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Resumen

Esta tesis se enmarca en el ámbito de la Matemática Aplicada y la Mecánica de Flui-
dos Computacional. Concretamente, aborda el modelado matemático y la simulación
numérica de flujos geofísicos mediante modelos multicapa. Las contribuciones princi-
pales se encuentran en los Capítulos 2, 3 y 4. En el Capítulo 1 se revisa brevemente la
aproximación multicapa para las ecuaciones de Navier-Stokes con viscosidad constante,
así como el procedimiento para obtener un modelo multicapa.

Las avalanchas granulares se han estudiado principalmente mediante modelos inte-
grados. Sin embargo, esos modelos no reproducen variaciones en tiempo de los perfiles
de velocidad. En el Capítulo 2 se presenta un modelo multicapa para avalanchas gran-
ulares secas considerando una viscosidad variable definida por la ley constitutiva µ(I).
En este modelo no se prescribe el perfil normal de velocidad horizontal, lo que permite
reproducir fuertes cambios en tiempo de estos perfiles.

En el Capítulo 3 se extiende el modelo multicapa anterior al caso de una masa granular
confinada en un canal rectangular, para lo que se añade un nuevo término de fricción en
las paredes laterales. Se presenta también un esquema numérico bien equilibrado para
este modelo, con un tratamiento específico de los términos correspondientes a la fricción
y la reología. Se muestra que el término de fricción lateral modifica significativamente
la evolución de la avalancha. En particular, altera completamente el perfil vertical de
velocidad, dando lugar a zonas donde el material queda estático bajo una capa superior
que se mueve. Así mismo, se prueba que incluir el término de fricción lateral en modelos
integrados de una capa puede dar lugar a soluciones carentes de sentido desde el punto
de vista físico.

En el Capítulo 4 se presenta una discretización semi-implícita en tiempo para modelos
multicapa, para los que se obtiene una condición CFL menos restrictiva en el caso de
un flujo subcrítico, lo que permite reducir notablemente el coste computacional. La
descripción multicapa propuesta es novedosa, ya que el número de capas verticales puede
cambiar a lo largo del dominio computacional, sin una pérdida de precisión relevante.
Estas técnicas se aplican a problemas de flujos oceánicos y de transporte de sedimento.
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Abstract

This thesis falls within the scopes of Applied Mathematics and Computational Fluid
Dynamics. Namely, it addresses the mathematical modelling and numerical simulation
of geophysical flows through multilayer shallow models. The main contributions are
in Chapters 2, 3 and 4. In Chapter 1 we briefly review the multilayer approach for
the Navier-Stokes equations with constant viscosity and the procedure for obtaining a
multilayer model.

In the literature, granular flows have been mainly modelled by depth-averaged
models. Nevertheless, those models cannot reproduce changes of velocity profiles. In
Chapter 2 we present a multilayer shallow model for dry granular flows taking into
account a variable viscosity coefficient given by the µ(I) rheology constitutive law, where
the normal profile of velocity is not prescribed. With this model we can reproduce strong
changes in time of the normal profiles of horizontal velocity.

Chapter 3 focuses on the extension of the previous multilayer model to the case of a
granular mass confined in a rectangular domain, by adding a new friction term at the
lateral walls. We also present a well-balanced numerical discretization for this model,
with an appropriate treatment of the friction and rheological terms. This lateral friction
term modifies the granular mass evolution. In particular, it notably changes the normal
profile of velocity, leading to areas of static grains below a moving layer of material. In
addition, we prove that including the lateral friction term in depth-averaged models with
a single layer can lead to solutions with no physical meaning.

In Chapter 4 we present a semi-implicit time discretization for multilayer systems. In
the case of subcritical flows, we obtain a nonrestrictive CFL condition allowing to reduce
the associated computational cost. This is an innovative multilayer discretization, since
the number of vertical layers can be modified along the computational domain without a
significant loss of accuracy. These discretizations are applied to coastal ocean flows and
to sediment transport problems.
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Introduction

Mathematical modelling of geophysical flows remains one of the most challenging sci-
entific problems in our days since it is a powerful tool for understanding the dynamics
of the environmental agents (rivers, oceans, atmosphere, etc.) and their associated
transformations. In fact, it provides a unique tool for hazard assessment due to natural
disasters, as tsunamis propagations and inundations, dam and levee failures, flooding,
avalanches, eruptions of volcanoes, toxic spills, etc. In particular, this thesis is focused
on the geophysical phenomena where granular flows are involved, which can be clas-
sified as short timescale (avalanches, debris or rock avalanches, landslides, granular
collapses, gravity currents, etc) and long timescale processes (coastal ocean processes,
river dynamics, sediment transport and erosion/deposition processes).

From the mathematical point of view, the motion of fluids is described by the Navier-
Stokes equations. These equations are derived from the conservation laws of mass and
momentum, coming from two basic principles: (i) mass is neither created nor destroyed;
(ii) the rate of change of momentum of a portion of the fluid equals the force applied to it
(Newton’s second law). The Navier-Stokes equations describe exactly the flow dynamics.
However, its numerical resolution is extremely hard in terms of the computational cost,
even for the simplest configurations.

In order to avoid solving these equations, the classic Saint-Venant model [103],
which is obtained by integrating the Navier-Stokes equations along the thickness of the
flow, was introduced. This model assumes that the thickness of the flow is small when
compared with the horizontal dimension, and therefore the variations along the vertical
direction are neglected and depth-averaged variables are considered (see figure I.1).
This is the so-called shallow water (or thin-layer) hypothesis. Models assuming it are
known as shallow or depth-averaged models, and they have been usually used in the
framework of gravity-driven, shallow and free surface flows.

A rigorous derivation of this model was presented by Gerbeau & Perthame [61] from
a dimensional analysis of the full Navier-Stokes system. They also introduced the viscous
Saint-Venant system. The shallow water approximation has been widely validated for
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Figure I.1: Sketch of a shallow domain with characteristic length L and height H. u represents the velocity
of the fluid, whose thickness is h and b the bottom, then ū is the depth-averaged velocity.

applications to the dynamics of rivers, coastal areas, etc., but also for complex flows
like dry avalanches, debris flows, etc. when appropriate terms are included (see e.g.
[105, 73, 71, 28, 89, 29, 97, 88, 53, 26]).

The main advantage of depth-averaged models is the fact that they are very efficient
in contrast with 3D Navier-Stokes equations, which have a high associated computational
cost. The case of depth-averaged simulations is much more efficient. However, there is
an important loss of physical information (e.g. 3D behaviour of the flow) due to the fact
that the horizontal velocity does not depend on the vertical coordinate. In particular,
it makes impossible to obtain changes in time of velocity profiles and even the correct
averaged horizontal velocity in most cases.

Multilayer models appear as an interesting intermediate step between the full Navier-
Stokes equations and the classic Saint-Venant type models. In a few words, these models
are deduced by subdividing the computational domain in shallow vertical layers, and the
classic shallow water hypothesis is applied in each of those vertical layers (see figure I.2).
Thus, the averaged horizontal velocity uα is constant in that layer, but may be different
from the velocities uβ with β 6= α. The main advantages of multilayer models are: (i)
they allow us to partially recover the vertical structure of the flow, which is specially
important in the presence of viscous terms; (ii) they keep the low cost associated to
the numerical treatment of the free surface; (iii) the mass is exactly preserved (see e.g.
[7, 9, 56, 104]).

Multilayer models were introduced by Audusse [3] (and later extended in [8]) in
order to take into account the vertical structure in the simulation of geophysical flows,
making it possible in particular to resolve the shape of velocity profiles. Next, a different
multilayer model, which takes into account the exchange of mass and momentum
between the layers, was derived by Audusse et al. [7, 9], and Sainte-Marie [104]. In
particular, this multilayer model was applied to study movable beds by adding an Exner
equation by Audusse et al. [4].

A different formulation was proposed by Fernández-Nieto et al. [56], which has
several differences with respect to previous multilayer models. The model proposed
in [56] is derived by assuming a discontinuous profile of the velocity, and the solution
is obtained as a particular weak solution of the full Navier-Stokes system. Moreover,
the mass and momentum transfer terms at the interfaces of the normal partition are
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Figure I.2: Sketch of a multilayer domain. hα , ūα are the thickness and the depth-averaged velocity in the
layer α, respectively.

deduced from the jump conditions satisfied by the weak solutions of the Navier-Stokes
system. In addition, the vertical velocity is computed in a postprocessing step based on
the incompressibility condition, but accounting also for the mass transfer terms between
the internal layers.

In the scope of the fluid mechanics, PDEs systems are usually solved numerically by
using finite element methods, finite difference methods or finite volume methods. In
particular, we focus on finite volume methods (see e.g. LeVeque [81]). These methods
allow us to discretize hyperbolic systems of conservation laws, which take the form

∂tw + ∂xF (w) = 0,

where (t, x) denote the temporal and spatial variables, w is the vector of conservative
variables and F (w) is the vector of flux functions. The system is saids to be hyperbolic if
the jacobian matrix ∂F (w)/∂w ∈Mn×n has n real eigenvalues and the eigenvectors are
linearly independent.

Finite volume methods are based on subdividing the spatial domain into control or
finite volumes, and considering the approximation of the integral of the conservative
variables (w) over each control volume. Then, these values are updated in each time step
by using the approximations of the flux through the boundaries of the control volumes.

Nevertheless, when trying to approach to more realistic applications, this system
appears together with sources terms S(w) (e.g. variations of the topography) and non
conservative products B(w)∂xw (e.g. interactions between the conservative variables).
Thus, the PDE system is written as

∂tw + ∂xF (w) = S(w) +B(w)∂xw.

These source and non conservative terms entail new difficulties, such us defining well-
balanced schemes (those which preserve steady solutions, in particular water at rest)
and dealing with wet/dry transition (an empty control volume at time tn that is filled
at time tn+1, and vice versa). Many efforts have been devoted to the development of
numerical schemes for depth-averaged models solving those problems. For example,
the hydrostatic reconstruction method is a technique allowing to recover the well-
balanced property for depth-averaged models of avalanches, which also include wet/dry
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fronts (see e.g. [6, 25, 37]). Another numerical treatment to deal with dry areas was
introduced by Castro et al. [33], and improved in Castro et al. [34]. Parés & Castro
[95] investigated the well-balancing of the Roe’s method for non-conservative hyperbolic
systems. Furthermore, those numerical schemes must be able to deal with the possible
discontinuity of the solutions in the presence of non conservative products (see e.g. the
family of path-conservative schemes introduced by Parés [94]).

Finally, models containing viscous terms are also typical in physical applications.
Those terms entail a very restrictive condition in the time step when discretized explicitly.
For this reason, it is frequent to use an splitting procedure, where firstly the hyperbolic
part of the system is solved, and secondly the viscous terms are considered and usually
discretized with semi-implicit schemes.

An important part of this thesis is devoted to the study of granular flows through
multilayer models, namely dry granular flows. These flows have a noticeable vertical
structure. Actually, the velocity is higher close to the free surface than near to the bottom.
It is a fact that depth-averaged models are not able to take into account this structure,
whereas multilayer models do. In particular, they improve the approximation of the
viscosity coefficient, which is essential to properly reproduce the evolution of viscoplastic
flows. The last part of this thesis is focused on reducing the computational cost of large
timescale simulations for multilayer models. To this aim, we investigate semi-implicit
time discretizations for multilayer systems.

Due to the high computational cost of solving the full 3D Navier-Stokes equations, in
particular in the geophysical context, granular flows have often been simulated using
depth-averaged models (e.g. [105, 73, 89, 88, 86]), in particular for application on
natural geophysical flows on Earth and on other planets (e.g. [92, 82, 96, 52, 90, 83]).

The use of depth-averaged models for dry granular flows was pioneered by Savage &

Hutter [105]. This model has been deeply investigated, even for submarine avalanches,
debris flows, etc. It assumes a Coulomb friction law where the shear stress at the bottom
is proportional to the normal stress, with a constant friction coefficient µ. Nevertheless,
the use of depth-averaged models for complex flows presents important shortcomings,
specially related to the description of the stress tensor.

The behaviour of real geophysical flows is very complex due to topography effects, the
heterogeneity of the material involved, the presence of fluid/gas phases, fragmentation,
etc. ([47]). One of the major issues is to quantify erosion/deposition processes that play
a key role in geophysical flow dynamics but are very difficult to measure in the field (see
e.g. [44, 72, 14]).

Laboratory experiments on granular flows are very useful to test flow models on
simple configurations where detailed measurements can be performed, even if some
physical processes may differ between the large and small scale. These experiments
may help in defining appropriate rheological laws to describe the behaviour of granular
materials. Recent experiments by Mangeney et al. [87] and Farin et al. [51] on granular
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column collapse have quantified how the dynamics and deposits of dry granular flows
change in the presence of an erodible bed. They showed a significant increase of the
runout distance (i.e. maximum distance reached by the deposit) and flow duration
with increasing thickness of the erodible bed. This strong effect of bed entrainment was
observed only for flows on slopes higher than a critical angle of approximately 16◦ for
glass beads. The Savage & Hutter model does not reproduce this increase in runout
distance observed. Actually, the analytical solution deduced by Faccanoni & Mangeney
[50] proves that this model leads to the opposite effect. It is an open question whether
this behaviour can be reproduced by granular flow models. Moreover, a key issue is
whether this opposite behaviour between the experiments and simulations is due to
the thin-layer approximation and/or depth-averaging process or to the rheological law
implemented in the model (i.e. constant friction coefficient). Multilayer models can be a
promising alternative to depth-averaged models in order to shed light on these questions,
since an appropriate approximation of the normal effects seems to be a requirement to
reproduce the dynamics of these flows properly.

Granular flows can behave either as a fluid or a rigid solid depending on the forces
applied to them. In order to describe the non-Newtonian nature of those flows, we must
consider the rheology, which is the branch of physics that deals with the deformation
and flow of matter. Defining an appropriate rheological law to describe and understand
the behaviour of granular material is still a major challenge. In particular, a key issue is
to describe the transition between flow (fluid-like) and no-flow (solid-like) behaviour.
Granular flows have been described by viscoplastic laws and especially by the so-called
µ(I) rheology, introduced by Jop et al. [76]. It specifies that the friction coefficient µ
is variable and depends on the inertial number I. This nondimensional number can be
understood as the ratio between two timescales, the microscopic timescale associated
to the local rearrangement of the particles and the macroscopic timescale reflecting the
mean shear deformation. The µ(I) rheology includes a Drucker-Prager yield criterion,
i.e., the material flows if the stress tensor is over a threshold, otherwise the medium
behaves as a rigid solid. In addition, the µ(I) rheology is ill-posed (i.e. uncontrollable
growth of small perturbations) for low and high values of I, even for steady-uniform
flows where I ranges from zero to infinity when the slope varies between the limit angles
of the µ(I) rheology. Nevertheless, recently the well-posedness of the full µ(I) rheology
is proved by Barker et al. [12] for a large intermediate range of values of the inertial
number I.

Lagrée et al. [79] implemented the µ(I) rheology in a full Navier-Stokes solver
(Gerris) by defining a viscosity from the µ(I) rheology. They validated the model with
2D analytical solutions and compared it to 2D discrete element simulations of granular
collapses over horizontal rigid beds and with other rheologies. Using an augmented
Lagrangian method combined with finite element discretization to solve the 2D full
Navier-Stokes equations, Martin et al. [91] and Ionescu et al. [70] showed that the µ(I)

rheology quantitatively reproduces laboratory experiments of granular collapses over
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horizontal and inclined planes. They interpret the µ(I) rheology as a viscoplastic flow
with a Drucker-Prager yield stress criterion and a viscosity depending on the pressure
and strain rate. They showed that the mean value of this viscosity has a key impact on
the simulated front dynamics and on the deposit of granular column collapses.

Lusso et al. [85] used an Arbitrary Lagrangian Eulerian (ALE) formulation for the
displacement of the domain to simulate a 2D viscoplastic flow considering a Drucker-
Prager yield stress criterion and a constant viscosity. They obtained similar results taking
into account either a regularization method or the augmented Lagrangian algorithm to
avoid the singularity when the strain rate tensor vanishes, in the case of the collapse
and spreading of a granular column. These studies showed the difficulty of the ALE
method to deal with detailed description of the front propagation due to the deformation
of the mesh and possible overturning of the elements at the front, in particular when
trying to simulate granular flows over an initial layer of material lying on the bed. On
the contrary, the multilayer description of the front could be very precise because the
number of layers in the normal direction to the slope does not depend on the thickness of
the flow. However, due to the eulerian description of the flow, multilayer models cannot
describe the overturning of the front that may arise. Finally, multilayer approach is well
adapted to describe erosion processes in a thin layer of erodible material because, again,
the vertical discretization does not depend on the material thickness and the numerical
cost is quite low.

Furthermore, by comparing the simulated normal velocity profiles and the time
change of the position of the flow/no-flow interface (i.e. a moving layer over a static
layer of material) with laboratory experiments by Farin et al. [51], they concluded that a
pressure and rate-dependent viscosity can be important to study flows over an erodible
bed. A similar conclusion is presented by Lusso et al. [84] after comparing the normal
velocity profiles and the position of the flow/no-flow interface during the stopping phase
of granular flows over erodible beds calculated with a simplified thin-layer but not depth-
averaged viscoplastic model (Bouchut et al. [27]) with those measured in laboratory
experiments. Moreover, by using analytical solutions, interestingly they showed that the
flow/no-flow interface evolution is related to the normal gradient of the velocity at this
interface. As a result, describing erosion/deposition processes related to static/flowing
transition requires a model that is able to recover the time and space variation of the
velocity profile. However, the proposed model (see [84]) is restricted to uniform flows in
the downslope direction. Once more, multilayer models can be a encouraging alternative
since the vertical effects seem to be essential to properly define the viscosity coefficient
and reproduce the dynamics of these flows, namely those flows over an erodible bed. In
addition, the approximation of the flow/no-flow (i.e. flowing/static) interface by using
multilayer models is inherited from the fact of having more than a single layer.

On the other hand, Capart et al. [32] recently proposed a depth-integrated model
taking into account a linearization of the µ(I) rheology. They prescribed an S-shaped
velocity profile corresponding to equilibrium debris flows and typical of granular flows
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over erodible beds. Their velocity profiles were reconstructed using the computed
averaged velocity making it possible to compare their results with velocity profiles
measured in laboratory experiments. Gray & Edwards [64] introduced the µ(I) rheology
in a depth-averaged model by adding a viscous term and prescribing the well known
Bagnold velocity profile, typical of granular flows over rigid beds. Edwards & Gray [49]
showed the ability of this model to capture roll-waves and erosion-deposition waves, if it
is combined with the basal friction law introduced in Pouliquen & Forterre [100].

At small scale (laboratory scale), Taberlet et al. [108] and Jop et al. [75] showed
the importance of side walls friction for uniform flows over inclined channels. They
proposed to model this effect by adding an extra term to the definition of µ(I) for the
case of uniform flows. This sidewalls friction term could change the granular mass
evolution. In particular, its influence on the normal profile of velocity is evident, since it
increases the effective friction when going from the free surface to the bottom. Moreover,
this term leads to areas of static grains below a moving layer of material. Jop et al.
[77] used this additional term to simulate the transient normal profiles of velocity in
narrow channels and compared their simulations with laboratory experiments. Recently,
Baker et al. [10] extended the depth-averaged model introduced in Gray & Edwards
[64] to the two horizontal dimensions case for steady uniform flows between parallel
plates. They included a new viscous term for the side walls friction and studied the
normal profiles of velocity in narrow and wide channels. They compared the full and the
depth-averaged µ(I) rheology and concluded that they cannot reproduce the different
profiles of the velocity observed in transient flows because of the prescribed vertical
profile, in particular close to the lateral walls of narrow channels.

On the contrary, Capart et al. [32] prescribed a typical S-shaped profile for the
downslope velocity, so that they were able to reproduce velocity profiles when flow
was decelerating but not the Bagnold profile observed in other regimes. Actually, as
observed in highly transient flows such as in granular collapses, the velocity profiles
change from Bagnold-like near the front to S-shaped upstream where upper grains flow
above static grains (see [70]). Moreover, granular collapse experiments and simulations
have shown that during the stopping phase and when erosion/deposition processes
occur, static zones may develop near the bottom and propagate upwards. As mentioned
before, only the mean velocity over the whole thickness of the flow is calculated in
depth-averaged models (i.e., the whole granular column is either flowing or at rest,
except for the model proposed by Capart et al. [32]). Therefore, the existence of the
flow/no-flow interface makes inappropriate the use of depth-averaged models to study
those flows. Furthermore, the resulting normal gradient of the downslope velocity, which
changes in time, is a significant term in the strain rate and therefore strongly influences
the µ(I) coefficient. Thus, multilayer models can be a powerful alternative to standard
depth-averaged models due to the fact that both profiles, S-shaped and Bagnold-like,
could be reproduced a priori since the normal profile of velocity is not prescribed.
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We now detail the contributions of this work to this issue:

• In Chapter 1 we review the multilayer approach for a model with a constant
viscosity coefficient. Moreover, we present a detailed exposition of the procedure
to obtain a multilayer model. This model satisfies an energy balance for the 2D
case. Nevertheless, it is not proved for the 3D case. We also propose an alternative
3D multilayer model. It exactly satisfies a dissipative energy balance and matches
the previous multilayer model in [56] for the 2D case.

• In Chapter 2 we derive a multilayer shallow model with the µ(I) rheology for dry
granular flows, making it possible to compute 2D profiles of the velocitiy in the
directions along and normal to a reference plane with constant slope, without
prescribing a typical vertical profile (e.g. Bagnold or S-shaped profile). We validate
this model using the 2D analytical solution of a Bagnold flow and a flow in a narrow
channel with strong effect of the lateral wall friction. In addition, we compare
this model with granular flow experiments on erodible beds ([77, 87, 51]). In
particular, we show that the multilayer model together with the µ(I) rheology
reproduces the observed increase of the runout distance, when increasing the
thickness of the erodible bed. An important result is the fact that the model is able
to reproduce strong changes in velocity profiles of the downslope velocity during
highly transient flows, from Bagnold-like to S-shaped profiles and vice versa.

• In Chapter 3 we present an extension of the model introduced in Chapter 2 that
describes dry granular flows in a rectangular channel by including a Coulomb
friction term at the lateral walls. This model is obtained through an asymptotic
analysis and the hypothesis of a one-dimensional flow. We also present a well-
balanced numerical discretization of the proposed multilayer shallow model with
the µ(I) rheology and lateral Coulomb friction, including the treatment of dry
areas. We show that both, Bagnold and S-shaped vertical profiles of velocity can be
automatically recovered. We also show that approximating side walls friction using
single-layer models may lead to strong errors, they can even reproduce solutions
with no physical meaning. Finally, we compare with laboratory experiments,
showing the capability of the model to reproduce the time evolution of the flow/no-
flow interface, as well as the erosion processes that arise in the presence of an
erodible bed.

Most results of chapters 2 and 3 have been published in [54] and [55], in collabora-
tion with the supervisors of this thesis, and with Prof. Anne Mangeney during and after
a research stay in the “Institut de Physique du Globe de Paris” (Université Paris Diderot,
Paris, France).
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From now on, we focus on large scale geophysical flows, i.e. those flows which
require huge computational efforts due to the large time and/or horizontal scale. On
this scope, multilayer shallow water models can be seen as an alternative to more
standard approaches for vertical discretizations, such as natural height coordinates (also
known as z−coordinates in the literature on numerical modelling of atmospheric and
oceanic flows), employed e.g. in [19, 31, 40], terrain following coordinates (also known
as σ−coordinates in the literature), see e.g. [67], and isopycnal coordinates, see e.g.
[17, 39]. Each technique has its own advantages and shortcomings, as highlighted in
the discussions and reviews in [1, 19, 21, 68]. Multilayer approaches are appealing,
because they share some of the advantages of z−coordinates, such as the absence of
metric terms in the model equations, while not requiring special treatment of the lower
boundary. On the other hand, multilayer approaches share one of the main disadvantages
of σ−coordinates, since they require, at least in the formulations employed so far, to use
the same number of layers independently of the fluid depth. Furthermore, an implicit
regularity assumption on the bottom and free surface boundaries is required, in order
to avoid that too steeply inclined layers arise, which would contradict the fundamental
hydrostatic assumption underlying the model.

In order to reduce the computational cost of large simulation in subcritical flows, we
consider semi-implicit time discretizations as a powerful alternative. In particular, the
semi-implicit finite differences method introduced by Casulli & Cheng [41] and Casulli
& Cattani [40], which allows us to obtain a less restrictive CFL condition in subcritical
regimes, and therefore to use larger time steps in the computations. Actually, with this
method, the CFL condition depends on the flow velocity, but not on the free surface
gradient.

Different time discretizations can be employed a priori. The well-known θ-method
has been used successfully in coastal and atmospheric models (see e.g. Casulli & Cattani
[40], Davies et al. [45]), with parameter θ > 1/2. This choice of the parameter leads
to a L-stable method, since it adds damping, which is essential for applications in low
Mach/Froude number regimes. The time linearization in the free surface gradient term is
also frequent, leading to a major reduction of the computational cost in computationally
intensive applications, since it avoids to solve a global nonlinear problem. This approach
has been widely used in environmental fluid dynamics (see e.g. Rosatti et al. [102])

A more accurate IMEX-ARK2 method was proposed in Giraldo et al. [62]. In
this approach, stiff (implicitly discretized) and non stiff (explicitly discretized) terms
must be clearly identified depending on the application regime. For shallow water-
like applications in the subcritical, hydrostatic regime, the free surface gradients and
divergence terms are the terms that cause the greatest stability restrictions, as shown
in Robert [101] and Casulli [38]. Vertical turbulent viscosity and friction come next in
the stiffness scale, both because the vertical spacing can be small and because vertical
shear can be large, thus inducing significant turbulent stresses that are parameterized by
large turbulent viscosity coefficients. Horizontal advection is definitely not stiff in the
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low Froude number regime. Finally, vertical advection lies somehow in the middle, i.e.,
it is usually non stiff, although it can turn out to be stiff depending on the application.

A straightforward application of this method is the study of sediment transport pro-
cesses, since a determining feature of problems is the fact that the characteristic time
is very long, and therefore a huge computational time is required to obtain results.
The particular case of bed load sediment transport problem can be studied through
Saint-Venant-Exner-type models (see e.g. [57, 36]), which add a continuity equation
for the sediment layer (Exner equation) to the Saint-Venant system. This additional
equation can be coupled or not to the hydrodynamical model. When the coupled case
is considered, the whole system is solved at the same time, whereas it is solved in two
steps in the non-coupled case: firstly the hydrodynamical variables are calculated, and
secondly the Exner equation is used to update the thickness of the sediment layer, using
the computed hydrodynamical variables. In this work we consider the second case.

The contributions of this work to this issue are in Chapter 4. We propose an extension
of the discretization approaches for multilayer shallow water models, aimed at making
them more flexible and efficient for realistic applications to coastal flows. We propose
two strategies, which can act simultaneously:

• Efficient semi-implicit discretizations have been applied for the first time to mul-
tilayer systems following [41, 40], allowing to achieve significant computational
gains in subcritical regimes. Firstly, a time discretization based on the off-centered
trapezoidal rule (or θ-method). Secondly, a more accurate Implicit-Explicit Additive
Runge Kutta method (IMEX-ARK2).

• A novel multilayer discretization, in which the number of vertical layers can vary
over the computational domain. This removes one disadvantages of previous mul-
tilayer systems and the main disadvantage of σ−coordinates where it is mandatory
to use the same number of layers independently of the fluid depth. The motivation
is twofold: firstly, we want to adapt the vertical discretization to the features of
the bathymetry, e.g. when the computational domain contains both, shallow an
deep areas. Secondly, we want to get a finer vertical profile of velocity in a specific
region of the domain, but not somewhere else. One could use a refined multilayer
discretization in that region, simplifying it in the rest of the domain.

We show that, in the typical regimes in which the application of multilayer shallow
water models is justified, the resulting discretization does not introduce significant errors
and allows us to reduce substantially the computational cost in areas with complex
bathymetry. In particular, we present an application to a sediment transport problem,
showing a remarkable improvement with respect to standard discretization approaches.
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The results of Chapter 4 has been published in [23], in collaboration with the
supervisors of this thesis, and with Prof. Luca Bonaventura during and after a research
stay in the “Laboratorio di Modellistica e Calcolo Scientifico (MOX)” (Politecnico di
Milano, Milan, Italy).





CHAPTER 1
Background on multilayer approach

1.1 Introduction

Following Fernández-Nieto et al. [56], in this chapter we describe the procedure to
obtain a multilayer system in the simple case of constant kinematic viscosity. We review
its general derivation in the three-dimensional case. This multilayer approach constitutes
the starting point for the different multilayer extensions to specific applications presented
in the following chapters. On the other hand, proving that this 3D model satisfies an
energy balance is still an open problem. Nevertheless, it can be demonstrated for the
2D case. Here, we propose an alternative 3D multilayer system satisfying a dissipative
energy inequality.

The plan of this chapter is as follows. In Section 1.2 we present the initial system
consisting of the 3D Navier-Stokes equations and the appropriate boundary conditions.
We also give the local coordinates system that we consider for the derivation. In Section
1.3 we present the multilayer approach following [56], and we give a detailed account
of the derivation of the 3D multilayer model. The final multilayer model is presented
in Section 1.4. Finally, in Section 1.5 a different 3D multilayer model is proposed.
This model satisfies a dissipative energy balance, which is an important property for a
geophysical model to be physically relevant.

1.2 The initial system

The governing equations are stablished by the 3D incompressible Navier-Stokes equations.
Start by considering a flow with velocity u ∈ R3 and constant density ρ ∈ R. Then, the
dynamics of the system is described by the following equations given by the conservation
of momentum together with the incompressibility assumption:

∇ · u = 0,

ρ∂tu + ρ∇ · (u⊗ u)−∇ · σ = ρ g,

(1.1)

13
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where g is acceleration due to the gravity. The total stress tensor is

σ = −pI + τ , (1.2)

with p ∈ R the pressure and I is the 3D identity tensor. τ is the deviatoric stress tensor
given by

τ = ηD(u),

with η = 2 η0, where η0 ∈ R (constant) denotes the kinematic viscosity and D(u) the
strain rate tensor

D(u) =
1

2
(∇u+ (∇u)′).

where (·)′ denotes the transpose operator.

In order to conclude the govern system, we must set the boundary conditions. To
do this, we consider the usual geometric setting, that is, the flow fills a spatial domain
limited by a fixed topography at the bottom and by the free surface at the top.Since the
domain is moved with the velocity of the material, we set the kinematic condition

Nt + u · nh = 0, at the free surface, (1.3)

with (Nt,n
h) the time-space normal vector to the free surface. We also assume a free

total stress condition

σ nh = 0; p = 0, at the free surface. (1.4)

At the bottom we consider the no-penetration condition

u · nb = 0, at the bottom, (1.5)

where nb is the downward unit normal vector to the bottom. We must also consider
an appropriate boundary condition depending on the particular problem which we are
interested in, giving a value for the tangential component of the tensor

σ n− ((σ n) · n)n, (1.6)

at the bottom and the free surface, for n = nb,nh respectively.

Local coordinates

Let us consider tilted coordinates, which are commonly used in the literature for ocean
models and granular flows (see [28, 29, 53, 96, 64, 26, 27],...). Let b̃(x) be an inclined
fixed plane of constant angle θ with respect to the horizontal axis, we define the coordi-
nates (x, z) ∈ Ω× R+ ⊂ R3, where x = (x, y) ∈ Ω ⊂ R2. The x and z axis are measured
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along the inclined plane and along the normal direction respectively (see figure 1.1). In
this reference frame the gravitational force is written as

g = (−g sin θ, 0,−g cos θ)′.

In addition, we set h(t,x) the thickness of the flow over an arbitrary bottom topography
b(x). Both are measured in the normal direction to the inclined plane b̃(x). We consider
the velocity u ∈ R3 with horizontal (downslope direction) and vertical (normal direction)
components (ux, w), with ux = (u, v). We set ∇ = (∇x, ∂z) and ∇x = (∂x, ∂y), the usual
differential operators in the space variables.

With these definitions we write:

τ =

(
τxx τxz

τxz τ zz

)
and D(u) =

1

2

 2Dx(ux) ∂zu
x + (∇xw)′

(∂zu
x)′ +∇xw 2∂zw

 ,

where Dx(ux) =
∇xu

x + (∇xu
x)′

2
. In this reference frame, system (1.1) can be devel-

oped as



∇xu
x + ∂zw = 0,

ρ
(
∂tu

x + ux∇xu
x + w ∂zu

x
)

+∇xp = −ρgx sin θ +∇x · τxx + ∂zτ
xz,

ρ
(
∂tw + ux · ∇xw + w ∂zw

)
+ ∂zp = −ρg cos θ +∇x · τxz + ∂zτ

zz,

(1.7)

where gx = (−g, 0)′. For the boundary conditions (1.3)-(1.6) we just take into account
the definitions of the normal vectors. In particular, the time and space normal vectors to
the free surface are respectively

Nt = ∂th; nh =
(∇x(b+ h),−1)√
1 + ‖∇x(b+ h)‖2

,

and the normal vector to the bottom reads:

nb =
(∇xb,−1)√
1 + ‖∇xb‖2

.

This system (1.1)-(1.7) is the starting point for the multilayer approach introduced
in [56], which we apply in the next section.
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1.3 A multilayer approach

In a few words, this method consists of subdividing the domain along the vertical
direction in shallow layers, and applying the classic shallow water hypothesis (see e.g.
[103, 61]) inside of each layer. Then, the downslope velocity is approximated by a
piecewise constant function, i.e., it is constant in each layer, however these velocities can
be different ones from others. In the next lines we introduce the required notation and
describe in detail the derivation of the multilayer model.

1.3.1 Notation

We denote the domain ΩF (t) and its projection IF (t) on the reference plane, for a positive
t ∈ [0, T ], i.e.

IF (t) =
{
x ∈ R2; (x, z) ∈ ΩF (t)

}
.

The multilayer approach considers a vertical partition of the domain in N ∈ N∗ layers
with preset thicknesses hα(t,x) for α = 1, ..., N , (see figure 1.1). Note that

∑N
α=1 hα = h.

In practice, we set a vertical partition of the domain as follows: we introduce the positive
coefficients lα such that

hα = lαh for α = 1, ..., N ;
N∑
α=1

lα = 1.

Note that the thickness of each layer is automatically adapted to the movement
of the free surface, since it depends on the total thickness of the mass flow. These
layers are separated by N + 1 interfaces Γα+ 1

2
(t), which are described by the equations

z = zα+ 1
2
(t,x) for α = 0, 1, .., N , x ∈ IF (t). We assume that these interfaces are smooth

Figure 1.1: Sketch of the domain and its multilayer division.
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enough. Observe that the fixed bottom and the free surface are respectively b = z 1
2

and
b+ h = zN+ 1

2
, corresponding to the interfaces at the bottom Γ 1

2
and at the free surface

ΓN+ 1
2

respectively. Note that zα+ 1
2

= b+
∑α

β=1 hβ and hα = zα+ 1
2
− zα− 1

2
, for α = 1, ..., N .

The subdomain between Γα− 1
2

and Γα+ 1
2

is denoted by Ωα(t), for a positive t ∈ [0, T ],

Ωα(t) =
{

(x, z); x ∈ IF (t) and zα− 1
2
< z < zα+ 1

2

}
.

We need to introduce a specific notation about the approximations of the variables
on the interfaces (see figure 1.1). For a function f and for α = 0, 1, ..., N , we set

f−
α+ 1

2

:= (f|Ωα(t)
)|Γ

α+ 1
2

(t)
and f+

α+ 1
2

:= (f|Ωα+1(t)
)|Γ

α+ 1
2

(t)
. (1.8)

Note that if the function f is continuous,

fα+ 1
2

:= f|Γ
α+ 1

2
(t)

= f+
α+ 1

2

= f−
α+ 1

2

.

In addition, for a given time t, we denote

nt,α+ 1
2

=

(
∂tzα+ 1

2
,∇xzα+ 1

2
,−1

)′
√

1 + ‖∇xzα+ 1
2
‖2 +

(
∂tzα+ 1

2

)2
and nα+ 1

2
=

(
∇xzα+ 1

2
,−1

)′
√

1 + ‖∇xzα+ 1
2
‖2
,

the space-time unit normal vector and the space unit normal vector to the interface
Γα+ 1

2
(t) outward to the layer Ωα+1(t) for α = 0, ..., N .

1.3.2 Weak solution with discontinuities

We are looking for a particular weak solution (u, p, ρ) of (1.1). This solution must meet
the following conditions:

(i) (u, p, ρ) is a standard weak solution of (1.1) in each layer Ωα(t),

(ii) (u, p, ρ) satisfies the normal flux jump condition for mass and momentum at the
interfaces Γα+ 1

2
(t), namely:

[(ρ; ρu)]α+ 1
2
nt,α+ 1

2
= 0; (1.9)[

(ρu; ρu⊗ u− σ)
]
α+ 1

2

nt,α+ 1
2

= 0, (1.10)

where [(a; b)]α+ 1
2

denotes the jump of (a; b) across the interface Γα+ 1
2
(t).

Some assumptions are made on the solution (u, p, ρ) for each layer in the spirit of
the multilayer approach. Firstly, a particular family of velocity functions is considered,
by assuming that the thickness of each layer is small enough to make the horizontal
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velocities independent of the vertical variable z (usual shallow water domain hypothesis).
As a consequence, thanks to the incompressibility condition in each layer, we obtain that
the vertical velocities are linear in z and may be discontinuous. We denote the velocity
in each layer as

u|Ωα(t)
:= uα := (ux

α, wα)
′
, (1.11)

where ux
α and wα are the horizontal and vertical velocities, respectively. Furthermore,

ux
α is the averaged velocity on layer α

ux
α(x) :=

1

hα

∫ z
α+ 1

2

z
α− 1

2

uα(x, z) dz . (1.12)

Therefore,
∂zu

x
α = 0; ∂zwα = dα(t,x) (1.13)

for some smooth function dα(t,x).

Secondly, a hydrostatic pressure is assumed as in [56]. This hypothesis leads to

∂zpα = −ρ g cos θ,

and by the continuity of the dynamic pressure we deduce that

pα(z) = ρ g cos θ (b+ h− z) . (1.14)

Mass conservation across the interfaces and normal velocity

The mass conservation jump condition (1.9) gives us the definition of the normal mass
flux at the interface Γα+ 1

2
(t), denoted by Gα+ 1

2
:= G+

α+ 1
2

= G−
α+ 1

2

for:

G±
α+ 1

2

= ∂tzα+ 1
2

+ ux,±
α+ 1

2

∇xzα+ 1
2
− w±

α+ 1
2

, (1.15)

where ux,±
α+ 1

2

is defined using (1.8) and (1.13) as

ux,−
α+ 1

2

= ux,+

α− 1
2

= ux
α .

By integrating the incompressibility equation and using this mass conservation condi-
tion, we get the definition of the vertical velocity wα for ux

α a solution of (1.1) (see [56]
for details). Thus, if we consider that there is no mass transference with the bottom (i.e.
G1/2 = 0), we obtain

w+
1
2

= ux
1 · ∇xb+ ∂tb,

and for α = 1, ..., N and z ∈ (zα− 1
2
, zα+ 1

2
),

wα(t,x, z) = w+
α− 1

2

(t,x) − (z − zα− 1
2
)∇x · ux

α(t,x),

w+
α+ 1

2

= (ux
α+1 − ux

α) · ∇xzα+ 1
2

+ w−
α+ 1

2

;

(1.16)
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where
w−
α+ 1

2

= w+
α− 1

2

− hα∇x · uα. (1.17)

Momentum conservation across the interfaces

The momentum conservation jump conditions (1.10) can be easily written as[
σ
]
α+ 1

2

(
∇xzα+ 1

2
,−1

)
=
[
(ρu; ρu⊗ u)

]
α+ 1

2

(
∂tzα+ 1

2
,∇xzα+ 1

2
,−1

)
, (1.18)

and using the definition of the normal mass flux Gα+ 1
2
, it follows that[

(ρu; ρu⊗ u)
]
α+ 1

2

(
∂tzα+ 1

2
,∇xzα+ 1

2
,−1

)
= ρGα+ 1

2
[u]α+ 1

2
.

Therefore, the momentum jump conditions become:[
σ
]
α+ 1

2

nα+ 1
2

=
ρGα+ 1

2√
1 + ‖∇xzα+ 1

2
‖2

[u]α+ 1
2
,

where, for α = 1, . . . N − 1, the total stress tensor is

σ±
α+ 1

2

= −pα+ 1
2
I + τ±

ε,α+ 1
2

,

with pα+ 1
2

= p+
α+ 1

2

= p−
α+ 1

2

and τ±
α+ 1

2

approximations of pα and τα at Γα+ 1
2
. The jump on

the total stress tensor σ is reduced to the jump in the deviatoric stress tensor τ thanks to
the continuity of the pressure at the interface Γα+ 1

2
. Then we obtain that(

τ+
α+ 1

2

− τ−
α+ 1

2

)
nα+ 1

2
=

ρGα+ 1
2√

1 + ‖∇xzα+ 1
2
‖2

[u]α+ 1
2
.

Finally, by introducing the consistency condition

τ̃α+ 1
2

=
1

2

(
τ+
α+ 1

2

+ τ−
α+ 1

2

)
,

the momentum jump condition gives

τ±
α+ 1

2

nα+ 1
2

= τ̃α+ 1
2
nα+ 1

2
± 1

2

ρGα+ 1
2√

1 + ‖∇xzα+ 1
2
‖2

[u]α+ 1
2
, (1.19)

where τ̃α+ 1
2

is an approximation of 2 η0D(uα)α+ 1
2
, defined by

D̃α+ 1
2

=
1

2


2Dx

ux,+

α+ 1
2

+ ux,−
α+ 1

2

2

 D̃α+ 1
2
,xz

(
D̃α+ 1

2
,xz

)′
2UVZ ,α+ 1

2

 . (1.20)
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In this equation,

D̃α+ 1
2
,xz = ∇x

(
w+
α+ 1

2

+ w−
α+ 1

2

2

)′
+ UH

Z ,α+ 1
2
,

and (UH
Z ,α+ 1

2
,UVZ ,α+ 1

2
) is defined to approximate the derivatives in z. We use a mixed

formulation because of the possible vertical discontinuous profile. Thus, the auxiliary
unknown UZ satisfies

UZ − ∂zu = 0, with UZ = (UH
Z ,UVZ ). (1.21)

In order to approximate UZ , we approximate u by ũ, a P1(z) interpolation such that
ũ|z= 1

2
(z
α− 1

2
+z

α+ 1
2

) = uα. Then UZ ,α+ 1
2

=
(
UH

Z ,α+ 1
2
,UVZ ,α+ 1

2

)
is an approximation of UZ(ũ)

at Γα+ 1
2
. In order to define UH

Z ,α+ 1
2
, we focus on the definition of the normal derivative

on the interface Γα+ 1
2
, that is,

∂(
−n

α+ 1
2

)u = −∇u nα+ 1
2

=
−1√

1 + ‖∇xzα+ 1
2
‖2

(
∇xu

x
α+ 1

2
∇xzα+ 1

2
− UH

Z ,α+ 1
2

)
,

where the sign minus is taken because we need the normal vector to the interface Γα+ 1
2
(t)

outward to the layer Ωα(t). We propose the approximation

∂(
−n

α+ 1
2

)u =
ux
α+1 − ux

α

hα+ 1
2

, for α = 1, . . . , N − 1,

with hα+ 1
2

being the distance between the midpoints of layers α and α + 1. Then, we
obtain the approximation

UH
Z ,α+ 1

2
=
ux
α+1 − ux

α

hα+ 1
2

√
1 + ‖∇xzα+ 1

2
‖2 + ∇x

(
ux
α + ux

α+1

2

)
∇xzα+ 1

2
, (1.22)

for α = 1, . . . , N − 1, where we have considered ux
α+ 1

2

=
ux
α + ux

α+1

2
. For the particular

case of the bottom and the free surface, UH
Z , 1

2
and UH

Z ,N+ 1
2

must be defined by the
boundary condition (1.6).

1.3.3 Derivation of the final model: a particular weak solution

In this subsection, we review the derivation of the final multilayer model obtained in
[56] by looking for a particular weak solution of the system (1.1). Firstly, these equations
are multiplied by particular test functions and secondly we integrate this system in the
domain Ωα(t).

Let us consider the weak formulation of (1.1) in Ωα(t) for α = 1, ..., N . We assume
that the velocity u, the pressure p and the density ρ are smooth in each Ωα(t) but may
be discontinuous across the interfaces Γα+1/2 for α = 1, ..., N − 1, as stated previously.
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Assuming that uα ∈ L2(0, T ;H1(Ωα(t))3), ∂tuα ∈ L2(0, T ;L2(Ωα(t))3) and pα ∈
L2(0, T ;L2(Ωα(t))), then a weak solution in Ωα(t) should satisfy



0 =

∫
Ωα(t)

(∇ · uα)ϕdΩ,

∫
Ωα(t)

ρ g · v dΩ =

∫
Ωα(t)

ρ ∂tuα · v dΩ +

∫
Ωα(t)

ρ
(
uα · ∇uα

)
· v dΩ +

+

∫
Ωα(t)

(∇ · (pαI)) · v dΩ−
∫

Ωα(t)

(∇ · τα) · v dΩ,

(1.23)

for all ϕ ∈ L2(Ωα(t)) and for all v ∈ H1(Ωα(t))3.

We consider unknowns, velocities and pressures, that satisfy (1.13)-(1.14) and the
system (1.23) for test functions such that

∂zϕ = 0,

and
v (t,x, z) =

(
vx (t,x), (z − b)V (t,x)

)′
, v|∂IF (t)

= 0, (1.24)

where vx (t,x) and V (t,x) are smooth functions that do not depend on z.

We will now develop (1.23) in order to obtain the mass and momentum conservation
equations that satisfy the weak solution for this family of test functions for each layer.

Mass conservation

Focusing on the mass equation, we use the definition of ux
α (1.12) together with the

Leibnitz’s rule to rewrite it as∫
IF (t)

ϕ(t,x)

(
∇x · (hαux

α)− ux
α · ∇xzα+ 1

2
+ w−

α+ 1
2

+ ux
α · ∇xzα− 1

2
− w+

α− 1
2

)
dx = 0.

Taking into account the normal mass flux (1.15) we get∫
IF (t)

ϕ(t,x)

(
∂thα + ∇x · (hαux

α )−Gα+ 1
2

+Gα− 1
2

)
dx = 0,

for all ϕ(t, .) ∈ L2(IF (t)). Therefore, the mass conservation law for each layer is

∂thα +∇x · (hαux
α) = Gα+ 1

2
−Gα− 1

2
, α = 1, ..., N, (1.25)

where GN+1/2 and G1/2 stand for the mass exchange at the free surface and the bottom
level respectively and both should be given data.
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Momentum conservation

Let v ∈ H1(Ωα)3 be a test function satisfying (1.24). We develop the momentum equation
in (1.23) by integrating with respect to the variable z and by identifying the horizontal
and vertical components of the vector test function v. In addition, taking into account
the hydrostatic pressure framework, we can leave out the equation corresponding to the
vertical component. This is equivalent to considering the vector test function where the
vertical component vanishes, i.e. v = (vx (t,x), 0).

Let us remind the reader two identities which are used to rewrite the momentum
equations: ∫

Ωα(t)

∇ · (pαI) · v dΩ = −
∫

Ωα(t)

(pαI) : ∇vdΩ −

−
∫

Γ
α+ 1

2
(t)

(
pα+ 1

2
I v
)
· nα+ 1

2
dΓ +

∫
Γ
α− 1

2
(t)

(
pα− 1

2
I v
)
· nα− 1

2
dΓ ;

and ∫
Ωα(t)

(∇ · τα) · v dΩ = −
∫

Ωα(t)

τα : ∇v dΩ −

−
∫

Γ
α+ 1

2
(t)

(
τ−
α+ 1

2

v
)
· nα+ 1

2
dΓ +

∫
Γ
α− 1

2
(t)

(
τ+
α− 1

2

v
)
· nα− 1

2
dΓ .

Therefore, the horizontal momentum equation reads, for a weak solution u, test
functions v = (vx (t,x), 0), and for all α = 1, ..., N :∫

Ωα(t)

ρ g · (vx , 0) dΩ =

∫
Ωα(t)

ρ ∂t(u
x
α, wα) · (vx , 0) dΩ +

+

∫
Ωα(t)

ρ
(

(ux
α, wα) · ∇(ux

α, wα)
)
· (vx , 0) dΩ −

−
∫

Ωα(t)

pα : ∇(vx , 0) dΩ +

∫
Ωα(t)

τα : ∇(vx , 0) dΩ +

+

∫
Γ
α+ 1

2
(t)

((
−pα+ 1

2
I + τ−

α+ 1
2

)
nα+ 1

2

)
· (vx , 0) dΓ −

−
∫

Γ
α− 1

2
(t)

((
−pα− 1

2
I + τ+

α− 1
2

)
nα− 1

2

)
· (vx , 0) dΓ.

(1.26)

Each term in previous equation must be developed, taking into account that

∂zu
x
α = ∂zv

x = v|∂IF (t)
= 0.
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We develop only those terms that are not trivial in (1.26). This is the case of the pressure
term, which we write as

−
∫

Ωα(t)

pα∇x · vx dΩ = −
∫
IF (t)

 zα+1/2∫
zα−1/2

pα dz

∇x · vx dx =

=

∫
IF (t)

∇x

 zα+1/2∫
zα−1/2

pα dz

 · vx dx − ∫
∂IF (t)

 zα+1/2∫
zα−1/2

pα dz

 vx · n dΓ.

Moreover, thanks to the Leibniz’s rule and using that v vanishes over the boundary of
IF (t), this leads to

−
∫

Ωα(t)

pα∇x · vx dΩ =

∫
IF (t)

 zα+1/2∫
zα−1/2

∇xpαdz + pα
dz

dx

]z
α+ 1

2

z
α− 1

2

 · vx dx.
We now write the definition of the pressure (1.14), and previous integral does not depend
on z, then it is rewritten as∫

IF (t)

(
ρ g cos θhα∇x (b+ h) + pα+ 1

2
∇xzα+ 1

2
− pα− 1

2
∇xzα− 1

2

)
· vx dx =

=

∫
IF (t)

ρ g cos θhα∇x (b+ h) · vx dx+

+

∫
IF (t)

pα+ 1
2
nα+ 1

2
· (vx, 0)

√
1 +

∣∣∣∇xzα+ 1
2

∣∣∣2 dx−
−
∫
IF (t)

pα− 1
2
nα− 1

2
· (vx, 0)

√
1 +

∣∣∣∇xzα− 1
2

∣∣∣2 dx.
For the horizontal diffusion term, we have∫

Ωα(t)

τxx
α : ∇xv

x dΩ =

∫
IF (t)

 zα+1/2∫
zα−1/2

τxx
α dz

 : ∇xv
x dx =

= −
∫
IF (t)

∇x ·

 zα+1/2∫
zα−1/2

τxx
α dz

 · vx dx +

∫
∂IF (t)

 zα+1/2∫
zα−1/2

τxx
α dz

 vx · n dΓ .

Once more, the term over the boundary of IF (t) vanishes since v|∂IF (t)
= 0. Then we get∫

Ωα(t)

τxx
α : ∇xv

x dΩ = −
∫
IF (t)

∇x ·
(
η0 hα

(
∇xu

x
α + (∇xu

x
α)′
) )
· vx dx.
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On the other hand, the term that appears on the interfaces is written∫
Γ
α+ 1

2
(t)

((
−pα+ 1

2
I + τ−

α+ 1
2

)
nα+ 1

2

)
· (vx , 0) dΓ =

=

∫
IF (t)

((
−pα+ 1

2
I + τ−

α+ 1
2

)
nα+ 1

2

)
· (vx , 0)

√
1 +

∣∣∣∇xzα+ 1
2

∣∣∣2 dx.
Moreover,(

τ−
α+ 1

2

nα+ 1
2

)
· (vx , 0)

√
1 +

∣∣∣∇xzα+ 1
2

∣∣∣2 =
(
τxx,−
α+ 1

2

∇xzα+ 1
2
− τxz,−

α+ 1
2

)
· vx .

Introducing these calculations into (1.26) and noticing that g = (−g sin θ, 0,−g cos θ)′,
we obtain for all vx ∈ H1 (Ω(t))2∫

IF (t)

[
ρhα∂tu

x
α + ρhαu

x
α · ∇xu

x
α + ρ g cos θhα∇x (b+ h) +

+ ρ g cos θhα tan θ − ∇x ·
(
η0 hα

(
∇xu

x
α + (∇xu

x
α)′
) )

+

+
(
τxx,−
α+ 1

2

∇xzα+ 1
2
− τxz,−

α+ 1
2

)
−
(
τxx,+

α− 1
2

∇xzα− 1
2
− τxz,+

α− 1
2

) ]
· vx dx = 0 .

As result, this leads, for each layer α = 1, · · · , N , to the momentum equation

ρhα∂tu
x
α + ρhαu

x
α · ∇xu

x
α + ρ g cos θhα∇x

(
b̃+ b+ h

)
−

− ∇x ·
(
η0 hα

(
∇xu

x
α + (∇xu

x
α)′
) )

+

+
(
τxx,−
α+ 1

2

∇xzα+ 1
2
− τxz,−

α+ 1
2

)
−
(
τxx,+

α− 1
2

∇xzα− 1
2
− τxz,+

α− 1
2

)
= 0.

Observe that

τxx,−
α+ 1

2

∇xzα+ 1
2
− τxz,−

α+ 1
2

=

[
τ−
α+ 1

2

nα+ 1
2

√
1 +

∣∣∣∇xzα+ 1
2

∣∣∣2]
H

,

where [ · ]H denotes the horizontal components. Now by (1.19) we obtain[
τ−
α+ 1

2

nα+ 1
2

√
1 +

∣∣∣∇xzα+ 1
2

∣∣∣2]
H

=

[
τ̃α+ 1

2
nα+ 1

2

√
1 +

∣∣∣∇xzα+ 1
2

∣∣∣2 − 1

2
ρGα+ 1

2

[
u
]
α+ 1

2

]
H

=

= τ̃xx
α+ 1

2
∇xzα+ 1

2
− τ̃xz

α+ 1
2
− 1

2
ρGα+ 1

2

(
ux
α+1 − ux

α

)
,
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and analogously

[
τ+
α− 1

2

nα− 1
2

√
1 +

∣∣∣∇xzα+ 1
2

∣∣∣2]
H

= τ̃xx
α− 1

2
∇xzα− 1

2
− τ̃xz

α− 1
2

+
1

2
ρGα− 1

2

(
ux
α − ux

α−1

)
.

This allows us to rewrite the momentum equation as

ρhα∂tu
x
α + ρhαu

x
α · ∇xu

x
α + ρ g cos θhα∇x

(
b̃+ b+ h

)
−

− ∇x ·
(
η0 hα

(
∇xu

x
α + (∇xu

x
α)′
) )

+

+
(
τ̃xx
α+ 1

2
∇xzα+ 1

2
− τ̃xz

α+ 1
2

)
−
(
τ̃xx
α− 1

2
∇xzα− 1

2
− τ̃xz

α− 1
2

)
=

=
1

2
ρGα+ 1

2

(
ux
α+1 − ux

α

)
+

1

2
ρGα− 1

2

(
ux
α − ux

α−1

)
.

We now introduce the following definition for the viscous terms:

Kα+ 1
2

=
(
τ̃xx
α+ 1

2
∇xzα+ 1

2
− τ̃xz

α+ 1
2

)
=

[
τ̃α+ 1

2
nα+ 1

2

√
1 +

∣∣∣∇xzα+ 1
2

∣∣∣2]
H

=

= 2 η0

[
D̃α+ 1

2
nα+ 1

2

]
H

√
1 +

∣∣∣∇xzα+ 1
2

∣∣∣2 = 2 η0Dx

ux,+

α+ 1
2

+ ux,−
α+ 1

2

2

 ∇xzα+ 1
2
−

− η0∇x

(
w+
α+ 1

2

+ w−
α+ 1

2

2

)′
− η0 UH

Z ,α+ 1
2
,

(1.27)

for α = 1, . . . , N − 1, and K 1
2

and KN+ 1
2

must be defined accordingly with the boundary
condition at the bottom and free surface (1.6). Finally, by combining the previous
equation with (1.25) we get the momentum equation:

ρ ∂t (hαu
x
α) + ρ∇x · (hαux

α ⊗ ux
α) + ρ g cos θhα∇x

(
b̃+ b+ h

)
−

− ∇x ·
(
η0 hα

(
∇xu

x
α + (∇xu

x
α)′
) )

+

= Kα− 1
2
− Kα+ 1

2
+

1

2
ρGα+ 1

2

(
ux
α+1 + ux

α

)
− 1

2
ρGα− 1

2

(
ux
α + ux

α−1

)
,

for α = 1, ..., N .
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1.4 Final multilayer model

The final multilayer model reads, for α = 1, ..., N ,



lα

(
∂th+∇x ·

(
hux

α

))
= Gα+ 1

2
−Gα− 1

2
,

lα

(
ρ ∂t (hux

α) + ρ∇x · (hux
α ⊗ ux

α) + ρ g cos θ h∇x

(
b̃+ b+ h

)
−

− ∇x ·
(
η0 h

(
∇xu

x
α + (∇xu

x
α)′
)))

+

= Kα− 1
2
− Kα+ 1

2
+

1

2
ρGα+ 1

2

(
ux
α+1 + ux

α

)
− 1

2
ρGα− 1

2

(
ux
α + ux

α−1

)
,

(1.28)

where Gα+ 1
2

and Kα+ 1
2

are given in (1.15) and (1.27).

Once the vertical mesh is fixed through the positive coefficients lα, the model (1.28) has
2N equations and unknowns:

h, {ux
α}α=1,...,N , {Gα+ 1

2
}α=1,...,N−1.

However, thanks to (1.15), the mass transfer terms can be rewritten as

Gα+ 1
2

= ∂tzα+ 1
2

+
ux
α + ux

α+1

2
∇xzα+ 1

2
− wα+ 1

2
, where wα+ 1

2
=
w+
α+ 1

2

+ w−
α+ 1

2

2
.

As a consequence, the system has 2N unknowns, now corresponding to the total height
h, the horizontal velocity {uα}α=1,...,N in each layer and the averaged vertical velocity at
each internal interface {wα+ 1

2
}α=1,...,N−1.

Nevertheless, the system can be rewritten with N + 1 equations and unknowns as
we explain in the following. By summing the continuity equations from 1 to α, Gα+ 1

2
can

be written as

Gα+ 1
2

= G 1
2

+
α∑
β=1

(
∂thβ +∇x ·

(
hβ u

x
β

))
. (1.29)

Moreover, we assume that G1/2 = GN+ 1
2

= 0, as boundary conditions at the bottom and
the free surface, respectively. This represents the fact that there is no transference of
mass at the bottom nor the free surface level. Then, for the special case α = N , the
above equation leads to

∂th+∇x ·

(
h

N∑
β=1

lβ u
x
β

)
= 0.
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Making use of the above equation in (1.29), we obtain

Gα+ 1
2

=
α∑
β=1

(
∇x ·

(
lβ hu

x
β

)
− lβ

N∑
ζ=1

∇x ·
(
lζ hu

x
ζ

))
. (1.30)

As conclusion, Gα+ 1
2

is written in terms of the the total height (h) and the discharge of
each layer

qα = hux
α, for α = 1, . . . , N,

then the system is rewritten with N + 1 equations and unknowns h, {qα}α=1,...,N . Finally,
by introducing the coefficients

ξα,ζ =


(
1− (l1 + · · ·+ lα)

)
lζ , if ζ ≤ α,

−(l1 + · · ·+ lα)lζ , otherwise,

(1.31)

for α, ζ ∈ {1, . . . , N}, the system (1.27)-(1.28) is rewritten as

∂th+∇x ·

(
N∑
β=1

lβ qβ

)
= 0,

∂tqα +∇x ·
(
qα ⊗ qα

h

)
+ g cos θ h∇x (zb + h) −

− ν0∇x ·
(
∇xqα + (∇xqα)′ − 2

qα
h
∂xh

)
+

+
N∑
ζ=1

1

2 lα h

((
qα + qα−1

)
ξα−1,ζ −

(
qα+1 + qα

)
ξα,ζ

)
∇x · qζ =

=
1

ρ lα

(
Kα− 1

2
−Kα+ 1

2

)
, for α = 1, . . . , N,

(1.32)

where ν0 = η0/ρ and zb = b̃+ b have been introduced for simplicity.

The previous model in the 2D case satisfies a dissipative energy balance, whereas
it has not been proved for the 3D case yet. In the following section, we propose an
alternative 3D multilayer model with an associate energy balance. Furthermore, it
matches model (1.28) in the 2D case. Bristeau et al. [30] proved a energy balance
for the two-dimensional hydrostatic Navier-Stokes equations with a general tensor τ ,
i.e., constant or variable viscosity coefficient. Nevertheless, in [30] the hydrostatic
assumption is applied in a particular way. They neglected the convective terms in the
vertical momentum equation (vertical acceleration) but keep the viscous terms. Actually,
those viscous terms are essential to prove the energy balance.
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1.5 An alternative 3D multilayer model with energy
balance

Here we comment an interesting alternative to prove a dissipative energy inequality
for the model with constant viscosity. A similar multilayer model is obtained using the
following identity

∇x ·
(

(∇xu
x)′
)

= ∇x ·
(
Tr (∇xu

x) I2

)
,

where Tr(·) is the trace operator and I2 is the 2D identity tensor. Thanks to previous
equation, it is easy to verify that

∇ · τ = ∇ · (η0D(u)) = ∇ ·
(
η0 D̂(u)

)
= ∇ · τ̂ ,

with

D̂(u) =
1

2

 2D̂x(ux) ∂zu
x + (∇xw)′

(∂zu
x)′ +∇xw 2∂zw

 and D̂x(ux) =
∇xu

x + Tr (∇xu
x) I2

2
.

By considering that definition of D̂(u), a multilayer model can be analogously derived.
Note that this can be seen as a redefinition of the tensor τ , where we change (∇xu

x)′

by Tr (∇xu
x) I2 in the definition of Dx(ux). The resulting model reads, for α = 1, . . . , N ,



∂thα +∇x ·
(
hα u

x
α

)
= Gα+ 1

2
−Gα− 1

2
,

∂t (hα u
x
α) +∇x · (hα ux

α ⊗ ux
α) + g cos θ hα∇x (zb + h) −

− ∇x ·
(
ν0 hα

(
∇xu

x
α + Tr (∇xu

x
α) I2

))
+

=
1

ρ

(
Kα− 1

2
− Kα+ 1

2

)
+

1

2
Gα+ 1

2

(
ux
α+1 + ux

α

)
− 1

2
Gα− 1

2

(
ux
α + ux

α−1

)
,

(1.33)

where

Kα+ 1
2

= η0

(
∇xu

x
α+ 1

2

+ Tr
(
∇xu

x
α+ 1

2

)
I2

)
∇xzα+ 1

2
− η0

(
∇xwα+ 1

2

)′
− η0 UH

Z ,α+ 1
2
,

(1.34)
with UH

Z ,α+ 1
2

defined by (1.22) and

ux
α+ 1

2
=
ux
α+1 + ux

α

2
; wα+ 1

2
=
w+
α+ 1

2

+ w−
α+ 1

2

2
.
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Proposition 1. Denoting the energy of the layer α = 1, · · · , N for the system (1.33)-(1.34)
by

Eα = hα

(
|ux

α|
2

2
+ g cos θ

(
zb +

h

2

))
,

the following dissipative energy inequality is satisfied:

∂t

(
N∑
α=1

Eα

)
+ ∂x

[
N∑
α=1

(
Eα + g cos θ hα

h

2

)
ux
α

−ν0

N∑
α=1

(
hα

(
(∇xu

x
α)′ + Tr (∇xu

x
α) I2

)
ux
α − hαux

α∇x · ux
α

)
−

−1

2
ν0

N−1∑
α=1

(
ux
α+1 − ux

α

)
⊗
(
ux
α+1 + ux

α

)
· ∇xzα+ 1

2

]
≤ g cos θ h∂tzb −

− ν0

N∑
α=1

hα |∇xu
x
α|

2 − ν0

N−1∑
α=1

(
ux
α+1 − ux

α

)2

hα+ 1
2

√
1 +

∣∣∣∇xzα+ 1
2

∣∣∣2 +

− 1

ρ

(
ux
NKN+ 1

2
− ux

1 K 1
2

)
.

Proof. Firstly, we write the momentum equation in terms of the horizontal velocity and
it is multiplied by ux

α. Next, the mass equation is multiplied by(
|ux

α|
2

+ g cos θ (zb + h)

)
. (1.35)

Then, both equations are combined and summed up from α = 1 to α = N . Thus, we
obtain that the global system satisfy a dissipative energy balance.

Let us start writing the momentum equation in term of the velocity, where the mass
equation is used to simplify the convective terms:

hα∂tu
x
α + hαu

x
α · ∇xu

x
α + g cos θhα∇x (zb + h) −

− ∇x ·
(
ν0 hα

(
∇xu

x
α + Tr (∇xu

x
α) I2

))
=

1

ρ

(
Kα− 1

2
−Kα+ 1

2

)
+

+
1

2
Gα+ 1

2

(
ux
α+1 − ux

α

)
+

1

2
Gα− 1

2

(
ux
α − ux

α−1

)
.

(1.36)
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By multiplying the previous equation by ux
α, we obtain

hα∂t
|ux

α|
2

2
+ hα∇x ·

(
|ux

α|
2

2
ux
α

)
− hα

|ux
α|

2

2
∇x · ux

α + ux
α · g cos θhα∇x (zb + h) −

− ux
α · ∇x ·

(
ν0 hα

(
∇xu

x
α + Tr (∇xu

x
α) I2

))
=

1

ρ
ux
α ·
(
Kα− 1

2
−Kα+ 1

2

)
+

+
1

2
Gα+ 1

2

(
ux
α+1 · ux

α − |ux
α|

2)+
1

2
Gα− 1

2

(
|ux

α|
2 − ux

α · ux
α−1

)
,

(1.37)
where we have used the identities

u · (u · ∇u) = ∇ ·

(
|u|2

2
u

)
− |u|

2

2
∇ · u; and u · ∂tu = ∂t

|u|2

2
.

Let us consider the mass conservation equation multiplied by (1.35),

|ux
α|

2

2
∂thα +

|ux
α|

2

2
∇x · (hαux

α) + g cos θ (zb + h) ∂thα +

+ g cos θ (zb + h)∇x · (hαux
α) =

(
|ux

α|
2

2
+ ρg (zb + h)

)(
Gα+ 1

2
−Gα− 1

2

)
.

(1.38)

Noticing that

hα∇x ·

(
|ux

α|
2

2
ux
α

)
− hα

|ux
α|

2

2
∇x · ux

α +
|ux

α|
2

2
∇x · (hαux

α) = ∇x ·

(
hαu

x
α

|ux
α|

2

2

)
,

and

g cos θh∂thα = ∂t

(
g cos θhαh− g cos θ

hαh

2

)
− g cos θ

2
(hα∂th− h∂thα) ,

we sum (1.37) and (1.38) and we obtain the equation

∂t

(
hα
|ux

α|
2

2
+ hαg cos θ

(
zb +

h

2

))
+∇x ·

(
hα

(
|ux

α|
2

2
+ g cos θ (zb + h)

)
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α

)
−

− ux
α · ∇x ·

(
ν0 hα

(
∇xu

x
α + Tr (∇xu

x
α) I2

))
+

1

ρ
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α ·
(
Kα+ 1

2
−Kα− 1

2

)
=

= g cos θ hα∂tzb +
g cos θ

2
(hα∂th− h∂thα) +

+Gα+ 1
2

(
ux
α+1 · ux

α

2
+ g cos θ(zb + h)

)
−Gα− 1

2

(
ux
α · ux

α−1

2
+ g cos θ(zb + h)

)
.
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Regarding to the horizontal diffusion term, it is easy to verify that the following identities
hold:

u · ∇ ·
(
ν0 hα

(
∇u+ Tr (∇u) I2

))
=

= ∇ ·
(
ν0 hα

(
(∇u)′ + Tr (∇u) I2

)
u

)
− ν0 hα

(
∇u+ Tr (∇u) I2

)
: ∇u,

and

ν0 hα

(
∇u+ Tr (∇u) I2

)
: ∇u = ν0 hα

(
(Tr (∇u))2 + |∇u|2

)
.

The second term appears with a negative contribution to the right hand side of the
inequality, thus it is a dissipative term. Therefore, denoting

Eα = hα

(
|ux

α|
2

2
+ g cos θ

(
zb +

h

2

))
,

and noticing that Tr (∇u) = ∇·u, we have for α = 1, ..., N the following energy equality

∂tEα + ∇x ·
[(
Eα + g cos θhα

h

2

)
ux
α − ν0 hα

(
(∇xu

x
α)′ + Tr (∇xu

x
α) I2

)
ux
α

]
+

+
1

ρ
ux
α ·
(
Kα+ 1

2
−Kα− 1

2

)
︸ ︷︷ ︸

(a)

= −ν0 hα

(
(∇x · ux

α)2 + |∇xu
x
α|

2
)

+

+ g cos θ hα∂tzb +
g cos θ

2
(hα∂th− h∂thα)︸ ︷︷ ︸

(b)α

+

+ Gα+ 1
2

(
ux
α+1 · ux

α

2
+ g cos θ(zb + h)

)
−Gα− 1

2

(
ux
α · ux

α−1

2
+ g cos θ(zb + h)

)
︸ ︷︷ ︸

(c)α

.

(1.39)
We now sum up (1.39) from α = 1 to α = N , and focus on the term (a). Looking at the
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definition of Kα+ 1
2

(1.34), and UH
Z ,α+ 1

2
(1.22), we write

1

η0

(
Kα+ 1

2
−Kα− 1

2

)
= Tr

(
∇xu

x
α+ 1

2

)
I2∇xzα+ 1

2︸ ︷︷ ︸
(a.1)α+1/2

−Tr
(
∇xu

x
α− 1

2

)
I2∇xzα− 1

2︸ ︷︷ ︸
(a.1)α−1/2

−

− 1

2
∇x

(
w+
α+ 1

2

+ w−
α+ 1

2

−
(
w+
α− 1

2

+ w−
α− 1

2

))′
−

−

(
ux
α+1 − ux

α

hα+ 1
2

√
1 +

∣∣∣∇xzα+ 1
2

∣∣∣2︸ ︷︷ ︸
(a.3)α+1/2

−
ux
α − ux

α−1

hα− 1
2

√
1 +

∣∣∣∇xzα− 1
2

∣∣∣2︸ ︷︷ ︸
(a.3)α−1/2

)

We use the definition of the vertical velocity (1.16)-(1.17) to rewrite the middle term in
previous equation as

w+
α+ 1

2

+ w−
α+ 1

2

−
(
w+
α− 1

2

+ w−
α− 1

2

)
= w+

α+ 1
2

− w−
α+ 1

2

+ 2w−
α+ 1

2

+ w+
α− 1

2

− w−
α− 1

2

− 2w+
α− 1

2

=

=
(
ux
α+1 − ux

α

)
· ∇xzα+ 1

2︸ ︷︷ ︸
(a.2)α+1/2

+
(
ux
α − ux

α−1

)
· ∇xzα− 1

2︸ ︷︷ ︸
(a.2)α+1/2

− 2hα∇x · ux
α︸ ︷︷ ︸

(a.2)α

.

With this notation we can write

1

η0

(
Kα+ 1

2
−Kα− 1

2

)
= (a.1)α+1/2 − (a.1)α−1/2 −

− 1

2
∇x

(
(a.2)α+1/2 + (a.1)α−1/2 + (a.2)α

)′
−

(
(a.3)α+1/2 − (a.3)α−1/2

)
.

We consider the terms involving the interface Γα+ 1
2

in equation α and α+ 1. From terms
(a.1) and (a.2), we have

(a.1)α+1/2 · ux
α − (a.1)α+1/2 · ux

α+1 =

=
1

2
Tr
(
∇x

(
ux
α+1 + ux

α

))
I2∇xzα+ 1

2
·
(
ux
α − ux

α+1

)
;

(1.40)

−1

2
∇x

(
(a.2)α+1/2 · ux

α + (a.2)α+1/2 · ux
α+1

)′
=

= −1

2
∇x

((
ux
α+1 − ux

α

)
· ∇xzα+ 1

2

)′
·
(
ux
α + ux

α+1

)
,

(1.41)

and the sum of equations (1.40) and (1.41) gives

− 1

2
∇x ·

((
ux
α+1 − ux

α

)
⊗
(
ux
α+1 + ux

α

)
· ∇xzα+ 1

2

)
. (1.42)
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The sum of terms (a.3) produces

N−1∑
α=1

(
ux
α+1 − ux

α

)2

hα+ 1
2

√
1 +

∣∣∣∇xzα+ 1
2

∣∣∣2
which also are dissipative terms. Finally, for the term (a.2)α is easy to verify the following
identity:

∇ (hα∇ · u) · u = ∇ · (hαu∇ · u)− hα (∇ · u)2 .

Therefore, all the terms (a) in (1.39) are controlled. Next, for the term (b) we trivially
have

N∑
α=1

(b)α =
g cos θ

2

N∑
α=1

(hα∂th − h∂thα) =
g cos θ

2
(h∂th − h∂th) = 0.

Moreover, by using that G 1
2

= GN+ 1
2

= 0 (there is no transfer with the bottom and the
atmosphere, respectively), we have that

N∑
α=1

(c)α = 0.

Finally, by collecting all the resulting terms, and taking into account that the boundary
condition at the bottom and free surface are usually dissipative terms, the proof is
completed.

Remark 1. Note that it is not possible to reproduce this proof for the model (1.28). The
key point is the combination of terms (1.40) and (1.41) to give (1.42). For this step is
essential the fact of having the term with the trace operator, Tr (∇xu

x) I2, instead of the
one with the gradient (∇xu

x)′ in the definition of viscous terms at the interfaces (1.34).
The corresponding terms for the model (1.28) cannot be controlled, and consequently they
are responsible of not having an energy balance in that case.





CHAPTER 2
A µ(I) rheology multilayer shallow

model for dry granular flows∗

∗The results of this chapter have been published in the paper: E.D. Fernández-Nieto, J. Garres-Díaz,
A. Mangeney, & G. Narbona-Reina, A multilayer shallow model for dry granular flows with the
µ(I) rheology: Application to granular collapse on erodible beds, Journal of Fluid Mechanics, 798
(2016), pp. 643–681.

2.1 Introduction

In this chapter we present a multilayer shallow model for dry granular flows, which
approximates the Navier-Stokes equations with the µ(I) rheology. The derivation of
the model follows Chapter 1 (see also Fernández-Nieto et al. [56]), thus leading to
a solution of the resulting model that is a particular weak solution of the full Navier-
Stokes equations with the µ(I) rheology. The novelty with respect the previous model
is twofold: firstly, the model is obtained through a dimensional analysis based on the
shallow water hypothesis; secondly, the µ(I) rheology introduces a velocity-pressure
viscosity coefficient, versus the constant viscosity coefficient considered in the previous
chapter. The resulting model fully satisfies a dissipative energy inequality, thus complying
with a requirement for a geophysical model to achieve a solution with physical meaning.

The accuracy of the numerical model has been demonstrated by comparing the
numerical solutions to: (i) the steady uniform Bagnold flow, whose analytical solution is
known ([60, 107, 79]); (ii) analytical solution and laboratory experiments of granular
surface flows in narrow channel, where the lateral walls have an important role in the
velocity profile ([75, 77]). Finally, by comparing the numerical results with experimental
data on granular collapses in Mangeney et al. [87], we show that the proposed multilayer
model with the µ(I) rheology qualitatively reproduces the effect of the erodible bed
on granular flow dynamics and deposits. In particular, the model reflects the increase
of runout distance with increasing thickness of the erodible bed, whereas the use of a
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constant friction coefficient in the multilayer model leads to the opposite behaviour.
An important result is that this multilayer approach allows us to obtain the normal

profiles of the downslope and normal velocities. These profiles qualitatively agree with
the typical granular flow profiles during the developed flow and during the stopping
phase (GDR MiDi [60]), including the presence of static and flowing zones within the
granular column. In particular, the model makes it possible to reproduce the change from
Bagnold-like to S-shaped velocity profiles, characteristic of flows over a rigid substrate
and over a layer of static grains, respectively. As a result, this model should be applicable
to a larger range of flow regimes than the depth-averaged models proposed by Capart et
al. [32] and Edwards & Gray [49] for which velocity profiles are prescribed.

The chapter is organised as follows. Section 2.2 is devoted to presenting the µ(I)

rheology and how it is included in the model, and the appropriate boundary condition at
the bottom. In Section 2.3 we present the multilayer approach to derive a 2D multilayer
model for dry granular flows up to first order when considering the thin-layer asymptotic
approximation. The final µ(I) rheology multilayer shallow model is also presented in
this section together with the associated energy balance. Finally, Section 2.4 is devoted
to presenting the numerical results.

2.2 Initial system with the µ(I) rheology

In order to simplify the presentation and since the numerical tests are two-dimensional,
we consider that case in the whole chapter, although the derivation of the model may be
easily generalized to the full three dimensional case. Therefore, bold (regular) characters
denote two (one)-dimensional variables hereafter. Again, we consider tilted coordinates
(see Section 1.2). Thus, we consider a granular mass with velocity u = (u,w) ∈ R2, and
∇ = (∂x, ∂z) is the differential operator.

In this section we present the two-dimensional model considered to describe the
dynamics of granular flows. In particular, the definition of the stress tensor including the
µ(I) rheology.

We consider the system (1.1), where the stress tensor is

σ = −pI + τ ,

with the deviatoric stress tensor τ = ηD(u) depending on η, the viscosity. This viscosity
coefficient must be defined according to a rheological law describing the dynamics of
granular flows. As discussed in the Introduction, we consider the so-called µ(I) rheology
(see Jop et al. [76]) in order to take into account the non-Newtonian nature of those
flows.
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Hence, the viscosity coefficient is defined by

η =
µ(I)p

‖D(u)‖
, (2.1)

with ‖D‖ =
√

0.5 D : D the usual second invariant of a tensor D. The friction coefficient
µ(I) is written as

µ(I) = µs +
µ2 − µs
I0 + I

I,

where I0 and µ2 > µs are constant parameters that are determined from experiments.
Actually, µs is the usual static friction coefficient (or tangent of the repose angle) and µ2

is the dynamical friction coefficient, which is the limiting value for the friction. I is the
inertial number

I =
2ds‖D(u)‖√

p/ρs
, (2.2)

where ds is the particle diameter and ρs the particle density. The apparent flow density is
then defined as

ρ = ϕsρs, (2.3)

where the solid volume fraction, denoted by ϕs, is assumed to be constant.
Thus, this rheology relates the effective friction µ(I) to the inertial number I, which

reflects the local state of the granular packing. In fact, I can be interpreted (see figure
6.7 in Andreotti et al. [2]) as

I =
tmicro
tmacro

,

the ratio between the timescale of the microscopic rearrangement of granular particles
(tmicro) and the timescale of the macroscopic deformations (tmacro). Assuming two layers
of particles, the time tmicro represents the time needed for a grain to fall in a hole of
size ds between two grains, under a pressure p, and the time tmacro represents the time
required for a grain to pass the grain below. Note that when the shear rate is equal to
zero, µ(I) is reduced to µs. For high values of the inertial number, µ(I) converges to µ2.
Otherwise, if we consider a constant value of µ, independent of I, the model is always
ill-posed (see Schaeffer [106]).
The µ(I) rheology includes a Drucker-Prager plasticity criterion, the deviatoric tensor is
defined as 

τ =
µ(I)p

‖D‖
D if ‖D‖ 6= 0,

‖τ‖ ≤ µsp if ‖D‖ = 0.

Note that the µ(I) rheology can equivalently be written as a decomposition of the
deviatoric stress in a sum of a plastic term and a rate-dependent viscous term (see
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Ionescu et al. [70]): 
τ =

µsp

‖D‖
D + 2η̃D if ‖D‖ 6= 0,

‖τ‖ ≤ µsp if ‖D‖ = 0;

with a viscosity defined as η̃ =
(µ2 − µs)p

I0
ds

√
p/ρs + 2‖D‖

. Here we investigate the rheology

defined by a variable friction µ(I) and a constant friction µs. In [70], the authors showed
that simulations of the front propagation of granular column collapses and of their
deposits are very sensitive to the value of the average value of the viscosity (see their
figures 8 and 13). However, replacing η̃ by a constant viscosity equal to the averaged
value of the spatio-temporal viscosity η̃ does not significantly change the simulated
dynamics and deposit. Here we compare the case where µ = µs so that η̃ = 0 with the
µ(I) rheology corresponding to typical values of the viscosity η = 1 Pa·s for granular
collapses over horizontal and inclined planes ([70]).

The model considering a viscosity defined by (2.1) presents a discontinuity when
‖D(u)‖ = 0. In order to avoid this singularity there are several ways to proceed. One of
them is to apply a duality method, such as augmented Lagrangian methods (Glowinski
& Tallec [63]) or the Bermúdez-Moreno algorithm (Bermúdez & Moreno [16]). Another
option is to use a regularization of D(u), which is cheaper computationally; however it
does not give an exact solution, contrary to duality methods.

Note that with the Drucker-Prager plasticity criterion, the case when ‖D(u)‖ = 0

corresponds with a static granular mass whose velocity is trivially zero, in contrast with
other rheological laws (e.g. Bingham) for which we can obtain a static mass moving
with constant velocity. Then, the Drucker-Prager plasticity case is well approximated by
means of a regularization method, since it is equivalent to consider a quite high viscosity
coefficient, which makes the granular mass to stop with velocity close to zero.

In this work, we take into consideration two kinds of regularizations of D(u). First,
we use the regularization proposed in Lagrée et al. [79], which consist of bounding the
viscosity by ηM = 250ρ

√
gh3 Pa·s, considering instead of (2.1),

η =
µ(I)p

max
(
‖D(u)‖, µ(I)p

ηM

) . (2.4)

In this way, we obtain η = ηM if ‖D(u)‖ is close to zero. We used this regularization
in the simulation of the granular flow experiments. However, as explained in Subsection
2.4.1.1, we cannot consider this regularization in some tests presented below, for which
we have to take into account the regularization (see Lusso et al. [85], Bercovier &

Engelman [13]),

η =
µ(I)p√

‖D(u)‖2 + δ2
,
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where δ > 0 is a small parameter.

Finally, as commented in Chapter 1, the no-penetration boundary condition at the
bottom must be completed with an appropriate friction condition (see (1.6)), whereas
for the free surface we set (1.3)-(1.4). We consider a Coulomb-type friction law involving
the variable friction coefficient µ(I):

σ nb −
((
σ nb

)
· nb
)
nb =


µ(I)p

u

|u|

0

 , at the bottom. (2.5)

Note that the multilayer approach considered here can also be deduced by considering
a no-slip condition, i.e. u = 0 at the bottom, which implies the no penetration condition
(1.5). This will be analised in Chapter 3 (concretely Subsection 3.2.1.2).

2.3 The µ(I) rheology multilayer model

In this section, we present a multilayer model designed to approximate the dynamics of
granular flows. We follow Fernández-Nieto et al. [56], in which a multilayer approach
was developed to solve the Navier-Stokes equations. In our case, the system to approxi-
mate is given by the equations (1.7) together with the boundary conditions (1.3), (1.4)
and (2.5). Again, the originality of this chapter is to develop the multilayer approach
together with an asymptotic approximation. The system is deduced under several specific
changes involving the asymptotic approximation and the definition of the stress tensor
according to the µ(I) rheology that introduces a non-constant viscosity coefficient. The
advantage of this approach is that we recover the normal profile of the downslope and
normal components of the velocity.

In the first subsection we show the dimensional analysis of the equations and write
the non-dimensional system in matrix form. In the second part we present the procedure
to obtain the multilayer model and the model itself. We give a detailed presentation
of the deduction, where we focus on the aspects of the derivation that differ from the
exposed method in Chapter 1.

2.3.1 Dimensional analysis

In this subsection we carry out a dimensional analysis of the system (1.1)-(2.5) under
the local coordinates system specified in Section 1.2. We consider a shallow domain
by assuming that the ratio ε = H/L between the characteristic height H and the
characteristic length L is small. We also introduce the characteristic density ρ0. Following
the scaling analysis proposed in Gray & Edwards [64], we define the dimensionless
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variables, denoted with the tilde symbol (̃.), as follows:

(x, z, t) = (Lx̃,Hz̃, (L/U)t̃), (u,w) = (Uũ, εUw̃),

h = Hh̃, ρ = ρ0ρ̃, p = ρ0U
2p̃,

η = ρ0UHη̃, ηM = ρ0UHη̃M ,

(τxx, τxz, τzz) = ρ0U
2 (ετ̃xx, τ̃xz, ετ̃zz) .

Let us also note that

D(u) =
U

H

1

2

 2ε∂x̃ũ ∂z̃ũ+ ε2∂x̃w̃

∂z̃ũ+ ε2∂x̃w̃ 2ε∂z̃w̃

 ,

and the Froude number

Fr =
U√

g cos θH
.

Then, the system of equations (1.7) can be rewritten using this change of variables as
(tildes have been dropped for simplicity):

∂xu+ ∂zw = 0,

ρ
(
∂tu+ u∂xu+ w∂zu

)
+ ∂xp = −1

ε
ρ

1

Fr2
tan θ + ε∂xτxx +

1

ε
∂zτxz,

ε2ρ
(
∂tw + u∂xw + w∂zw

)
+ ∂zp = −ρ 1

Fr2
+ ε∂xτxz + ε∂zτzz.

(2.6)

We also write the boundary and kinematic conditions using dimensionless variables. At
the free surface we get

∂th+ u|z=b+h ∂x (b+ h)− w|z=b+h = O
(
ε2
)

; p|z=b+h = 0, (2.7)

and at the bottom we obtain

u|z=b ∂xb = w|z=b ;

1

2
(η∂zu)|z=b =

(
µ(I)p

u

|u|

)
|z=b

+O
(
ε2
)
.

(2.8)

As shown previously, it is convenient to write the set of equations (2.6) in matrix
notation before applying the multilayer approach. First, we focus on the equations of
momentum. We multiply the horizontal momentum equation by ε and the vertical one
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by 1/ε. This gives

ερ
(
∂tu+ u∂xu+ u∂zw

)
+ ε∂xp = −ρ 1

Fr2
tan θ + ε2∂xτxx + ∂zτxz,

ερ
(
∂tw + u∂xw + w∂zw

)
+

1

ε
∂zp = −1

ε
ρ

1

Fr2
+ ∂xτxz + ∂zτzz.

Note that the stress tensor can be written:

τ ε = η Dε(u) with Dε(u) :=
1

2

 2ε2∂xu ∂zu+ ε2∂xw

∂zu+ ε2∂xw 2 ∂zw

 . (2.9)

We introduce the notation:

f =

(
tan θ

Fr2
,

1

εFr2

)′
and E =

ε 0

0 1/ε

 .

Now we can write the momentum equations as follows

ερ∂tu+ ερ∇ · (u⊗ u) +∇ · (pE) = −ρf +∇ · (ηDε(u)),

and we obtain the system (2.6) in matrix notation:
∇ · u = 0,

ρ∂tu + ρ∇ · (u⊗ u)− 1

ε
∇ · σ = −1

ε
ρf ,

(2.10)

where the stress tensor is rewritten as σ = −pE + τ ε, with τ ε given by (2.9).

2.3.2 A multilayer approach

We apply the multilayer approach to the system (2.7)-(2.10). Note that the structure of
the system (2.10) looks like that of Navier-Stokes equations (1.1) and then the whole
procedure developed in Subsection 1.3 can be followed. In the next lines we describe
the main points of the derivation in which this model differs from the one presented in
Chapter 1.

We look for a particular weak solution (u, p, ρ) of (2.10) such that it is a usual weak
solution in each layer Ωα(t), and it satisfies the normal flux jump condition for the mass
and momentum equations at the interfaces between the internal layers.

We take a particular family of velocity functions uα on layer α, with horizontal and
vertical components uα and wα respectively, and structure (1.11)-(1.13). There are two
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main differences with the derivation in Subsection 1.3: first, the µ(I) rheology produces
a non-constant viscosity coefficient, which implies an additional difficulty in order to
develop the momentum balances at the interfaces. Second, the system to be solved is
an asymptotic approximation of the Navier-Stokes equations, which helps to resolve the
previous difficulty since we look for a first-order approximation in ε.

As a consequence of the asymptotic analysis, we directly get a hydrostatic pressure
at first order in ε, in contrast to Chapter 1 where it is assumed. From the vertical
momentum equation in (2.6) we get:

∂zpα = −ρ 1

Fr2
+O(ε).

By using the continuity of the dynamic pressure, we deduce at first order that

pα(z) =
ρ

Fr2
(b+ h− z). (2.11)

Regarding the normal flux jump condition for the mass equation, it coincides with
the one in previous case. Thus, we recall that the expression for the mass transference
term is

Gα+ 1
2

= ∂tzα+ 1
2

+
uα + uα+1

2
∂xzα+ 1

2
− wα+ 1

2
, where wα+ 1

2
=
w+
α+ 1

2

+ w−
α+ 1

2

2
, (2.12)

and making use of last equation together with the incompressibility condition, the verti-
cal velocity is defined by (1.16)-(1.17).

On the other hand, the non-dimensional momentum jump conditions at the interface
Γα+ 1

2
read [

(ρu; ρu⊗ u− 1

ε
σ)

]
α+ 1

2

nt,α+ 1
2

= 0.

Following the calculations in previous chapter, the previous condition leads to

1

ε

[
σ
]
α+ 1

2

nα+ 1
2

=
ρGα+ 1

2√
1 +

∣∣∣∂xzα+ 1
2

∣∣∣2 [u]α+ 1
2
,

where the total stress tensor is

σ±
α+ 1

2

= −pα+ 1
2
E + τ±

ε,α+ 1
2

, for α = 1, . . . N − 1.

Then, we obtain the condition

τ±
ε,α+ 1

2

nα+ 1
2

= τ̃ ε,α+ 1
2
nα+ 1

2
± 1

2

ερGα+ 1
2√

1 +
∣∣∣∂xzα+ 1

2

∣∣∣2 [u]|G
α+ 1

2
(t)
,

(2.13)
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where τ̃ ε,α+ 1
2

is an approximation of
(
ηDε(uα)

)
|Γ
α+ 1

2

, defined by

τ̃ ε,α+ 1
2

= ηα+ 1
2
D̃ε,α+ 1

2
=

1

2
ηα+ 1

2


2ε2∂x

(
u+
α+ 1

2

+ u−
α+ 1

2

2

)
D̃xz
ε,α+ 1

2

(
D̃xz
ε,α+ 1

2

)′
2UVZ ,α+ 1

2

 . (2.14)

Here,

D̃xz
ε,α+ 1

2
= ε2∂x

(
w+
α+ 1

2

+ w−
α+ 1

2

2

)
+ UHZ ,α+ 1

2
,

where UZα+ 1
2

= (UHZ ,α+ 1
2
,UVZ ,α+ 1

2
) is defined as in (1.21) to approximate the derivatives

in z. In this case, the non-dimensional form of UHZ ,α+ 1
2

(1.22) reads

UHZ ,α+ 1
2

=
uα+1 − uα
hα+ 1

2

√
1 + ε

∣∣∣∂xzα+ 1
2

∣∣∣2 + ε2∂x

(
uα + uα+1

2

)
∂xzα+ 1

2
,

therefore we consider the first order approximation

UHZ ,α+ 1
2

=
uα+1 − uα
hα+ 1

2

, for α = 1, . . . , N − 1.

Moreover,
UHZ , 1

2
=
u1

h1

,

according to the friction condition at the bottom (see Subsection 3.2.1.2 for details).

Let us remark that the previous expression of the tensor τ̃ ε,α+ 1
2

in (2.14) has the same
structure as the original case in Chapter 1 (also in [56]), except for the viscosity that
now is not constant because it is defined by the µ(I) rheology in (2.4). Then, we must
give an approximation of the viscosity at the interface up to first order in ε, which we
denoted by ηα+ 1

2
. We have considered the following first-order approximation of ‖D(u)‖

at z = zα+ 1
2
,

‖D(u)‖α+ 1
2
≈ 1

2

∣∣∣UHZ ,α+ 1
2

∣∣∣ . (2.15)

Then, it reads

ηα+ 1
2

= ηα+ 1
2
(UHZ ,α+ 1

2
) =

µ(Iα+ 1
2
)pα+ 1

2

max

(
1

2

∣∣∣UHZ ,α+ 1
2

∣∣∣ , µ(Iα+ 1
2
)pα+ 1

2

ηM

) , (2.16)

with

pα+ 1
2

=
ρ

Fr2

N∑
β=α+1

hβ , Iα+ 1
2

=
ds

∣∣∣UHZ ,α+ 1
2

∣∣∣√
pα+ 1

2
/ρs

, for α = 0, . . . , N − 1. (2.17)

Note that ηN+1/2 = 0, because we suppose that the atmospheric pressure is zero.



44 2.3. The µ(I) rheology multilayer model

2.3.3 Derivation of the final model with µ(I) viscosity

The derivation of the final model is totally analogous to the development in Subsection
1.4. We consider the weak formulation of (2.10) in Ωα(t) for α = 1, ..., N

0 =

∫
Ωα(t)

(∇ · uα)ϕdΩ,

−1

ε

∫
Ωα(t)

ρg · v dΩ =

∫
Ωα(t)

ρ∂tuα · v dΩ +

∫
Ωα(t)

ρ
(
uα · ∇uα

)
· v dΩ +

+
1

ε

∫
Ωα(t)

(∇ · (Epα)) · v dΩ− 1

ε

∫
Ωα(t)

(∇ · (τ ε,α )) · v dΩ,

(2.18)
for all ϕ ∈ L2(Ωα(t)) and for all v ∈ H1(Ωα(t))2, where uα ∈ L2(0, T ;H1(Ωα(t))2),
∂tuα ∈ L2(0, T ;L2(Ωα(t))2) and pα ∈ L2(0, T ;L2(Ωα(t))).
From one hand, the mass equation is obtained as for system (1.23), then the mass
conservation law for each layer is

∂thα + ∂x(hαuα) = Gα+ 1
2
−Gα− 1

2
, α = 1, ..., N (2.19)

where GN+1/2 and G1/2 are given data.

From the other hand, for a weak solution u and for all α = 1, . . . , N , the horizontal
momentum equation reads:

−1

ε

∫
Ωα(t)

ρg · (v , 0) dΩ =

∫
Ωα(t)

ρ∂t(uα, εwα) · (v , 0) dΩ +

+

∫
Ωα(t)

ρ
(

(uα, εwα) · ∇(uα, wα)
)
· (v , 0) dΩ −

−1

ε

∫
Ωα(t)

(pαE) : ∇(v , 0) dΩ +
1

ε

∫
Ωα(t)

τ ε,α : ∇(v , 0) dΩ +

+
1

ε

∫
Γ
α+ 1

2
(t)

((
−pα+ 1

2
E + τ−

ε,α+ 1
2

)
nα+ 1

2

)
· (v , 0) dΓ −

−1

ε

∫
Γ
α− 1

2
(t)

((
−pα− 1

2
E + τ+

ε,α− 1
2

)
nα− 1

2

)
· (v , 0) dΓ.

(2.20)

Now each term of this equation is developed accounting that ∂zuα = ∂zv = v|∂IF (t)
= 0.

The only terms that differ from those in Subsection 1.3.3 are those affected by the stress
tensor. So we specify the development just for them. The rest of the terms in (2.20)
follow the same pattern as previously.
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We prove that the term corresponding with the horizontal diffusion is a second-order
term:

1

ε

∫
Ωα(t)

τxxε,α ∂xv dΩ = −1

ε

∫
IF (t)

∂x

 zα+1/2∫
zα−1/2

τxxε,α dz

 v dx.

Because ∂zuα = 0, we obtain that ‖Dε(uα)‖ is independent of z up to order ε, since

Dε(uα) =

ε2∂xuα 0

0 ∂zw

 .

Then, we get
1

ε

∫ z
α+ 1

2

z
α− 1

2

τxxε,α dz =
1

ε

∫ z
α+ 1

2

z
α− 1

2

ε2η ∂xuα dz = O(ε).

Therefore, we can neglect this term since we are interested in the first-order model. Thus,
the momentum equation reads

ρhα∂tuα + ρhαuα ∂xuα +
ρ

Fr2
hα∂x (b+ h) + ρ

1

ε
hα

tan θ

Fr2
+

+
1

ε

(
τxx,−
ε,α+ 1

2

∂xzα+ 1
2
− τxz,−

ε,α+ 1
2

)
− 1

ε

(
τxx,+
ε,α− 1

2

∂xzα− 1
2
− τxz,+

ε,α− 1
2

)
= 0,

for each layer α = 1, · · · , N . Analogously to Subsection 1.3.3, we can write the terms
that appears at the interfaces by using (2.13):

τxx,−
ε,α+ 1

2

∂xzα+ 1
2
− τxz,−

ε,α+ 1
2

= τ̃xx
ε,α+ 1

2

∂xzα+ 1
2
− τ̃xz

ε,α+ 1
2

− ε

2
ρGα+ 1

2
(uα+1 − uα) ,

and

τxx,+
ε,α− 1

2

∂xzα− 1
2
− τxz,+

ε,α− 1
2

= τ̃xx
ε,α− 1

2
∂xzα− 1

2
− τ̃xz

ε,α− 1
2

+
ε

2
ρGα− 1

2
(uα − uα−1) .

Therefore, the momentum equation is rewritten as

ρhα∂tuα + ρhαuα ∂xuα +
ρ

Fr2
hα∂x (b+ h) + ρ

1

ε
hα

tan θ

Fr2
+

+
1

ε

(
τ̃xx
ε,α+ 1

2
∂xzα+ 1

2
− τ̃xz

ε,α+ 1
2

)
− 1

ε

(
τ̃xx
ε,α− 1

2
∂xzα− 1

2
− τ̃xz

ε,α− 1
2

)
=

=
1

2
ρGα+ 1

2
(uα+1 − uα) +

1

2
ρGα− 1

2
(uα − uα−1) .
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In this case, the non-dimensional term Kα+ 1
2

(1.27) reads,

Kα+ 1
2

=
1

ε

(
τ̃xx
ε,α+ 1

2
∂xzα+ 1

2
− τ̃xz

ε,α+ 1
2

)
=

1

ε

[
τ̃ ε,α+ 1

2
nα+ 1

2

√
1 +

(
∂xzα+ 1

2

)2
]
H

=

=
1

ε

[
ηD̃ε,α+ 1

2
nα+ 1

2

]
H

√
1 +

(
∂xzα+ 1

2

)2

= εηα+ 1
2
∂x

(
u+
α+ 1

2

+ u−
α+ 1

2

2

)
∂xzα+ 1

2
−

−ε
2
ηα+ 1

2

(
∂x

(
w+
α+ 1

2

+ w−
α+ 1

2

2

))′
− 1

2ε
ηα+ 1

2
UHZ ,α+ 1

2
.

Thus, we get

Kα+ 1
2

= − 1

2ε
ηα+ 1

2
UHZ ,α+ 1

2
+ O(ε), (2.21)

where ηα+ 1
2

is defined by (2.16)-(2.17).

By combining the previous equation with (2.19) we get the momentum equation up
to order ε,

ρ∂t (hαuα) + ρ∂x(hαu
2
α) +

ρ

Fr2
hα∂x (b+ h) + ρ

1

ε
hα

tan θ

Fr2
=

= Kα− 1
2
−Kα+ 1

2
+

1

2
ρGα+ 1

2
(uα+1 + uα)− 1

2
ρGα− 1

2
(uα + uα−1) ,

(2.22)

for α = 1, ..., N .

Next, we must impose the friction condition at the bottom ( Γα− 1
2

with α = 1). We
can translate (2.8) into the notation of the multilayer approach, giving

w|Γ 1
2

= 0;
1

2ε
η 1

2
UHZ , 1

2
=
µ
(
I 1

2

)
ε

p 1
2

u+
1
2∣∣∣u+
1
2

∣∣∣ .
Therefore to impose the friction condition, we should change definition (2.21) of K 1

2
,

taking into account that u+
1
2

= u1. Then we obtain

K 1
2

= − 1

2ε
η 1

2
UHZ , 1

2
= −

µ
(
I 1

2

)
ε

p 1
2

u1

|u1|
.

The last step is to come back to the original variables taking into account the assumptions
described in Subsection 2.3.1.
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2.3.4 Final model

The final model reads, for α = 1, ..., N ,

lα

(
∂th+ ∂x(huα)

)
= Gα+ 1

2
−Gα− 1

2
,

lα

(
ρ∂t (huα) + ρ∂x (hu2

α) + ρg cos θ h ∂x

(
b+ b̃+ h

))
=

= Kα− 1
2
−Kα+ 1

2
+

1

2
ρGα+ 1

2
(uα+1 + uα) − 1

2
ρGα− 1

2
(uα + uα−1)

(2.23)

where Gα+ 1
2

are given in (2.12),

Kα+ 1
2

= −1

2
ηα+ 1

2
(UHZ ,α+ 1

2
)UHZ ,α+ 1

2
and K 1

2
= −µ

(
I 1

2

)
ρg cos θ h

u1

|u1|
, (2.24)

for ηα+ 1
2

defined in (2.16)-(2.17).

As in Chapter 1, the proposed model can be rewritten withN+1 equations and unknowns:
the total height (h) and the discharge of each layer (qα = huα, for α = 1, . . . , N). By
introducing the coefficients ξα,γ defined by (1.31), the system (2.23)-(2.24) is rewritten
as 

∂th+ ∂x

(
N∑
β=1

lβqβ

)
= 0,

∂tqα + ∂x

(
q2
α

h
+ g cos θ

h2

2

)
+ g cos θ h ∂xzb +

+
N∑
γ=1

1

2hlα

(
(qα + qα−1) ξα−1,γ − (qα+1 + qα) ξα,γ

)
∂xqγ =

=
1

ρlα

(
Kα− 1

2
−Kα+ 1

2

)
α = 1, . . . , N,

where we recall that zb = b+ b̃.

Moreover, we can see that this model satisfies a dissipative energy inequality. Denoting
the energy of the layer α = 1, · · · , N for the system (2.23)-(2.24) by

Eα = hα

(
|uα|2

2
+ g cos θ

(
zb +

h

2

))
,
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the following dissipative energy inequality is satisfied:

ρ∂t

(
N∑
α=1

Eα

)
+ ρ∂x

[
N∑
α=1

uα

(
Eα + ρg cos θ hα

h

2

)]
≤

≤ −ρg cos θ h |u1|µ(I)−
N−1∑
α=1

ηα+ 1
2

2

(uα+1 − uα)2

hα+ 1
2

.

The proof of previous inequality follows directly from the calculations developed in
Chapter 1 for the case of constant viscosity, taking into account that Kα+ 1

2
is defined by

(2.24) and the horizontal diffusion term does not appear.

Finally, note that if we consider a no-slip condition to deduce the model instead of
the Coulomb friction condition (2.5), the only difference that appears in the multilayer
approach is the definition of K 1

2
. It must be defined according to that boundary condition

(see Subsection 3.2.1.2 for details).

2.4 Numerical tests

The numerical approximation is performed in 2D (downslope and normal directions). It
will be explained in detail in Chapter 3. Summarising, we rewrite the model as a non-
conservative hyperbolic system with source terms as in [56]. Then a splitting procedure
is considered. First, we set aside the term that appears at the internal interfaces and
a standard path-conservative finite volume method is applied. The second step is to
solve the contribution of the term at the internal interfaces. In this step, a semi-implicit
scheme is employed, taking into account the regularization of ‖D(uα)‖ mentioned in
Subsection 2.2 in order to avoid the singularity when ‖D(uα)‖ vanishes.

In order to validate the Multilayer Shallow Model (denoted MSM hereafter) with
the µ(I) rheology, we compare it to (i) 2D steady and transient uniform flows over
inclined surfaces with and without the effect of sidewall friction (analytical solutions
and experimental data for deep and surface flows), (ii) laboratory experiments of highly
transient and non-uniform granular flows over inclined planes covered by an erodible
bed, in which case the shape of the velocity profiles strongly changes with time and
space.

2.4.1 Granular surface flows in a channel

In this subsection we deal with several Bagnold flows. First, we consider a uniform
Bagnold flow without taking into account the effect of the lateral wall friction. Then,
we show that our multilayer model is able to capture the velocity profiles for flows in a
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narrow channel when sidewall friction is introduced. In that case we compare with the
analytical solution and laboratory experiments. Note that Bagnold flows satisfy, at the
free surface

p|z=H = 0 and ‖D(u)‖|z=H =
1

2
|∂zu||z=H = 0.

Therefore, we cannot use the regularization (2.4) since its denominator vanishes at the
free surface. In this case we use the regularization

η =
µ(I)p√

‖D(u)‖2 + δ2
,

where δ > 0 is a small parameter (see Bercovier & Engelman [13]).

2.4.1.1 Steady uniform Bagnold flow: analytical solution

Let us first compare the model with the analytical solution for a uniform flow over an
inclined plane of slope θ and thickness H > 0, i.e. a Bagnold flow (see [60], [107]
or [79]). This solution is obtained by imposing zero pressure and zero shear stress at
the free surface and a no-slip condition at the bottom (Coulomb friction can be easily
changed by no-slip condition in the µ(I) rheology multilayer model, see Subsection
3.2.1.2).

Figure 2.1: Sketch of the analytical solution.

By denoting u and w the downslope and normal velocities, p the pressure and τ the
shear stress and by taking the rheological parameters defined in Subsection 2.2, the
steady uniform Bagnold flow is described by
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u(z) =
2

3ds
I0

(
tan θ − µs
µ2 − tan θ

)√
ϕsg cos θ

(
H3/2 − (H − z)3/2

)
,

u(z = 0) = 0, w = 0,

p(z) = ρg cos θ (H − z) ,

τ(z) = µ(I)p = ρg sin θ (H − z) ,

p(z = H) = 0, τ(z = H) = 0,

µ(I) = tan(θ), for z ∈ (0, H).

(2.25)

For the numerical simulation, as in the analytical solution, we consider a uniform
flow with constant thickness H = 1 m and velocity u = w = 0 m·s−1 at the initial time
t = 0 s. The boundary conditions at the free surface and at the bottom have been set as
in (2.25). At the right and left boundaries, we use open boundary conditions.

We choose the rheological parameters I0 = 0.279 and µs = 0.38 ≈ tan(20.8◦), µ2 =

0.62 ≈ tan(31.8◦) and the particle diameter ds = 4 cm with solid volume fraction
ϕs = 0.62. The slope angle is taken as θ = 0.43 rad ≈ 24.64◦. Figure 2.2 shows the good
agreement between the simulated and exact solutions for the profiles of the velocity,
pressure, shear stress, µ(I) and ‖D(u)‖. It also shows the downslope velocity at the free
surface as a function of the slope angle. Note that for slopes smaller than arctan(µs),
the surface velocity is close to zero (it is not equal to zero, because of the regularization
method), namely u(z = H) ∼ 10−5, so that the mass is almost at rest.

These results are computed using 50 layers in the MSM. Note that we use a slope
in the well-posed region described in Barker et al. [12] for the full µ(I) rheology, which
is smaller than the well-posed region for the depth-averaged µ(I) rheology (well-posed
for δs = 20.8o 6 θ < δ2 = 31.8o in the case of depth-averaged µ(I) rheology). If we use a
slope close enough to δ2 the system becomes unstable because of the ill-posedness of the
full µ(I) rheology in this region.

Figure 2.3 shows the computing time required to simulate 50 seconds (on a laptop
with Intel R©CoreTM i7-4500U and 8 GB of RAM) and the relative error between the
computed velocity and the exact solution using a different number of layers and 30
nodes in the x-direction. In table 2.1 we show that second-order accuracy is reached in
norms L1 and L2, while in norm L∞ the order is over 1.5. This behaviour in norm L∞ is
due to the boundary conditions at the free surface, where the analytical solution satisfies
that ∂zu = 0.
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Figure 2.2: Comparison between the analytical solution (dashed and solid lines) and the simulations
obtained using the MSM with the µ(I) rheology (symbols). (a) Analytical and simulated downslope horizontal
velocity u, pressure p and strain rate ‖D(u)‖; (b) Analytical and simulated shear stress and friction coefficient
µ(I); (c) Comparison between the simulated (symbols) and the exact (dashed line) horizontal velocity at the
free surface as a function of the slope angle.
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Figure 2.3: (a) Computing time as a function of the number of layers in the MSM and (b) relative error
between the computed and exact velocity for simulations over a slope of θ = 24.64◦.
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N(∆z = 1/N) L1 - Error L1 - Order L2 - Error L2 - Order L∞ - Error L∞ - Order

4 8.74×10−3 – 8.08×10−3 – 7.59×10−3 –
8 2.27×10−3 1.84 2.13×10−3 1.92 2.39×10−3 1.66

16 5.84×10−4 1.96 5.58×10−4 1.93 7.84×10−4 1.61
32 1.48×10−4 1.97 1.45×10−4 1.941 2.62×10−4 1.57
64 3.76×10−5 1.982 3.76×10−5 1.948 8.94×10−5 1.55
128 9.48×10−6 1.988 9.73×10−6 1.95 3.08×10−5 1.53

Table 2.1: Order of the error for the velocity of the Bagnold flow.

2.4.1.2 2D steady uniform flow in a channel: sidewalls effect on the velocity
profile

The relevance of the lateral wall friction when a granular material flows in a channel
has been proved by Jop et al. [75] (see also Baker et al. [10]). Under the hypothesis
of a steady uniform flow and neglecting the variations in the transverse direction, they
propose to model this effect with a modified µ(I) rheology by adding an extra term,
which defines an effective friction term

µ(I) = µs +
µ2 − µs
I0 + I

I + µw
H − z
W

, (2.26)

where W is the channel width, µw is the constant coefficient of friction with the side
walls and H the thickness of the flow. Note that this extra term (last term) increases
when we get closer to the bottom from the free surface. In addition, for a channel slope
θ with respect to the horizontal axis, the analytical expression for the velocity profile
reads (see appendix B in Jop et al. [75]):

u(z) = 2
I0

√
ϕs g cos θ

ds

[
1

3
(H − z)3/2 − 1

3
(H − h∗)3/2 −

− µ2 − µs
µw

W
(

(H − z)1/2 − (H − h∗)1/2
)

+

+
√
h2

µ2 − µs
µw

W

(
arctan

√
H − z
h2

− arctan

√
H − h∗

h2

)]
,

where
h∗ = H − tan θ − µs

µw
W, h2 =

µ2 − tan θ

µw
W.

Note that we can integrate the last equation and the discharge is obtained as a function
of the slope θ. In these experiments, Jop et al. [75] fixed the discharge and computed the
velocity profile for different widths. We choose the same material and rheological proper-
ties and perform these experiments. The grain diameter is ds = 0.53 mm and the volume
fraction is ϕs = 0.6. The rheological parameters are µs = tan(20.9o), µ2 = tan(32.76o)
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Figure 2.4: Comparison between the analytical solution (solid lines) and the simulations obtained using the
MSM with the µ(I) rheology (symbols) for the velocity profile for Q∗ = 31.5, and different widths: W = 19ds,
W = 57ds and W = 283ds.

N (∆z = 1/N) L1-Error L1-Order L2-Error L2-Order L∞-Error L∞-Order

4 1.72×10−2 – 1.41×10−2 – 1.14×10−2 –
8 4.71×10−3 1.87 5.24×10−3 1.43 6.61×10−3 0.78
16 1.33×10−3 1.82 1.21×10−3 2.11 1.42×10−3 2.21
32 2.65×10−4 2.32 3.50×10−4 1.79 7.23×10−4 0.97
64 7.46×10−5 1.83 1.00×10−4 1.80 2.56×10−4 1.49

128 1.80×10−5 2.05 2.58×10−5 1.95 8.80×10−5 1.54

Table 2.2: Order of the error for the velocity of the Bagnold flow with lateral walls friction. Case W = 283 ds.

and I0 = 0.279. The friction coefficient with the sidewalls is µw = tan(10.4o). We set the
thickness of the flow H = 45ds, the dimensionless discharge Q∗ = 31.5 and different
widths of the channel are considered (W = 19ds, 57ds, 283ds).

Figure 2.4 shows the exact agreement between the analytical solution and the
simulations for the velocity profile. In this case we consider 50 layers to obtain the
solution. In table 2.2 we present the errors and accuracy order of the method for
W = 283ds. We obtain similar results to those presented in the previous subsection.

2.4.1.3 Laboratory experiments: transient velocity profiles

We compare our model with the experiments and simulations presented in Jop et al. [77]
where granular material is flowing within a narrow channel of width W = 19ds ≈ 1 cm.
The grain diameter is ds = 0.53 mm, the volume fraction is ϕs = 0.6 and the rheological
parameters are µs = tan(20.9o), µ2 = tan(32.76o) and I0 = 0.279. The friction with the
wall is modelled as in the precedent test, following (2.26). In this case, the authors set
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the friction coefficient with the sidewalls as µw = tan(13.1o).

For the simulations, we impose zero velocity at the initial time and the material flows
because of the gravitational force. We use 50 layers in the MSM. Figure 2.5 shows the
comparison between the results in [77] and the simulation using the MSM µ(I) rheology
model for the transient velocity profiles and its final state in two configurations. As is
concluded in [77], the agreement for the transient velocity profiles is better for high
slopes and less accurate for low inclinations. In the case of high inclination angles our
model results are similar to their simulations (see figure 2.5b), and are slightly better in
the other cases (see figure 2.5a).
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Figure 2.5: Comparison between the laboratory experiments (symbols) and simulations (dash-dotted lines)
in [77], and simulations using the MSM with the µ(I) rheology (solid lines) for the transient velocity profiles
for two different slopes θ, and times t∗ = t/

√
ds/g : (a) θ = 26.1o, t∗ = 1.2, 15.1, 166.1; (b) θ = 32.15o,

t∗ = 2.3, 7.5, 24.2, 77.8, 175.

2.4.2 Granular collapse experiments

We will now use the MSM to simulate the laboratory experiments performed in Mangeney
et al. [87]. The objectives are: to evaluate if (i) the model with the µ(I) rheology gives
a reasonable approximation of the flow dynamics and deposits of highly transient and
non-uniform granular flows, (ii) it recovers the strong change in the shape of the velocity
profiles with time and space, (iii) it reproduces the increase in runout distance observed
for increasing thickness of the erodible bed above a critical slope angle θc ∈ [12o, 16o]

and (iv) the multilayer approach improves the results compared to the classical depth-
averaged Saint-Venant model (i.e. monolayer model).

In Subsection 2.4.2.1 we also introduce a modification in the calculation of the friction
coefficient µ(I). In particular, we take into account second-order terms to approximate
‖D(u)‖. As shown below, this correction provides better results in some test cases.
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2.4.2.1 Improvement of the approximation of the µ(I) coefficient

The advantage of the multilayer models is that we obtain a variable profile of the downs-
lope velocity, in contrast with the prescribed profile of the monolayer model. It makes
it possible to obtain a better approximation of ‖D(u)‖ (see equation (2.15)). As a
consequence, this improves the approximation of the inertial number I (see equations
(2.2) and (2.17)), which is a key number in the variable friction coefficient µ(I).

As the main advantage of the multilayer model is the improvement of the ap-
proximation of ‖D(u)‖, we present two approximations that can be made with the
multilayer model. First, let us recall that a first-order approximation corresponds to
the definition (2.15). This approximation considers only the leading-order term, i.e.

‖D(u)‖α+ 1
2
≈ 1

2

∣∣∣∂zuα+ 1
2

∣∣∣ =
1

2

∣∣∣UHZ ,α+ 1
2

∣∣∣. Note that in dimensionless form, we have

‖D(u)‖ =
1

2

√
(∂zu)2 + 4ε2 (∂xu)2 + 2ε2∂xw∂zu+ ε4 (∂xw)2. (2.27)

We can improve the approximation of ‖D(u)‖ at the interfaces z = zα+ 1
2

by con-
sidering the approximation taking into account second-order terms in the previous
equation. For the numerical tests, we consider the following approximation ‖D(u)‖ at
the interfaces,

‖D(u)‖α+ 1
2
≈ 1

2

√∣∣∣UHZ ,α+ 1
2

∣∣∣2 + (∂x(uα+1 + uα))2. (2.28)

Note that this definition corresponds to an approximation of

‖D(u)‖ ≈ 1

2

√
(∂zu)2 + 4 (∂xu)2

at z = zα+ 1
2
. Nevertheless, in (2.27), the term 2∂zu ∂xw is not taken into account al-

though it is of the same order as 4(∂xu)2. This is because when an approximation of this
term is added, we obtain results that are very similar to those obtained when considering
(2.28). Furthermore adding this term implies an additional computational cost since
pre-calculated vertical velocities are required. Note that (2.28) is a second-order correc-
tion while we have developed a first-order model that neglects other second-order terms.
This correction, however, highlights the importance of second-order terms in granular
collapses over erodible beds, even if it is a partial correction.

The effect of this second-order approximation on the results is discussed below in
subsections 2.4.2.3 and 2.4.2.4. In particular, we observe an improvement of the results
compared to the original first-order approximation of ‖D(u)‖.

2.4.2.2 Experimental and test data

In the laboratory experiments performed in Mangeney et al. [87], subspherical glass
beads of diameter ds = 0.7 mm were used. The particle density ρs = 2500 kg m−3
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Figure 2.6: Sketch of the initial and final state of the granular collapse. A granular column with a thickness
h0 = 14 cm and a length r0 = 20 cm is released on an inclined plane of slope θ. The plane is covered by an
erodible bed of thickness hi made of the same material. When the flow stops, the maximum final thickness is
hf and its final extent rf .

and volume fraction ϕs = 0.62 were estimated, leading to an apparent flow density
ρ = ϕsρs = 1550 kg m−3.
The variable rf denotes the runout distance, i.e. the length of the deposit measured from
the position of the front of the released material at the initial time located at x = 0 m, tf
denotes the flow time from t = 0 s to the time when the material stops and hf denotes
the maximum final thickness of the deposit (see figure 2.6).

In order to use the µ(I) rheology, the rheological parameters (µs, µ2 and I0) must
be defined. We consider the data proposed in Ionescu et al. [70]. The minimum and
maximum friction angles are µs = tan(20.9o) and µ2 = tan(32.76o), according to the
measurements made in the experiments presented in Pouliquen & Forterre [100] and Jop
et al. [75]. These parameters can be obtained by fitting the curve hstop(θ), where hstop is
the thickness of the deposit lying on the slope when the supply is stopped after steady
uniform flow (see Pouliquen [99] for more details). Nevertheless, in [70] the value of
µs and µ2 are incremented, in order to consider the effect of lateral wall friction. Let us
remember that lateral wall friction is modelled in Jop et al. [75] as an additional friction
term µw(h− z)/W , where µw = tan(10.4o) is the coefficient of friction in the side walls.
Moreover, the thickness of the flowing layer (see Mangeney et al. [87]) is approximately
0.05 m and the width of the channel W = 10 cm. Therefore, the additional friction term
is approximately 0.1. As a result, in Ionescu et al. [70] the authors propose to consider
µs = tan(25.5◦) ≈ tan(20.9o) + 0.1 and µ2 = tan(36.5◦) ≈ tan(32.76o) + 0.1. Moreover,
we set I0 = 0.279 (see Jop et al. [76]).

That might be a coarse way to introduce the wall friction effect, owing that the
multilayer model is able to approximate the term µw(h− z)/W in each layer. However,
introducing the friction term µw(h − z)/W does not give good results in this granular
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Table 2.3: Summary of notation of the different models and colors-symbols

collapse test. Actually it seems that there is not enough friction at the initial times
to well capture the S-shaped profile. Note that the numerical simulations with the
proposed hydrostatic multilayer approach cannot be accurate at short times because the
dominant effect is the non-hydrostatic pressure. At short times the flowing layer can be
overestimated, and, consequently, the effect of the lateral wall friction is not properly
taken into account. These comparisons only make sense at the latter stage of the flow.
We plot the results for intermediate times in order to illustrate this discussion (see figure
2.14).

This experiment has been simulated for different slopes θ and thicknesses hi of the
erodible bed: θ = 16◦ and hi = 1.4, 2.5, 5 mm, θ = 19◦ and hi = 1.5, 2.7, 5.3 mm,
θ = 22◦ and hi = 1.82, 3.38, 4.6 mm, and θ = 23.7◦ and hi = 1.5, 2.5, 5 mm. Note that
the model does not take into account the effect of removing the gate during the initial
instants even though it has a non-negligible impact on the flow dynamics as shown in
Ionescu et al. [70]. For instance, when the gate is taken into account, even with no
friction along it, the flow is substantially slowed down; however, the deposit is almost
unchanged. All the simulations are performed using 20 layers.

We compare hereafter (i) the constant and variable friction rheologies and (ii) the
monolayer and multilayer approaches. In table 2.3, we summarize the notation and
symbols used for the different models. MSM is the notation for multilayer models. Note
that the monolayer model with a constant friction coefficient (denoted µs-monolayer
model) corresponds to the Savage-Hutter classical model when Kact/pas = 1. This model
is widely used in the literature, e.g. [65], [88]. Note also that the monolayer model with
a variable friction coefficient (denoted µ(I)-monoloyer model) corresponds to the one
proposed by Pouliquen [99], which has been recently used by Mangeney-Castelnau et al.
[89] and Mangeney et al. [86]. This model also coincides with the one proposed in Gray
& Edwards [64] by dropping second-order terms, that is, viscous terms.
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2.4.2.3 Deposit profiles

Let us compare the deposits simulated with the µ(I) rheology and with a constant friction
coefficient µs for different slopes θ and erodible bed thicknesses hi. Figure 2.7 shows
that the deposit calculated with the variable friction coefficient µ(I) is closer to the
experimental deposit than the one calculated with a constant friction coefficient µs. The
runout distance with the constant coefficient µs is always too long except for θ = 19o

and hi = 5.3 mm (see figure 2.7d). To properly reproduce the runout distance with a
constant friction coefficient, we need to increase its value. For example, with a slope
θ = 16◦ and an erodible bed thickness hi = 2.5 mm (figure 2.7a), we need to use the
value µs = tan(27.3◦) to produce the runout observed in the laboratory experiments.
That means an increment of 0.039 in the µs value. These results are consistent with the
simulations of Ionescu et al. [70], showing that the runout is strongly overestimated
when the viscosity tends to zero (i.e. when µ tends to µs).

Figure 2.8 shows, for a slope θ = 22◦ and hi = 1.82 mm, the final deposit obtained
using the constant or variable friction coefficients for multilayer and monolayer models.
The difference between the multilayer and monolayer models is stronger when using the
µ(I) rheology. For instance, the multilayer approach changes the full deposit profiles for
the µ(I) rheology, while it only changes the front position for µs. The multilayer approach
makes it possible to obtain a deposit shape which is very close to the experiments with
the µ(I) rheology. More generally, the shape of the deposit is closer to the observations
with µ(I)-MSM than with µs-MSM.
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Figure 2.7: Deposit obtained in the experiments (solid-circle blue line), with the µs-MSM (dotted-circle red
line) and with the µ(I)-MSM (solid-cross green line), for different slopes θ and erodible bed thicknesses hi.
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2.4.2.4 Effect of the erodible bed

Figure 2.9 shows two zooms, one near the maximum thickness of the deposit (zone of
circle (I) in figure 2.8), and one near the front (zone of circle (II) in figure 2.8), for
θ = 22◦ and different values of hi. With the µ(I)-MSM, the runout distance rf increases
as the thickness of the erodible bed hi increases (figure 2.9a(II)) as observed in laboratory
experiments. On the contrary, with the µs-MSM (figure 2.9b(II)), the runout distance rf
decreases with increasing hi. Note that in both cases the maximum final thickness hf
decreases with increasing hi as it occurs in the experiments (figure 2.9a(I),b(I)).

Figure 2.10 shows that the decrease in runout distance with increasing hi for constant
friction µs is observed for all slopes, e.g. θ = 0◦, 10◦, 16◦, 19◦, 22◦, and 23.7◦. For the
constant friction coefficient case, the µs-MSM and µs-monolayer models follow the same
trend. Note that this non-physical decrease in runout distance with increasing hi has
been demonstrated analytically in [50] for the monolayer model. Moreover, laboratory
experiments show that when the thickness of the erodible bed increases, for slopes θ ≥ θc,
where θc ∈ [12◦, 16◦] is a critical slope, the runout distance rf and the stopping time
tf both increase while the maximum final thickness hf decreases. Note that there is
no pattern concerning the runout when the thickness hi is increased for slopes θ < θc
(θ = 0◦, 10◦) in the laboratory experiments.

Figure 2.11 shows that the increase of runout distance observed in the experiments
for increasing hi is qualitatively well reproduced with the µ(I)-MSM. With the µ(I)-MSM,
the runout increase with hi is actually larger for higher slopes, as observed experimen-
tally: at θ = 16◦, the runout distance is almost unaffected by the thickness of the erodible
bed while it increases by 26.9% at θ = 22◦ when the thickness of the erodible bed increase
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final thickness hf (inset graphs) with the µ(I)-MSM (left hand side) and with the µs-MSM (right hand side),
for a slope θ = 22◦, in zones marked with circle in figure 2.8.

from 1.82 mm to 4.6 mm. Note that in the µ(I)-MSM, the increase of the runout distance
appears on slopes θ > 16◦, higher than θc in the experiments. Actually, it appears starting
with the slope θ = 18◦. When using the µ(I)-monolayer model, the runout distance
is higher than for the µ(I)-MSM whatever the slope and thickness of the erodible bed.
Based on the values of the runout distance in these cases, it is hard to discriminate
which of the monolayer or multilayer models is closer to the experiments. However, in
the µ(I)-monolayer model, the runout distance at θ = 16◦ and 19◦ decreases when hi
increases, contrary to the experimental data. For θ = 22◦ and θ = 23.7◦, the monolayer
and multilayer µ(I) models reproduce qualitatively the increase in runout with hi. Note
that for θ = 0◦, 10◦ (θ < θc), the µ(I) models predict a very slight decrease in the runout
distance.

The µ(I)-MSM is the model corresponding to the multilayer approach with the µ(I)

rheology when ‖D(u)‖ is approximated by the main term in (2.27), and µ(I)-C-MSM
when ‖D(u)‖ is approximated by the correction (2.28). Figure 2.11 shows that the
correction of ‖D(u)‖ corresponding to µ(I)-C-MSM improves the simulation of both the
runout extent and the influence of the erodible bed. They both increase the runout when
hi increases, although the effect of erosion is still much smaller than in the experiments.

For example, for θ = 19o, when hi varies from 1.5 mm to 5.3 mm, the experimental
runout increases by 15.1%. On the contrary, for the monolayer model the runout
decreases by 1.1%. For the µ(I)-MSM the runout increases by 2.5%, and for the µ(I)-
C-MSM it increases by 6.8%. For θ = 22o, when hi varies from 1.82 mm to 4.6 mm, the
experimental runout increases by 26.9%. It increases by 2.2%, 4.4% and 8.6% for the
monolayer model, the µ(I)-MSM and the µ(I)-C-MSM, respectively.

Note that with the µ(I)-C-MSM the critical slope above which the runout increases
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with the thickness of the erodible bed is θ ≥ 16◦, which is closer to the value observed in
the experiments than the critical slope predicted by the model without the second-order
correction. This suggests that the extension of this shallow model up to the second order
could be an important contribution.

As a conclusion, the increase of the runout distance with increasing thickness of the
erodible bed is only reproduced when using the MSM with the µ(I) rheology (µ(I)-MSM
or µ(I)-C-MSM), although this increase is significantly underestimated. Nevertheless,
this is the first time that a model has been able to reproduce this effect to our knowledge.

In figure 2.12, the final time (time at which the front stops) is plotted as a func-
tion of the thickness of the erodible bed for θ = 16o, θ = 19o and θ = 22o. Moreover,
for θ = 22o, we also plot the experimental data. Experimental data show that the
final time increases when the thickness of the erodible bed increases. We can see that
this is true for all the values of θ for the multilayer method. However, we observe
that it is only true for the highest value, θ = 22o, in the case of the monolayer model,
whereas the final time decreases when the erodible bed increases for θ = 16o and θ = 19o.

2.4.2.5 Flow dynamics and velocity profiles

Figures 2.13 and 2.14 show the time evolution of the granular column thickness for a
slope θ = 22◦ and an erodible bed of thickness hi = 1.82 mm for µs and µ(I), respectively,
for both the monolayer and multilayer models. As observed for the deposit, the difference
between the thickness profiles simulated with the multilayer and the monolayer model is
stronger for µ(I) than for µs. The µ(I)-MSM makes it possible to increase the maximum
thickness of the flow and decrease the thickness of the front. In particular it changes
the shape of the front. This is an important result as the shape of the front may be an
indicator of the flow rheology ([98, 74]).
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When a constant coefficient µs is used, very similar profiles are obtained with the
µs-MSM and µs-monolayer model (Savage-Hutter model). As a result, the multilayer
approach does not significantly improve the results when a constant friction coefficient
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is used. Note that during the initial instants, the simulated mass spreads faster than in
the experiments. This is partly due to the role of initial gate removal that is not taken
into account here. However, this effect does not explain the strong difference between
the simulation and experiments (see [70] for more details). The hydrostatic assumption
may also be responsible for this overestimation of the spreading velocity (see e.g. [88]).
In these figures we also show the flow/no-flow interfaces computed with the multilayer
models µs - MSM, µ(I) - MSM and µ(I) - C - MSM, by considering a threshold velocity
of 0.001 m/s to compute these interfaces. We see in figure 2.13 that the flow/no-flow
interface has a step-like shape for µs - MSM while it has a smoother shape for µ(I) -
MSM (see figure 2.14) in better qualitative agreement with laboratory experiments and
numerical modelling solving the full Navier-Stokes equations (i.e. figures 9 and 18 of
[70]). The flow/no-flow interface in the uppermost part even seems to be improved
when using µ(I) - C - MSM. For µ(I) - MSM and µ(I) - C - MSM, the lower layers stop
before the upper layers as observed experimentally. Note that in figures 2.13 and 2.14
we do not see the flow/no-flow interface at the final time because the material has
already stopped. As was shown in Subsection 2.4.1.1, the wall friction effect is crucial
to determine the position of the flow/no-flow interface. Because in this test we do
not consider the exact definition of the wall friction term, as in [70], the flow/no-flow
interface should not be very well captured.

Figure 2.15 shows that the second-order correction in µ(I)-C-MSM leads to simulated
deposits that are generally closer to the experimental observations than those calculated
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with µ(I)-MSM. In particular, the deposits at θ = 19◦ and θ = 22◦ with hi = 4.6 mm
are very well reproduced (figure 2.15b,c,d,f). However, in some cases, µ(I)-MSM gives
better results than µ(I)-C-MSM, for example for θ = 22◦ with hi = 1.82 mm. This is true
for the overall dynamics as illustrated in figure 2.14 that shows the time change of the
granular column thickness. We can see that with µ(I)-C-MSM, the avalanche is faster
and the runout is overestimated and very similar to the runout obtained with the µ(I)

monolayer model. As other second-order terms than those included in the µ(I)-C-MSM
model are neglected, it is not easy to draw a firm conclusion on the improvement of
results when using second-order terms.

The multilayer approach makes it possible to obtain a normal profile of the downslope
velocity. Figures 2.16 and 2.17 show the normal profiles of the downslope velocity
obtained at different times until the mass stops, for two different configurations of slopes
and erodible beds. In order to obtain a more accurate profile, 40 layers are used in the
µ(I)-MSM. The different kind of profiles observed in figures 2.16 and 2.17 are in good
qualitative agreement with typical velocity profiles of granular flows GDR MiDi [60] (see
also Lusso et al. [84, 85]), from Bagnold-like to S-shaped profiles. This shows the ability
of the model to recover velocity profiles in a wide range of regimes.

Finally, let us compare the averaged velocity obtained with the µ(I)-monolayer model
to the average of the velocities over all the layers in the µ(I)-MSM. In figure 2.16, for
the green profile (respectively red and magenta profiles), the velocity in the monolayer
model is 1.01 m/s (respectively 0.02 and 0.14 m/s) and it is 0.95 m/s in the multilayer
model (respectively 0.03 and 0.05 m/s). Note that we obtain similar values for the first
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and second profiles. For the third profile, the averaged velocities strongly differ. Actually,
at this position and time, the velocity profile corresponds to the stopping phase for the
multilayer model but not for the monolayer model. As a result, the velocity obtained in
the multilayer model is lower than that obtained in the monolayer model. Figure 2.18
shows the normal profile of normal velocity for the same configuration as figure 2.16.
Note that the normal velocities are always negative and that their absolute values are
greater in the upper layers.





CHAPTER 3
Well-balanced multilayer discretization

and side walls friction∗

∗The results in this chapter have been published in the paper: E.D. Fernández-Nieto, J. Garres-Díaz,
A. Mangeney, & G. Narbona-Reina, 2D granular flows with the µ(I) rheology and side walls
friction: a well-balanced multilayer discretization, Journal of Computational Physics, 356 (2018),
pp. 192–219.

3.1 Introduction

This chapter provides two main contributions. Firstly, we introduce a 2D-model for
granular flows with the µ(I) rheology in confined channels, which takes into account
side walls effect with a Coulomb-type boundary condition. This model follows from a
dimensional analysis of Navier-Stokes equations, the hypothesis of a one-dimensional
flow, i.e. no transversal velocity (v = 0), and the integration along the transversal
direction of the channel. We also show that this model matches the one proposed in
Jop et al. [75] under some specific assumptions, which, in particular, are satisfied for
uniform flows.

Based on academic tests, we evaluate the influence of the width of the channel on
the normal profiles of the downslope velocity thanks to the multilayer approach that is
intrinsically able to describe changes from Bagnold to S-shaped (and vice versa) velocity
profiles. This is not possible for the models proposed by Gray & Edwards [64], Edwards
& Gray [49] and Baker et al. [10] because of the prescribed Bagnold profile neither
for the model proposed by Capart et al. [32], which only deals with S-shaped profiles.
In particular we are able to calculate what is the minimum channel width for which
the granular mass flows over its all thickness, the minimum width for which a Bagnold
profile is obtained instead of a S-shaped profile and the minimum width required to
obtain a velocity profile independent of the channel width. This analysis may be helpful
when designing and analysing laboratory experiments.

69



70 3.2. A 2D-model including lateral walls friction

The second contribution of this chapter is the multilayer discretization for the pro-
posed model. We present a numerical scheme with an appropriate treatment of the
rheological terms in order to obtain a well-balanced scheme. To this aim, we combine a
particular hydrostatic reconstruction taking into account the friction term (see Bouchut
[25]) and a specific treatment of wet/dry fronts for the elliptic part of the multilayer
system. This numerical approximation is also used in the previous chapter.

We present several tests with dry areas. Our simulations show that important differ-
ences in the final deposit are obtained whether the side walls friction term is approached
by a multilayer or by a single-layer model. In particular, the single-layer model re-
produces steady solutions with no physical meaning. Actually, the numerical scheme
preserves those solutions with second order accuracy. Therefore, the side walls friction
must not be included using single-layer models.

Finally, we compare the numerical results with experimental data on granular col-
lapses. A strength of the model is the capability of computing the time evolution of the
flow/no-flow interface. In particular, it reproduces the effect of erosion for granular
flows over initially static material lying on the bed for uniform flows. This is possible
when using a variable friction coefficient µ(I).

The chapter is organised as follows. Section 3.2 is devoted to the derivation of
the 2D-model with the new approach to account for the side walls friction. In this
section we also present the multilayer discretization of the proposed model, namely the
discretization of the side walls friction term. In Section 3.3 we propose the numerical
scheme for the multilayer system. Finally, the numerical tests are in Section 3.4.

3.2 A 2D-model including lateral walls friction

Let us consider the three-dimensional velocity u = (u, v, w) ∈ R3, as in Chapter 1,
and the total stress tensor σ = −pI + τ , where I is the 3D identity tensor and τ the
deviatoric stress tensor given by τ = ηD(u). Following Section 2.2, we consider the
viscosity defined by the µ(I) rheology

η =
µ(I)p√

‖D(u)‖2 + δ2
. (3.1)

Let us also consider tilted coordinates (x, y, z) ∈ [xa, xb]× [−W/2,W/2]× R, with a
constant slope θ. Here, W denotes the channel width, and the channel length is xb − xa,
see figure 3.1. In Chapter 2 we have shown that the multilayer shallow model with
the µ(I) rheology is able to reproduce typical velocity profiles of granular flows in the
presence of lateral walls. In order to approximate lateral wall friction there, we followed
Jop et al. [75] where the flow is assumed to be one-dimensional and uniform in the
downslope direction x. In that case, side wall friction is introduced by adding a second
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Figure 3.1: Sketch of the rectangular domain

term in the definition of the µ(I) law:

µ̃(I) = µ(I) + µw
zb + h− z

W
, (3.2)

where µw is the constant friction coefficient at the lateral walls, and zb + h is the level of
the free surface (see Subsection 2.4.1.2). The coefficient µw is usually different and lower
than the coefficient used to model friction at the bottom (see e.g. [10, 32, 70, 91, 76, 77]).
Let us look for a one-dimensional model for non-uniform flow in the x-direction that
takes into account the friction with the lateral walls.

The three-dimensional Navier-Stokes system (1.7) can be written as

∂xu+ ∂yv + ∂zw = 0,

ρ
(
∂tu+ u ∂xu+ v ∂yu+ w ∂zu

)
+ ∂xp = −ρg sin θ + ∂xτ

xx + ∂yτ
xy + ∂zτ

xz,

ρ
(
∂tv + u ∂xv + v ∂yv + w ∂zv

)
+ ∂yp = ∂xτ

yx + ∂yτ
yy + ∂zτ

yz,

ρ
(
∂tw + u ∂xw + v ∂yw + w ∂zw

)
+ ∂zp = −ρg cos θ + ∂xτ

zx + ∂yτ
zy + ∂zτ

zz,

(3.3)

At the free surface, we set the usual kinematic condition and we assume that the pressure
vanishes. At the bottom, either the no-slip condition or Coulomb type friction can be
considered. Moreover, we consider a Coulomb type friction at the lateral boundaries,
described as follows (see Martin et al. [91]):

σ nw − ((σ nw) · nw)nw =

(
−µwp

u

|u|
, 0, 0

)′
, (3.4)

being nw = (0,±1, 0)′ the normal vector at y = ±W/2, respectively.

To derive a multilayer shallow model from dimensional analysis (see Fernández-Nieto
et al. [54]), we assume that the aspect ratio between the characteristic height (H) and
length (L),

ε =
H

L
,
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is small. Note that the influence of the lateral walls on the friction coefficient (3.2) is
measured by the term µw(zb + h − z)/W . The dimension of this term is H/Ly, where
Ly is the characteristic width of the channel. Therefore, the lateral walls have a higher
influence on the flow when the characteristic width (Ly) of the channel is small in
comparison with its characteristic height (H). We would like to study the influence of
this scale into the system, then, in order to take it into account in the model we perform
a dimensional analysis by also introducing the parameter

λ =
H

Ly
.

Notice that the higher the value of λ, the more important the lateral friction becomes.
Denoting the dimensionless variables with the tilde symbol (̃.), we define

(x, y, z, t) = (Lx̃, Lyỹ, Hz̃, (L/U)t̃), W = LyW̃ ,

(u, v, w) = (Uũ,
ε

λ
Uṽ, εUw̃),

h = Hh̃, ρ = ρ0ρ̃,

p = ρ0U
2p̃, η = ρ0UHη̃, ηM = ρ0UHη̃M ,

(τxx, τxy, τ yy, τxz, τ yz, τ zz) = ρ0U
2
(
ετ̃xx, τ̃xy, ετ̃ yy, τ̃xz, ετ̃ yz, ετ̃ zz

)
. (3.5)

with ρ0 the characteristic density. Note that since

D(u) =
U

H

1

2


2ε∂x̃ũ λ∂ỹũ+ ε2

λ
∂x̃ṽ ∂z̃ũ+ ε2∂x̃w̃

λ∂ỹũ+ ε2

λ
∂x̃ṽ 2ε∂ỹṽ ελ∂ỹw̃ + ε

λ
∂z̃ṽ

∂z̃ũ+ ε2∂x̃w̃ ελ∂ỹw̃ + ε
λ
∂z̃ṽ 2ε∂z̃w̃

 ,

we obtain by (3.5)

τ̃xx = η̃∂x̃ũ, τ̃xy = η̃
2

(
λ∂ỹũ+ ε2

λ
∂x̃ṽ
)
, τ̃xz = η̃

2
(∂z̃ũ+ ε2∂x̃w̃) ,

τ̃ yy = η̃∂ỹṽ, τ̃ yz = η̃
2

(
λ∂ỹw̃ + 1

λ
∂z̃ṽ
)
, τ̃ zz = η̃∂z̃w̃.

Then, the system of equations (3.3) can be rewritten using the non-dimensional variables
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as (tildes have been dropped for simplicity):



∂xu+ ∂yv + ∂zw = 0,

ρ
(
∂tu+ u∂xu+ v∂yu+ w∂zu

)
+ ∂xp = −1

ε
ρ

1

Fr2
tan θ + ε∂xτ

xx +
λ

ε
∂yτ

xy +
1

ε
∂zτ

xz,

ρ
(
∂tv + u ∂xv + v ∂yv + w ∂zv

)
+
λ2

ε2
∂yp =

λ

ε
∂xτ

yx +
λ2

ε
∂yτ

yy +
λ

ε
∂zτ

yz,

ρε2
(
∂tw + u ∂xw + v ∂yw + w ∂zw

)
+ ∂zp = −ρ 1

Fr2
+ ε∂xτ

zx + ελ∂yτ
zy + ε∂zτ

zz,

(3.6)
where Fr denotes the Froude number,

Fr =
U√

gH cos θ
.

We now assume that the flow is one dimensional (i.e. v = 0) and keeping all the
terms involving λ, the previous system reads



∂xu+ ∂zw = 0,

ρ
(
∂tu+ u∂xu+ w∂zu

)
+ ∂xp = −1

ε
ρ

1

Fr2
tan θ +

λ2

2ε
∂y (η∂yu) +

1

2ε
∂z (η∂zu) +O(ε),

∂yp = O(ε),

∂zp = −ρ 1

Fr2
+
ελ2

2
∂y (η∂yw) + O(ε).

(3.7)

Note that the term

λ2

2ε
∂y (η∂yu) (3.8)

is of the main order 1/ε and collects the lateral friction effect on the momentum equation.
Lateral walls friction has then a high influence on the flow, both on the norm of the
maximum velocity and on its normal velocity profile.

Moreover, this is the term that allows us to introduce the lateral Coulomb friction in
the model, by integrating in the horizontal transversal direction. To this aim, we define

u =
1

W

∫ W/2

−W/2
u dy, w =

1

W

∫ W/2

−W/2
w dy, p =

1

W

∫ W/2

−W/2
p dy, η =

1

W

∫ W/2

−W/2
η dy.

We also assume that the perturbation with respect to the transversal averages are
small, therefore we can approximate fg by f̄ ḡ, for any two variables f , g. By integrating
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system (3.7) with respect to the transversal direction between −W/2 and W/2 we obtain

∂xu+ ∂zw = 0,

ρ
(
∂tu+ u∂xu+ w∂zu

)
+ ∂xp = −1

ε
ρ

1

Fr2
tan θ +

1

ε
∂z

(
η
∂zu

2

)
+

λ2

Wε
(η∂yu)|W/2 +O(ε),

p|W/2 = p|−W/2 +O(ε),

∂zp = −ρ 1

Fr2
+
ελ2

2W

(
(η∂yw)|W/2 − (η∂yw)|−W/2

)
+O(ε).

In the previous equation we have supposed a symmetric profile of η∂yu, i.e., we assume
that η∂yu|−W/2 = −η∂yu|W/2 . Moreover, from lateral friction condition (3.4) it follows that

λ
(η

2
∂yu
)
|W/2

= −µwp|W/2

(
u

|u|

)
|W/2

and (η∂yw)|W/2 = (η∂yw)|−W/2 = 0. (3.9)

Note that thanks to the second equality of previous equation we obtain hydrostatic
pressure p. Since we study the case of a uniform flow along the y-direction, we consider
p|W/2 = p. In addition, we also suppose that the sign of the velocity at the lateral walls
coincides with the sign of the averaged velocity u, as usual in averaged models.

Therefore, to obtain the final model, we neglect terms of order ε, leading to the first
order model approximation

∂xu+ ∂zw = 0,

ρ
(
∂tu+ u∂xu+ w∂zu

)
+ ∂xp = −1

ε
ρ

1

Fr2
tan θ +

1

ε
∂z

(
η
∂zu

2

)
− 2λ

Wε
µw p

u

|u|
,

∂zp = −ρ 1

Fr2
.

(3.10)
Going back to the dimensional variables, we get

∂xu+ ∂zw = 0,

ρ
(
∂tu+ u∂xu+ w∂zu

)
+ ∂xp = −ρ g sin θ + ∂z

(
η
∂zu

2

)
− 2

W
µw p

u

|u|
,

∂zp = −ρ g cos θ.

(3.11)

Hereafter bars are dropped by simplicity. We can find some similarities to previous
models presented in the literature. In order to make the comparison we must take into
account that terms of order ε have been neglected to obtain the proposed model (3.11).
Thus, since ‖D(u)‖ = |∂zu| /2 + O(ε), we obtain that model (3.11) matches the one
introduced in Martin et al. [91] for hydrostatic pressure and neglecting also here terms
in ε.
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In addition, if the horizontal velocity satisfies that sign(u) = sign(∂zu), which is
usually the case, then it also coincides with the model proposed in Jop et al. [75]. In
that work the lateral friction effect is defined for uniform flows, by adding an extra term
to the definition of µ(I) (equation (3.2)). Let us see that in fact it is equivalent up to
first order in ε to model (3.11), for flows satisfying sign(u) = sign(∂zu) and not only for
uniform flows.

We use (3.1) with δ = 0 and the previous approximation of ‖D(u)‖ = |∂zu| /2 +O(ε),
then the viscous term in (3.11) neglecting terms of order ε reads

∂z

(
µ(I) p(z)

|∂zu|
∂zu

)
− 2

W
µw p(z)

u

|u|
. (3.12)

Since we have a hydrostatic pressure, p(z) = ρ g (zb + h − z), the second term in the
previous equation can be rewritten as

− 2

W
µw ρ g cos θ (zb + h− z) sign(u) = ∂z

(
1

W
µw ρ g cos θ (zb + h− z)2sign (u)

)
=

= ∂z

(
µw
zb + h− z

W
p(z) sign (u)

)
.

Therefore (3.12) yields

∂z

(
µ(I) p(z) sign (∂zu) + µw

zb + h− z
W

p(z) sign (u)

)
.

Now, if sign(∂zu) = sign(u), we obtain

∂z

((
µ(I) + µw

zb + h− z
W

)
p(z) sign(∂zu)

)
= ∂z

(
µ̃(I) p(z)sign(∂zu)

)
, (3.13)

which is the viscous term resulting of considering the modified friction coefficient
proposed in Jop et al. [75]. Then, we obtain that in this case the model (3.11) matches
the one proposed in [75].

Note also that the term on the right hand side of equation (3.13) is an approximation
at order ε of div(µ̃(I)p D(u)

‖D(u)‖). For example, these terms are equal in the case of a uniform

flow. However, div(µ̃(I)p D(u)
‖D(u)‖) cannot be rewritten as

div(µ(I)p
D(u)

‖D(u)‖
)− 2

W
µw p(z)

u

|u|
,

which is the term that appears in the full model (see Ionescu et al. [70]). As a result,
using µ̃(I) to describe side walls friction is not correct in general in the full 3D model. It
can be justified if we consider a model at first order in ε, with hydrostatic pressure, and
sign(∂zu) = sign(u).

In the next subsection we present a multilayer discretization of the model (3.11).
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3.2.1 A multilayer discretization

In this section we briefly describe the multilayer approach for the system (3.11). This is
fully analogous to the previous chapters, except for the side walls friction term. Then,
reader can follow the whole procedure developed in subsections 2.3.2 and 2.3.3, and
here we focus on the approximation of the new term in (3.11).

Let us recall the approximation of the viscosity ηα+ 1
2

up to first order. We consider as
before ‖D(u)‖ = |∂zu| /2 +O(ε), so the approximation at z = zα+ 1

2
is given by

‖D(u)‖α+ 1
2
≈ 1

2

∣∣∣UHZ ,α+ 1
2

∣∣∣ , (3.14)

where
UHZ ,α+ 1

2
=
uα+1 − uα
hα+ 1

2

, for α = 1, . . . , N − 1, (3.15)

with hα+ 1
2

the distance between the midpoints of layers α and α + 1. Therefore, the
viscosity coefficient at the interface Γα+ 1

2
reads

ηα+ 1
2

= ηα+ 1
2
(UHZ ,α+ 1

2
) =

µ(Iα+ 1
2
)pα+ 1

2√∣∣∣UHZ ,α+ 1
2

∣∣∣2 /4 + δ2

, (3.16)

for α = 0, . . . , N − 1, and ηN+1/2 = 0 since we fix the atmospheric pressure, pS = 0. In
(3.16) the pressure is assumed hydrostatic, then

pα+ 1
2

= ρg cosθ
N∑

β=α+1

hβ , Iα+ 1
2

=
ds

∣∣∣UHZ ,α+ 1
2

∣∣∣√
pα+ 1

2
/ρs

=
ds|uα+1 − uα|

hα+ 1
2

√
ϕsg cosθ

∑N
β=α+1 hβ

, (3.17)

for α = 0, . . . , N − 1. The definition of the viscosity at the bottom η1/2 is particularly
interesting. It will depend on the considered boundary condition, either no-slip or a
Coulomb type friction. Also UHZ , 1

2
must be defined by that boundary condition. This will

be discussed later.

3.2.1.1 Final model

Following the procedure presented in Chapter 2, the final µ(I) rheology multilayer model
at first order in ε, including the lateral wall friction, reads, for α = 1, ..., N ,



lα

(
∂th+ ∂x(huα)

)
= Gα+ 1

2
−Gα− 1

2
,

lα

(
ρ∂t (huα) + ρ∂x (hu2

α) + ρg cos θ h ∂x (zb + h)

)
= Kα− 1

2
−Kα+ 1

2
+

+
1

2
ρGα+ 1

2
(uα+1 + uα) − 1

2
ρGα− 1

2
(uα + uα−1) + Mα,W ,

(3.18)
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where we recall that the bottom topography had been defined through the functions

zb = b+ b̃; b̃ = −x tan θ,

and Gα+ 1
2

is the mass transference (2.12) between the layers α and α+ 1. Once more,
the vertical velocity is the piecewise linear function defined by (1.16)-(1.17). Finally, the
viscous term Kα+ 1

2
is

Kα+ 1
2

= −1

2
ηα+ 1

2
(UHZ ,α+ 1

2
)UHZ ,α+ 1

2
, α = 1, . . . , N − 1 (3.19)

as in previous chapter, for ηα+ 1
2

defined in (3.16)-(3.17). The terms K 1
2

and KN+ 1
2

are
defined by the boundary conditions at the bottom and the free surface, respectively (see
Section 3.2.1.2).

The side walls friction is taken into account through the term Mα,W . Following the
multilayer procedure we obtain that

Mα,W = −
∫ zα+1/2

zα−1/2

2

W
µw

uα
|uα|

ρ g cos θ (zb + h− z) dz =

=
2

W
µw

uα
|uα|

ρ g cos θ
(zb + h− z)2

2

]zα+1/2

zα−1/2

.

After some algebra we get

(zb + h− z)2

2

]zα+1/2

zα−1/2

= −hα

(
N∑

β=α+1

hβ +
hα
2

)
= −hα

(
zb + h−

(
zb +

α−1∑
β=1

hβ +
hα
2

))
.

Therefore, denoting pα = ρ g cos θ

(
zb + h−

(
zb +

α−1∑
β=1

hβ +
hα
2

))
, the pressure in the

midpoint of layer α, the lateral walls friction term is written

Mα,W = −lα h
2

W
µw pα

uα
|uα|

. (3.20)

As in previous chapters, model (3.18) can be written as a system with N + 1 equations
and unknowns: the total height and the discharge of each layer, i.e., (h, q1, . . . , qN), By
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defining (1.31) the auxiliary coefficients ξα,γ the system (3.18)-(3.20) is rewritten as

∂th+ ∂x

(
N∑
β=1

lβqβ

)
= 0,

∂tqα + ∂x

(
q2
α

h
+ g cos θ

h2

2

)
+ g cos θ h ∂xzb +

+
N∑
γ=1

1

2hlα

(
(qα + qα−1) ξα−1,γ − (qα+1 + qα) ξα,γ

)
∂xqγ =

=
1

ρlα

(
Kα− 1

2
−Kα+ 1

2
+ Mα,W

)
α = 1, . . . , N.

(3.21)

3.2.1.2 Boundary conditions

The boundary condition at the free surface is simply defined by taking into account that
the atmospheric pressure is neglected (pS = 0), therefore KN+ 1

2
= 0. The term K1/2 is

Figure 3.2: Sketch of the placing of the variables in the multilayer domain

defined by the boundary condition at the bottom. A difficult task is to strongly impose
the no-slip or Coulomb type friction boundary condition at the bottom in multilayer
models. A good way to impose strongly the no slip condition at the bottom would be
to calculate the velocities at the vertical interfaces Γα+1/2. On the contrary, multilayer
models calculate averaged velocities within the layer, which in turn is a second order
approximation of the velocity at the middle of the layer (see figure 3.2). As an example,
in the first layer we have u1 = u(h1/2) + O(h2

1). As a result, we can only impose the
boundary conditions in a weak sense and the no slip condition is not exactly achieved,
as it can be observed when looking in details the numerical results (see Section 3.4.1).
Furthermore, we can not impose strongly a Coulomb type boundary condition since the
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unknowns of the system are the velocities and not the stresses, contrary to Augmented
Lagrangian method (see Ionescu et al. [70]), for example.

Let us propose simple ways to weakly impose no-slip and Coulomb type boundary
condition. The key point is to approximate ∂zu at the bottom. The value of UHZ as an
approximation of ∂zu at the bottom z = z1/2 depends on the velocity in the first layer u1.
In general we assume the following approximation, UHZ , 1

2
= u1−u0

h1
where u0 represents

the velocity in a fictitious layer under the bottom level.
If we consider a Coulomb friction law, the stress tensor must satisfy the condition

σ nb −
((
σ nb

)
· nb
)
nb =

(
µ(I 1

2
)p 1

2

u1

|u1|
, 0
)′
, (3.22)

where nb is the downward unit normal vector to the bottom. We can consider either a
friction law with a constant parameter (µ(I 1

2
) = µs) as in Martin et al. [91], or given by

the expression of the µ(I) rheology. In this case, we consider the approximation of ∂zu
at the bottom considering that the velocity u0 = 0,

UHZ , 1
2

=
u1

h1

.

This makes it possible to obtain a non-zero velocity at the bottom.

Then, the term K 1
2

is given by condition (3.22),

K 1
2

= −ρ g h cosθ µ(I 1
2
)
u1

|u1|
, where I 1

2
=

ds |u1/h1|√
ϕs g h cosθ

. (3.23)

If no-slip condition is considered then we must change the approximation UHZ , 1
2

because
now the velocity must vanish at z = z1/2, so we introduce u0 = −u1. Hence we consider
the approximation

UHZ , 1
2

=
2u1

h1

.

Then K1/2 is given by

K 1
2

= −ρ g h cosθ µ(I 1
2
)
u1

|u1|
, where I 1

2
=

ds |2u1/h1|√
ϕs g h cosθ

. (3.24)

As a conclusion, the viscous term at the bottom (K1/2) defined from a no-slip condition
only differs from the one when considering a Coulomb friction law in the inertial number:

I 1
2
,No slip = 2 I 1

2
,Coulomb . (3.25)

In the next section we detail the numerical discretization of the proposed multilayer
system (3.21).
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3.3 Numerical approximation

In the literature, multilayer systems have been discretized by combining a usual finite
volume method with a splitting procedure [3, 5, 7, 8, 9, 56]. Thus, authors usually
separate the viscous terms, which are treated with a semi-implicit scheme. We follow this
structure in a particular way. One of the main contribution in Chapter 2 is to introduce a
multilayer system with non-constant viscosity. Nevertheless, its numerical approximation
was not explained. To our knowledge it’s the first time that a numerical scheme for a
multilayer system with non-constant viscosity is exposed. These rheological terms add
new difficulties, namely when looking for a well-balanced scheme. Here we consider a
hydrostatic reconstruction in a finite volume method in order to ensure the well-balanced
property.

Firstly, we can write the system (3.21) in matrix notation as

∂tw + ∂xF (w) + S(w)∂xzb +B(w)∂xw = E(w) (3.26)

wherew = (h, q1, q2, ..., qN)
′
∈ Ω ⊂ RN+1 is the unknown vector, F (w) = (F α(w))α=0,1,...,N

is a regular function from RN+1 to RN+1, B(w) = (Bα,β(w))α,β=0,1,...,N is a regu-
lar matrix function from RN+1 to MN+1(R), S(w) = (Sα(w))α=0,1,...,N , and E(w) =

(Eα(w))α=0,1,...,N are vector functions from RN+1 to RN+1.
F α(w) and Sα(w) are defined by the convective and pressure terms, respectively,

F α(w) =



N∑
β=1

lβqβ, if α = 0,

q2
α

h
+ g cos θ

h2

2
, if α = 1, ..., N ;

Sα(w) =


0, if α = 0,

g cos θh, if α = 1, ..., N.

Note that the addition of convective and pressure terms can be written as

∂xF (w) + S(w)∂xzb = ∂xFc(w) + S(w)∂x(zb + h), with Fc(w) = F (w)− h

2
S(w).

Therefore, Fc(w) contains the convective term and pressure terms are defined by
S(w)∂x(zb + h). On the other hand, Bα,β(w) is defined in terms of the momentum
transference terms,

Bα,β(w) =


0, if (α, β) ∈ {0} × {0, 1, ..., N} ∪ {1, ..., N} × {0},

1

2hlα
(qα + qα−1) ξα−1,β −

1

2hlα
(qα+1 + qα) ξα,β, if α, β = 1, ..., N.
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The viscous terms are included in the definition of Eα(w):

Eα(w) =


0, if α = 0,

1

ρlα

(
Kα− 1

2
−Kα+ 1

2
+Mα,W

)
, if α = 1, ..., N.

Next, we detail the two steps of the splitting procedure. In the first step we consider the
hyperbolic system with the non-conservative products, corresponding to the momentum
transference terms between the vertical layers. In the second step we deal with the
viscous terms.

Before describing these processes, let us focus on the treatment of the bottom condi-
tion because it plays a crucial role in order to achieve the well-balanced property. The
numerical discretization must solve two different difficulties related to the well-balanced
property. The first one is physical, i.e., the Coulomb friction at the bottom and the walls
must behave as a force which opposes the movement of the granular flow. When the
total friction is greater than the sum of the other forces acting on the system, then we
should obtain uα = 0 for α = 1, . . . , N . This effect is achieved in the second step, through
the discretization of the bottom friction term K1/2. The second difficulty is a numerical
issue. We use a Riemann solver in order to solve the hyperbolic part of the system, which
introduces numerical diffusion. This artificial diffusion must be zero in order to ensure
∂th = 0 when the granular flow has stopped, i.e., when uα = 0 for α = 1, . . . , N . Next,
we describe the two steps of the numerical approximation:

Step 1: Firstly, we do not consider viscous effects, that is, E(w) = 0. Then, we consider
a finite volume solver to discretize system (3.26). Namely, we consider a HLL type
method defined as follows:

w
n+1/2
i = wn

i +
∆t

∆x

(
Fnc,i−1/2 −Fnc,i+1/2 +

1

2

(
Bni+1/2 + Bni−1/2 + Sni+1/2 + Sni−1/2

))
,

(3.27)
with

Bni+1/2 =
1

2
(B(wni+1) +B(wni ))

(
wn
i+1 −wn

i

)
,

and
Sni+1/2 =

1

2
(S(wni+1) + S(wni ))

(
hni+1/2+ − hni+1/2−

)
,

where hi+1/2± is defined by the hydrostatic reconstruction introduced in Audusse et al.
[6]:

hi+1/2− = max(0, hi − (∆Zi+1/2)+);

hi+1/2+ = max(0, hi+1 − (−∆Zi+1/2)+),
(3.28)

where
(∆Zi+1/2)+ = max(0, zb,i+1 − zb,i). (3.29)
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The numerical flux associated to the convective terms, Fnc,i+1/2, is

Fnc,i+1/2 =
1

2

(
Fc(w

n
i ) + Fc(w

n
i+1)
)
− 1

2
Dni+1/2,

where Dni+1/2 is the numerical diffusion of the scheme. Let us remark that this method
can be seen as a path-conservative method with a second order approximation of the
Roe matrix by setting the paths as segments (see Parés & Castro [95]).
Thus, in order to define the numerical diffusion, we consider the HLL extension proposed
in Castro Díaz & Fernández-Nieto [35]. In this paper authors proposed a general
formulation of numerical methods where the numerical viscosity matrix is defined in
terms of the evaluation of a polynomial on the Roe matrix. In our case, taking into
account that we use a second order approximation of Roe matrix by segments and the
fact that we introduce a well-balanced correction associated to the Coulomb friction
term, the numerical diffusion is defined as follows:

Di+1/2 = a0

(
ŵn
i+1 − ŵ

n
i

)
+ a1

(
Fc(w

n
i+1)− Fc(w

n
i ) + Bni+1/2 + Sni+1/2

)
, (3.30)

with

a0 =
SR|SL| − SL|SR|

SR − SL
, a1 =

|SR| − |SL|
SR − SL

,

being SL and SR approximations of the minimum and maximum wave speed. In practice,
to defined SL and SR we consider a baroclinic approximation,

SL = min

(
N∑
α=1

lαu
n
α,i −

√
g cos θhni ,

N∑
α=1

lαu
n
α,i+1/2 −

√
g cos θhni+1/2

)
,

SR = max

(
N∑
α=1

lαu
n
α,i+1 +

√
g cos θhni+1,

N∑
α=1

lαu
n
α,i+1/2 +

√
g cos θhni+1/2

)
.

In (3.30) we use the reconstructed states

ŵn
i = (ĥi+1/2−, q1,i, . . . , qN,i), ŵn

i+1 = (ĥi+1/2+, q1,i+1, . . . , qN,i+1),

where ĥi+1/2± is defined by (3.28) taking in this case

(∆Zi+1/2)+ = max(0, zb,i+1 − zb,i + ∆Ci+1/2), (3.31)

with ∆Ci+1/2 = −fi+1/2∆xi+1/2 defined by considering the Coulomb (or no slip) friction
term. Several definitions of fi+1/2 can be given (see Bouchut [25]), in this work we set

fi+1/2 = − proj
gµβ

(
−g(hi+1 + zb,i+1 − hi − zb,i)

∆x
−
uβ,i+1/2

∆t

)
, (3.32)

where

µβ = µs +
2

W
µw

(
N∑

γ=β+1

hγ +
hβ
2

)
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being β the lowest layer that is moving, i.e., |uβ| > 0. If all the layers are at rest then
β = N . Moreover,

proj
gµβ

(X) =

 X if |X| ≤ gµβ;

gµβ
X

|X|
if |X| > gµβ,

(3.33)

and uβ,i+1/2 is an average state of the velocity at layer β. For example we can set the Roe
average state

uβ,i+1/2 =

√
hi uβ,i +

√
hi+1 uβ,i+1√

hi +
√
hi+1

.

In practice, this term is important when the granular flow is stopping. In general,
upper layers are the last ones that stop in granular flows, then we can also consider
uβ,i+1/2 = uN,i+1/2. Note that the first condition in (3.33) gives the well-balanced property
by ensuring that the numerical diffusion is zero when the velocity is also zero.

Step 2: Now, we must add the contribution of E(w). With this goal, a semi-implicit
discretization is considered:

wn+1
i = w

n+1/2
i + ∆t E(wn

i ,w
n+1
i ), (3.34)

where wn+1/2
i is the approximation (3.27). Note that the first component of E(w) is 0,

therefore we clearly obtain hn+1 = hn+1/2.
We get qn+1

i =
(
qn+1

1 , . . . , qn+1
N

)
i

as solution of the N × N tridiagonal system

qn+1
α,i = q

n+1/2
α,i +

∆t

ρ lα

(
ηα+ 1

2
(wn

i )
un+1
α+1,i − un+1

α,i

lα+ 1
2
hn+1
i

− ηα− 1
2
(wn

i )
un+1
α,i − un+1

α−1,i

lα− 1
2
hn+1
i

+Mn,n+1
α,W,i

)
,

(3.35)
for α = 2, ..., N − 1, where ηα+ 1

2
is defined by (3.16). The lateral side walls friction terms

approximation is

Mn,n+1
α,W,i = −lα hni

2

W
µw p

n
α,i

un+1
α,i√∣∣unα,i∣∣2 + δ2

, (3.36)

with

pnα,i = ρ g cos θ

(
zb,i + hni −

(
zb,i +

α−1∑
β=1

hnβ,i +
hnα,i
2

))
, for α = 1, . . . , N.

The equations for α = 1 and α = N can be analogously obtained taking into account
that ηN+1/2 = 0 and the definition of K1/2. For the first layer we consider a regularization
of (3.23)-(3.24), which can be written as follows:

qn+1
1,i = q

n+1/2
1,i +

∆t

ρ l1

η 3
2
(wn

i )
un+1

2,i − un+1
1,i

l 3
2
hn+1
i

−
ρ g hni cosθ µ(In1

2
,i
)√∣∣∣∣un1,i − un0,il1hni

∣∣∣∣2 + δ2

un+1
1,i − un+1

0,i

l1h
n+1
i

+Mn,n+1
1,W,i

 ,

(3.37)
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taking into account the definition of I1/2 (see (3.23)-(3.25)) and u0 (see figure 3.2)
depending on the bottom condition. This formulation corresponds to approximating the
friction condition at the bottom with a regularization method. It is consistent with the
definition of η1/2 given by (3.16). As a consequence, we cannot obtain exactly u = 0

m s−1 when a solution at rest is expected. Actually, for the numerical tests presented
in Section 3.4 we get velocities of order 10−7 m s−1. Let us also remark that with this
formulation the friction conditions at the bottom and lateral walls are considered directly
in the definition of the linear system.

For the top layer, we consider

qn+1
N,i = q

n+1/2
N,i +

∆t

ρ lN

(
Mn,n+1

N,W − ηN− 1
2
(wn

i )
un+1
N,i − u

n+1
N−1,i

lN− 1
2
hn+1
i

)
. (3.38)

Note that the symmetric matrix associated to this linear system is a strictly diagonally
dominant matrix, therefore the system is well-conditioned. Finally, we use the Thomas
algorithm to solve each tridiagonal system.

We consider two different hydrostatic reconstruction in the first step, which are
defined by (3.28)-(3.29) and (3.28)-(3.31). In the first one we deal with the change of
the topography but the friction at the bottom is not taken into account. In the second
one, the friction condition is managed in order to achieve a well-balanced scheme. An
important remark is that the numerical treatment of the friction condition would not be
consistent if we include the friction condition in the first reconstruction. This is because
in that case the friction at the bottom would be added twice in a time step.

The last consideration that we do is related with solving the linear systems. It
corresponds with solving a vertical diffusion in each cell. We only solve the linear system
in the cell Ii if the total height hn+1

i is larger than εS. Otherwise, the friction law at
the bottom together with the lateral walls friction are considered as in the case of a
single-layer model. The friction term (bottom and side walls) is applied to the first
layer and we neglect the vertical variations in those cell, i.e., we set qn+1

α,i = qn+1
1,i for

α = 2, ..., N .
Therefore, in those cells for which 0 < hn+1

i < εS (or if we consider the single-layer
model N = 1), we define

qn+1
α,i =

 q
n+1/2
1,i −∆tρ g cosθ hn+1

i µn1,i
qn+1

1,i∣∣qn1,i∣∣ , if |qn+1/2
1,i | > ∆t σn,n+1

c,i

0, otherwise,
α = 1, . . . , N,

(3.39)

being σn,n+1
c,i = ρ g hn+1

i cosθ µn1,i, with µn1,i = µ(In1
2
,i
) +

hni
W
µw, where In1

2
,i

is defined by

(3.23) if we consider a Coulomb friction law, or by (3.24) for a no slip condition.
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3.4 Numerical tests

In this section we show four numerical tests in order to validate the model and the
numerical scheme presented in previous sections. Firstly, in Subsection 3.4.1, we consider
a uniform flow and investigate the influence of the lateral wall friction on the vertical
profile of velocity. We also study the evolution of two critical values of the channel width
for different bottom slopes: (i) Wc that is the first value for which all the granular mass is
moving, i.e., if W ≥ Wc there is no flow/no-flow interface; (ii) Wb that is the first value
for which the downslope velocity along the normal direction has a Bagnold profile and
not a S-shaped profile. Secondly, in Subsection 3.4.2, we perform a test focused on the
well-balanced property of the scheme, combined with the treatment of the wet/dry front.
Third, in Subsection 3.4.3, we show that approximating the side walls friction through a
single-layer model could lead to non-physical solutions that strongly differ from those
computed with a multilayer model. Finally, in Subsection 3.4.4, we compare the results
obtained with our model to laboratory experiments of granular column collapse.

All the tests are computed over a reference inclined plane of angle θ (tilted coor-
dinates), specified for each test. As we commented in previous section, for the tests
where a solution at rest is expected, we cannot obtain exactly u = 0 m s−1 because of
the regularization method. However, we get velocities of order 10−7 m s−1, which can be
considered as zero without meaning a loss of accuracy in the results.

3.4.1 Uniform flow: influence of the channel width

In this test we consider a uniform flow of granular material, whose height is h =

50 ds ≈ 2.65 cm, which flows within a narrow channel of width W and slope θ. The
grain diameter is ds = 0.53 mm and the volume fraction is ϕs = 0.6. The rheological
parameters are µs = tan(20.9o), µ2 = tan(32.76o), µw = tan(13.1o) and I0 = 0.279, which
are typical values for experiments with glass beads.

For the simulations, we impose no slip condition at the bottom and zero velocity at
the initial time. The material starts to flow because of the gravitational force. We use 50
layers in the multilayer discretization and consider the regularization parameter δ = 10−5

s−1 in equation (3.36). The horizontal length of the domain is 1.1, which we discretize
with 100 points. We let the material flow until the uniform steady state is reached, then
all the results will refer to this steady state.

First, we focus on the velocity profiles in the direction normal to the slope when
going from a narrow to a wider channel. Figure 3.3 shows these profiles at a slope
θ = 26.1◦ for increasing channel widths W = 9 ds, 18 ds, ..., 13176 ds. Note that in this
test the parameter λ = H/Ly take values in a range from 3 · 10−3 to 5.5. In particular,
the influence of the channel width on the position of the flow/no-flow interface is
shown. The thickness of the flowing layer increases as the width does so. Moreover,
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all the granular layer flows when the thickness W ≥ Wc = 117 ds ≈ 6.2 cm (see figure
3.3a). Figure 3.3b shows an S-shaped velocity profile until W ≥ Wb = 425 ds ≈ 22.5

cm where the flow then exhibits a Bagnold profile. The critical value Wb is measured
by approximating the second derivative of the downslope velocity along the normal
direction. Then Wb is the first value of W for which the second derivative changes its
sign. Interestingly, an asymptotic velocity profile is reached for values of W greater than
3 meters approximately (W = 6588 ds). Then, the velocity profile is independent of the
channel width. Note that these values are related to the chosen thickness h = 50 ds and
slope angle θ = 26.1◦.
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Figure 3.3: Normalized normal profiles of the downslope velocity (u) on a slope θ = 26.1◦ and for different
channel widths (W ), increasing from left to right lines. (a) Solid lines correspond to the cases when the
flow/no-flow interface exists and dashed lines are the cases when the flow/no-flow interface does not exist; (b)
circle-dotted lines correspond to the cases when the velocity profile is still S-shaped and cross-dotted lines are
the cases when the velocity follows a Bagnold type profile.

Figure 3.4 shows the influence of the channel width on the maximum velocity (i.e.
the velocity at the free surface). We can observe in this figure a nonlinear behavior of
the maximum velocity in terms of the channel width. For small values of the width
umax scales approximately as (W/ds)

3/2 (see inset (a)). When the width increases the
maximum velocity tends to the velocity reached when the lateral friction term is not
considered (i.e. W =∞). For Wb = 425ds ≈ 22.52 cm, the maximum velocity is still 1.3
times lower than for W =∞.

Let us investigate how Wc (minimum width for all the granular mass to flow) and
Wb (minimum width for the flow to exhibit a Bagnold profile) vary with the slope
angle for a given flow thickness h = 50 ds ≈ 2.65 cm (figure 3.5a). Wc and Wb are
calculated by increasing the width W in steps of 25 ds ≈ 1.33 cm for fixed slopes
θ = 22◦, 24◦, 26.1◦, 28◦ and 30◦. For small slopes, high values of W should be reached
to get fully flowing materials with Bagnold velocity profile (i.e. Wc ≈ 35.77 cm and
Wb ≈ 84.8 cm at θ = 22o). The values of Wc and Wb rapidly decrease with increasing
slope angles and reach almost constant values Wc ≈ 4 cm and Wb ≈ 20 cm. For example
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Figure 3.4: Normalized velocity (solid black lines) at the free surface as a function of the channel width W .
The inner figures are (a) the logarithmic scale; (b) zoom of main figure for short widths W . Dashed-dot red
line is the velocity at the free surface without side walls effect.

for a slope θ = 24◦, we see that all the material flows for W > 9.28 cm and that the
hypothesis of Bagnold profile is valid only when W > 33.12 cm. These results could help
choosing the good dimensions of the channel in laboratory experiments.

Another key issue in shallow depth-averaged models is how to relate the depth-
averaged velocity calculated with these models to the free surface velocity that is gen-
erally the one measured in laboratory experiments. Figure 3.5b shows the difference
between the maximum velocity and the velocity averaged along the normal direction,
normalized by this maximum velocity, for three different values of the width channel:
W0 < Wc, Wc and Wb (see table 3.1). We see that this difference is huge (greater than
75 % of the maximum velocity) in the case of small widths. It is because in that case
only the layers close to the free surface are moving. This difference decreases for larger
widths since all the granular layer is moving. Note that for W = Wb, the difference is
almost constant for all the slopes and still of about 43 % of the maximum velocity.

θ (◦) W0 (cm) Wc (cm) Wb (cm)

22 16 35.77 84.8
24 4 9.28 33.12

26.1 3.3 6.2 22.52
28 2.6 5.3 18.55

Table 3.1: Values of the channel width: Wc (minimum width for which all the granular layer is moving),
Wb (minimum width for which the velocity follows a Bagnold profile) and W0 < Wc as represented in figure
3.5.
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Figure 3.5: (a) Evolution of the threshold widths Wc (solid-circles blue line) and Wb (cross-dashed green
line) as a function of the slope angle θ. (b) Relative difference between the maximum and the averaged velocity
for different slopes (represented by different colors) measured for widths W0 < Wc, Wc and Wb in table 3.1.

In these tests a no-slip condition was considered at the bottom. Figure 3.6 shows
the velocity profiles with both no slip and friction condition, for a slope θ = 26.1◦ and
three widths: Wc, Wb and W ≈ 7 m for which the influence of the side walls is almost
insignificant. We see that there is no difference between no-slip and basal friction
conditions for the small width Wc, and a slight increase of the velocity obtained with
basal friction condition for larger widths. We have also checked that the value of Wc and
Wb are almost the same in both conditions, for the slope θ = 26.1◦.
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Figure 3.6: Normalized vertical profiles of the downslope velocity (u) for different widths (Wc =
117 ds, Wb = 425 ds and W = 13176 ds) of the channel and θ = 26.1◦. Solid lines (respectively symbols)
correspond to the simulations with no slip (respectively friction) condition at the bottom. Dashed black lines
and blue crosses are the extrapolated velocities at the bottom.
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3.4.2 Well-Balanced test including dry areas: granular collapse
over an arbitrary bottom

In this test we consider a granular collapse over an arbitrary topography. We show
that the hydrostatic reconstruction (3.28)-(3.33) is the key point making it possible
to obtain the well-balanced property. By comparing the normal profiles of velocity at
different times/points, we also show that our model produces results similar to the model
considered in Jop et al. [75].

We take the grain diameter ds = 0.7 mm and the solid volume fraction ϕs = 0.62,
leading to an apparent flow density ρ = 1550 kg m−3. The friction coefficients are
µs = tan(25.5◦), µ2 = tan(36.5◦) and I0 = 0.279. We also consider the following
topography (in m) over an inclined plane with slope θ = 16◦ (see figure 3.7),

b(x) = 0.25e−50(x+0.5)2

+ 0.03e−50(x−0.75)2

.

The initial condition is given by q = 0 m2 s−1 and

h(x) =

{
0.34− b(x) if |x| ≤ 0.2;

0 otherwise.

The length of the domain is 4 m and we take 400 points for the spatial discretization.
The channel width is W = 10 cm and the side walls friction is included through the
proposed model with the friction coefficient µw = tan(10.5◦). We use 50 layers in the
multilayer system. Figure 3.7 shows the evolution of the computed free surface with
the multilayer model with and without the hydrostatic reconstruction. The results are
shown in cartesian (left) and local (right) coordinates. We obtain similar profiles of the
flowing mass in both cases at the first times. Nevertheless, when using the hydrostatic
reconstruction (3.28)-(3.33) the mass stops at the final time (t = 1.7 s), whereas it never
stops if the hydrostatic reconstruction for the Coulomb friction is not taken into account
(see figure 3.7b for longer times). The hydrostatic reconstruction (3.28)-(3.33) is thus
a key ingredient of the well-balanced property of the scheme, since it allows to cancel
the numerical diffusion (3.30) when the velocities are close to zero (u = 0 is not exactly
achieved due to the regularization method). In the following, we will always use the
hydrostatic reconstruction.

In figure 3.8 we show the results with and without wall friction for the monolayer
and multilayer models. More difference on the shape of the final deposit simulated
with the two models is observed when wall friction is considered (left column in figure
3.8). Note that introducing this friction term in the monolayer model adds a constant
extra friction over the whole granular layer whereas, in multilayer models, this terms
introduces a friction starting from zero at the free surface and increasing with the flow
depth. This will be deeper investigated in subSection 3.4.3.

The ability of the model to capture the different shapes of the normal profile of the
downslope velocity is shown in figure 3.9. These profiles are shown at different times at
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Figure 3.7: Left: representation in cartesian coordinates. Right: representation in local coordinates on the
reference plane. (a) Free surface evolution during a granular collapse at different times, computed with the
multilayer model, taking into account the hydrostatic reconstruction for the Coulomb friction (solid brown
line) and without the hydrostatic reconstruction for the Coulomb friction (dashed blue line). (b) Free surface
evolution without taking into account the hydrostatic reconstruction at larger times.
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two fixed points: the center of the initial released mass (x = 0 m) and the summit of the
second bump of the topography (x = 0.75 m). With the proposed multilayer model we
can reproduce the Bagnold profile when the flow is accelerating as well as the S-shaped
profiles corresponding to the stopping phase. We also show the profiles obtained when
including side walls friction in the same way as in Jop et al. [75]. We see that the results
of both models coincide. This is consistent with the remark in Section 3.2, showing that
both models coincide if sign(u) = sign(∂zu).
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Figure 3.9: Normal profiles of downslope velocity measured at x = 0 m and 0.75 m at times t = 0.4, 0.8, 1.3
s. The profiles are computed with the proposed model (solid brown lines) and with the model proposed by Jop
et al. [75] (symbols).

3.4.3 Solutions at rest with lateral walls friction: multilayer vs
monolayer

With this test we show that an appropriate vertical discretization is essential in order to
properly take into account the effect of the side walls friction.

We focus on the steady solutions of system (3.21), that is, we assume that uα = 0. For
the monolayer model (N = 1) the momentum equation in system (3.21) gives a solution
at rest if the following condition is satisfied:∣∣∣∂x (b̃+ b+ h

)∣∣∣ ≤ ∣∣∣∣µs + µw
h

W

∣∣∣∣ ,
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where b̃ = −x tan θ. Let us denote by S = b + h the free surface in local coordinates.
Without loss of generality let us suppose that its slope is negative and θ ≥ 0. Then, a
solution at rest is defined by S, solution of the following differential equation:

∂xS(x) = tan θ − µs −
µw
W

(S(x)− b(x)). (3.40)

By setting the initial condition S(xf ) = zf , for some constant values xf and zf , the
solution reads

S(x) =
W

µw
(−µs + | tan θ|) −

− µw
W

e−
µw
W
x

∫ xf

x

b(s) e
µw
W
sds+

(
zf +

W

µw
(µs − | tan θ|)

)
e−

µw
W (x−xf).

(3.41)

For the multilayer case, from the momentum equation in system (3.21) we deduce
that a solution at rest is reached if∣∣∣g cos θ h ∂x

(
b̃+ b+ h

)∣∣∣ ≤ ∣∣∣∣ 1

ρlα

(
Kα− 1

2
−Kα+ 1

2
+ Mα,W

)∣∣∣∣ for α = 1, . . . , N.

From the definition of the Kα+1/2 and Mα,W , the previous inequality reads∣∣∣∂x (b̃+ b+ h
)∣∣∣ ≤ ∣∣∣∣µs + Cα µw

h

W

∣∣∣∣ ,
where

Cα = 2

(
N∑

β=α+1

lβ +
lα
2

)
.

Then, the main difference between the solution at rest of a multilayer model (with N > 1)
and the monolayer model is the coefficient Cα that multiplies µw. For the monolayer
model this coefficient is 1.

As a consequence the solution (3.41) is not a steady solution of the multilayer model.
This is because the pressure varies with depth and therefore the friction is smaller for
higher layers (that move) and gets bigger for lower layers (they can eventually stop).
For example, assuming an odd number of vertical layers, N = 2n + 1 and lα = 1/N

for α = 1, . . . , N , then Cα = 2
N

(N − α + 1
2
). The only value of α that makes Cα = 1

is for α = n + 1, that is, the middle layer. The value of Cα is greater than 1 for lower
layers (α < n+ 1), so the friction is bigger and then the material does not move. On the
contrary, Cα < 1 for higher layers (α > n+ 1) which induces a smaller friction and the
material moves. Then, in the multilayer case, the solution S defined by (3.41) is not a
steady solution, since the upper part of the granular mass will flow.
The solution at rest of the multilayer model converges to the solution defined by the free
surface

S = zf + (tan θ − µs)(x− xf ).
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NPX L1-Error L1-Order L2-Error L2-Order L∞-Error L∞-Order

50 7.02×10−3 – 6.47×10−3 – 9.86×10−3 –
100 2.87×10−3 1.29 2.44×10−3 1.41 2.06×10−3 2.25
200 1.82×10−3 0.65 1.55×10−3 0.65 1.26×10−3 0.71
400 1.06×10−4 4.09 1.02×10−4 3.92 2.06×10−4 2.61
800 3.08×10−5 1.79 2.67×10−5 1.94 4.65×10−5 2.15

1600 8.01×10−6 1.95 6.86×10−6 1.96 1.13×10−5 2.03

Table 3.2: Errors and related order for the free surface computed with the monolayer model obtained by
varying the number of points in the x direction. NPX denotes the number of points in the x-direction.

Let us perform a test showing that the analytical solution defined by (3.41) is
preserved up to second order by the proposed numerical method when we consider only
one layer, N = 1. On the contrary, when imposing this solution as initial condition in the
multilayer model, the mass moves and the new simulated solution at rest is very different.
For this test, we assume a flow with the same material and rheological properties as in
the previous subsection. We consider the domain D = [0, 2] × [−0.05, 0.05] × R, and a
channel width W = 10 cm. We also consider a bottom topography

b(x) = 0.1 e−100(x−0.5)2

+ 0.35 e−100x2

,

over a reference plane of angle θ = 16◦. As initial condition the velocities are set to zero
and the initial thickness is given by h = S − b, where S is defined by (3.41), with xf = 1

m and zf = b(xf ).
In this test we consider 20 layers in the multilayer model and 200 nodes in the

horizontal direction. Results are shown in figure 3.10a for monolayer and multilayer
solutions with side walls friction. Table 3.2 shows that the monolayer model keeps the
steady solution to second order accuracy whereas the solution for the multilayer model
evolves in time to a different deposit (figure 3.10a). We can observe that the slope of
the final deposit obtained with the multilayer model is very close to (tan(θ) − µs) in
local coordinates, that is the slope of the solution at rest at which the multilayer model
converges. The line with this slope is labeled as “Reference” in figure 3.10. Note that
the slope of the computed deposit must always be lower than the slope of this reference
line, given by the angle of repose of the material. Note also that the difference of runout
distances predicted by the monolayer and the multilayer models is close to 50% of the
extension of the initial condition.

We also show that we cannot introduce the side walls friction effect by using a
monolayer model, even taking a lower friction coefficient µw/2, µw/3, etc. The deposit
widely differs from the solution obtained with the multilayer model in both, the shape
and the runout. When the friction coefficient µw/2 is considered, the runout are 1.67,
2.15, 2.16 m in cases (a), (b), (c) in figure 3.10 respectively, whereas by using the
multilayer model the obtained runout are 1.48, 1.76, 2.1 m respectively. Note also that
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(a) θ = 16◦, b(x) = 0.1 e−100(x−0.5)2
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Figure 3.10: Left column: evolution in time of the thickness profile for monolayer (dot-dashed blue line)
and multilayer (solid brown line) models with the side walls friction term. Right column: deposit obtained
with the monolayer and the multilayer models. Solid black lines (solid red lines) represent the deposit with
the monolayer model taking a lower side walls friction coefficient µw/2 (µw/3). As a reference of theoretical
solution for the multilayer model, we plot a line (point-solid gold line) whose slope is (tan θ − µs) in local
coordinates.
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despite the runout is larger, the height of the material in the initial part of the column is
also bigger than the obtained in the multilayer case.

Let us also remark that the bottom topography reduces the exponential shape of the
free surface profile (see the influence of b(x) in (3.41)). Therefore, the solutions with the
multilayer and monolayer model are even more different in the case of flat bottom (see
figures 3.10b and 3.10c). We conclude that including the side walls friction term using
single-layer models is not appropriate, since they preserve non-physical solution due to
the overestimation of the lateral friction term obtained because of the depth-average
hypothesis.

3.4.4 Laboratory experiments: dam break over rigid and erodible
beds

We compare here our numerical simulation with the laboratory experiments of Mangeney
et al. [87] in the case of a rigid bed (i.e. not covered by a layer of erodible particles). This
configuration was not investigated in previous chapter (also [54]) due to the difficulty
to deal with dry areas (h = 0) from a numerical point of view. When numerical models
cannot handle dry areas, a thin layer of material is generally added on these dry zones.
We will investigate here what is the error related to such artificial thin layer. We also
study the time evolution of the flow/no-flow interface with either a variable or a constant
friction coefficient.

We release a granular column of height h = 14 cm and length 20 cm over an inclined
plane of slope θ, confined in a channel of W = 10 cm. The granular material in the
experiments is made of subspherical glass beads with the material and rheological
properties described in previous Section 3.4.2. For the numerical simulation, we use 20
layers in the multilayer model.

In this test the friction with the lateral walls is modelled as in previous chapter
by adding 0.1 to the friction coefficient µs ([54]). As discussed in [54], hydrostatic
models are not able to reproduce the first instants of the granular collapse due to
the strong effect of non-hydrostatic pressure. Indeed hydrostatic models spread much
faster than experiments at the beginning Mangeney-Castelnau et al. [88]. As a result,
side walls friction is not well approximated in such models because the flowing layer
is overestimated during the first instants. Despite this limitation, we compare our
simulation with laboratory experiments with and without taking into account the extra
friction term on the lateral walls.

Figures 3.11, 3.12 and 3.13 show the results with and without adding the side walls
friction term for different slopes of the inclined plane, θ = 0◦, 16◦, 19◦, 22◦. We see that
the new term increases the effective friction, and then the approximation of the free
surface improves at short times, while the runout in the final deposit decreases. The
comparisons only make sense at final times as consequence of the hydrostatic assumption.
As the slope θ increases, the flow gets thinner and the downslope velocity gets higher
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Figure 3.11: Thickness of the granular mass as a function of the position along the slope in the laboratory
experiments (solid-circle blue line), with the µ(I)-multilayer model (solid green line), and the model adding
the side walls friction term (µ(I)− µw-multilayer, solid red line), for a slope (a) θ = 0◦, (b) θ = 16◦ in the
rigid bed case (without an erodible bed over the slope). Thin dashed lines are the flow/no-flow interfaces.

compared to the velocity normal to the bottom. As a result, the hydrostatic approximation
(i.e. shallow flow approximation) is more correct for higher slopes. Indeed, we can see
that the time evolution of the free surface is close to the one obtained with the complete
visco-plastic model of Martin et al. [91] where non-hydrostatic pressure is taken into
account (represented by gold squares in figure 3.13a). One of our objective here is to
show that multilayer models can be a powerful tool to approximate the flow/no-flow
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Figure 3.12: Thickness of the granular mass as a function of the position along the slope in the laboratory
experiments (solid-circle blue line), with the µ(I)-multilayer model (solid green line), and the model adding
the side walls friction term (µ(I)− µw-multilayer, solid red line), for a slope θ = 19◦. Thin dashed lines are
the flow/no-flow interfaces.

interface position. In order to compute this interface we consider a threshold for flow,
i.e. the material is assumed to flow if the velocity is higher than 1 cm s−1.

Figures 3.14 and 3.15 show the distribution of the horizontal and vertical velocities,
and the variable friction coefficient computed with the µ(I) - multilayer and the µ(I)

- µw - multilayer model for the slopes θ = 0◦ and θ = 16◦ at an intermediate time. We
see that the absolute value of the velocities (horizontal and vertical) computed with
the µ(I)-µw multilayer model is lower close to the bottom due to the fact that the new
friction term is greater there. This difference is more clear in figure 3.15, corresponding
to a non flat bottom. In both cases, we see that the variable friction coefficient is greater
close to the front since the strain rates are also greater and the pressure is small leading
to high inertial number too. Note that this friction coefficient is quite similar with both
models in figures 3.14 and 3.15. In particular, this means that the difference between
the velocities for the two models is due to the lateral friction term in the µ(I) - µw -
multilayer model.

Dealing with a rigid bed involving wet/dry fronts is usually hard numerically. There-
fore, a thin layer of material is sometimes added on the rigid bed to get rid from
numerical issues while expecting to get similar result to the case of true rigid bed. To
quantify the error related to this artificial layer, we simulate here the collapse over a thin
layer of material of thickness hi of a mass with initial thickness:

h(x, 0) =

{
14 cm if x ≤ 0;

hi otherwise,
with hi = 0, 0.014, 0.14, 1.4, 4.6 mm.
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Figure 3.13: Thickness of the granular mass as a function of the position along the slope in the laboratory
experiments (solid-circle blue line), with the µ(I)-multilayer model (solid green line), and the model adding
the side walls friction term (µ(I)− µw-multilayer, solid red line), for a slope θ = 22◦ (a) in the rigid bed case,
(b) with an erodible bed hi = 4.6 mm. Thin dashed lines are the flow/no-flow interfaces and gold squares are
the simulations of Martin et al. [91], corresponding to t = 0.32, 0.96, 1.76 s, based on a complete visco-plastic
model (i.e. without the shallow approximation).

Figure 3.16 shows the collapsing mass profiles and the deposits simulated for a slope
θ = 22◦. We see that, when the layer is thin enough (hi = 0.014 mm), the simulated
mass profiles and deposit are similar to the case when hi = 0 (true rigid bed). Slight
differences appear at hi = 0.14 mm and get stronger for larger thicknesses (hi = 1.4
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µ(I) - multilayer

µ(I) - µw - multilayer

Figure 3.14: Free surface in the case θ = 0◦ at time t = 0.18 s computed with the µ(I)-multilayer model
(left hand side) and with the µ(I)-µw-multilayer (right hand side). Colors represent the distribution of
horizontal velocities u (upper part), vertical velocities w (middle part) and variable coefficient of friction µ(I)
(lower part).
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µ(I) - multilayer

µ(I) - µw - multilayer

Figure 3.15: Free surface in the case θ = 16◦ at time t = 0.3 s computed with the µ(I)-multilayer model
(left hand side) and with the µ(I)-µw-multilayer (right hand side). Colors represent the distribution of
horizontal velocities u (upper part), vertical velocities w (middle part) and variable coefficient of friction µ(I)
(lower part).
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Figure 3.16: Deposit obtained in the laboratory experiments (solid-circle blue line), with the µ(I)-multilayer
model, for a slope θ = 22◦ at different times and for thicknesses of the thin layer hi = 0.014 mm (gold points),
0.14 mm (dashed brown line), 1.4 mm (dot-dashed magenta line) and 4.6 mm (dotted-cross black line). The
solid green line is rigid bed case.

mm). In this case, we observe an increase of the runout distance and a different shape
of the deposit, in particular near the front as shown in inset zooms in figure 3.16 at
intermediates times.

Note that hi = 0.14 mm represents about 0.1% of the thickness of the initial granular
column. As a conclusion, similar results can be obtained when a very thin layer of
material is added to the rigid bed instead of having a true rigid bed. Nevertheless, the
error made may be large if this layer is not thin enough.

Figure 3.17 shows the evolution of the flow/no-flow interface b(x, t) for the granular
collapse over a slope θ = 22◦ at x = 20 and x = 60 cm for flow over a rigid bed
(left column) and over an erodible bed of thickness hi = 4.6 mm (right column).The
simulations are performed using the multilayer model (with 50 layers) with a variable
friction coefficient µ(I) or a constant coefficient µs, and adding or not the side walls
friction term.

When the variable friction coefficient µ(I) is used (with and without the friction
term at lateral walls) to simulate granular collapse over a rigid bed, the flow/no-flow
interface goes from the bottom to the top of the granular layer until the whole thickness
stops. For granular collapse over erodible bed, the flow/no-flow interface penetrates
into the erodible bed very rapidly (i.e. erosion of the granular bed), stays at the bottom
for a while (i.e. the whole thickness is flowing) and then goes up to the free surface.
This qualitative behaviour is very similar to what is observed in experiments (see e.g.



102 3.4. Numerical tests

(Left) hi = 0 mm (Right) hi = 4.6 mm

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

b
(c
m
)

 

 

x = 20 cm

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

 

 

x = 20 cm

0 0.5 1 1.5 2
0

0.5

1

1.5

2

t(s)

b
(c
m
)

 

 

x = 60 cm

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

t(s)

 

 

µ(I )

µ(I ) − µw

µs

µs − µw

x = 60 cm

Figure 3.17: Time evolution of the flow/no-flow interface computed for the granular collapse (W = 10 cm)
over a slope θ = 22◦, covered by a layer of thickness hi = 0 mm (left column) and hi = 4.6 mm (right column)
of the same material, at x = 20, 60 cm. The solid green (green symbols) lines represent the simulations by
using the variable friction coefficient µ(I) (constant coefficient µs) without adding the side walls contribution.
The solid red (red symbols) lines represent the simulations with the variable friction coefficient µ(I) (constant
coefficient µs) adding the side walls friction term.

[87, 84]). Adding walls friction with the µ(I) rheology makes the flow/no-flow interfaces
go up earlier and change the shape of its time evolution up to the free surface. With a
constant friction coefficient µs and no wall effects for flows over a rigid bed, the mass
moves all over the depth until all the granular thickness suddenly stops, contrary to
what is observed experimentally. When adding walls friction, the flow/no-flow interface
propagates from the bottom to the top due to increasing friction with depth. For flows
over erodible bed with µs, the flow/no-flow interface penetrates into the erodible layer
as rapidly as with µ(I) but then, again, goes abruptly up to the free surface. Adding
walls friction in this case drastically change the flow/no-flow behaviour that get closer to
the results obtained with µ(I).

Lusso et al. [84] investigated the evolution of the flow/no-flow interface b(t) through
a simplified model which takes into account the variation in the direction normal to
the topography but not in the downslope direction. They compare their results to what
was measured experimentally in the well-developed shallow flow following granular
collapse over a channel of width W = 20 cm and slope θ = 22◦ covered by a static
layer of thickness hi = 5 mm. The configuration and material properties of theses
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Figure 3.18: Time evolution of the flow/no-flow interface computed with the multilayer model for a uniform
flow, with linear initial velocity profile, over a slope θ = 22◦ which is covered by a static layer of thickness
hi = 5 mm. In this case the channel with is W = 20 cm. The solid green (green symbols) lines represent
the simulations with the variable friction coefficient µ(I) (constant coefficient µs) without adding the side
walls contribution. The solid red (red symbols) lines represent the simulations with the variable friction
coefficient µ(I) (constant coefficient µs) adding the side walls friction term. The diamonds-solid gold line is
the experiments in [84] for this test.

experiments are the same as those exposed previously. They compared the position of
the flow/no-flow interface at x = 90 cm with analytical and numerical solution of the
non depth-averaged shallow equations for uniform flow in the downslope direction. The
parameter and initial condition of the test are:

µs = tan(26◦), µ2 = tan(28◦), ds = 0.7 mm, ϕ = 0.62, I0 = 0.279,

h0 = h(t = 0, x) = 2 cm, b0 = b(t = 0, x) = 5 mm.

The linear initial profile of velocity is assumed in the moving layer (b0 < z < h0):

u(t = 0, z) = 70 (z − b0) m/s if z > b0; u(t = 0, z) = 0 m/s if z < b0.

This test is simulated here. In order to improve the precision 100 vertical layers are used.
Figure 3.18 shows the evolution of the flow/no-flow interface b(t) computed with the
variable coefficient of friction µ(I) and the constant coefficient µs, including or not the
side walls friction term. We see that our result without lateral wall friction agrees almost
perfectly with the ones presented in Lusso et al. [84] (see cases ν = 0 and ν = ν(Z) in
figure 16 in [84]). By using the friction constant coefficient the profile flow/no-flow
interface evolution in time is a straight line, whereas the convex shaped profile observed
in experiments is reproduced for the variable friction µ(I). Based on these results, Lusso
et al. [84] suggested that for uniform flows erosion (i.e. penetration within the erodible
layer) can only be obtained for a variable friction coefficient (called viscosity in their
paper) and not for a constant friction coefficient µs. In the case of granular collapse
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presented above, erosion is also obtained with µs, certainly due to the non-uniformity of
the flow and in particular to downslope pressure gradients (see Section 5 in [84]).

As a conclusion, despite the fact that the approximation of the lateral walls friction
is not good enough and we still need to add 0.1 to the friction coefficient, shallow
multilayer models appear to be a very interesting alternative to shallow depth-averaged
models by making it possible to describe changes of the velocity profiles, lateral wall
effects and erosion processes with still reasonable computational cost.
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Semi-implicit time discretization with

variable number of layers∗

∗The results in this chapter have been published in the paper: L. Bonaventura, E.D. Fernández-Nieto,
J. Garres-Díaz, & G. Narbona-Reina, Multilayer shallow water models with locally variable number
of layers and semi-implicit time discretization, Journal of Computational Physics, 364 (2018), pp.
209–234.

4.1 Introduction

The goal of this chapter is to apply the multilayer approach to the case of large scale
geophysical flows. To this end, we propose two strategies acting at the same time to make
multilayer models more efficient and fully competitive with their z− and σ−coordinates
counterparts. On one hand, a novel discretization approach is proposed, in which the
number of vertical layers and their distribution are allowed to change in different regions
of the computational domain. On the other hand, efficient semi-implicit discretizations
are applied for the first time to the discretization of the free surface gradients and the
flow divergence in multilayer models, leading to a significant efficiency improvement
for subcritical regimes. Notice that a semi-implicit approach for the discretization of
vertical viscosity and friction terms has instead been introduced in [7, 56]. In addition,
we propose a more efficient way to implement an IMEX-ARK method to discretize the
multilayer system, which mimics what is done for the simpler θ-method. As an example
of the potential of the proposed techniques, applications to tidally forced flow and to a
sediment transport problem are presented, where we show that the computational time
required is significantly reduced and that the vertical number of layers, as well as their
distribution, can be adapted to the local features of the problem.

In order to further simplify the presentation, we only introduce the discretization for
an x−z vertical slice, even though both, the multilayer approach and any of the methods
presented, can be generalized to the full three dimensional case. In this chapter, again

105
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for simplicity, we have restricted our attention to constant density flows. An extension
to variable density problems in the Boussinesq regime will be investigated in the future.
However, as a first step, we present in a detailed description of the coupled discretization
of a tracer equation. Not only it is the basis for the variable density extension, but, as
shown in [66], the coupling of this equation to the discretized continuity equation is
not a trivial issue and it is very important to verify compatibility conditions between the
discrete continuity equation and the discrete tracer equations.

The chapter is organised as follows. In Section 4.2, the equations defining the
multilayer shallow water models of interest will be reviewed. In Section 4.3, the spatial
discretization is introduced in a simplified framework, showing how the number of
layers can be allowed to vary over the computational domain. In Section 4.4, some
semi-implicit time discretizations are introduced for the model with a variable number
of layers. Results of a number of numerical experiments are reported in Section 4.5,
showing the significant efficiency gains that can be achieved by combination of these
two techniques.

4.2 Multilayer shallow water models

In this chapter we use cartesian coordinates (̃b = 0 in Subsection 1.2) instead of the
tilted coordinates considered in previous chapters, for simplicity. Then, we consider a
multilayer subdivision of the domain as in figure 4.1. Let us recall that this subdivision

Figure 4.1: Sketch of the domain and of its subdivision in a constant number of layers.

corresponds to the vertical discretization of the domain, which, a priori, is not related
to the characteristics neither of the flow nor of the domain. Note that in this chapter η
denotes the free surface position, and not the dynamic viscosity as in previous chapters.
Then, we set as customary in the literature

η = b+ h. (4.1)
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Following Chapter 1 (also Fernández-Nieto et al. [54, 56]), the equations describing this
multilayer approach can be written for α = 1, . . . , N as

∂thα + ∂x (hαuα) = Gα+ 1
2
−Gα− 1

2
,

∂t (hαuα) + ∂x (hαu
2
α) +

+ ghα∂x (b+ h) = Kα− 1
2
−Kα+ 1

2
+

+
1

2
Gα+ 1

2
(uα+1 + uα) − 1

2
Gα− 1

2
(uα + uα−1) .

(4.2)

As in previous chapters, we consider a fluid with constant density. The vertical velocity
profile is obtained as in Chapter 1. Let us recall its expression, it is recovered from both
the integrated incompressibility and the mass jump condition, obtaining for α = 1, ..., N

and z ∈ (zα− 1
2
, zα+ 1

2
),

wα(t, x, z) = w+
α− 1

2

(t, x) −
(
z − zα− 1

2
(t, x)

)
∂xuα(t, x), (4.3a)

w+
α+ 1

2

(t, x) =
(
uα+1(t, x)− uα(t, x)

)
∂xzα+ 1

2
(t, x) + w−

α+ 1
2

(t, x), (4.3b)

w−
α+ 1

2

(t, x) = w+
α− 1

2

(t, x)− hα(x)∂xuα(t, x), (4.3c)

where w+
1
2

= u1∂xb−G 1
2
, at the bottom. Since we are focusing in this chapter mostly on

subcritical flows, there is no special reason to choose discharge rather than velocity as a
model variable. Therefore, we rewrite the previous system as

∂thα + ∂x (hαuα) = Gα+ 1
2
−Gα− 1

2
,

hα∂tuα + hαuα∂xuα + ghα∂x (b+ h) =

= Kα− 1
2
−Kα+ 1

2
+Gα+ 1

2
∆ũα+ 1

2
+Gα− 1

2
∆ũα− 1

2
,

(4.4)

where ∆ũα+ 1
2

= (uα+1 − uα)/2. From the derivation in previous chapters, it follows that

Gα+ 1
2

= ∂tzα+ 1
2

+ u±
α+ 1

2

∂xzα+ 1
2
− w±

α+ 1
2

, (4.5a)

Kα+ 1
2

= −να+ 1
2
UHZ α+ 1

2
, (4.5b)

where ν denotes the kinematic viscosity and UHZ α+ 1
2

is the approximation of ∂zuα at
Γα+ 1

2
. We recall that the vertical partition of the domain is defined through the positive

coefficients lα, satisfying hα = lα h and

N∑
α=1

lα = 1.
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Note that these coefficients, whose choice is completely free, determine the thickness of
the vertical layers hα. Since these are not material layers, mass can flow through them.
Usually, the lα coefficients have been taken to be constants (see Chapters 1, 2, 3), while
in this chapter we consider them as a function of space, as detailed in Section 4.3.

As explained in Chapter 1, the mass transfer term can be rewritten as (see (1.30))

Gα+ 1
2

=
α∑
β=1

(
∂x (hlβuβ)− lβ

N∑
ζ=1

∂x (lζhuζ)

)
. (4.6)

As conclusion, Gα+ 1
2

is written in terms of the total height (h) and the horizontal veloci-
ties (uα), and the system is rewritten with N + 1 equations and unknowns.

Assuming also ∂tb = 0, system (4.4)-(4.5) is finally re-written as

∂tη + ∂x

(
h

N∑
β=1

lβuβ

)
= 0,

∂tuα + uα∂xuα + g∂xη =

=
Kα− 1

2
−Kα+ 1

2

hα
+
Gα+ 1

2
∆ũα+ 1

2
+Gα− 1

2
∆ũα− 1

2

hα
,

(4.7)

for α = 1, · · · , N, where η is defined by (4.1) and denotes the free surface position.

The transport equation for a passive scalar can be coupled to the previous continuity
and momentum equation (4.7), in such a way as to guarantee compatibility with the
continuity equation in the sense of Gross et al. [66]. If ρα denotes the average density of
the passive scalar in Ωα, it satisfies the following tracer equation:

∂t (ραhα) +∇x · (ραhαuα) = ρα+1/2Gα+ 1
2
− ρα−1/2Gα− 1

2
, (4.8)

where
ρα+1/2 =

ρα + ρα+1

2
+

1

2
sgn(Gα+ 1

2
)(ρα+1 − ρα).

In principle, any appropriate turbulence and friction model can be considered to
define Kα+ 1

2
, α = 0, . . . , N . Here we have employed a parabolic turbulent viscosity

profile and friction coefficients derived from a logarithmic wall law:

ν = κ û (z − b)
(

1− z − b
h

)
,

where κ = 0.41 is the von Karman constant, û =
√
τb/ρ0 is the friction velocity and

τb denotes the shear stress. In order to approximate this turbulence model we set for
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α = 1, . . . , N − 1:

Kα+ 1
2

= −να+ 1
2

uα+1 − uα
(hα + hα+1)/2

, with να+ 1
2

= κûα+ 1
2

(
α∑
β=1

lβh

)(
N∑

ζ=α+1

lζ

)
.

For α = 0 and α = N , standard quadratic models for bottom and wind stress are
considered. We then set

K1/2 = −Cf |u1|u1, KN+1/2 = −Cw |uw − uN | (uw − uN),

where uw denotes the wind velocity and Cw the friction coefficient at the free surface.
The friction coefficient Cf is defined, according to the derivation in Decoene et al. [46],
as:

Cf = κ2

(
1− ∆zr

h

)
(

ln

(
∆zr
∆z0

))2 , (4.9)

where ∆z0 is the roughness length and ∆zr is the length scale for the bottom layer. Under
the assumption that ∆z0 � ∆zr it can be seen that

ut
û
≈ 1

κ
ln
(z − b

∆z0

)
where ut is the tangential velocity. In practice, we identify ut with u1, the horizontal
velocity of the layer closest to the bottom, in the multilayer model. The definition of Cf
given by equation (4.9) is deduced by using previous relation of the ratio between u1

and û (see [46]). Then, we set

ûα+ 1
2

=
u1κ

ln
( α∑
β=1

lβh/∆z0

) ,

in the definition of Kα+ 1
2
.

4.3 Spatial discretization with variable number of
layers

The multilayer shallow water model (4.7) can be discretized in principle with any
spatial discretization approach. For simplicity, we present the proposed discretization
approach in the framework of simple finite volume/finite difference discretization on
a staggered Cartesian mesh with C-grid staggering. A discussion of the advantages of
this approach for large scale geophysical models can be found in Durran [48]. The
C-grid staggering also has the side benefit of providing a more compact structure for the
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system of equations that is obtained when a semi-implicit method is applied for time
discretization. Generalization to structured and unstructured meshes can be obtained e.g.
by the approaches proposed in Casullli & Catani [40] and Bonaventura & Ringler [22],
Casulli & Walters [42], Casulli & Zanolli [43], respectively, but higher order methods
such as those of Tumolo et al. [109, 110] could also be applied. It is to be remarked that
the choice of a staggered mesh is by no means necessary and that the approach proposed
below to handle a variable number of layers can be easily extended to colocated meshes
as well.

On the other hand, the vertical number of layers employed, in the approach proposed
in Fernández-Nieto et al. [56], is a discretization parameter whose choice depends on
the desired accuracy in the approximation of the vertical structure of the flow. In order
to make this type of model more flexible and more efficient, we propose to allow for
a number of vertical layers that is not constant throughout the domain. This is one
of the main contributions of this chapter. Our motivation is twofold: firstly, the use
of this technique in order to adapt the vertical subdivision to the characteristic of the
bathymetry. This is the case when both shallow and deep regions are present in the same
computational domain. Secondly, in the case we are interested in a detailed vertical
profile of velocity in a specific region, but not somewhere else. Then we could use
multilayer only in that region, while maintaining a coarser resolution elsewhere.

The solution domain will coincide with an interval [0, L], that is assumed to be
subdivided into control volumes Vi = (xi−1/2, xi+1/2), with centers xi = (xi+1/2 +xi−1/2)/2,
for i = 1, . . . ,M . Let us also denote ∆xi = xi+1/2 − xi−1/2 and ∆xi+1/2 = xi+1 − xi. The
discrete free surface variables ηi are defined at the centers of the control volumes, xi,
while the discrete velocities uα,i+ 1

2
are defined at the interfaces, xi+1/2.

The transition between regions with different numbers of layers is assumed to take
place at the center of a control volume Vi, so that one may have different Ni+ 1

2
for

i = 0, . . . ,M and as a consequence, the discrete layer thickness coefficients lα,i+ 1
2

are
also defined at the half-integer locations i + 1/2. The number of layers considered at
the cell center for the purpose of the discretization of the tracer equation are defined as
Ni = max {Ni− 1

2
, Ni+ 1

2
} and the discrete layer thickness coefficients at integer locations

lα,i are taken to be equal to those at the neighbouring half-integer location with larger
number of layers. We will also assume that, whenever for some i+ 1

2
one has, without

loss of generality, Ni− 1
2
> Ni+ 1

2
, then for any β = 1, . . . , Ni+ 1

2
there exist

1 ≤ α−
i− 1

2

(β) ≤ α+
i− 1

2

(β) ≤ Ni− 1
2

such that lβ,i+ 1
2

=

α+

i− 1
2

(β)∑
α=α−

i− 1
2

(β)

lα,i− 1
2
. (4.10)

Note that the above formula means that the vertical mesh is assumed to be conforming.
This allows a more straightforward implementation of the numerical approximation
of horizontal advection in the velocity and in the tracer equation, which are the only
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Figure 4.2: Sketch of the domain subdivision in a variable number of layers.

ones involving a horizontal stencil. Finally, again for simplicity of the implementation
and without great loss of generality, it is assumed that just a single transition between
cells with different number of vertical layers is possible in a 3-point stencil, that is, two
consecutive transitions are not allowed. In terms of the number of layers, it means that
if Ni+1/2 6= Ni−1/2 one has Ni−3/2 = Ni−1/2 and Ni+3/2 = Ni+1/2.

A sample configuration of this kind is depicted in figure 4.2. Notice that a dependence
of the number of layers on time could also be introduced, in order to adapt the global
maximum number of layers to the flow conditions, but this has not been done in the
present implementation. Note also that the expression of the model would change in this
case, namely a new term would appear in equation (4.6) where we use ∂thβ = lβ∂th.

4.4 Semi-implicit time discretizations

The previous definitions yield a space discretization that can be easily coupled to any
time discretization that yields a stable fully discrete space time scheme. For example, a
time discretization by a third order Runge Kutta scheme has been employed as a reference
in the numerical tests presented in Section 4.5. This explicit method requires a stability
restriction (CFL condition) for the time step ∆t, given by the well-known Courant
number associated to the celerity, hereafter denoted Ccel. However, we will focus here
on semi-implicit time discretization approaches aimed at reducing the computational
cost in subcritical regime simulations. By using these semi-implicit discretizations, a less
restrictive CFL condition is to be complied with, since the term associated to the celerity
is removed. In that case, we consider the Courant number associated to the velocity,
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hereafter denoted Cvel. We define the maximum Courant numbers as

Cvel = max
1≤i≤M

max
1≤α≤N

∣∣∣uα,i+ 1
2

∣∣∣ ∆t

∆xi
; (4.11a)

Ccel = max
1≤i≤M

max
1≤α≤N

(∣∣∣uα,i+ 1
2

∣∣∣+
√
g hi

) ∆t

∆xi
. (4.11b)

With the goal of reducing the computational cost, it is immediate to notice that the
formal structure of system (4.7) is entirely analogous to that of the three dimensional
hydrostatic system considered in Casulli & Cheng [41], Casulli & Cattani [40], so that we
can build semi-implicit time discretizations along the same lines, i.e. by treating implicitly
the velocity in the continuity equation and the free surface gradient in the momentum
equation. It should be stressed that our aim is not to propose new or optimal time
discretizations, but rather to show that some semi-implicit approaches, which have been
widely applied to model coastal flows and other environmental flows for standard vertical
discretizations or for one layer models, can also be naturally extended to multilayer
approaches, even when the number of layers changes in space. For this purpose, firstly we
focus on a more conventional time discretization based on the off-centered trapezoidal
rule (or θ-method, see e.g. Lambert [80]). Secondly, we present a alternative approach
based on a potentially more accurate (and equally robust) Implicit-Explicit Additive
Runge Kutta method (IMEX-ARK). Other second and third order semi-implicit methods
that could be employed are described e.g. in Boscarino et al. [24]. Notice also that, in the
semi-implicit methods that are more standard for these applications, simplifications are
usually introduced in the standard time discretization methods employed, that amount
to linearizing in time at each time step. This is done in order to avoid solving a large
nonlinear system at each time step, which would increase significantly the computational
cost. Even though this entails a potential loss of accuracy, we have employed these
simplifications here, consistently with our goal of coupling multilayer approaches to
widely used semi-implicit techniques for environmental flows.

Remark 2. Notice that, in general, time discretizations do not guarantee positivity without
additional CFL-like restrictions, see the discussion and literature review in Bonaventura &

Rocca [20]. On the other hand, for the semi-implicit approaches considered in this chapter,
the CFL restrictions based on the flow velocity that are required by the explicit part of the
scheme are usually sufficient to guarantee positivity. In particular, following Gross et al.
[66], the positivity of the θ-method can be proved under the condition

c+
i+1/2 + c−i−1/2 ≤ 1,

where c+ (c−) denotes the positive (negative) part

c+ = max (0, c);

c− = max (0,−c),
and ci+1/2 =

∆t

∆xi+1/2

Ni+1/2∑
α=1

lα,i+1/2 u
n+θ
α,i+1/2,

with un+θ = θun+1 + (1− θ)un. A similar condition can be derived for the IMEX-ARK2.
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4.4.1 A θ-method time discretization

Following Casulli & Cattani [40], we first consider a semi-implicit discretization based
on the θ-method, which can be defined for a generic ODE system y′ = f(y, t) as

yn+1 = yn + ∆t [θf(yn+1, tn+1) + (1− θ)f(yn, tn)] ,

where ∆t denotes the time step and θ ∈ [0, 1] is a implicitness parameter. If θ ≥ 1/2 the
method is unconditionally stable and the numerical diffusion introduced by the method
increases when increasing θ. For θ = 1/2 the second order Crank-Nicolson method is
obtained. In practical applications, θ is usually chosen just slightly larger than 1/2, in
order to allow for some damping of the fastest linear modes and nonlinear effects. We
then proceed to describe the time discretization of system (4.7) based on the θ-method.

For control volume i, the continuity equation in (4.7) is then discretized as

ηn+1
i + θ

∆t

∆xi

N
i+ 1

2∑
β=1

lβ,i+ 1
2
hn
i+ 1

2
un+1
β,i+ 1

2

−
N
i− 1

2∑
β=1

lβ,i− 1
2
hn
i− 1

2
un+1
β,i− 1

2

 = ηni −

− (1− θ) ∆t

∆xi

N
i+ 1

2∑
β=1

lβ,i+ 1
2
hn
i+ 1

2
un
β,i+ 1

2
−

N
i− 1

2∑
β=1

lβ,i− 1
2
hn
i− 1

2
un
β,i− 1

2

 .

(4.12)

It can be noticed that the dependency on h has been frozen at time level n in order to
avoid solving a nonlinear system at each timestep. As shown in [40, 109], this does not
degrade the accuracy of the method, even in the case of a full second order discretization
is employed. In addition, as suggested in Gross et al. [66], the value of hi+ 1

2
is taken to

be that of the control volume located upwind of the volume edge. For nodes i+ 1
2
, the

momentum equations for α = 2, ..., Ni+ 1
2
− 1 in (4.7) are then discretized as

un+1
α,i+ 1

2

+ gθ
∆t

∆xi+ 1
2

(ηn+1
i+1 − ηn+1

i )−

− ∆tθ

lα,i+ 1
2
hn
i+ 1

2

(
νn
α+ 1

2
,i+ 1

2

un+1
α+1,i+ 1

2

− un+1
α,i+ 1

2

lα+ 1
2
,i+ 1

2
hn
i+ 1

2

− νn
α− 1

2
,i+ 1

2

un+1
α,i+ 1

2

− un+1
α−1,i+ 1

2

lα− 1
2
,i+ 1

2
hn
i+ 1

2

)
=

= un
α,i+ 1

2

+ ∆tAu,n
α,i+ 1

2

− g(1− θ) ∆t

∆xi+ 1
2

(
ηni+1 − ηni

)
+

+
∆t(1− θ)
lα,i+ 1

2
hn
i+ 1

2

(
νn
α+ 1

2
,i+ 1

2

un
α+1,i+ 1

2

− un
α,i+ 1

2

lα+ 1
2
,i+ 1

2
hn
i+ 1

2

− νn
α− 1

2
,i+ 1

2

un
α,i+ 1

2
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α−1,i+ 1

2

lα− 1
2
,i+ 1

2
hn
i+ 1

2

)
+

+
∆t

∆xi+ 1
2
lα,i+ 1

2
hn
i+ 1

2

(
∆ũn

α+ 1
2
,i+ 1

2
Gn
α+ 1

2
,i+ 1

2
+ ∆ũn

α− 1
2
,i+ 1

2
Gn
α− 1

2
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)
,

(4.13)

where ∆ũn
α+ 1

2
,i+ 1

2

= (un
α+1,i+ 1

2

− un
α,i+ 1

2

)/2, Gn
α+ 1

2
,i+ 1

2

/∆xi+ 1
2

denotes a discretization of
the mass transfer term and Au,n

α,i+ 1
2

denotes some spatial discretization of the velocity
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advection term. In the present implementation, we employ the following upstream based
second order finite difference approximation:(

uα∂xuα

)∣∣∣∣
i+1/2

= uα,i+1/2 ∂xuα

∣∣∣
i+1/2

with

∂xuα

∣∣∣
i+1/2

=


uα,i− 3

2
− 4uα,i− 1

2
+ 3uα,i+ 1

2

2∆xi+ 1
2

if uα,i+ 1
2
> 0,

−
uα,i+ 5

2
− 4uα,i+ 3

2
+ 3uα,i+ 1

2

2∆xi+ 1
2

if uα,i+ 1
2
< 0.

It is important to remark that, if the θ-scheme is also applied to the advection and mass
transfer terms, we would obtain a fully implicit method, for which we would have to
solve a global nonlinear problem. This entails a much larger computational cost and
is usually avoided in the most numerical models for this kind of applications. Notice
that, to define this advection term, velocity values from different layers may have to be
employed, if some of the neighbouring volumes has a number of layers different from
that at i+ 1

2
. For example, assuming again without loss of generality Ni− 1

2
> Ni+ 1

2
and

un
β,i+ 1

2

> 0 and using the notation in (4.10), values

u∗
β,i− 1

2
=

1

lβ,i+ 1
2

α+

i− 1
2

(β)∑
α=α−

i− 1
2

(β)

lα,i− 1
2
un
α,i− 1

2
,

which are the averaged velocities computed with the velocities of the involved layers,
will be used to compute the approximation of the velocity gradient at xi+ 1

2
. Clearly, this

may result in a local loss of accuracy, but the numerical results reported show that this
has limited impact on the overall accuracy of the proposed method.

The discretization of the mass transfer term is defined as

Gα+ 1
2
,i+ 1

2
=

α∑
β=1

lβ,i+ 1
2

((
huβ −

N∑
ζ=1

lζhuζ

)∣∣∣∣∣
i+1

−

(
huβ −

N∑
ζ=1

lζhuζ

)∣∣∣∣∣
i

)
,

where

(
huβ −

N∑
ζ=1

lζhuζ

)∣∣∣∣∣
i

denotes the upwind value depending on the averaged

velocity uβ,i = (uβ,i− 1
2

+ uβ,i+ 1
2
)/2, i.e.,

(
huβ −

N∑
ζ=1

lζhuζ

)∣∣∣∣∣
i

=


hi− 1

2
uβ,i− 1

2
−

N∑
ζ=1

lζ,i− 1
2
hi− 1

2
uζ,i− 1

2
if uβ,i > 0,

hi+ 1
2
uβ,i+ 1

2
−

N∑
ζ=1

lζ,i+ 1
2
hi+ 1

2
uζ,i+ 1

2
if uβ,i < 0.
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Here we have used the fact that lβ is a piecewise constant function where the transitions
between regions with a different number of layers are located in the center of a control
volume. Therefore lβ,i+1/2 is constant in (xi, xi+1). For the tracer equation, this term
appears at the center of the control volume, in contrast with the case of the momentum
equation, so that we set instead

Gα+ 1
2
,i =

1

∆xi

α∑
β=1

(
lβ,i+ 1

2
hi+ 1

2
uβ,i+ 1

2
− lβ,i− 1

2
hi− 1

2
uβ,i− 1

2
−

− lβ,i

Ni∑
ζ=1

(
lζ,i+ 1

2
hi+ 1

2
uζ,i+ 1

2
− lζ,i− 1

2
hi− 1

2
uζ,i− 1

2

))
.

(4.14)

The above formulas are to be modified appropriately for cells in which Ni− 1
2
6= Ni+ 1

2
, by

summing all the contributions on the cell boundary with more layers that correspond to
a given term lβ,i± 1

2
hn
i± 1

2

un
β,i± 1

2

on the cell boundary with fewer layers, according to the
definitions in the previous section.

Remark 3. The time discretization of the mass transfer terms could be easily turned into
an implicit one, by taking instead

un+1
α,i+ 1

2

+ gθ
∆t

∆xi+ 1
2

(ηn+1
i+1 − ηn+1

i )−

− ∆tθ

lα,i+ 1
2
hn
i+ 1

2

(
ζn
α+ 1

2
,i+ 1

2

(
un+1
α+1,i+ 1

2

− un+1
α,i+ 1

2

)
− δn

α− 1
2
,i+ 1

2

(
un+1
α,i+ 1

2

− un+1
α−1,i+ 1

2

))
=

= un
α,i+ 1

2

+ ∆tAu,n
α,i+ 1

2

− g(1− θ) ∆t

∆xi+ 1
2

(
ηni+1 − ηni

)
+

+
∆t(1− θ)
lα,i+ 1

2
hn
i+ 1

2

(
ζn
α+ 1

2
,i+ 1

2

(
un
α+1,i+ 1

2
− un

α,i+ 1
2

)
− δn

α− 1
2
,i+ 1

2

(
un
α,i+ 1

2
− un

α−1,i+ 1
2

))
,

where now

ζn
α+ 1

2
,i+ 1

2
=

νn
α+ 1

2
,i+ 1

2

lα+ 1
2
,i+ 1

2
hn
i+ 1

2

+
Gn
α+ 1

2
,i+ 1

2

2∆xi+ 1
2

δn
α− 1

2
,i+ 1

2
=

νn
α− 1

2
,i+ 1

2

lα− 1
2
,i+ 1

2
hn
i+ 1

2

−
Gn
α− 1

2
,i+ 1

2

2∆xi+ 1
2

.

This approach might be helpful to relax stability restrictions if large values of Gn
α+ 1

2
,i+ 1

2

arise.
In the implementation employed to obtain the numerical results of Section 4.5, however,
only the discretization (4.13) was applied so far.

At the bottom (α = 1) and at the free surface (α = Ni+ 1
2
) layers, the viscous terms

are modified by the friction and drag terms at Γ1/2 and ΓN
i+ 1

2
+1/2, respectively. We have

then
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un+1
1,i+ 1

2

+ gθ
∆t

∆xi+ 1
2

(ηn+1
i+1 − ηn+1

i )−

− ∆tθ

l1,i+ 1
2
hn
i+ 1

2

(
νn

1+ 1
2
,i+ 1

2

un+1
2,i+ 1

2

− un+1
1,i+ 1

2

l1+ 1
2
,i+ 1

2
hn
i+ 1

2

− Cn
f,i+ 1

2

∣∣∣un1,i+ 1
2

∣∣∣un+1
1,i+ 1

2

)
=

= un
1,i+ 1

2

+ ∆tAu,n
1,i+ 1

2

− g(1− θ) ∆t

∆xi+ 1
2

(
ηni+1 − ηni

)
+

+
∆t

∆xi+ 1
2
l1,i+ 1

2
hn
i+ 1

2

∆ũn3
2
,i+ 1

2
Gn3

2
,i+ 1

2
+

+
∆t(1− θ)
l1,i+ 1

2
hn
i+ 1

2

(
νn

1+ 1
2
,i+ 1

2

un
2,i+ 1

2

− un
1,i+ 1

2

l1+ 1
2
,i+ 1

2
hn
i+ 1

2

− Cn
f,i+ 1

2

∣∣∣un1,i+ 1
2

∣∣∣un1,i+ 1
2

)
,

(4.15)

and

un+1
N
i+ 1

2
,i+ 1

2

+ gθ
∆t

∆xi+ 1
2

(ηn+1
i+1 − ηn+1

i ) +
∆tθ

lN
i+ 1

2
,i+ 1

2
hn
i+ 1

2

C̃w
n

,i+ 1
2
un+1
N
i+ 1

2
,i+ 1

2

+

+
∆tθ

lN
i+ 1

2
,i+ 1

2
hn
i+ 1

2

νn
N
i+ 1

2
− 1

2
,i+ 1

2

un+1
N
i+ 1

2
,i+ 1

2

− un+1
N
i+ 1

2
−1,i+ 1

2

lN
i+ 1

2
− 1

2
,i+ 1

2
hn
i+ 1

2

 =

= un
N
i+ 1

2
,i+ 1

2

+ ∆tAu,n
N
i+ 1

2
,i+ 1

2

− g (1− θ) ∆t

∆xi+ 1
2

(ηni+1 − ηni ) +

+
∆tC̃w

n

,i+ 1
2

lN
i+ 1

2
,i+ 1

2
hn
i+ 1

2

(
θun+1

w,i+ 1
2

+ (1− θ)
(
un
w,i+ 1

2
− un

N
i+ 1

2
,i+ 1

2

))
−

− (1− θ)∆t
lN

i+ 1
2
,i+ 1

2
hn
i+ 1

2

νn
N
i+ 1

2
− 1

2
,i+ 1

2

un
N
i+ 1

2
,i+ 1

2

− un
N
i+ 1

2
−1,i+ 1

2

lN
i+ 1

2
− 1

2
,i+ 1

2
hn
i+ 1

2

+

+
∆t

∆xi+ 1
2
lN

i+ 1
2
,i+ 1

2
hn
i+ 1

2

∆ũn
N
i+ 1

2
− 1

2
,i+ 1

2
Gn
N
i+ 1

2
− 1

2
,i+ 1

2
.

(4.16)

Notice that, in previous equation, we define C̃w
n

= Cw|unw,i+ 1
2

− un
N
i+ 1

2
,i+ 1

2

|.

Replacing the expressions for the velocities at time step n + 1 into the continuity
equation yields a linear system whose unknowns are the values of the free surface ηn+1

i .
This can be done rewriting the discrete momentum equations in matrix notation as in
[40], after rescaling both sides of the equations by lα,i+ 1

2
hn
i+ 1

2

. We denote by Fn
i+ 1

2

the
collection of all the explicit terms and by An

i+ 1
2

the matrix resulting from the discretization
of the vertical diffusion terms. Since it is a tridiagonal, positive definite, diagonally
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dominant matrix, it is an M-matrix and its inverse matrix exists and is also an M-matrix
(see e.g. Herman & Plemmons [15]). We also define

Ui+ 1
2

=


u1,i+ 1

2

:

uα,i+ 1
2

:

uN
i+ 1

2
,i+ 1

2
,

 ; Hi+ 1
2

=


l1,i+ 1

2
hi+ 1

2

:

lα,i+ 1
2
hi+ 1

2

:

lN
i+ 1

2
,i+ 1

2
hi+ 1

2
,

 .

As a result, one can reformulate equations (4.13), (4.15) and (4.16) as

Un+1
i+ 1

2

=
(
An
i+ 1

2

)−1

Fn
i+ 1

2

−

− g θ
∆t

∆xi+ 1
2

(
ηn+1
i+1 − ηn+1

i

) (
An
i+ 1

2

)−1

Hn
i+ 1

2
.

(4.17)

The discrete continuity equation is rewritten in this matrix notation as

ηn+1
i = ηni − θ

∆t

∆xi

(
(Hn

i+ 1
2
)T Un+1

i+ 1
2

− (Hn
i− 1

2
)T Un+1

i− 1
2

)
−

− (1− θ) ∆t

∆xi

(
(Hn

i+ 1
2
)T Un

i+ 1
2
− (Hn

i− 1
2
)T Un

i− 1
2

)
.

Substituting formally equation (4.17) in the continuity equation yields the tridiagonal
system

ηn+1
i − g θ2 ∆t2

∆xi

([
HTA−1H

]n
i+ 1

2

ηn+1
i+1 − ηn+1

i

∆xi+ 1
2

−

−
[
HTA−1H

]n
i− 1

2

ηn+1
i − ηn+1

i−1

∆xi− 1
2

)
=

= ηni − θ
∆t

∆xi

([
HTA−1F

]n
i+ 1

2

−
[
HTA−1F

]n
i− 1

2

)
−

− (1− θ) ∆t

∆xi

(
(Hn

i+ 1
2
)T Un

i+ 1
2
− (Hn

i− 1
2
)T Un

i− 1
2

)
.

The new values of the free surface ηn+1
i are computed by solving this system, and the

values hi are updated to time tn+1 using the definition of η (4.1). The values ηn+1
i are

then replaced in (4.17) to obtain un+1
α,i+ 1

2

.

Finally, the evolution equation for ρα is discretized as

lα,ih
n+1
i ρn+1

α,i = lα,ih
n
i ρ

n
α,i−

− ∆t

∆xi

(
lα,i+ 1

2
hn
i+ 1

2
ρn
α,i+ 1

2
un+θ
α,i+ 1

2

− lα,i− 1
2
hn
i− 1

2
ρn
α,i− 1

2
un+θ
α,i− 1

2

)
+

+ ∆t
(
ρn
α+ 1

2
,i
Gn
α+ 1

2
,i
− ρn

α− 1
2
,i
Gn
α− 1

2
,i

)
,

(4.18)
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where un+θ
α = θun+1

α + (1− θ)unα. The values ρn
α,i± 1

2

, ρn
α± 1

2
,i

can be defined by appropriate
numerical fluxes. Also the discretization of the tracer equation could be easily turned
into an implicit one in the vertical if required for stability reasons, by setting

lα,ih
n+1
i ρn+1

α,i − θ∆t
(
ρn+1
α+ 1

2
,i
Gn
α+ 1

2
,i
− ρn+1

α− 1
2
,i
Gn
α− 1

2
,i

)
= lα,ih

n
i ρ

n
α,i−

− ∆t

∆xi

(
lα,i+ 1

2
hn
i+ 1

2
ρn
α,i+ 1

2
un+θ
α,i+ 1

2

− lα,i− 1
2
hn
i− 1

2
ρn
α,i− 1

2
un+θ
α,i− 1

2

)
+

+ (1− θ)∆t
(
ρn
α+ 1

2
,i
Gn
α+ 1

2
,i
− ρn

α− 1
2
,i
Gn
α− 1

2
,i

)
.

(4.19)

Notice that, as in formula (4.14), the previous definitions have to be modified appro-
priately for cells in which Ni− 1

2
6= Ni+ 1

2
, by summing all the contributions on the cell

boundary with more layers that correspond to a given term lα,i± 1
2
hn
i± 1

2

ρn
α,i± 1

2

un+θ
α,i± 1

2

on the
cell boundary with fewer layers, according to the definitions in the previous sections.

It is also important to remark that, if ρn+1
α,i = ρnα,i = 1 is assumed in either (4.18),

(4.19), as long as a consistent flux is employed for the definition of ρn
α,i± 1

2

, ρn
α± 1

2
,i
, dis-

cretizations of the first equation in (4.2) are obtained, which then summed over the
whole set of layers α = 1, ..., Ni yield exactly formula (4.12). This implies that complete
consistency with the discretization of the continuity equation is guaranteed. The impor-
tance of this property for the numerical approximation of free surface problems has been
discussed extensively in Gross et al. [66].

4.4.2 A more accurate IMEX-ARK discretization

A more accurate time discretization can be achieved employing an IMplicit EXplicit
(IMEX) Additive Runge Kutta method (ARK) Kennedy & Carpenter [78]. These tech-
niques address the discretization of ODE systems that can be written as y′ = fs(y, t) +

fns(y, t), where the s and ns subscripts denote the stiff and non-stiff components of the
system, respectively. In the case of system (4.7), the non-stiff term would include the
momentum advection and mass exchange terms, while the stiff term would include free
surface gradients and vertical viscosity terms. Concretely, we have fk =

(
f0
k , f

1
k , . . . , f

N
k

)′,
for k = s, ns, where

f0
s = − 1

∆xi

N∑
β=1

(
lβ,i+ 1

2
hi+ 1

2
uβ,i+ 1

2
− lβ,i− 1

2
hi− 1

2
uβ,i− 1

2

)
;

fαs = − 1

∆xi+ 1
2

lα,i+ 1
2
hi+ 1

2
g (ηi+1 − ηi) +

+

(
να+ 1

2
,i+ 1

2

uα+1,i+ 1
2
− uα,i+ 1

2

lα+ 1
2
,i+ 1

2
hi+ 1

2

− να− 1
2
,i+ 1

2

uα,i+ 1
2
− uα−1,i+ 1

2

lα− 1
2
,i+ 1

2
hi+ 1

2

)
,
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and

f0
ns = 0;

fαns = lα,i+ 1
2
hi+ 1

2
Au
α,i+ 1

2

+
1

∆xi+ 1
2

(
∆ũα+ 1

2
,i+ 1

2
Gα+ 1

2
,i+ 1

2
+ ∆ũα− 1

2
,i+ 1

2
Gα− 1

2
,i+ 1

2

)
,

for α = 1, . . . , N .

A generic s−stage IMEX-ARK method can be defined as follows. If lmax is the number
of intermediate states of the method, then for l = 1, . . . , lmax:

u(l) = un + ∆t
l−1∑
m=1

(
almfns(u

(m), t+ cm∆t) +

+ ãlmfs(u
(m), t+ cm∆t)

)
+ ∆t ãll fs(u

(l), t+ cl∆t).

(4.20)

Finally, un+1 is computed:

un+1 = un + ∆t
lmax∑
l=1

bl(fns(u
(l), t+ cl∆t) + fs(u

(l), t+ cl∆t)).

Coefficients alm, ãlm, cl and bl are determined so that the method is consistent of a given
order. In addition to the order conditions specific to each sub-method, the coefficients
should respect coupling conditions. Here we use the IMEX method proposed in Giraldo
et al. [62], whose coefficients are presented in the Butcher tableaux. The method is
composed of an implicit method that is L-stable, since it coincides with the TR-BDF2
scheme described in Hosea & Shampine [69] and of an explicit method that is stable
under a standard CFL restriction, based however, due to the IMEX approach, on the
velocity of the flow rather than on the celerity. See tables 4.1 and 4.2 for the explicit and
implicit method, respectively. The coefficients of the explicit method were proposed in
[62], while the implicit method, also employed in the same paper, coincides indeed with
the TR-BDF2 method proposed in [11, 69] and applied to the shallow water and Euler
equations in Tumolo & Bonaventura [109].

0 0
2∓
√

2 2∓
√

2 0
1 1− (3 + 2

√
2)/6 (3 + 2

√
2)/6 0

± 1
2
√

2
± 1

2
√

2
1∓ 1√

2

cl alm
bl

Table 4.1: Butcher tableaux of the explicit ARK2 method

While a straightforward application of (4.20) is certainly possible, we will outline
here a more efficient way to implement this method to the discretization of equations
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0 0
2∓
√

2 1∓ 1√
2

1∓ 1√
2

1 ± 1
2
√

2
± 1

2
√

2
1 ∓ 1

2
√

2

± 1
2
√

2
± 1

2
√

2
1∓ 1√

2

cl ãlm
bl

Table 4.2: Butcher tableaux of the implicit ARK2 method

(4.7), that mimics what done above for the simpler θ−method. For the first stage, we
define ηn,1i = ηni , un,1

α,i+ 1
2

= un
α,i+ 1

2

and ρn,1α,i = ρnα,i, respectively. For the second stage, we
get for the continuity equation

ηn,2i + ã22
∆t

∆xi

N
i+ 1

2∑
β=1

lβ,i+ 1
2
hn
i+ 1

2
un,2
β,i+ 1

2

−
N
i− 1

2∑
β=1

lβ,i− 1
2
hn
i− 1

2
un,2
β,i− 1

2

 =

= ηni − ã21
∆t

∆xi

N
i+ 1

2∑
β=1

lβ,i+ 1
2
hn
i+ 1

2
un,1
β,i+ 1

2

−
N
i− 1

2∑
β=1

lβ,i− 1
2
hn
i− 1

2
un,1
β,i− 1

2


and for the momentum equations

un,2
α,i+ 1

2

+ gã22
∆t

∆xi+ 1
2

(ηn,2i+1 − η
n,2
i )−

− ∆tã22

lα,i+ 1
2
hn
i+ 1

2

νn
α+ 1

2
,i+ 1

2

un,2
α+1,i+ 1

2

− un,2
α,i+ 1

2

lα+ 1
2
hn
i+ 1

2

− νn
α− 1

2
,i+ 1

2

un,2
α,i+ 1

2

− un,2
α−1,i+ 1

2

lα− 1
2
hn
i+ 1

2

 =

= un
α,i+ 1

2

+ ∆ta21F n,1

α,i+ 1
2

+ ∆tã21I n,1α,i+ 1
2

for α = 1, ..., N, with the appropriate corrections for the top and bottom layers, respec-
tively. Here we define

F n,j

α,i+ 1
2

= Au,n,j
α,i+ 1

2

+
1

∆xi+ 1
2
lα,i+ 1

2
hn
i+ 1

2

(
∆ũn,j

α+ 1
2
,i+ 1

2

Gn,j
α+ 1

2
,i+ 1

2

+ ∆ũn,j
α− 1

2
,i+ 1

2

Gn,j
α− 1

2
,i+ 1

2

)
and

I n,j
α,i+ 1

2

= − g

∆xi+ 1
2

(
ηn,ji+1 − η

n,j
i

)
+

+
1

lα,i+ 1
2
hn
i+ 1

2

νn
α+ 1

2
,i+ 1

2

un,j
α+1,i+ 1

2

− un,j
α,i+ 1

2

lα+ 1
2
hn
i+ 1

2

− νn
α− 1

2
,i+ 1

2

un,j
α,i+ 1

2

− un,j
α−1,i+ 1

2

lα− 1
2
hn
i+ 1

2

 ,

and all the other symbols have the same interpretation as in the presentation of the θ−
method. It can be noticed that, again, the dependency on h has been frozen at time
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level n in order to avoid solving a nonlinear system at each timestep. As shown in
[18, 40, 109], this does not degrade the accuracy of the method. Also the dependency
on time of the vertical viscosity is frozen at time level n. The same will be done for both
kinds of coefficients also in the third stage of the method. As in the previous discussion,
the above discrete equations can be rewritten in vector notation as

Un,2

i+ 1
2

=
(
An
i+ 1

2

)−1

Fn,1

i+ 1
2

− g ã22
∆t

∆xi+ 1
2

(
ηn,2i+1 − η

n,2
i

) (
An
i+ 1

2

)−1

Hn
i+ 1

2
, (4.21)

where now F1
i+ 1

2

has components given by

lα,i+ 1
2
hn
i+ 1

2

(
un
α,i+ 1

2
+ ∆ta21F n,1

α,i+ 1
2

+ ∆tã21I n,1α,i+ 1
2

)
.

The discrete continuity equation is rewritten in this matrix notation as

ηn,2i = ηn,2i − ã22
∆t

∆xi

(
(Hn

i+ 1
2
)T Un,2

i+ 1
2

− (Hn
i− 1

2
)T Un,2

i− 1
2

)
−

− ã21
∆t

∆xi

(
(Hn

i+ 1
2
)T Un

i+ 1
2
− (Hn

i− 1
2
)T Un

i− 1
2

)
.

Substituting formally equation (4.21) in the momentum equation yields the tridiagonal
system

ηn,2i − g ã2
22

∆t2

∆xi

([
HTA−1H

]n
i+ 1

2

ηn,2i+1 − η
n,2
i

∆xi+ 1
2

−
[
HTA−1H

]n
i− 1

2

ηn,2i − η
n,2
i−1

∆xi− 1
2

)
=

= ηni − ã22
∆t

∆xi

([
HTA−1F1

]n
i+ 1

2

−
[
HTA−1F1

]n
i− 1

2

)
−

− ã21
∆t

∆xi

(
(Hn

i+ 1
2
)T Un

i+ 1
2
− (Hn

i− 1
2
)T Un

i− 1
2

)
.

The new values of the free surface ηn,2i are computed by solving this system and they are
replaced in (4.21) to find un,2

α,i+ 1
2

. The evolution equation for ρα is then discretized as

lα,ih
n,2
i ρn,2α,i = lα,ih

n
i ρ

n,1
α,i −

− ∆t

∆xi

(
lα,i+ 1

2
hn
i+ 1

2
ρn,1
α,i+ 1

2

u∗,2
α,i+ 1

2

− lα,i− 1
2
hn
i− 1

2
ρn,1
α,i− 1

2

u∗,2
α,i− 1

2

)
+

+ a21∆t
(
ρn,1
α+ 1

2
,i
Gn,1

α+ 1
2
,i
− ρn,1

α− 1
2
,i
Gn,1

α− 1
2
,i

)
,

where now u∗,2α = ã22u
n,2
α + ã21u

n,1
α .

The last stage of the IMEX-ARK2 method can then be written in vector notation as

Un,3

i+ 1
2

=
(
An
i+ 1

2

)−1

Fn,2

i+ 1
2

−

− g ã33
∆t

∆xi+ 1
2

(
ηn,3i+1 − η

n,3
i

) (
An
i+ 1

2

)−1

Hn
i+ 1

2
,

(4.22)
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where now Fn,2

i+ 1
2

has components given by

lα,i+ 1
2
hn
i+ 1

2

(
un
α,i+ 1

2
+ ∆ta31F n,1

α,i+ 1
2

+ ∆ta32F n,2

α,i+ 1
2

+ ∆tã31I n,1α,i+ 1
2

+ ∆tã32I n,2α,i+ 1
2

)
.

The discrete continuity equation is rewritten in this matrix notation as

ηn,3i = ηn,3i − ã33
∆t

∆xi

(
(Hn

i+ 1
2
)T Un,3

i+ 1
2

− (Hn
i− 1

2
)tUn,3

i− 1
2

)
−

− ã31
∆t

∆xi

(
(Hn

i+ 1
2
)T U1

i+ 1
2
− (Hn

i− 1
2
)T U1

i− 1
2

)
−

− ã32
∆t

∆xi

(
(Hn

i+ 1
2
)T U2

i+ 1
2
− (Hn

i− 1
2
)T U2

i− 1
2

)
.

As a result, substitution of (4.22) into the third stage of the continuity equation yields
the tridiagonal system

ηn,3i − g ã2
33

∆t2

∆xi

([
HTA−1H

]n
i+ 1

2

ηn,3i+1 − η
n,3
i

∆xi+ 1
2

−
[
HTA−1H

]n
i− 1

2

ηn,3i − η
n,3
i−1

∆xi− 1
2

)
= Ei,

where now all the explicit terms have been collected in Ei. The new values of the free
surface ηn,3i are computed by solving this system and they are replaced in (4.22) to find
un,3
α,i+ 1

2

. The tracer density is then updated as

lα,ih
n,3
i ρn,3α,i = lα,ih

n,2
i ρn,2α,i −

− ∆t

∆xi

(
lα,i+ 1

2
hn
i+ 1

2
ρn
α,i+ 1

2
u∗,3
α,i+ 1

2

− lα,i− 1
2
hn
i− 1

2
ρn,2
α,i− 1

2

u∗,3
α,i− 1

2

)
+

+ a32∆t
(
ρn,2
α+ 1

2
,i
Gn,2

α+ 1
2
,i
− ρn,1

α− 1
2
,i
Gn,2

α− 1
2
,i

)
−

− ∆t

∆xi

(
lα,i+ 1

2
hn
i+ 1

2
ρn,1
α,i+ 1

2

u∗,2
α,i+ 1

2

− lα,i− 1
2
hn
i− 1

2
ρn,1
α,i− 1

2

u∗,2
α,i− 1

2

)
+

+ a31∆t
(
ρn,1
α+ 1

2
,i
Gn,1

α+ 1
2
,i
− ρn,1

α− 1
2
,i
Gn,1

α− 1
2
,i

)
,

where now u∗,3α = ã32u
n,3
α + ã31u

n,2
α .

The final assembly of the solution at time level n+ 1 has then the form

ηn+1
i = ηni −

− ∆t

∆xi

3∑
j=1

b̃j

N
i+ 1

2∑
β=1

lβ,i+ 1
2
hn
i+ 1

2
un,j
β,i+ 1

2

−
N
i− 1

2∑
β=1

lβ,i− 1
2
hn
i− 1

2
un,j
β,i− 1

2

 (4.23)

for the continuity equation, and
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un+1
α,i+ 1

2

= un
α,i+ 1

2
+ ∆t

3∑
j=1

(
b̃jIn,jα,i+ 1

2

+ bjFn,jα,i+ 1
2

)
(4.24)

for the momentum equations for α = 1, ..., Ni+ 1
2
, with the appropriate corrections for the

top and bottom layers, respectively, and

lα,ih
n+1
i ρn+1

α,i = lα,ih
n
i ρ

n
α,i−

− ∆t

∆xi

3∑
j=1

bj

(
lα,i+ 1

2
hn
i+ 1

2
ρn,j
α,i+ 1

2

un,j
α,i+ 1

2

− lα,i− 1
2
hn
i− 1

2
ρn,j
α,i− 1

2

un,j
α,i− 1

2

)
+

+ ∆t
3∑
j=1

bj

(
ρn,j
α+ 1

2
,i
Gn,j

α+ 1
2
,i
− ρn,j

α− 1
2
,i
Gn,j

α− 1
2
,i

)
.

(4.25)

Notice that, also in this case, consistency with the discrete continuity equation in the sense
of Gross et al. [66] is guaranteed and an implicit treatment of the vertical advection
term would be feasible with the same procedure outlined above for the θ−method.
Furthermore, the two linear systems that must be solved for each time step have identical
structure and matrices that only differ by a constant factor, thanks to the freezing of their
coefficients at time level n. This implies that, recomputing their entries does not entail a
major overhead. It was shown in Tumolo & Bonaventura [109] that, while apparently
more costly than the simpler θ−method, this procedure leads indeed to an increase in
efficiency by significantly increasing the accuracy that can be achieved with a given time
step.

4.5 Numerical results

In this section, we describe the results of several numerical experiments that were
performed in order to investigate the accuracy and efficiency of the proposed methods.
In particular, the potential loss of accuracy when reducing the number of vertical layers
is investigated in each test, as well as the reduction of the number of degrees of freedom
of the system achieved by simplifying the vertical discretization in certain areas of the
domain.

Regarding the use of a variable number of layers, the presented tests are related with
the motivations explained in Section 4.3. In Sections 4.5.1 and 4.5.2 we look for an
accurate approximation of the vertical profile of velocity in a specific region only. In
particular, we study the extreme case in which the multilayer configuration is completely
removed in a half of the domain. A more complex application for this motivation is
shown in Section 4.5.4, for a sediment transport problem. The objective of adapting the
vertical discretization to a domain with complex bathymetry is investigated in Section
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4.5.3. In that test, we deal with a shallow region at the beginning of the domain and we
simplify the vertical discretization there, whereas the full multilayer approach is kept
elsewhere. In all these tests we show that this configuration is indeed effective, that is,
there is no significant loss of accuracy in the regions in which a higher vertical resolution
is maintained.

In order to evaluate the accuracy of the semi-implicit schemes, we compute the
relative errors between the computed solution and a reference solution. We denote by
Errη [ l2 ] and Errη [l∞ ] the relative error for the free surface when considering the usual
l2 and l∞ norm, respectively. For the velocity we define

Erru[l2] =


∑N

α=1

∑M
i=1

∣∣∣uα,i+ 1
2
− uref

α,i+ 1
2

∣∣∣2 ∆xihα,i∑N
α=1

∑M
i=1

∣∣∣uref
α,i+ 1

2

∣∣∣2 ∆xihα,i


1/2

; (4.26a)

Erru[l∞] =
maxα maxi

∣∣∣uα,i+ 1
2
− uref

α,i+ 1
2

∣∣∣
maxα maxi

∣∣∣uref
α,i+ 1

2

∣∣∣ , (4.26b)

where uref denotes the reference solution. We consider as a reference solution the one
computed by using an explicit third order Runge Kutta method with a maximum value
for the celerity Courant number of 0.1. Therefore, for the explicit scheme the Courant
number is fixed and we consider an adaptive time step ∆t = min1≤i≤M(∆xi/λi)Ccel,
where λi is an upper bound on the eigenvalues of the multilayer system. Following [93],
we deduce the following bound of the associated eigenvalues of the multilayer system
(4.7) :

λi = |ui|+

√√√√ghi + 2
N∑
α=1

(ui − uα,i)2, with ui =
N∑
α=1

lα,i uα,i.

In practice, since we only consider subcritical regimes, it is sufficient to consider the
approximation λi = |ui|+

√
g hi.

In all these tests, we use the viscosity defined by the chosen turbulence model in
Section 4.2, and 10 layers in the multilayer code, unless specified different.

4.5.1 Free oscillations in a closed basin

We consider here a subcritical flow in a closed domain of length L = 10 km. The bottom
topography is given by the Gaussian function

b(x) = 4 e−(x−x0)2/σ2

,

where x0 = 5 km and σ = 0.1L (see figure 4.3). At the initial time the flow is at rest and
we take as initial free surface profile η(0, x) = 10 + ax m, where a is chosen so that the
water height is h = 10 m at x = 0 and h = 11 m at x = 10 km. We simulate the resulting
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Figure 4.3: Sketch of the multilayer configuration with the variable number of layers for the free oscillations
test.

oscillations until t = 10800 s (3 h). All the simulations are performed by using a uniform
space discretization step ∆x = 50 m. The friction coefficient Cf is defined by (4.9) with
∆zr = h1 (h1 = l1h), ∆z0 = 3.3 × 10−5 and κ = 0.41. The wind drag is defined by the
coefficient value Cw = 1.2× 10−6 and we set a constant wind velocity uw = −1 m/s.

In figure 4.4 we show free surface profiles at different times until the final time, as
computed with the semi implicit methods described in Section 4.4. The θ-method and the
IMEX-ARK2 are very close to the reference solution. However, the IMEX-ARK2 captures
the shape of the free surface slightly better that the θ-method when considering the
same time step. By using the implicitness parameter θ = 0.55 and the IMEX-ARK2 with
∆t = 12.5 or 25 s, we get a difference in the free surface of approximately 3 cm at the final
time. In table 4.3 we report the corresponding relative errors and the maximum Courant
number achieved by (4.26)-(4.11), at time t = 10000 s. We see that the IMEX-ARK2
method slightly improves the results with respect to the θ-method.

SI-method ∆t (s) Cvel Ccel Errη [l2/l∞] Erru [l2/l∞]
(×10−3) (×10−1)

θ = 0.55 12.5 0.18 2.62 1.6/3.2 0.9/1.5
IMEX-ARK2 12.5 0.18 2.62 0.6/2.0 0.4/0.6
θ = 0.55 25 0.34 5.24 2.6/5.4 1.3/1.7

IMEX-ARK2 25 0.34 5.24 0.9/2.2 1.2/1.7
θ = 0.52 50 0.7 10.48 3.1/6.3 1.6/1.5
θ = 0.55 50 0.68 10.47 3.9/7.7 2.2/2.0

IMEX-ARK2 50 0.69 10.48 2.4/5.2 1.4/1.7

Table 4.3: Relative errors and Courant numbers achieved by using semi-implicit methods in the free
oscillations test at t = 10000 s.
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Figure 4.4: Free surface profile at different times by using the semi-implicit methods (color lines) and the
reference solution (black circles) computed with the explicit scheme in the free oscillations test.

Even though it is hard to make a rigorous efficiency comparison in the framework of
our preliminary implementation, for the subcritical regime the semi-implicit methods
turn out to be more efficient than the explicit one. Actually, the computational time
required to get the 3 hours of simulation (on a Mac Mini with Intel R©CoreTM i7-4578U
and 16 GB of RAM) is approximately 12 s for the explicit scheme using the Courant
number Ccel = 0.9 (103 s for the reference solution), while it is approximately 1.64 s
(3.83 s) for the θ-method (IMEX-ARK2) with ∆t = 12.5 s. This time is 0.82 s (1.92 s) with
∆t = 25 s and 0.4 s (0.97 s) when considering the time step ∆t = 50 s.

We then compare results obtained with a fixed and variable number of vertical layers.
Figure 4.5 shows the absolute error for the free surface by using the θ-method with
θ = 0.55 and ∆t = 25 s, as computed using either N = 10 layers throughout the domain
or considering (see figure 4.3)

N =

{
10 if x ≤ 5000,

1 otherwise.
(4.27)

Similar results are obtained if the time step is ∆t = 12.5 s. We see that usually the
difference between the constant and variable layer cases computed by the semi-implicit
method is of the order of 0.1% of the solution values (absolute error 1 cm), while the
number of degrees of freedom of the multilayer system is significantly reduced (from
2210 to 1310).

Moreover, figure 4.6 shows the vertical profiles of horizontal velocity at the point
x = 2475 m (see figure 4.3), as computed by the semi-implicit method with a constant
and variable number of layers (see (4.27)) and with the reference Runge-Kutta method
for constant number of layers 1, 2 and 5, respectively. The advantage of using a variable
number of layers is apparent. We see that a good approximation of the velocity profiles
is obtained even when removing the multilayer configuration in a half of the domain.
Actually, these vertical profiles are more accurate than the ones obtained by using 1 and
2 layers in the whole domain. As a conclusion, the vertical effects, which are induced by
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Figure 4.5: Absolute errors for the free surface at different times in the free oscillations test, obtained with
the θ-method (θ = 0.55 and ∆t = 25 s) with either 10 layers in the whole domain (solid black line) or a single
layer in the first half of the domain only (dashed yellow line).

Figure 4.6: Vertical profiles of horizontal velocity in the free oscillations test, obtained with the reference
solution (black circles), and the θ-method (θ = 0.55 and ∆t = 25 s) with either 10 layers in the whole domain
(solid black line) or a single layer in the first half of the domain only (dashed yellow line), and with the third
order Runge-Kutta method with constant number of layers 1, 2 and 5. Profiles are taken at the point x = 2475
m and times t = 3000, 6500, 10800 s.

both the turbulence viscosity and the friction at the bottom and increased by the obstacle,
are relevant enough to consider a multilayer approach for this test.

4.5.2 Steady subcritical flow over a peak with friction

The proposed semi-implicit schemes are exactly well-balanced for water at rest solutions.
Indeed, if unα = 0 for α = 1, . . . , N is imposed in the equations of Section 4.4, ηn+1

i = ηni
and un+1

α,i+ 1
2

= 0, ∀n ≥ 0,∀α, ∀i results. In this test, we consider a steady flow in the
subcritical regime, as done for example in Rosatti et al. [102]. The length of the domain
is L = 50 m, and the bottom bathymetry is given by the function

b(x) = 0.05− 0.001x+

2 cos2
(πx

10

)
, if |x| < 5;

0 otherwise.
(4.28)
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SI-method ∆t (s) Cvel Ccel Errη [l2/l∞] Erru [l2/l∞]
(×10−6) (×10−5)

θ = 0.55 0.11 0.71 3.58 1.58/1.8 1.84/7.11
θ = 0.7 0.11 0.70 3.58 1.58/1.8 1.84/7.11

IMEX-ARK2 0.11 0.72 3.5 1.58/1.8 1.84/7.11

Table 4.4: Relative errors and Courant numbers achieved by using semi-implicit methods in the steady
subcritical flow test.

The initial conditions are given by η(0, x) = 5 m and q(0, x) = 4.42 m2 s−1 and subcritical
boundary conditions are considered, (see e.g. [102]). The same values of discharge
and free surface are used for the upstream condition q(t,−25), and the downstream one
η(t, L). We take a uniform space discretization step ∆x = 0.25 m and the same values
for the turbulent viscosity and bottom friction as in the previous test, while the wind
stress is not taken into account in this case.

In figure 4.7 we see the free surface at the steady state, as computed with the semi-
implicit θ-method and IMEX-ARK2, along with the reference solution. In table 4.4 we
show the relative errors and the maximum Courant numbers achieved. The results
computed with the semi-implicit methods are identical in this steady state case. Figure
4.8 shows the absolute difference on the free surface by using a semi-implicit method
with either a constant number of layers or considering

N =

{
10 if x > −10,

1 otherwise.
(4.29)

The order of this difference is 10−4, with larger values where only one layer is employed.
We also show the vertical profiles of horizontal velocity at three different points x =
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Figure 4.7: Free surface profile at steady state, as computed in the steady subcritical flow test by the
semi-implicit methods (solid red line) and reference solution (black circles) computed with the explicit scheme.
The inset figure is a zoom of the free surface profile.
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Figure 4.8: Vertical profiles of horizontal velocity in the steady subcritical flow test, obtained with the
reference solution (black circles), and the θ-method (θ = 0.55) with either 10 layers in the whole domain
(solid black line) or a single layer in the first half of the domain only (dashed yellow line). Profiles are taken
at steady state at the points x = −5, 0, 15 m. The solid black line denotes the absolute difference between the
free surface computed with 10 layers in the whole domain or a single layer in the first half of the domain only.

−5, 0, 15 m. These results show that we can reduce the number of degrees of freedom of
our system from 2210 to 1661, without a significant loss of accuracy where the multilayer
configuration is kept.

4.5.3 Tidal forcing over variable bathymetry

In this test we try to simulate a more realistic situation for coastal flow simulations. We
consider a domain of length L = 25 km. The bottom bathymetry is taken as in figure 4.9,
such that the bathymetry is much shallower in one part of the computational domain
than in the other. We define

b(x) = z0 − z1 tanh(λ (x− x0)) + 70 e−(x−x1)2/σ2

,

with z0 = −z1 = 44, x0 = 7500, x1 = 16000, λ = −1/3000 and σ = 2000. We consider
water at rest and constant free surface η(0, x) = 100 m at initial time. Subcritical
boundary conditions are imposed, namely the upstream condition is q(t,−5000) = 1

m2 s−1, and the tidal downstream condition is η(t, L) = 100 + 3 sin(ωt) m, where ω =

2π/43200. We simulate three 12-hours periods of tide, i.e., 36 hours. The friction
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Figure 4.9: Sketch of the bottom topography.

parameters are taken as in previous tests with the exception of ∆z0 = 3.3× 10−3, which
increases the bottom friction in order to obtain a more complex velocity field. In this
case, a wind stress is included with a wind velocity of 1 ms−1. As in previous tests, we
use 10 vertical layers in the multilayer system and a uniform space discretization step
∆x = 50 m.

Figure 4.10 shows the obtained velocity field, where we can see some recirculations.
Moreover, regarding the deepest area we realise that the upper and lower velocities have
opposite direction.

Figure 4.11 shows the free surface position at different times. We see that both the

Figure 4.10: Vector map of the whole velocity field u = (u,w) at time t = 33 h. Colors represent the
magnitude of the velocity in logarithmic scale.



Chapter 4. Semi-implicit time discretization with variable number of layers 131

−5 0 5 10 15 20
102.85

102.9

102.95

103

(t = 15 h)

−5 0 5 10 15 20

97.25

97.3

97.35

97.4

(t = 20 h)

−5 0 5 10 15 20
99.94

99.96

99.98

100

(t = 24 h)

x (km)

z
(m

)

−5 0 5 10 15 20

99.97

99.98

99.99

100

(t = 36 h)

x (km)
−5 0 5 10 15 20

100

100.02

100.04

100.06

100.08

100.1

(t = 30 h)

x (km)

−5 0 5 10 15 20

99.96

99.97

99.98

99.99

100

z
(m

)

(t = 12 h)

 

 

Explicit RK3

θ = 0.55 - ∆t = 2.5 s
IMEX-ARK2 - ∆t = 2.5 s
IMEX-ARK2 - ∆t = 10 s

Figure 4.11: Free surface profile at different times by using the semi-implicit methods (color lines) and the
reference solution (black circles) computed with the explicit scheme in the tidal forcing test.

θ-method and the IMEX-ARK2 method are close of the reference solution. As in the free
oscillation test, the IMEX-ARK2 approximates better the shape of the free surface. In
particular, looking at table 4.5, where we report the relative errors at final time (t = 36

h), we see that this method notably improves the results of the θ-method. Note also
that, in this typical coastal subcritical regime, large values of the Courant number can be
achieved, the maximum value being Ccel = 34.8, without sensibly degrading the accuracy
of the results.

In table 4.6 we report the computational times and speed-up achieved. With the
explicit code about 16 minutes of computation are required (2.5 hours for the reference
solution), while the semi-implicit methods can reduce this time to seconds. Note also
that the IMEX-ARK2 is sensibly more efficient than the θ-method in this case, since it is
about 2.3 times more expensive than the θ-method, whereas the errors decrease by a
much bigger factor.

We also investigate the influence of simplifying the vertical discretization in the
shallowest part of the domain (see figure 4.9). We consider three different configurations,
which we denote hereinafter as (NVAR1)-(NVAR3). Firstly, we totally remove the vertical
discretization by considering a single layer in the first part of the domain:

N =

{
1, l1 = 1, if x ≤ 4000;

10, li = 1/10, i = 1, ..., N, otherwise.
(NVAR1)

Secondly, we keep a thin layer close to the bottom in order to improve the approximation
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SI-method ∆t (s) Cvel Ccel Errη [l2/l∞] Erru [l2/l∞]
(×10−5) (×10−2)

θ = 0.55 2.5 0.03 1.6 0.77/2.08 0.55/1.01
IMEX-ARK2 2.5 0.03 1.6 0.10/0.26 0.05/0.06
θ = 0.55 5 0.05 3.2 1.32/2.95 0.89/1.35

IMEX-ARK2 5 0.05 3.2 0.24/0.75 0.16/0.19
θ = 0.55 10 0.1 6.3 2.41/4.45 1.51/1.86

IMEX-ARK2 10 0.1 6.3 0.69/1.42 0.32/0.65
θ = 0.55 25 0.24 15.8 5.34/8.36 3.08/3.53

IMEX-ARK2 25 0.25 15.8 1.02/2.31 0.44/0.90
θ = 0.55 55 0.52 34.8 10.2/14.7 5.26/5.81

IMEX-ARK2 55 0.55 34.8 1.43/3.29 0.67/0.89

Table 4.5: Relative errors and Courant numbers achieved by using semi-implicit methods at t = 36 h in the
tidal forcing test.

Method ∆t (s) Ccel Comput. time (s) Speed−up

Runge-Kutta 3 - 0.1 (ref. sol.) 9040 (150.6 m) -
Runge-Kutta 3 - 0.88 1014 (16.9 m) 1

θ = 0.55 2.5 1.6 230 (3.8 m) 4.4
IMEX-ARK2 2.5 1.6 544 (9.1 m) 1.9
θ = 0.55 5 3.2 116 (1.9 m) 8.7

IMEX-ARK2 5 3.2 271 (4.5 m) 3.74
θ = 0.55 10 6.3 58 17.5

IMEX-ARK2 10 6.3 136 (2.3 m) 7.5
θ = 0.55 25 15.8 23 44.1

IMEX-ARK2 25 15.8 54 18.7
θ = 0.55 55 34.8 10 101.4

IMEX-ARK2 55 34.8 24 42.3

Table 4.6: Computational times and speed-up in the tidal forcing test case for the simulation up to t = 36 h.

of the friction term:

N =

{
2, l1 = 0.1, l2 = 0.9, if x ≤ 4000;

10, li = 1/10, i = 1, ..., N, otherwise.
(NVAR2)

Finally, we improve again the vertical discretization close to the bottom by adding
another thin layer:

N =

{
3, l1 = l2 = 0.1, l3 = 0.8, if x ≤ 4000;

10, li = 1/10, i = 1, ..., N, otherwise.
(NVAR3)

In this way, the number of degrees of freedom of the multilayer system is reduced
from 5510 to 3890 (NVAR1), 4070 (NVAR2), or 4250 (NVAR3). Note that configurations
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Figure 4.12: Absolute errors for the free surface at different times obtained in the tidal forcing test
with the θ-method (θ = 0.55 and ∆t = 5 s) with either 10 layers in the whole domain (solid black line) or
configurations (NVAR1)-(NVAR3) in the first part of the domain.

(NVAR2) and (NVAR3) employ a non-uniform distribution of the vertical layers. Figure
4.12 shows the absolute errors with the θ-method with ∆t = 5 s (Ccel = 3.2) using
10 layers in the whole domain and with configurations (NVAR1)-(NVAR3). We see
that the simplest configuration (NVAR1) leads to the largest error. However, by using
configurations (NVAR2) and (NVAR3) these errors are much more similar to the case in
which a constant number of layer is employed in the whole domain. As expected, the
smallest error is achieved with the configuration (NVAR3). Figure 4.13 shows the vertical
profile of horizontal velocity at point x = 16025 m (the top of the peak) at different
times. The conclusions are similar, i.e., the differences are larger with configuration
(NVAR1), whereas (NVAR2) and (NVAR3) give accurate approximations of the vertical
profile obtained with a constant number of layers.

4.5.4 An application to sediment transport problems

In order to emphasize the usefulness of the proposed method and the potential advan-
tages of its application to more realistic problems, we consider the extension of equations
(4.7) to the movable bed case. For simplicity, we work with a decoupled, essentially
monophase model, according to the classification in Garegnani et al. [58], [59], which
is appropriate in the limit of small sediment concentration. Quantity b in (4.7) is then
assumed to be dependent on time and an Exner equation for the bed evolution is also
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Figure 4.13: Vertical profiles of horizontal velocity obtained in the tidal forcing test with the reference
solution (black circles), and the θ-method (θ = 0.55 and ∆t = 5 s) with either 10 layers in the whole domain
(solid black line) or configurations (NVAR1)-(NVAR3) in the first part of the domain. Profiles are taken at the
point x = 16025 m and times t = 12, 15, 20, 24, 30, 36 h.

considered
∂b

∂t
+ ξ

∂Qb

∂x
= 0, (4.30)

where ξ = 1/(1− ψ0) with ψ0 the porosity of the sediment bed, and the solid transport
discharge is defined by an appropriate formula, see e.g. Castro Díaz et al. [36]. Here we
consider a simple definition of the solid transport discharge given by the Grass equation

Qb = Ag |u|2 u,

where Ag (s2/m) ∈ (0, 1) is an experimental constant depending on the grain diameter
and the kinematic viscosity. For control volume i, equation (4.30) is easily discretized
along the lines of Section 4.4. For the θ-method, the discrete equation reads

bn+1
i = bni + θ ξ Ag

∆t

∆x

(
|un+1

1,i− 1
2

|2 un+1
1,i− 1

2

− |un+1
1,i+ 1

2

|2 un+1
1,i+ 1

2

)
+

+ (1− θ) ξ Ag
∆t

∆x

(
|un

1,i− 1
2
|2 un

1,i− 1
2
− |un

1,i+ 1
2
|2 un

1,i+ 1
2

)
.

(4.31)

On the other hand, the IMEX-ARK2 discretization of equation (4.30) consists of a
simple updating of the values of the movable bed, since the values un,jα are known when
bn,j is computed. For the first stage we have bn,1i = bni . Next, bn,2i and bn,3i are computed
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by the formula

bn,ji = bni + ξ Ag
∆t

∆x

j∑
k=1

ãjk

(
|un,k

1,i− 1
2

|2 un,k
1,i− 1

2

− |un,k
1,i+ 1

2

|2 un,k
1,i+ 1

2

)
.

Finally, the solution at time n+ 1 is

bn+1
i = bni + ξ Ag

∆t

∆x

3∑
j=1

b̃j

(
|un,j

1,i− 1
2

|2 un,j
1,i− 1

2

− |un,j
1,i+ 1

2

|2 un,j
1,i+ 1

2

)
.

We consider a simple test in which a parabolic dune is displaced by the flow (see
[36]). The computational domain has length 1000 m and 150 nodes are used in the
spatial discretization. We set the constant Ag in the Grass formula to 0.001 and we take
the porosity value ψ0 = 0.4. We consider viscosity effects with the same parameters
as in the previous tests, disregarding wind stress. Subcritical boundary conditions are
imposed, namely the upstream condition is q(t, 0) = q(0, 0) and the downstream one is
η(t, L) = 15 m. The initial condition for the bottom profile is given by

b(0, x) =

 0.1 + sin2

(
π(x− 300)

200

)
if 300 ≤ x ≤ 500;

0.1 otherwise,
(4.32)

and the initial height is h(0, x) = 15− b(0, x). For the discharge, we take into account the
vertical structure of the flow in order to have a single dune moving along the domain.
With this purpose, we run a first simulation of the movement of the dune (4.32), where
the initial discharge is qi = 15 m2 s−1, for i = 1, . . . , N , until it reaches a steady structure
at the outlet. These values of the discharge are used as initial and upstream boundary
condition in the final simulation. If a constant discharge were used, this would sweep
along the sediment in the initial part of the domain and create another dune within the
computational domain. While this is physically correct, we prefer in this test to study a
simpler configuration.

We use 10 layers in the multilayer code and simulate until t = 691200 s (8 days).
Figure 4.14 shows the evolution of the dune and figure 4.15 shows zooms of evolution
of the free surface and of the movable bed, as computed with either the explicit third
order Runge-Kutta or the semi-implicit (θ-method and IMEX-ARK2). The results are
essentially indistinguishable. This is confirmed looking at table 4.7, where we report the
relative errors and the Courant number achieved. We see that there are not significant
differences between the semi-implicit methods, due to the fact that the flow is essentially
a steady one and the bed evolution is very slow.

As remarked before, a rigorous comparison of the efficiency of the proposed methods
is not possible in our preliminary implementation. However, a preliminary assessment
is reported in Table 4.8, showing the computational time and the speed-up obtained
for the simulation of 192 hours (8 days). For the reference solution with the explicit
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Figure 4.14: Profile of the dune at different times in the sediment transport test case, including the initial
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Figure 4.15: Free surface and bottom profile at different times in the sediment transport test case, as
computed by the semi-implicit methods (solid red line) and by the reference explicit scheme (black circles).

SI-method ∆t (s) Cvel Ccel Errη [l2/l∞] Erru [l2/l∞] Errb [l2/l∞]
(×10−7) (×10−6) (×10−5)

θ = 0.55 1 0.17 1.98 1.4/5.35 0.29/1.41 1.09/1.52
IMEX-ARK2 1 0.16 1.97 1.29/5.39 0.27/1.41 1.03/1.40
θ = 0.55 2 0.34 3.94 1.69/6.13 0.55/2.90 2.25/3.13
θ = 0.6 2 0.34 3.94 1.69/6.13 0.55/2.90 2.25/3.13

IMEX-ARK2 2 0.33 3.93 1.68/6.47 0.50/2.33 2.11/2.87

Table 4.7: Relative errors and Courant numbers achieved in the sediment transport test case by semi-implicit
methods at t = 192 hours (eight days).

scheme approximately 13 hours are necessary (78 minutes with maximum Ccel), whereas
8 minutes (respectively, 19 minutes) are needed with the θ-method and IMEX-ARK2
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Method ∆t (s) Ccel Comput. time (s) Speed−up

Runge-Kutta 3 - 0.1 (ref. sol.) 45978 (12.7 h) -
Runge-Kutta 3 - 0.99 4700 (78.33 m) 1
θ-method 1 1.98 1048 (17.5 m) 4.5

IMEX-ARK2 1 1.97 2368 (39.4 m) 1.99
θ-method 2 3.94 509 (8.5 m) 9.2

IMEX-ARK2 2 3.93 1164 (19.4 m) 4.04

Table 4.8: Computational times and speed-up in the sediment transport test case for the simulation up to
t = 192 h (eight days).

method when considering a time step ∆t = 2 s. This gives a speed up of 9 (4 for the
IMEX-ARK2). Even taking a small time step (∆t = 1 s) the computational time required
is notably reduced to 17 min (39 min for the IMEX).

Finally, we can further reduce the computational time by reducing locally the number
of layers employed. In this test, the vertical structure cannot be completely removed
without causing a major loss of accuracy, since the dynamics of the movable bed depends
on the velocity of the layer closest to the bottom. For this reason, we consider the
following configuration (see also figure 4.16):

N =

{
10, li = 1/10, i = 1, ..., N, if 200 ≤ x ≤ 700;

6, li = 1/10, i = 1, ..., 5; l6 = 0.5, otherwise.
(4.33)

Note that, in this way, both a variable number of vertical layers and a non-uniform
distribution of these layers are tested. Figure 4.17 shows the absolute differences on the
free surface and on the movable bed profiles at different times when we use either a
constant number of layers (N = 10) or the configuration (4.33). The difference between

Figure 4.16: Sketch of the multilayer configuration with the variable number of layers for the sediment
transport test case.
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Figure 4.17: Absolute differences for the free surface (η) and bottom (b) at different times in the sediment
transport test case, by using the θ-method (θ = 0.55 and ∆t = 2 s). We compare the results with 10 layers
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both configurations for the bottom is lower than the 2% of its thickness, whereas the
number of degrees of freedom of the problem is reduced from 1660 to 1352.
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[107] L. E. SILBERT, D. ERTAŞ, G. S. GREST, T. C. HALSEY, D. LEVINE AND S. J.
PLIMPTON, Granular flow down an inclined plane: Bagnold scaling and rheology,
Physical Review E, 64 (2001), p. 051302.

[108] N. TABERLET, P. RICHARD, A. VALANCE, W. LOSERT, J. M. PASINI, J. T. JENKINS

AND R. DELANNAY, Superstable granular heap in a thin channel, Physical Review
Letters, 91 (2003), p. 264301.

[109] G. TUMOLO AND L. BONAVENTURA, A semi-implicit, semi-Lagrangian, DG frame-
work for adaptive numerical weather prediction, Quarterly Journal of the Royal
Meteorological Society, 141 (2015), pp. 2582–2601.

[110] G. TUMOLO, L. BONAVENTURA AND M. RESTELLI, A semi-implicit, semi-Lagrangian,
p−adaptive discontinuous Galerkin method for the shallow water equations, Journal
of Computational Physics, 232 (2013), pp. 46–67.




	Abstract
	Introduction
	Background on multilayer approach
	Introduction
	The initial system
	A multilayer approach
	Notation
	Weak solution with discontinuities
	Derivation of the final model: a particular weak solution

	Final multilayer model
	An alternative 3D multilayer model with energy balance

	A (I) rheology multilayer shallow model for dry granular flows
	Introduction
	Initial system with the (I) rheology
	The (I) rheology multilayer model
	Dimensional analysis
	A multilayer approach
	Derivation of the final model with (I) viscosity
	Final model

	Numerical tests
	Granular surface flows in a channel
	Granular collapse experiments


	Well-balanced multilayer discretization and side walls friction
	Introduction
	A 2D-model including lateral walls friction
	A multilayer discretization

	Numerical approximation
	Numerical tests
	Uniform flow: influence of the channel width
	Well-Balanced test including dry areas: granular collapse over an arbitrary bottom
	Solutions at rest with lateral walls friction: multilayer vs monolayer
	Laboratory experiments: dam break over rigid and erodible beds 


	Semi-implicit time discretization with variable number of layers
	Introduction
	Multilayer shallow water models
	Spatial discretization with variable number of layers
	Semi-implicit time discretizations
	A -method time discretization
	A more accurate IMEX-ARK discretization

	Numerical results
	Free oscillations in a closed basin
	Steady subcritical flow over a peak with friction
	Tidal forcing over variable bathymetry
	An application to sediment transport problems


	Bibliography

