no more than a simple counter. The accuracy will be determined by the oversampling ratio (Tosc/

Ts) and will depend on the uncertainty in the determination of the zero-crossings (given by q(n)).

This error will always be less than one clock period. Hence, the state of the counter at the end of

each period of q(n) will be a number ( ) whose value can be formally expressed as,

(5)

wosc 2
fosc

fs
---------

2Ts

Tosc
------------= =

x n  B A woscn + sin Ak kwoscn k+ sin

k 1
+ +=

y n 

x n  B A woscn + sin Ak kwoscn k+ sin

k odd  1
+ +=

Ak A«

x n  B A woscn + sin+

N 

Tosc

Ts
---------- 1– c ount freq– N

Tosc

Ts
---------- 1+=
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For example, for an oversampling ratio as low as 33, the accuracy of the frequency measurement

is of 3% approximately. This precision is larger than the needed, for instance, in the case of the

DTMF industrial demonstrator presented by the authors in [5,6], where the required accuracy in the

oscillation parameter measurements was around 10% to achieve a 100% fault coverage.

count-amp

The operation performed by the block named count-amp is based on the fact that the area under

a rectified sinusoid over a whole period (T) is proportional to the amplitude, and more concretely,

. (6)

This idea can be extended to our case if the sign of x(n), which is provided by q(n), is used to

synchronize the beginning of the computation with the zero-crossing points of the test signal. The

discrete-time counterpart would be the sum of positive values of x(n) (i.e. over q(n)=1) minus the

sum of negative values of x(n) (i.e. over q(n)=0). However, Eq (1) suggests to perform the indicated

operation using the output of the modulator d(n).

Let N1 be the number of clock periods where x(n) is positive and N the total number of clock

periods between two positive edges of q(n). The parameter named count-amp is defined as,

(7)

which can also be written,

(8)

where n1 and n0 denote the number of ones (high levels) and zeros (low levels) at d(n)

respectively. Notice then that the implementation of this block only requires some simple counters

and basic arithmetic functions.

Using Eq (1) and Eq (7), it can be shown that,

B A t  tdsin+ 

0

T 2

 B A t  tdsin+ 

T 2

T

–
2A


-------T=

count amp– d n 1+ 

n 0=

N1 1–

 d n 1+ 

n N1=

N 1–

–=

count amp– n1 n0– 
q n  1=

n1 n0– 
q n  0=

–=
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(9)

which leads, assuming that there is no overrange in the modulator ( ), to,

(10)

It means that the sum of the modulator output as described in Eq (7) or Eq (8) gives the same

result as the sum over x(n) plus a term representing the quantization error, that is limited to . 

Using the expression of x(n) given by Eq (4), and assuming that the DC level (B) is small (as is

usually the case under fault-free conditions) and , it can be shown that,

(11)

where, as was said above, A has to be normalized to the modulator Full-Scale.The operation

indicated in Eq (7) can be interpreted as a measure of the test signal amplitude . Notice that although

the result also depends on N (frequency), this parameter is extracted separately by count-freq,

avoiding fault masking. 

The relative error in the measurement for a normalized amplitude of A=1 is given by

. Obviously, the larger the oversampling ratio ( ) is, the smaller

this value will be. For example, referring again to the work in [6], the accuracy in the amplitude

measurement required to have a very high fault coverage was around 10%. This accuracy could be

achieved with an oversampling ratio of around 60.

In fact, there are other sources of errors, apart from the quantization one, contemplated in

Eq (11). These are due to the discrete nature of x(n), to the presence of harmonics (distortion) and

to the DC level shift (the zero-crossing instants, given by q(n) are taken as time references and

depend on the DC-level). Nevertheless, if the oversampling ratio is high, the DC level is kept small

and the input signal x(n) exhibits low distortion, it can be shown that these errors are negligible with

count amp– x n 

n 0=

N1 1–

 x n 

n N1=

N 1–

–

 
 
 
 
 

e N – 2e N1  e 0 –+ +=

e n  1 1– 

count amp– x n 

n 0=

N1 1–

 x n 

n N1=

N 1–

–

 
 
 
 
 

4=

4

Tosc Ts 1»

count amp–
2A


-------N 4

4 2N 2 N= Ts Tosc 1 N
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respect to the “quantization” error. 

A more general interpretation of the information provided by this block can be deduced from

Eq (9). It computes the area under the discretized signal x(n), being this area the actual extracted

parameter that can be directly used as a test parameter. In the particular case of low distorted

sinewaves it can be demonstrated that only the fundamental harmonic amplitude has a significant

contribution to this area as shown in Eq (11).

count-DC

The operation performed by this block is based on the assumption of that the area under a

periodic signal over a whole period defines its DC-level. 

Translating it to the discrete-time domain, the operation of block named count-DC is defined as,

(12)

where the sum is performed over the N samples between two succeeding positive (or negative)

edges of q(n). Notice that it is equivalent, from a digital point of view, to perform the difference

between the number of 1’s (n1) and the number of 0’s (n0) at the modulator output during the

corresponding period of the signal. That is,

(13)

Again only simple digital counters are needed for its implementation.

Using Eq (1) and Eq (12), it can be written,

(14)

Assuming that there is no overrange in the modulator ( ), it leads to,

(15)

For x(n) given by Eq (4), and , it can be shown that, 

count DC– d n 

n 1=

N

=

count DC– n1 n0– 
period

=

count DC– x n 

n 0=

N 1–

 e N  e– 0  +=

e n  1 1– 

count DC– x n 

n 0=

N 1–

 2=

Tosc Ts 1»
9 of 18



(16)

Because N is a known value through count-freq, the result given by Eq (16) can be interpreted as

a measure of the DC-level (B) of the test signal.

The total error is dominated by the  quantization term. The relative accuracy is thus limited to

.

Eq (5), Eq (8) and Eq (13) show that the counter states at the end of an evaluation period are

directly related to the parameters of interest (the amplitude, the DC level and the frequency). Thus

the test decision mechanism can be straightforwardly deduced: it should be no more than a digital

block performing a comparison between the expected fault-free counter states ( stored on-chip) and

the actual counter states.

4.PRECISION ENHANCEMENT

The precision of the measurements is mainly driven by the quantization error and the

oversampling ratio ( ). Indeed, the higher the oversampling ratio, the smaller the weight of

the quantization error in the final state of the counters. But unfortunately, there may be applications

where the accuracy obtained for a specified sampling frequency is not sufficient. In such cases it is

necessary to increase the precision through another strategy.

For example, the precision of the frequency measurement can be increased if the count is

performed over a number m>1 of periods. In this case, the counter state N’ at the end of the m-

periods will be,

(17)

So, the relative accuracy is increased in the same factor m. The price to be paid is, obviously, the

need of additional memory elements in the counter, as well as an increased test time.

In the same way, the precision of the DC-level measurement can also be increased by extending

the number of periods for the counting process. Going back to Eq (14), the error depends only on

the quantization error at the beginning and at the end of the counting process. So, if it is extended

to m>1 periods, the weight of the quantization error will be divided by the same factor. That is, 

count DC– NB 2

2

2 N

Tosc Ts

m
Tosc

Ts
---------- 1– count freq– N' m N  m

Tosc

Ts
---------- 1+=
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(18)

where  and thus, the relative error will be now of  as explained.

On the other hand, the above strategy is not valid to increase the precision in the case of the

amplitude measurement. Looking at Eq (9), it can be seen that the quantization error corresponding

to the zero-crossings contributes with a weight of 2. Then, if the count is extended to m periods

(m>1) , the number of zero-crossings would be increased in the same factor, and consequently, the

total weight of the quantization error would remain unaltered ( ). 

The following algorithm allows to increase the precision by a factor of two not only in the case

of the amplitude measurement but also in the case of the DC-level measurement.

Let count-amp’ be the result of the counter when the beginning of the counting process is

advanced one clock period, that is, 

(19)

Assuming  and a low distorted signal x(n), Eq (19) would give the same accuracy

as Eq (7). However, the term corresponding to the quantization error contribution is different.

Concretely, it is given by, 

(20)

in count-amp, and

(21)

in count-amp’. On one hand, from Eq (1),

(22)

But if the signal has low distortion and , x(N-1) will be very close to zero, and then,

(23)

On the other hand, by definition, 

count DC– x n 

n 0=

N' 1–

 e N'  e– 0  + N'B 2=

N' mN 2 mN 

4m

count amp'– d n 1+ 

n 1–=

N1 2–

 d n 1+ 

n N1 1–=

N 2–

–=

Tosc Ts 1»

4 e N – 2e N1  e 0 –+

4 e N 1– – 2e N1 1–  e 1– –+

e N 1–  x N 1–  e N  d N –+=

Tosc Ts 1»

e N 1–  e N + 2e N  d N –
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(24)

where w(n) is the output of the integrator within the modulator (see Figure 3). Then, Eq (23) can

be re-written as,

(25)

If there is no overrange in the modulator, then

(26)

Moreover, the digital output is obtained comparing the integrator output with zero. Thus, if

w(N)>0, it means that d(N)=1. It comes,

(27)

In the same way, if w(N)<0, then d(N)=-1, and Eq (27) is still verified. Therefore, using Eq (25),

it can be concluded that,

(28)

for all zero-crossing index N.

It means that, around the zero-crossing instants, the sum of two consecutive quantization errors

remains, approximately, in the range [-1,1]. Consequently, the mean value of the two count versions

(count-amp and count-amp’) gives,

(29)

and thus, the relative precision for the amplitude is improved by a factor of 2 ( ).

The same considerations can be made for the DC-level case. In the same way, it can be improved

by a factor of 2 as follows,

(30)

From a hardware point of view, the computation of the second version of the count (count-amp’)

only requires to add (or subtract) the bit preceeding each zero-crossing to the first count version

(count-amp). Indeed, re-writing Eq (19) using Eq (7)

(31)

Provided that d(n) is +1 or -1, it appears that the sum of the two counts will always be even. Thus,

e N  d N  w N –=

e N 1–  e N + d N  2w N –

1– w N  1

1 d N  2w N  1––

e N 1–  e N + 1

count amp– count amp'–+
2

----------------------------------------------------------------------- 
  2A


-------N 2

4 2

count DC– count DC'–+
2

------------------------------------------------------------------ 
  BN 1

count amp'– count amp– d 0  2d N1 – d N + +=
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there would be no truncation error in the division by two when taking the mean value.

5.EXAMPLE OF APPLICATION TO A DUAL TONE MULTIFREQUENCY DETECTOR

We have taken advantage of the chip shown in Figure 4 (integrated in a 0.6m double-poly

double-metal technology) to validate the proposed strategy, because it contains the essential

elements of the scheme in Figure 2. More concretely, a Switched-Capacitor programable biquad

that can be reconfigured as an oscillator throught the OBT methology reported in [6] and a first-

order  modulator. The programable biquad reproduces some of the DTMF detector filter sections

reported in [6].

Provided that the digital part of the proposed scheme (Figure 2) was not available in the chip, the

test setup of Figure 5 has been implemented, where this digital part has been emulated by a

workstation. Anyway, a practical on-chip implementation would only require few digital elements,

as suggested by the simplicity of the evaluation algorithm. In the case of the DTMF reported in [6],

all the blocks required for this evaluation solution, not only the analog part but also the digital part,

could be implemented reusing the available on-chip circuitry and, that way, the extra area overhead

would be negligible.

Figure 4:Integrated chip.
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For one of the biquad configurations, the predicted nominal parameters of the OBT output signal

(x(n) in Figure 5) were estimated by simulation and they are shown in Table I. The DC level is must

be small but its exact value cannot be predicted quantitativaly. The full scale range of the

modulator, to which the amplitude has to be normalized, has been set to FS=1.12Vpp, and the clock

frequency to 1/Ts= 55.934KHz. These conditions, together with Table I, lead to the expected count

values given in Table II.  Notice that the uncertainty of the counter states (due to the quantization

x(n) parameter Nominal value

Frequency 598Hz

Amplitude 459 mVp

3rd harmonic -30 dB

5th harmonic -40 dB

DC level must be small

Table I: Nominal characteristics of the expected fault-free oscillation wave.

Basic Algorithm
Improved 
Algorithm

count-freq

count-amp

count-DC SN SN

Table II: Predicted counters values for both algorithms (SN: Small Number)

DTMF biquad
x(n)

q(n)

d(n)

Workstation
HP 82000

Digital Tester

Clock

 modulator

count-freq
count-amp
count-DC

in oscillation
mode.

CHIP

Figure 5:Test setup for the validation of the proposed approach.

93,53 93 94 

48,8 4 45 52  48,8 2 47 50 

2 1
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error) is taken into account to define the expected window for each counter.

As was said above, there is no tight control over the fault-free DC-level in this implementation

(see Table II). Anyway, for a given sample, the dispersion of the obtained count-DC values should

remain between the predicted limits  or . 

In the test set-up (Figure 5), the biquad is forced to oscillate and the resulting sine wave x(n) feeds

the sigma-delta modulator. The output bit-stream, d(n), and the square-wave, q(n), are then

acquired by the digital tester and processed by a workstation. Figure 6 shows the experimental

response, d(n) of the modulator to the experimental test signal, x(n). 

Five samples have been tested. For each one, 60 evaluation periods have been acquired by the

digital tester. Thus, after the workstation processing, a set of 60 values of count-amp, count-freq,

count-DC has been obtained for each sample. Notice that these 60 values of count-amp

(respectively count-freq and count-DC) must be distributed within the window given in Table II.

The results for count-freq are displayed as 5 histograms in Figure 7, where it can be seen the

perfect agreement with the expected results of Table II. Moreover, the mean value of the counters

varies from 93.80 to 94, which also agrees very well with the nominal one (93.53). 

The results for count-amp are shown in Figure 8 for both the basic algorithm and the improved

one. Although both histograms are centered around 49 for all the samples as predicted, the

2 1
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Figure 6:Modulator input x(n) and output d(n).
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improvements in Figure 8-b are clear because the dispersion of the values is only .

Finally, the results for count-DC are shown in Figure 9. As predicted, the results agree with a low

DC-level of the signals. Here it is important to notice that each sample has its own central value due

to the fact that there is no explicit control over the DC level, as explained before. However, each

sample exhibits the expected window width. Again, the improved algorithm (Figure 9-b) is shown

to be more precise because the dispersion for all samples is no more than  

91 92 93 94 95 96 97
0

10

20

30

40

50

60

count–freq

nu
m

be
r 

of
 h

it
s

#1

#2

#3

#4

#5

Figure 7:Histograms for count-freq (5 samples). 
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6.CONCLUSIONS

This work presents a simple and low-cost method for on-chip evaluation of test signals coming

from the application of the OBT technique. It extracts the amplitude, frequency and DC level of the

test signal, with an accuracy that is mainly determined by the oversampling ratio, allowing to take

a decision about the result of the test. The required circuitry consists of a first order sigma-delta

modulator for A/D conversion, a comparator to provide the signal sign, and a set of simple digital

counters. The simplicity and robustness of such type of circuitry, together with the experimental

results, make the present approach very suitable for on-chip evaluation of signals coming not only

from the application of the OBT, but also for any other application where it is necessary to perform

this kind of measurements.
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