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Resumen 

Las infecciones del trato urinario (ITUs) constituyen una de las infecciones 

bacterianas más frecuentes tanto a nivel comunitario como hospitalario. Durante los últimos 

años se ha descrito un aumento en las tasas de resistencia a los antibióticos así como de las 

tasas de recurrencias en pacientes con ITU, teniendo un alto impacto tanto en la morbilidad 

como en la mortalidad en todo el mundo. Para poder hace frente a este problema debemos 

entender los procesos evolutivos que dan lugar al desarrollo de resistencias durante el 

tratamiento de las ITUs. Por ello, el objetivo de esta tesis ha sido evaluar el impacto de las 

condiciones fisiológicas del tracto urinario sobre la actividad de ciprofloxacino y 

fosfomicina frente a Escherichia coli.  

En la primera parte de esta tesis hemos evaluado el efecto de las condiciones 

fisiológicas del trato urinario sobre la actividad de ciprofloxacino sobre cepas con las 

mutaciones que confieren bajo nivel de resistencia a quinolonas más comunes. Todas las 

cepas que portaban mecanismos cromosómicos y plasmídicos de bajo nivel de resistencia se 

convertían en resistentes a ciprofloxacino bajo las citadas condiciones. Nuestros datos 

sugieren que los métodos recomendados para el estudio de sensibilidad parecen ser un 

estimador pobre de la actividad de ciprofloxacino frente a cepas de E. coli con mecanismos 

de bajo nivel de resistencia en ITUs, sobreestimando su actividad, particularmente en 

pacientes con orina con pH ácido. 

En la última sección, hemos evaluado el efecto de las condiciones fisiológicas del 

tracto urinario sobre la actividad de fosfomicina. Para ello utilizamos cepas de E. coli 

portadoras de distintas mutaciones en genes que confieren resistencia a fosfomicina. 

Nuestros resultados muestran que los métodos estándar para estudiar la sensibilidad frente a 

fosfomicina pueden sobreestimar su efecto, principalmente en pacientes con valores de pH 

en orina elevados.   



  

 

  



Summary  

Urinary tract infections (UTIs) are among the most common bacterial infections 

acquired in the community and in the hospital. During the last years increasing rates of 

antibiotic resistance and high recurrence rates have been described in patients with UTI, 

which have impacted on morbidity and mortality rates and have increased hospitalization 

costs worldwide. In order to rise to this challenge we must understand the evolutionary 

pathways that give rise to resistance during UTI treatments. The goal of this thesis was to 

evaluate the impact of urinary tract physiological conditions on ciprofloxacin and 

fosfomycin activity against Escherichia coli.  

In the first part of this thesis, we have evaluated the impact of the urinary tract 

physiological conditions on the antimicrobial activity of ciprofloxacin against low-level 

quinolone-resistant (LLQR) strains carrying the most frequent chromosomal mutations. Our 

results demonstrate that all the LLQR strains studied became resistant to ciprofloxacin 

under physiological conditions.  Subsequently, we demonstrate that under specific urinary 

tract physiological conditions, susceptible laboratory and clinical strains harboring qnr 

determinants become fully resistant to ciprofloxacin. Thus, our data strongly suggest that 

recommended methods for MIC determination produce poor estimations of CIP activity 

against LLQR E. coli in UTIs, overestimating its activity, mainly in patients with acidic 

urine pH. 

In the last section, the effect of physiological UTI conditions on fosfomycin activity 

was evaluated. With this purpose, we used E. coli strains harboring low-level fosfomycin 

resistance (LLFR) mutations. We demonstrate that standard susceptibility testing in 

Mueller-Hinton with G6P could overestimate the effect of fosfomycin, mainly in patients 

with basic urine pH values. 

  



  

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

 

 

 

 

 

 

 

 

 

‘The thoughtless person playing with penicillin 

treatment is morally responsible for the death of 

the man who succumbs to infection with the 

penicillin-resistant organism’ 

 –Sr. Alexander Fleming, 1945.  
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Abbreviations: 

cAMP: cyclic AMP. 

CIP: Ciprofloxacin. 

CMQR: Chromosomal-Mediated Quinolone Resistance. 

CRP: cAMP receptor protein 

DDD: Defined Daily Dose. 

DNA: Deoxyribonucleic Acid.  

MIC: Minimal Inhibitory Concentration. 

FOS: Fosfomycin.  

G6P: Glucose-6-phosphate. 

IBC: Intracellular Bacterial Communities. 

LLFR: Low-Level Fosfomycin Resistance. 

LLQR: Low-Level Quinolone Resistance.  

LLR: Low-Level Resistance. 

PMQR: Plasmidic-Mediated Quinolone Resistance. 

ROS: Reactive Oxygen Species. 

UPEC: Uropathogenic Escherichia coli.  

UTI: Urinary Tract Infection 
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3.1. Urinary Tract Infection 

 

Urinary tract infections (UTIs) are among the most common bacterial infections 

in humans, representing the second most frequent community-acquired infection in 

women 
1,2

. It is estimated that 50% of women have at least one symptomatic UTI 

episode during their lifetime, and between 20-30% suffer recurrent episodes 
2
. Studies 

suggest that up to 95% of all UTIs are due to an ascending route of infection 
3
. Women 

are more susceptible to UTI than men because their urethral opening is close to the 

vaginal cavity and rectum, facilitating the movement of bacteria from these sites into the 

urethra. 
4
. Furthermore, the shorter distance from the urethral meatus to the bladder 

makes it easier for bacterial to reach the bladder by progressive ascending    

colonization 
5
. Although a higher prevalence of UTI is associated with young women, 

UTI epidemiology depends on the period of life. UTIs occur more often in male than 

female neonates, whereas an almost equal proportion during infancy and young 

childhood is found 
6
. Regarding elderly population, the frequency of male UTI increases 

with age, probably secondary as a side-effect associated with voiding problems 
7
. 

UTIs are classified as either lower (confined to the bladder) or upper 

(pyelonephritis), and as either uncomplicated or complicated 
4
. Uncomplicated UTIs 

affect healthy individuals without structural or neurological urinary tract     

abnormalities 
8
. Complicated UTIs are defined as UTIs associated with factors that 

compromise the urinary tract or the immune status of patients: pregnancy, urinary 

obstruction; urinary retention; presence of foreign bodies (catheters or drainage 

devices); renal failure; renal transplantation or immunosuppression 
9
. This distinction 

has been used to guide the selection and duration of antimicrobial treatments, with 



Introduction 

 

 

 

12 

broader-spectrum agents and longer courses often recommended for patients with 

complicated UTIs 
5
. 

Regarding the etiology of UTIs, the bacteriology is very predictable: although a 

high number of species can cause UTIs in humans, the majority of infections in all 

populations are caused by the Gram-negative, facultative anaerobic, Escherichia coli 
4
.  

3.1.1. Uropathogenic Escherichia coli  

 

Uropathogenic Escherichia coli (UPEC) are a heterogeneous group within the 

classification of extraintestinal pathogenic E. coli strains 
10

. These bacteria are the 

primary cause of community-acquired UTI (>80%) and a large portion of nosocomial 

urinary infections (>50%), accounting for substantial medical costs and morbidity 

worldwide 
2
. In general, UPEC strains differ from commensal E. coli strains in that the 

former possess additional genetic material, often on pathogenicity associated islands, 

which code for gene products that may contribute to bacterial pathogenesis 
11

. Some of 

these genes allow UPEC strains to express a battery of virulence factors that are 

proposed to play a role in their ability to cause disease, including fimbriae, adhesins, 

toxins, flagella, autotransporter proteins and iron-acquisition systems 
12

. The ascension 

of the urinary tract is mediated by the action of flagella, propelling up UPEC strains 

from the urethra to the bladder.  

Once in the bladder, UPEC strains are able to form intracellular bacterial 

communities (IBC), which protect them from neutrophils, antibiotics and other stresses 

9
. Figure 1 shows the pathogenic cycle of UPEC infection within the bladder. The first 

step is the attachment of UPEC strains to the urothelium through the binding of UPEC 

peritrichous filamentous adhesive organelles (known as type 1 pili or fimbriae) to a 
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variety of mannose-containing glyco-protein receptors in the bladder cells 
13

. After 

adhesion UPEC is initially transferred into membrane-bound compartments that are 

similar to late endosomes 
14

. Then, bacteria replicate and form large biofilm-like 

communities. During IBC maturation, a subpopulation of UPEC progresses into a 

distinct developmental phase in which cell septation is inhibited, which leads to the 

formation of filamentous bacteria 
15

. Eventually, the integrity of the infected cells is 

compromised, and bacteria begin to spill out into urine. The emergent bacteria are often 

highly motile and infect adjacent cells or, eventually, can be flushed out of the urinary 

tract with the flow of urine 
16

. 

 

Figure 1. Pathogenic pathway of UPEC during UTI. Figure adapted from 
17

. 

Considering that antibiotic treatment is our primary, and in many cases only, 

method of treating UTIs caused by UPEC, it is essential to determine the best treatment 

in order to eradicate the infection, preventing the emergence of antimicrobial resistance 

and the risk of recurrence.  
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  3.2. UTI treatment and antimicrobial resistance 

There is general agreement that all symptomatic UTIs should be treated 
1
. In the 

absence of antibiotic therapy, up to 60% of women experience symptoms and/or 

bacteriuria after initial infection 
18–20

, implying that cystitis is not always self-limiting
21

. 

Furthermore, if the infection persists without adequate treatment, in some cases bacteria 

ascend through the ureters, causing pyelonephritis and sepsis 
22

. For this reason, patients 

suffering from UTI are commonly treated with antibiotics. In this way,  antibiotic 

therapy should be individualized based on patient circumstances (allergy, tolerability, 

compliance) 
5
, spectrum and susceptibility patterns of the aetiological uropathogens, 

adverse ecological effects, cost and availability 
23

.  

Recently the Infectious Diseases Society of America and the European Society 

for Microbiology and Infectious Diseases updated clinical practice guidelines for the 

treatment of uncomplicated cystitis and pyelonephritis 
24

. The guideline panel, based in 

the study published by Peterson DL 
25

, suggest that the risk of collateral antibiotic 

damage should be given equal weight as antibiotic efficacy in treatment 

recommendations. According to this premise, the guideline panel listed four oral 

antimicrobials for first-line empiric treatment of uncomplicated cystitis: fosfomycin-

trometamol (3g p.o. in one dose); nitrofurantoin monohydrate/macrocystals (100 mg 

twice daily for 5 days); trimetropin-sulfometoxazol (160/800 mg twice daily for 3 

days); or pivmecillanam (400 mg orally twice daily for 5 days). As second-line 

treatments, the guideline recommends ciprofloxacin (250 mg twice daily for 3 days), 

levofloxacin (250-500 mg once daily for 3 days) and β-lactams (amoxicillin-

clavulanate, cefdinir or cefaclor for 3-7 days). Fluoroquinolones are the only oral 

antimicrobials recommended for empiric treatment of uncomplicated pyelonephritis in 
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outpatients 
24

. Non-hospitalized patients should receive either oral ciprofloxacin (500 

mg twice daily for 7 days or 1000 mg extended release daily for 7 days) or levofloxacin 

(750 mg once daily for 5 days), with this oral treatment preceded by an intravenous 

antimicrobial treatment such as ceftriaxone or a consolidated 24h dose of an 

aminoglycoside. Complicated UTIs are associated with a wide range of clinical 

syndromes and bacteria including multidrug-resistance, making it difficult to generalize 

regarding treatment choice 
26

. Most clinical trials have evaluated 7–14 days of treatment 

27
, with a 3 day course not sufficient for eradicating infection 

28
. Ten to fourteen days of 

antibiotics are usually recommended for patients with pyelonephritis, bacteraemia, 

hypotension and other signs of severe sepsis, whereas a 7 days regimen should adequate 

for lower UTIs 
27,29

.  

It is important to remark that antibiotic use is a key driver of the increase and 

spread of antibiotic resistance 
30,31

. Although there is evidence that antibiotic-resistant 

bacteria existed prior to clinical use of antibiotics, clinical use of these agents has 

certainly been coupled with an increase in the emergence of antibiotic-resistant bacteria 

32
. When antibiotics are prescribed, the primary aim is to achieve the highest non-toxic 

antibiotic concentration in the urinary tract in order to obtain the highest bacterial 

elimination rate, thus preventing the development of resistant strains 
33

. Nevertheless, 

many treatments fall short of this objective due to suboptimal dosing regimens, poor 

drug distribution or penetration, poor patient compliance with taking medication, or low 

antibiotic-activity in the urinary tract 
33

. Lawrenson and colleagues proved that 

whichever antibiotic is prescribed to treat UTI, between 12-16% of the patients returned 

within 28 days for a further course of antibiotic treatment, with women, pregnant 

patients and patients with diabetes significantly more likely to require additional 

treatment 
34

. Moreover, UPEC strains exhibit a high recurrence rate. More than 68% of 
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recurring UTIs are caused by the original E. coli strain, persisting more than 1 year after 

the initial infection 
35,36. It is widely thought that recurrences occur through re-ascension 

and re-inoculation of the bladder lumen by an UPEC strain that has persisted in the 

periurethral or fecal flora 
37

. 

 Clinical situations where bacteria are exposed to low levels of antibiotics are 

related with acquisition of antibiotic resistance among UPECs. This situation increases 

the risk of treatment failure due to the use of an ineffective antibiotic, increasing the 

time from an initial diagnosis to an effective therapy, and thus increasing morbidity by 

the use of more toxic antibiotics as subsitutes of those that became ineffective 
38

. 

3.2.1. Low-level resistance 

Antibiotics have collateral effects on the normal microbiota of the vagina and 

gastrointestinal tract, altering its composition and generating a selective pressure 

leading to development of resistant microorganism selection, particularly when the 

treatment is of long duration 
9
. A critical step during antibiotic resistance development 

is the presence of strains with slightly higher antibiotic resistance than is common for 

the susceptible population, but still below the clinical breakpoint 
39

. These strains are 

named low-level resistant (LLR), and are considered and intermediary stage in the 

development of high-resistant strains. LLR appears to facilitate the selections of fully 

resistant strains, allowing bacterial growth at clinical relevant concentrations. The 

importance of these strains is that the LLR phenotype may not be detectable by standard 

susceptibility testing procedures, being classified as “susceptible” although they carry 

genetic determinants that reduce the susceptibility to antibiotics 
39

. Therefore, LLR 

mutants are arguably the first step on the evolutionary pathway to producing high-level 
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resistance, and consequently their dissemination and evolution might influence the 

outcome of antibiotic treatment of UTIs. 

3.2.2. Urinary tract physiological conditions and LLR 

The antibiotic effectiveness for the treatment of UTI not only depends on the 

susceptibility of pathogens and the appropriate antibiotic distribution in bladder and 

kidneys. Physicochemical and pharmacological properties of antibiotics are important 

factors related to successful therapy. Therefore, even if an UPEC strain was susceptible 

and the antibiotic concentration in bladder was optimal, there are several factors in the 

urinary tract that may compromise the efficacy of antimicrobials, contributing to the 

survival of a significant number of microorganisms under these conditions. This 

situation may be enhanced by the presence of LLR mutants, which not only may survive 

under UTI conditions, but also acquire resistance under antibiotic selective pressures 

(Figure 2). 

Urine is a fluctuating and complex fluid composed of over 95% water, plus 

sodium, ammonia, phosphate, sulfate, urea, creatinine, proteins, and products processed 

by the kidney and liver 
40

. Urine is thought to be a primary defense mechanisms due to 

its high osmolality, low pH values and the presence of high concentration of urea that 

can inhibit bacterial growth. However, UPEC strains are able to grow under these 

conditions throught efficient use of the available resources 
11

. Factors associated with 

urine, including calcium and magnesium ion concentrations, have previously been 

shown to affect the outcome of antibiotic susceptibility testing results 
41

. The urinary pH 

level also may affect the antibacterial activity of many therapeutic agents used for the 

treatment of UTIs. The normal range of urinary pH was previously reported to be as 

variable as 4.5 to 8.5 
42,43

. In the study performed by So and colleagues 
44

, most of urine 
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samples collected from patients with UTI  had a pH of 6.5 or lower, which means that 

antibiotics prescribed for UTIs have to be active under acidic conditions in order to 

optimally eradicate the infection.  

Additionally, the bladder environment is mainly anaerobic during UTI. The 

oxygen partial pressure in the urine of healthy patients is estimated to be as low as 25-

80  mmHg 
45

, which is directly related with renal metabolic state. However, in patients 

with urinary infections, the urine oxygen concentration is significantly diminished due 

to the oxygen consumption by the infecting microbes 
46

. Bactericidal antibiotics have 

been shown to kill bacteria (at least in part) by inducing the production of intracellular 

damaging reactive oxygen species (ROS) 
47,48

. Although in a number of recent works 

the role of ROS in the lethal effect of bactericidal antibiotics has been questioned 
49,50

, 

ROS are currently considered a critical factor in antibiotic-mediated killing 
51

. A recent 

study found that killing efficacy of aminoglycosides, fluoroquinolones and β-lactam 

antibiotics was significantly diminished under anaerobic conditions 
47

.  

It is known how urinary tract physiological conditions (changes on pH values, 

urine compounds and anaerobiosis) might compromise the optimal activity of different 

antibiotics. However the knowledge about how UTI conditions could contribute to the 

therapeutic failure against LLR mutants is limited. We hypothesized that, due to the 

reduction of antibiotic activity under these conditions, E. coli strains could be exposed 

to sub-inhibitory antibiotic concentrations, which inhibit bacterial growth but do not kill 

them. Then, a non-lethal selection may results in the emergence of a broader range of 

mutant variants, most of which will individually have small phenotypic effects and low 

fitness cost 
33,52

, giving rise to the presence of high-level resistant microorganism 

populations which are able to produce a new infection (Figure 2).   
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Figure 2. Antibiotic activity and selection for fully resistant (R) and LLR bacteria. A) Bacterial 

population with a subset of resistant organisms. In the presence of an antibiotic, susceptible (S) 

strains are killed, while resistant strains survive, proliferating and causing a new infection. B) 

Bacterial population with a subset of LLR organisms. In this case, the population is susceptible 

to the antibiotic, and the infection is resolved. C) Bacterial population with a subset of LLR 

organisms in the presence of UTI conditions. Under these conditions antibiotic activity could be 

reduced, allowing LLR strains not only to survive but also to acquire resistance under antibiotic 

selective pressures. D) In this case, UTI conditions could increase antibiotic activity, allowing 

the resolution the infection, even in the presence of R bacteria. Figure adapted from 53. 
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3.3. Ciprofloxacin treatment in UTIs  

Quinolones are molecules structurally derived from the heterobicyclic aromatic 

compound quinoline, originated from a substance obtained after the alkaline distillation 

of quinine 
54

. The discovery of nalidixic acid in 1962 by Lesher and associates 
55

 

marked the beginning of five decades of quinolone development 
56

. Since then, all 

current quinolone derivatives have a dual ring structure with a nitrogen at position 1, a 

carbonyl group at position 4, and a carboxyl group attached to the carbon a the 3 

position of the firs ring 
1
 (Figure 3). The potency of quinolones against gram-negative 

bacteria was significantly improved by the development of fluoroquinolones (with the 

addition of a 6-fluoro group) extending the therapeutic spectra and enhancing 

pharmacokinetic properties 
57

. 

 

Figure 3. Chemical structures of quinoline (A), nalidixic acid (B), and ciprofloxacin (C). 

The fluoroquinolone ciprofloxacin is one of most commonly used agents for UTI 

treatment 
58–60

. It has been employed as an appropriate therapy in patients with UTI not 

requiring hospitalization in areas where the prevalence of resistance is under 10%. In 

addition, it is considered an effective treatment in the prevention of UTI in kidney 

transplant recipients 
24,61

. Furthermore, ciprofloxacin shows an excellent bioavailability 

(over the 70% of the administered dose) 
62–64

, particularly due to the high absorption, 

localized preferentially at the duodeno and jejunal level, where it is usually absorbed by 
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passive diffusion 
65,66

. High concentrations of ciprofloxacin (up to 990 mg/L) 
67

 are 

reached in urine during oral treatment of UTIs.  

Ciprofloxacin is highly effective when given as brief courses of 3-10 days, with 

efficacy comparable to trimethroprim-sulfamethoxazole 
68

, nitrofurantoine 
69

, and better 

than amoxicillin-clavulanate 
70

. In comparison with other fluoroquinolones, 

ciprofloxacin shows comparable clinical efficacy and bacteriologic eradication rates to 

levofloxacin 
71

, ofloxacin 
72

, sparfloxacin 
73

 or gatifloxacin 
74

 for UTI treatments. 

3.3.1 Mechanisms of action of fluoroquinolones 

Fluoroquinolones inhibit the enzymatic activities of two members of the 

topoisomerase class of enzymes: DNA gyrase and topoisomerase IV. DNA gyrase, the 

first-recognized target of quinolones, is composed of two A and two B subunits, 

products of the gyrA and gyrB genes, respectively 
75

. DNA gyrase catalyzes the 

introduction of negative superhelical twists into closed covalently circular DNA, and is 

also responsible for removing positive superhelical twists that accumulate ahead of the 

DNA replication fork 
1
. Topoisomerase IV is composed of two subunits encoded by 

parC and parE. The main role of topoisomerase IV seems to be associated with 

decatenating the daughter replicons 
76

. Topoisomerases twist and untwist the DNA helix 

by binding to it and introducing a pair of staggered, single-strand breaks in one 

segment, through which a second DNA segment is passed 
77

. 

When a fluoroquinolone is present, the complex DNA-topoisomerase is altered 

into a drug–enzyme–DNA complex known as a ternary complex, in which the 

topoisomerase is trapped with the bound DNA 
78

. Fluoroquinolones bind to DNA gyrase 

or topoisomerase IV, which is then unable to re-ligate the DNA substrate 
79

, thereby 
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converting the enzyme-DNA complex into a poisonous complex 
80

. The broken 

segments of DNA bound to the enzyme are named as “cleaved complexes”. If the level 

of topoisomerase-mediated DNA cleavage becomes too high, the action of DNA 

tracking systems can convert these transient complexes to permanent double-stranded 

breaks 
81

. They interact with DNA and the GyrA subunit of the DNA gyrase, or the 

ParC subunit of the topoisomerase IV, stabilizing the DNA-enzyme cleavage complex, 

and leading to the blockage of the replication machinery progression, DNA lesions 

formation, and finally to bacterial death 
82

. 

 

Figure 4. Ternary complex formed between DNA, DNA–gyrase/topoisomerase IV -and stacked 

fluoroquinolone. The binding site for fluoroquinolones is located in the bubble formed during 

the local opening of the DNA molecule. The right panel shows the sites of the antibiotic 

molecules which interact with DNA, with the enzyme, or favoring the stacking of the 

fluoroquinolone molecules. Adapted from Bambeke et al. 83
. 
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3.3.2. Fluoroquinolone resistance in E. coli 

During recent years, an increase in resistance to fluoroquinolones in E. coli 

strains has been described worldwide 
84

. As mentioned above, the prevalence of 

antibiotic resistant strains has been related with antibiotic use 
85

. The European Centre 

for Disease Prevention and Control (ECDC) provides information about antibiotic 

consumption and the rates of resistance in E. coli strains from all the countries of the 

European Union. Figure 5 illustrates fluoroquinolone consumption in defined daily dose 

(DDD) per 1000 patients per day and rates of resistance to fluoroquinolones in invasive 

E. coli strains from 2001 to 2015 in Spain. It can be observed that the progressive 

increase of resistant E. coli strains appears to be related with antibiotic consumption, 

reaching resistance rates over 34%.  

Furthermore, several clinical factors have been considered as possible predictors 

of fluoroquinolone resistance. Colodner and colleagues found that previous invasive 

procedures (like urine catheters, foreign bodies, orthopedic devices, etc.), recurrent UTI 

and previous hospitalization were independent risk factors for community-acquired UTI 

caused by quinolone resistant E. coli strains 
86

. The presence of complicated UTI 
87,88

, 

urinary catheterization in the previous 6 months 
59,89

 and male gender 
90

 have been 

identified as predictor factors of quinolone resistance in UTI. Increasing age was also 

associated with an increased risk of UTI by quinolone resistant UPEC, with relatively 

low resistance rates among UPEC isolates from pediatric outpatients (5.1%), higher 

among isolates from adult outpatients (11.8%), and the highest among isolates from 

older adult outpatients (29.1%) 
91

. 
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Figure 5. Fluoroquinolone usage and resistance rates in Spain from 2001 to 2015. This graph 

represents percentage of fluoroquinolone resistant Escherichia coli isolates (red bars) and 

fluoroquinolone consumption in defined daily dose (DDD) per 1000 patients per day           

(blue area chart) in the community. Data from http://ecdc.europa.eu 

 

3.3.3. Fluoroquinolone resistance mechanisms in E. coli 

3.3.3.1. Chromosomal-mediated quinolone-resistance  

Quinolone resistance is principally acquired through mutations in the genes 

encoding gyrase and topoisomerase 
92

. Target alterations due to mutations in the gyrA, 

gyrB, parC, and parE genes have been described in UPEC, most of which are located in 

small regions of either gyrA or parC, known as the quinolone resistance-determining 

region 
93,94

. These chromosomal mediated quinolone-resistance (CMQR) mutations are 

commonly situated in the amino terminal domains of GyrA (residues 67 to 106 for E. 

coli numbering) or ParC (residues 63–102) 
95

. The most common mutation observed in 

clinical isolates is at codon 83 (S83L) in gyrA, followed by codon 87 (D87 to N, Y, G, 

or H) 
96–98

. In ParC, the common substitutions appear to be at codons 80 and/or 84 
97

. 

Mutations in specific domains of GyrB and ParE have also been shown to cause 

quinolone resistance, although they are substantially less common in resistant UPEC 

isolates. The study performed by Lindgren and colleagues 
98

 found mutations in parE 

http://ecdc.europa.eu/
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gene in 5 from 54 strains (9.25%), four of them accompanied with mutations in gyrA 

and parC. Similar results were obtained by Takahashi and colleagues 
99

, where 18 from 

178 strains (10.11%) presented mutations in the parE gene.  

3.3.3.2. Efflux pumps and porins 

Efflux pumps in E. coli have a broad substrate range and transport antibiotics out 

of the bacterium, conferring intrinsic multidrug resistance 
100

. Genes encoding these 

efflux pumps are classified into the following five superfamilies: the major facilitator 

superfamily (MFS), small multidrug resistance (SMR), multidrug and toxic compound 

extrusion (MATE), ATP-binding cassette (ABC), and resistance-nodulation-cell 

division (RND) 
101

. Among RND transporters of E. coli, only the AcrB-AcrA-TolC 

complex (also called AcrBA-TolC) is constitutively expressed and plays a major role in 

multidrug resistance. It is composed of the inner membrane RND antiporter AcrB that 

functions in a tripartite assembly with a periplasmic adaptor protein, AcrA, and the 

outer membrane channel, TolC 
100,102

. Inactivation of AcrB increases the susceptibility 

of laboratory mutants of E. coli and other Enterobacteriaceae to many antimicrobials, 

whereas over-expression confers resistance to multiple drugs, including      

ciprofloxacin 
103

. Moreover, mutations in acrR (a repressor of acrAB) increase pump 

activity 
104

. The MarR protein, which regulates expression of marA, is expressed from 

the MAR (from multiple antibiotic resistance) operon, regulating the transcription of 

acrAB and tolC genes 
105

. Thus, inactivation of the repressor MarR increases the 

expression of marA, which amplifies the transcription of the pump genes acrAB and 

tolC, increasing the efflux of ciprofloxacin 
106

.  
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Three main porins are located in the outer membrane of E. coli: OmpA, OmpC 

and OmpF 
76

. Alterations in membrane permeability are usually associated with 

decreased expression of these porins 
107

. Both OmpF and OmpC channels are 

homotrimers, and in each monomer 16 β-strands span the outer membrane to form a 

barrel 
108

. Genes enconding OmpF and OmpC (ompF and ompC) are transcriptionally 

regulated, depending on the temperature and the osmolarity of the media, by the two-

component regulatory system OmpR-EnvZ that mediates both positive and negative 

control 
109

. There is also a post-transcriptional control by the small regulatory RNA 

molecules, micC and micF, which downregulate OmpC and OmpF expression 

respectively 
110,111

. Furthermore, MarA induce upregulation of an antisense micF, 

causing a significant reduction in expression of ompF 
109

. The porine OmpF facilitates 

the diffusion of fluorinated quinolones such as ciprofloxacin and cephalosporins into the 

periplasm, with marked reductions in accumulation of these agents in the OmpF-

deficient bacterial strains. In this way, down-regulation of these porins as well as point 

mutations can lead to reduced accumulation of quinolones (and other agents) within the 

bacterial cell 
112

. The OmpC channel is smaller than that of OmpF, and for this reason 

antibiotic molecules with large side chains are more restricted in their permeation 

through OmpC than through the wider OmpF channel 
113

. 

3.3.3.3. Plasmid-mediated quinolone-resistance 

Recently several plasmid-mediated quinolone-resistance (PMQR) mechanisms 

have been identified. The first report of a plasmid-mediated quinolone resistance 

describes the presence of a 218 aminoacid protein termed Qnr, that protects DNA from 

quinolone binding to topoisomerases 
114

. Since then, five groups of plasmidic Qnr 

determinants (encoded by the genes qnrA, qnrB, qnrC, qnrD and qnrS) have been 
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described 
115

. The qnrVC gene from Vibrio cholerae can also be located in a plasmid 

116,117
 or in transmissible form as part of an integrating conjugative element 

118
. These 

qnr genes generally differ in sequence by 35% or more from qnrA and each other 
119

. 

Allelic variants have also been described in each family, differing by 10% or less: 5 

alleles for qnrVC, 7 alleles for qnrA, 9 for qnrS, and 71 for qnrB 
120

. Qnr proteins 

appear to bind to gyrase and topoisomerase IV targets in such a way as to destabilize the 

cleavage complex enzyme-DNA-quinolone, beginning quinolone release, religation of 

DNA, and regeneration of active topoisomerase. Moreover, QnrA, QnrB and QnrS have 

been shown to protect DNA gyrase from quinolones in E. coli 
80,121–123

. QnrA also 

protects topoisomerase IV 
80

. Furthermore, qnr genes are often associated with 

extended-spectrum β-lactamases and aminoglycoside resistance encoding genes on the 

same plasmid 
124

, increasing mutually the probability of dissemination 
125

. 

Additionally, three further PMQR genes have been found: i) aac(6’)-Ib-cr is a 

variant aminoglycoside acetyltransferase that reduces ciprofloxacin activity 
126

. This 

enzyme, in addition to aminoglycoside antibiotics, confers resistance to ciprofloxacin 

and norfloxacin by N-acetylation of the amino nitrogen on its piperazinyl substituent 

127,128
; ii) qepA and oqxAB encoding efflux pump 

129,130
. QepA is a plasmid-mediated 

efflux pump of the major facilitator family that decreases susceptibility to hydrophilic 

fluoroquinolones, especially ciprofloxacin, norfloxacin and veterinary enrofloxacin 
129

. 

Concerning oqxAB, it is an efflux pump that was initially recognized on transmissible 

plasmids responsible for resistance to olaquindox 
130,131

. It has a wide substrate 

specificity including chloramphenicol, trimethoprim, and quinolones such as 

ciprofloxacin, norfloxacin, and nalidixic acid 
132

. 
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3.3.3.4. Low-level quinolone-resistance 

Resistance to fluoroquinolones is a step-by-step phenomenon involving 

accumulation of resistance mechanisms. The presence of single chromosomal mutations 

in gyrA or parC, as well as the presence of PMQR genes, lead to generation of low-

level quinolone resistant (LLQR) strains, with fluoroquinolone MICs that are higher 

than the epidemiological cutoff value but still below the resistance breakpoint for most 

fluoroquinolones. A high prevalence of LLQR UPEC mutants in UTIs has been 

described. Takahashi and colleagues analyzed CMQR genes in 89 fluoroquinolone-

susceptible UPEC strains from patients with complicated or uncomplicated cystitis, 

finding that 16 (17.97%) of these strains were LLQR mutants 
99

. Lindgren and 

colleagues studied 53 strains with susceptibilities that covered the full range of MICs 

and that were isolated from patients with uncomplicated UTIs, concluding that at least 

17 strains (70.91%) from fluoroquinolone-susceptible strains presented CMQR 

mutations 
98

. Additionally, a high prevalence of qnr genes has been found in clinical 

urinary isolates (from 10.81% to 31.6%)
133–135

. This prevalence varies depending on 

geographical location, patient characteristics (e.g. higher prevalence in inpatients than 

outpatients) 
133

 or associated antibiotic susceptibility patterns 
135,136

. 

It should be noted that the causes of this high prevalence of LLQR among UTI 

isolates remain puzzling: these mutations and PMQR determinants only lead to a slight 

increase in resistance (below the clinical breakpoint) that should not be enough to 

survive under the extremely high quinolone concentrations attained in the urinary tract. 
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3.3.3.5. Effect of urinary tract physiological conditions on              

ciprofloxacin activity  

The effectiveness of ciprofloxacin for the treatment of UTI does not only depend 

on pathogen susceptibility. It has been emphasized that physicochemical proprieties of 

quinolones have major consequences for their pharmacokinetics and pharmacodynamics 

41
. Ciprofloxacin is an ampholyte that can exist in four different pH-dependent 

protonation forms namely cation (H2X
+
), zwitterion (HX

±
), neutral (HX

0
), and anion 

(X
-
) depending on the pH of the medium 

137
. At the isoelectric point of quinolones in 

water (about pH 7), the mole fractions of the zwitterionic and neutral species reach their 

maximum values, being zwitterions the most stable species 
138

. Figure 6 represents 

ciprofloxacin speciation as cation, zwitterion, and/or anion as a function of pH values. 

Antibiotics in zwitterionic forms are optimal for porin permeability, favoring increased 

bacterial accumulation 
139,140

.  

 

Figure 6. Distribution of ciprofloxacin species as a function of pH.  The pKa value given for the 

carboxyl (pKa1) or amino (pKa2) group refers to the equilibrium between the protonated positive 

and deprotonated neutral group. Figure adapted from 
141

. 
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However, as previously mentioned, most patients with UTI caused by E. coli 

present urinary pH values lower than 6.5. At these pH values ciprofloxacin is cationic 

(positively charged), decreasing the penetration into bacteria, and thus, reducing its 

activity 
112,142

. 

In addition to the effect of pH on the activity of ciprofloxacin, there are several 

urine compounds that can interact with ciprofloxacin, reducing its activity. For instance, 

divalent urinary cations may also decrease ciprofloxacin activity 
143

. In this way, the 

cation magnesium (Mg
2+

) interacts with the quinolone carboxyl (COO-) group 
144

, 

generating quinolone-magnesium complexes that are significantly less active than the 

quinolone drugs alone. It has been also found that the activity of quinolones is reduced 

when the solutions are titrated with magnesium ions 
145

. Moreover calcium have also 

been related with impairment of uptake quinolones by bacteria 
146

. 

Another physiological factor that could reduce quinolone susceptibility is the 

absence of oxygen under urinary tract conditions. Higher concentrations of 

ciprofloxacin are needed to kill cells under anaerobic conditions, an observation 

supported by the higher minimal inhibitory concentration (MIC) values found under this 

condition 
147

. Previous works have shown that fluoroquinolones induce physiological 

alterations in the cellular redox state, promoting the formation of reactive species 

including ROS 
47,48

. Under anaerobic conditions, ciprofloxacin activity is significantly 

reduced, but not completely eliminated 
47

, supporting that the availability of molecular 

oxygen plays a significant role for the lethality of quinolones 
148

.  

Despite the fact that the effect of pH, urine and anaerobiosis on ciprofloxacin 

activity has received considerable attention, little is known about how the urinary 

physiological conditions impact ciprofloxacin activity against LLQR mutants. Under 
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these conditions, it is possible that LLQR mutants may be as effective as high-level 

resistant strains, allowing these mutants to survive the clinical concentrations of 

ciprofloxacin in urine. In addition, it has been demonstrated that fluoroquinolones 

increase mutagenesis in bacteria via the induction of SOS error-prone DNA 

polymerases expression, DNA recombination 
149

 and the horizontal transfer of DNA 

sequences 
150–152

. Thus, the effect of UTI conditions on ciprofloxacin activity, together 

with the mutagenesis induction produced by this antibiotic, could give place to ITU 

recurrence by UPEC with a development of a wide spectrum of resistance mechanisms.  

3.4. Fosfomycin treatment in UTIs  

Fosfomycin is a phosphonic acid derivative produced by a broad variety of 

Streptomyces and Pseudomonas species 
153

. This antibiotic contains an epoxide and a 

propyl group (cis-1,2-epoxypropyl phosphoric acid; C3H7PO4), with a unique chemical 

structure (Figure 7) and a very low molecular weight 
154

. Moreover, it is unrelated to 

any other antibiotic family, being a class of its own 
153

. 

 

Figure7. Molecular structure of A) Fosfomycin trometamol;                                                        

B) Fosfomycin calcium; and C) Fosfomycin Disodium 
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 Fosfomycin was initially developed in Europe by the Compañia Española de 

Penicilina y Antibióticos (CEPA) 
155

, and has been used since the early 1970s, initially 

as an intravenous preparation of the disodium salt, and later as an oral formulation of 

fosfomycin trometamol 
156

. Additionally, other formulations like fosfomycin calcium 

for oral use, as well as fosfomycin disodium for intravenous use are also available 
157

. 

Since fosfomycin was discovered in 1969 
155

, this natural antibiotic has attracted 

considerable clinical and scientific interest due to its broad spectrum bactericidal 

activity against Gram-positive and Gram-negative bacteria 
20,158,159

. Furthermore, owing 

to the emergence of multi-drug resistant bacteria as well as the limited options of new 

antibiotic agents, fosfomycin is being reevaluated as a potential therapeutic option, 

being present in numerous clinical guidelines and trials for the treatment of different 

infections 
160–163

. 

Fosfomycin has been widely used as a first-line agent for the empirical treatment 

of UTIs 
154

. Fosfomycin trometamol is the preferred formulation for oral administration 

because it is more readily absorbed compared with other formulations. Moreover, it is 

administered in a single dose, improving compliance, reducing adverse events or 

toxicity, and reducing the effects on the normal microbiota of the vagina and 

gastrointestinal tract 
164

. It is marketed under the brand name Monuril
®

, Monurol
®
 or 

Monural
®
, at a dose of 5.61 g of fosfomycin trometamol, which is equivalent to 

approximately 3 g of pure fosfomycin 
157

. After oral 3-g dose administration, peak urine 

concentrations are reached within 4h, where it is possible to find concentrations of 

1053-4415 μg/ml 
165,166

. Furthermore, after this treatment, high fosfomycin 

concentrations (>128 μg/ml) persist during 1-2 days in urine and bladder, enough to 

eradicate any susceptible bacteria 
166

. Regarding the efficacy of fosfomycin versus other 
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antibiotics, the meta-analysis of randomized controlled trials performed by Falagas and 

colleagues 
20

 demonstrated that fosfomycin treatment in patients with cystitis was equal 

to the comparator regimens (quinolones, trimethoprim, trimethoprim-sulfamethoxazole, 

β-lactams or nitrofurantoin) in terms of clinical effectiveness and safety profile. 

3.4.1 Mechanisms of action of fosfomycin 

Fosfomycin is a bactericidal antibiotic agent that inhibits an enzyme-catalyzed 

reaction in the first step of the synthesis of the bacterial cell wall 
167

. In E. coli 

fosfomycin is actively transported into bacterial cytoplasm via GlpT and UhpT 

transporters 
168

. The GlpT antiporter is a member of the MFS, which is commonly 

responsible for the import of glycerol-3-phosphate driven by inorganic phosphate 

gradient 
169

. The UhpT is a chemiosmotic transporter that catalyzes the accumulation of 

glucose-6-phosphate (G6P) by exchange with internal inorganic phosphate 
170

. UhpT is 

also a member of the MFS that requires transcriptional activation by the response 

regulators UhpA and UhpB, which together form a two-component regulatory system 

that activates expression of the transporter UhpT 
171

. This activation is produced after 

recognition of extracellular G6P by the constitutively expressed sensor UhpC, which 

interacts with UhpB stimulating its kinase activity 
172

. After that, a phosphate group is 

transferred to UhpA, which acts as a transcriptional activator for the expression of the 

uhpT gene. The expression of both GlpT and UhpT transporters are also regulated by 

cyclic AMP (cAMP) levels in the cell 
173

.  

In E. coli, the expression of the glpT and uhpT genes are activated by the 

complex of cAMP and its receptor termed cAMP receptor protein (CRP) 
174,175

, also 

known as catabolite activator protein (CAP). cAMP synthesis depends on the activity of 

adenyl cyclase CyaA, which is also regulated by the phosphotransferase enzyme PtsI, a 
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component of the phosphoenol-pyruvate sugar phosphotransferase transport system 
153

. 

CRP is one of the main global transcription regulators in E. coli, whose activity is 

triggered by binding of cAMP in response to glucose starvation and other stresses 
176

. 

Additionally, the FNR (fumarate-nitrate reduction) protein is a transcriptional regulator 

containing a Fe-S cluster, serving as a redox sensor, and is active during anaerobic 

growth 
177

. Under this condition, FNR proteins bind to the regions upstream of glpT and 

uhpT, acting as an activator of these genes 
178

. The regulation of glpT and uhpT genes is 

represented in Figure 8. 

 

Figure 8. Regulation of uhpT and glpT gene expression. Figure adapted from 
153

. 

Once has reached the cytoplasm, fosfomycin acts as a phosphoenolpyruvate 

(PEP) analogue, binding covalently to the thiol group of the Cys115 in the active site of 

MurA (UDP-GlcNAc enolpyruvyl transferase), an essential enzyme for peptidoglycan 

biosynthesis 
168,179

.  
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Nucleophilic attack on the β-carbon of fosfomycin by Cys115 opens the epoxide 

to form an irreversible active site modification that eliminates MurA activity 
173

. Thus, 

fosfomycin disrupts the formation of Enolpyruvate-UDP-N-acetylglucosamine acid 

from UDP-N-acetylglucosamine and phosphoenolpyruvate, which is the initial step in 

peptidoglycan chain formation of the bacterial wall 
168

. 

 

Figure 9. A) Fosfomycin irreversibly modifies MurA by forming a covalent linkage with 

Cys115. B) MurA catalyzes the formation of UDP-N-acetylglucosamine-enolpyruvyl from 

phosphoenolpyruvate and UDP-N-acetylglucosamine. Figure modified from 
173

. 

 

3.4.2. Fosfomycin resistance in E. coli 

The frequency of fosfomycin resistance among UPEC has been recognized to be 

very low 
154,180

. Most of the studies using E. coli strains collected from clinical urine 

samples have revealed high rates of susceptibility, ranging between 95 to 100% 
181–185

. 

The largest of these studies was a multicenter study performed in 20 hospitals in Spain, 

where 99.8% of 2292 E. coli isolates were susceptible to fosfomycin, whereas resistance 
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rates to other antibiotics like ampicillin, ciprofloxacin and cotrimoxazole were 

remarkably higher (52.1%, 18.1%, and 25.2% of isolates, respectively) 
181

.  

During recent years, most of the studies published have evaluated the in vitro 

activity of fosfomycin against extended-spectrum β-lactamases (ESBL) producing 

Enterobacteriaceae, particularly in E. coli 
186–191

. Although the frequency of cross-

resistance of fosfomycin and other antibiotics is expected to be very low because of the 

unique mode of action of this antibiotic 
192

, Oteo and colleagues showed a parallel 

increase in the use of fosfomycin in the community and resistance to fosfomycin in 

ESBL-producing E. coli from UTI in Spain 
193

.  

3.4.3. Fosfomycin resistance mechanisms in E. coli 

3.4.3.1. Chromosomal-mediated fosfomycin-resistance 

The most important mechanism of E. coli resistance to fosfomycin is the 

presence of mutations in genes encoding the uptake systems used for fosfomycin entry 

inside the bacteria 
153,154

. Mutations in any of the structural genes of those pathways 

decrecrease antibiotic uptake, conferring different levels of fosfomycin resistance 
168,194

. 

Strains defective in fosfomycin uptake are not able to grow using some substrates as the 

only carbon source, such as glycerol-3-phosphate in GlpT-deficient strains or G6P (and 

other hexose phosphates) in Uhp-deficient strains 
183

. Mutants affected in both systems 

are often unable to grow using multiple carbohydrates. In this way, it has been observed 

that the addition of G6P induces fosfomycin sensitivity in resistant GlpT-deficient 

strains, due to the induction of UhpT synthesis 
168

. For this reason MIC determinations 

of fosfomycin are performed with media containing G6P.  
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As mentioned above, cAMP is required for the full expression of the fosfomycin 

transporters GlpT and UhpT. Mutations in cyaA or ptsI produce a decrease in the 

intracellular cAMP levels and, subsequently, a reduced expression of both fosfomycin 

transporters, leading to diminished antibiotic uptake 
153,183

. Furthermore, inactivation of 

the cAMP receptor protein CRP affects the expression of both transport systems, 

decreasing the susceptibility to fosfomycin. cAMP-CRP recognizes several binding 

sites upstream of the glpTQ operon 
195,196

, upregulating the expression of glpT. The 

complex cAMP-CRP also binds to the uhpT promoter at a single site upstream of the 

UhpA-binding sites, stabilizing the open promoter complexes for uhpT transcription, 

increasing the rate of their formation 
175,197

. Although the role of CRP in glpT and uhpT 

expression is well known, there is currently a lack of information about how mutations 

in the crp gene could affect fosfomycin susceptibility in E. coli clinical isolates.  

Fosfomycin resistance by target modification has also been described. Kim and 

colleagues 
198

 demonstrated that substitution of Cys 115 by Asp (C115D) retain MurA 

activity and confer high-resistance to fosfomycin. However, few reports of clinical 

isolates shown mutations in the murA gene, and none in the catalytic site of MurA, 

because most of them reduce drastically bacterial cell viability 
199

. However, 

overexpression of the murA gene in E. coli have been correlated with higher levels of 

fosfomycin resistance, reaching clinical resistance levels at a low fitness cost 
200

. 

3.4.3.2. Plasmid-mediated fosfomycin-resistance 

The transfer of a fosfomycin resistance marker encoded by a plasmid by 

conjugation was described in 1980 in Serratia marcesens 
201

. Since then, several 

enzymes able to modify fosfomycin have been described, producing chemical changes 

that inactivate it. Microbial resistance to fosfomycin by antibiotic modification 
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transmited by plamids involves five different fosfomycin resistance proteins: FosA 
202

, 

FosB 
203

, FosC 
204

, FosK 
205

 and FosX 
206

.  

FosA (glutathione S-transferase) is a metalloenzyme transferred through 

plasmids in Enterobacteriaceae first described in 1988 
202

. FosA-class are 

metalloenzymes that catalyze the nucleophilic addition of the tripeptide glutathione to 

the fosfomycin C1 position, cleaving the epoxide ring and inactivating the antibiotic 
207–

209
. New subtypes, with similar structure, of the gene have been described 

154
. FosA3 is 

the most prevalent enzyme isolated in E. coli clinical isolates, with an aminoacid 

homology of 80% with FosA 
210

. FosA4 is a newly identified variant of FosA3, sharing 

94% of aminoacid identity that has been recently described in E. coli 
211

. The fosA5 

gene encodes a 139-amino-acid protein that shares 70 and 73% identity with FosA and 

FosA3, respectively 
212(p5)

. Another FosA subtype, named fosKP96, has also been 

described in two E. coli strains from blood and urine infections, although there is little 

information about its activity and identity rates with other FosA enzymes 
213

. Co-

occurrence of FosA and FosA3 subtypes in plasmids with severeal antibiotic resistance 

genes have been reported, conferring resistance to β-lactams, quinolones, 

aminoglycosides, macrolides, sulfonamides, and tetracyclines 
186,214–216

. The genes 

conferring resistance to fosfomycin could be transferred together with genes conferring 

resistance to other antibiotics in either the same or a conjugate plasmid 
154

. 

The presence of FosC2 in E. coli have been recently described in Japan 
210

. The 

amino acid sequence of FosC2 had 72% identity to that of FosC found in 

Achromobacter xylosoxidans. However, the prevalence of FosC2 in E. coli clinical 

strains remains unclear.  
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3.4.3.3. Low-level fosfomycin resistance: 

The steps by which fosfomycin-resistant E. coli mutants arise and spread during 

UTI is not well known. As previously mentioned, fosfomycin resistance has been 

associated with chromosomal mutations in genes related to the fosfomycin target 

(murA) or to fosfomycin intake (glpT, uhpA, uhpT, cyaA or ptsI). However, there are 

very few studies that provide information about the prevalence of these mutations in 

UPEC, as well as the contribution of each mutation to fosfomycin resistance.  

Ballestero-Téllez and colleagues 
217

 have recently published that the presence of 

single chromosomal mutations, or even in selected combinations, are related with 

increases in fosfomycin MICs, but not conferring clinical resistance according to 

international guidelines. However, although the presence of low-level fosfomycin 

resistance (LLFR) mutants yields a fosfomycin-susceptible phenotype, they may 

facilitate the selection of highly resistant subpopulations when additional mutations 

appear. There are only two studies where LLFR in E. coli clinical strains have been 

evaluated 
183,192

. Nilsson and colleagues studied 13 clinical strains, seven of them 

showing reduced fosfomycin susceptibility (MIC ≥8μg/mL), but still considered as 

susceptible to fosfomycin (MIC ≤64). Ohkoshi and colleagues studied 211 E. coli 

clinical strains, where seven were LLFR. These strains showed several mutations in one 

or more genes (uhpT, glpT, cyaA and ptsI) leading to amino acid deletions or changes of 

amino acid residues, compared with other susceptible strains. However, it is unclear 

whether these mutations contributed to the reduced susceptibility.  
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3.4.3.4. Effect of urinary tract physiological conditions on fosfomycin activity 

Conversely, the effect of urinary tract physiological conditions on fosfomycin 

activity has not been studied as well as ciprofloxacin. Hence, there is no previous 

evidence concerning the effect of urine compounds on fosfomycin activity. Regarding 

the effect of pH, the activity of fosfomycin increases at acidic pH values 
142,218,219

, with 

the greatest activity observed at pH 5.5 
220,221

. However, the molecular basis of this 

effect is obscure. It has been shown that acidic environments decrease cAMP levels into 

bacterial cytosol 
222

, and consequently, the expression of the fosfomycin transporters 

GlpT and UhpT are reduced. For this reason, fosfomycin activity should be reduced 

under acidic pH values, but the reality appears to be far different. Recently, Fedrigo and 

colleagues 
223

 evaluated the effect of fosfomycin at pH6 and 7 against E. coli and 

Klebsiella pneumoniae strains. They suggest that at acidic pH values, fosfomycin 

molecules are partially protonated, in a more lipophilic state, that allows the entrance of 

fosfomycin molecules into bacteria, thus resulting in a greater activity.  

The activity of fosfomycin increases under anaerobic conditions 
224

. Unlike urine 

and pH, molecular mechanisms related with fosfomycin activity under anaerobic 

conditions are well understood. The FNR is active under anaerobic conditions, binding 

to the regions upstream of glpT and uhpT, acting as an activator of these genes 
178

. 

Furthermore, a higher expression of crp and cyaA genes has been found in anaerobic 

conditions, increasing, in turn, the expression of glpT and uhpT 
225

. Wherefore, the 

increased antibacterial activity of fosfomycin against E. coli strains under anaerobic 

condition is attributed to an elevated expression of GlpT and UhpT transporters.  
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In the particular case of fosfomycin, it appears that urinary tract physiological 

conditions (low pH values and anaerobiosis) could increase its activity, allowing a good 

effect against LLFR mutants. Nevertheless, it is necessary to know how LLFR mutants 

contribute to fosfomycin-susceptibility and bacterial fitness under UTI conditions. 
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The main objective of this Thesis was to evaluate the impact of urinary tract 

physiological conditions (urine, pH and anaerobiosis) on the antimicrobial activity of 

ciprofloxacin and fosfomycin against E. coli. The research is divided into a series of 

partial objectives that can be summarized as follows: 

1. To study the effect of urinary tract physiological conditions on ciprofloxacin activity 

against a set of well-characterized isogenic LLQR E. coli strains, carrying the most 

frequent chromosomal mutations and PMQR determinants. 

1.1 To evaluate the effect of LLQR mutations on bacterial growth rates under urine 

conditions.  

1.2. To determine the effect of urine, pH and anaerobiosis on ciprofloxacin MIC 

values on well-characterized LLQR isogenic strains.  

1.3. To evaluate the survival rates of these strains in the presence of the maximum 

concentration of ciprofloxacin reached in the bladder.  

1.4. To study the effect of urine, pH and anaerobiosis on ciprofloxacin activity 

against well-characterized LLQR clinical isolates. 

2. To study the effect of urinary tract physiological conditions on fosfomycin activity 

against a set of well-characterized isogenic LLFR and fosfomycin-resistant strains, 

carrying the most frequent chromosomal mutations.  

2.1. To evaluate the effect of LLFR mutations on bacterial growth rates under urine 

conditions.  
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2.2. To determine the effect of urine, pH and anaerobiosis on fosfomycin MIC 

values on well-characterized LLFR isogenic strains. 

2.3. To study the effect of urine, pH and anaerobiosis on fosfomycin activity against 

well-characterized LLFR and fosfomycin-resistant clinical isolates. 
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Chapter V 

Publications  
 
 
 
 
 
 

 

‘Results! Why, man, I have gotten a lot of results!  

I know several thousand things that won’t work.’ 

 

-Sir Thomas A. Edison. 
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Publication I: Urinary Tract Physiological Conditions Promote Ciprofloxacin 

Resistance In Low-Level Quinolone Resistant Escherichia coli. 

An increase in resistance to fluoroquinolones has been described worldwide 

during recent years. DNA gyrase and DNA topoisomerase IV, involved in DNA 

supercoiling, are the targets of fluoroquinolones. Gyrase and topoisomerase IV are 

composed of two subunits encoded by the genes gyrA and gyrB, and parC and parE, 

respectively. Ciprofloxacin resistance can be acquired through mutations in these genes 

encoding gyrase and topoisomerase or in genes affecting efflux or permeability of the 

bacteria such as marR or acrR. Typically, single mutations have been associated with 

low-level fluoroquinolone resistance, and accumulation of several mutations develops 

high-level resistance. Some of these mutations confer LLQR with slightly increased 

MICs than is common for the susceptible population, but still under the resistant 

breakpoint. Remarkably, LLQR strains have been suggested to be the first evolutionary 

step for producing high-level of quinolone resistance.  

The main objective of this work was to elucidate the effect of urinary 

physiological conditions on ciprofloxacin activity against E. coli strains carrying LLQR 

mutations. Ciprofloxacin is an ampholyte that can exist in four different pH-dependent 

protonation forms. Thus, depending on the pH, the ionization status of ciprofloxacin 

increases its permeability or improves its intestinal absorption modifying consequently 

its antimicrobial activity. Furthermore the presence of urinary divalent cations and 

anaerobic conditions have been related with a reduction of ciprofloxacin activity. The 

combination of ciprofloxacin activity reduction in the urinary tract and the presence of 

LLQR mutants may lead to a non-lethal selection, where the bacterial growth is 

inhibited but they are not killed. 
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Our results demonstrate that urinary tract physiological conditions reduce 

significantly the effect of ciprofloxacin against E. coli strains with LLQR mutations. 

The presence of urine, low-pH values and anaerobiosis increase the MIC values of 

ciprofloxacin, with all the LLQR mutants becoming clnically resistant strains according 

to international guidelines. Furthermore, the presence of these mutations also facilitates 

high bacterial survival even when we simulate the maximum ciprofloxacin 

concentration reached in urine within the first 6 h after administration of an oral dose of 

500 mg of ciprofloxacin. 

The results presented here raise questions concerning the general applicability of 

the recommended methods for MIC determinations, which appears to be a poor 

estimator of ciprofloxacin activity against LLQR E. coli in UTIs. International 

guidelines for MIC determinations should reconsider clinical breakpoints, taking into 

account the effect of common low pH values in ciprofloxacin activity. 

 

Guillermo Martín-Gutiérrez; Jerónimo Rodríguez-Beltrán; José Manuel Rodríguez-

Martínez; Coloma Costas; Javier Aznar; Álvaro Pascual; Jesús Blázquez. Urinary tract 

physiological conditions promote ciprofloxacin resistance in low-level quinolone 

resistant Escherichia coli. Antimicrobial Agents and Chemotherapy 2016, 20: 

60(7):4252-8. 
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Publication II: Plasmidic qnr Genes Confer Clinical Resistance to Ciprofloxacin 

under Urinary Tract Physiological Conditions. 

Taking the previous proposal (Publication I) as a premise, the aim of this work 

was to evaluate the impact of urinary physiological conditions on ciprofloxacin activity 

against E. coli strains harboring plasmidic qnr genes. Plasmid genes qnrA, qnrB, qnrC, 

qnrD, and qnrS code for proteins of the pentapeptide repeat family that protect DNA 

gyrase and topoisomerase IV from quinolone inhibition. The presence of PMQR genes 

lead to generation of LLQR, with fluoroquinolone MICs that are higher than the 

epidemiological cutoff value but still below the resistance breakpoint for most 

fluoroquinolones. 

The qnr genes have apparently to have been acquired from chromosomal genes 

in aquatic bacteria, and are usually associated with mobilizing or transposable elements 

on plasmids. Additionally, qnr genes are often associated with extended-spectrum β-

lactamases and aminoglycoside-resistance genes on the same plasmid, and thus, 

increase the probability of survival after UTI treatment and dissemination. 

The results presented here show how the presence of urine, low-pH values and 

anaerobiosis lead to reduce ciprofloxacin activity, causing an increase of MIC values 

above the cutoff of resistance. Thus, UTI conditions could be an ideal environment for 

the selection of strains harboring qnr genes, allowing the survival of E. coli strains 

considered susceptible to fluoroquinolones. Again, international MIC breakpoints 

appear to be poor estimators of ciprofloxacin activity against LLQR strains.  
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Guillermo Martín-Gutiérrez; José Manuel Rodríguez-Martínez; Álvaro Pascual; 

Jerónimo Rodríguez-Beltrán; Jesús Blázquez. Plasmidic qnr Genes Confer Clinical 

Resistance to Ciprofloxacin under Urinary Tract Physiological Conditions. 

Antimicrobial Agents and Chemotherapy 2017, 24: 61(4): pii: e02615-16. 
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Publication III: Urinary tract conditions affect fosfomycin activity against 

Escherichia coli strains harboring chromosomal mutations involved in fosfomycin 

uptake. 

Although fosfomycin is one of the most commonly used treatments for UTIs, the 

steps by which E. coli strains harbouring mutations related with fosfomycin-resistance 

arise and spread is not well understood. Fosfomycin resistance can be achieved by 

reducing permeability to fosfomycin through mutations in genes encoding the GlpT and 

UhpT transporters. Fosfomycin permeability can also be reduced by mutations in cyaA 

and/or ptsI genes, which regulate the intracellular cAMP levels necessary for 

fosfomycin-transporter activation. The presence of single chromosomal mutations and 

some of their combinations confer LLFR, but not clinical resistance, acting as a gateway 

for highly resistant subpopulations by the selection of additional LLFR mutations. 

However, there is a very low prevalence of fosfomycin-resistant E. coli strains 

from UTIs. This low prevalence may suggest that LLFR mutants will also present a 

very low prevalence. Fosfomycin-resistance is associated with a high biological cost, 

with decreased growth rates as well as decreased virulence. 

The objective of this work was to evaluate the impact of urinary tract 

physiological conditions on the antimicrobial activity of fosfomycin against a set of 

well-characterized isogenic strains harbouring deletions in the genes most frequently 

related with fosfomycin-resistance (ΔglpT, ΔuhpT, ΔcyaA, ΔptsI). Additionally we 

evaluated the impact of UTI conditions on bacterial fitness. A series of fosfomycin-

resistant E. coli clinical strains isolated from patients with UTI were also studied.  

The results presented here demonstrate that urinary tract conditions might have a 

profound impact on fosfomycin activity. The presence of low-pH values in urine and 
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anaerobic conditions increased fosfomycin activity, allowing the eradication of strains 

harbouring fosfomycin-resistance mutations. Furthermore, the presence of single and 

double-deletions were related with a significative decrease in maximal growth rates 

under urinary conditions. This work adds a new explanation to the low prevalence of E. 

coli fosfomycin-resistant variants in UTIs.  

 

Guillermo Martín-Gutiérrez, Fernando Docobo-Pérez, Jerónimo Rodriguez-Beltrán, 

José Manuel Rodríguez-Martínez, Javier Aznar, Álvaro Pascual, Jesús Blázquez. 

Urinary tract conditions affect fosfomycin activity against Escherichia coli strains 

harboring chromosomal mutations involved in fosfomycin uptake. Antimicrobial 

Agents and Chemotherapy 2017, 21: 62(1): pii: e01899-17 

 

   



Objectives 

 

55 
 

 

 

 
 

Chapter VI 

General discussion  
 

 

 



Objectives 

 

 
56 

 

 



General discussion 

 

57 
 

Multiple resistance to antibiotics represents a global health challenge that results 

in increased morbidity and mortality rates all over the world 
32

. For instance, the 

increasing prevalence of antibiotic-resistant uropathogens is likely to limit the 

effectiveness of our current therapeutic choices. Thus, UTIs are becoming increasingly 

difficult to treat owing to the widespread emergence of antibiotic resistance mechanisms 

226
. Furthermore, the high rates of recurrence in UTIs caused by susceptible 

uropathogens suggest that some antibiotics are not as effective as we thought. In this 

context, the current emergence of antibiotic-resistant strains, in conjunction with the 

high frequency of recurrent UTIs, emphasize the need for a better understanding of 

UTIs, as well as the effectiveness of antibiotics under physiological UTI conditions. On 

this basis, the main objective of the present thesis has been to evaluate the effect of 

urinary tract physiological conditions on two of the most used antibiotics for the 

treatment of UTIs caused by E. coli: ciprofloxacin and fosfomycin.  

The research presented in this thesis set out to identify the critical factors 

existing in the urinary tract that might promote or facilitate the survival of LLR mutants 

during therapeutic treatments. The main relevance of LLR strains is that they are 

considered an intermediary stage towards the development of high-resistance, carrying 

mutations or resistance genes that may result in a decrease in the effectiveness of the 

antibiotic 
39

. Unfortunately, there is not a standard definition for LLR in international 

clinical guidelines. MIC is defined as the minimal concentration of drug that prevents 

visible bacterial growth under strictly defined in vitro conditions, being measured using 

increasing concentration steps, with either broth dilution or gradient MIC assays 
227

. 

Thus, development of resistance can be considered the consequence of any genetic 

changes that increase the MIC of a strain to a level higher than the wild-type 

MIC/ecological cut-off. In contrast, clinical resistance is well defined and refers to the 
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consequences of genetic changes that increase the MIC of a strain to a level high 

enough to prevent successful treatment with standard drug therapy 
228

. In this way, LLR 

mutants are traditionally categorized as susceptible strains (MIC lower than the clinical 

breakpoint, and standard therapy likely to be successful), and hence are is difficult to 

detect by most standard susceptibility testing in Clinical Microbiology Laboratories 
39

. 

Furthermore, LLR strains appear to be a gate for the acquisition of high-level clinical 

resistance, which may have important consequences for the treatment and control of 

UTIs caused by these microorganisms. 

MIC determination gives a measure of growth inhibition under specific in vitro 

conditions, and its clinical usefulness requires that these MIC values would be able, in 

some way, to be translated into a prediction of the clinical outcome 
229

. Mueller-Hinton 

(MH) broth is the medium of choice for susceptibility testing of commonly isolated 

aerobic or facultative organisms 
230

. This medium shows acceptable batch-to-batch 

reproducibility and low concentration of inhibitors, with a stable pH value from 7.2 to 

7.4, supporting satisfactory growth of most common pathogens 
231

. Nonetheless, the 

situation in which antibiotics act under physiological conditions is quite different.  

Under physiological conditions, antibiotics interact with a set of proteins, 

cations, changing pH values and variable oxygen concentrations. As was mentioned in 

the Introduction (Chapter III), these conditions may compromise the activity of many 

antimicrobials, allowing the survival of a significant number of microorganisms. 

Despite this fact, little attention has been paid to the role of the physiological conditions 

during treatment. In the urinary tract, antibiotics face the presence of urine compounds, 

changing pH values and an oxygen-reduced concentration. To date, most of studies have 

focused on evaluating the effect of pH and urine on quinolone effectiveness. For 
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instance, Zeiler HJ 
232

 studied the influence of pH and human urine in quinolone 

susceptibility testing, showing that acidic pH was related to lower quinolone activity. 

Zhanel and colleagues 
233

 have also showed the reduction of ciprofloxacin activity under 

low-pH values in urine. Recently, other studies have presented similar results 
142

. 

However, there are few studies evaluating the effect of physiological urinary conditions 

in other antibiotics like fosfomycin. Furthermore, the effect of anaerobic conditions in 

combination with urine and low-pH has been overlooked in these studies.  

Of special interest is the impact of the urinary tract conditions and the presence 

LLR mutants during UTI treatment. The presence of LLR strains in the bladder could 

increase the possibility of the emergence of a clinically resistant phenotype to relevant 

antibiotics. Regrettably, few studies have shown the therapeutic impact of LLR in UTIs, 

either experimentally or in clinical reports. 

In Publications I and II we sought to evaluate the impact of the urinary tract 

physiological conditions (namely, growth in urine, pH, and anaerobiosis) on the 

antimicrobial activity of ciprofloxacin against a set of well-characterized isogenic 

LLQR strains carrying the most frequent chromosomal mutations and PMQR 

determinants. We have demonstrated that urinary tract physiological conditions could 

be an optimum scenario for the selection of strains harboring CMQR and PMQR genes, 

decreasing their susceptibility to ciprofloxacin and allowing the survival of E. coli 

strains that have traditionally been considered susceptible. This effect was also observed 

in LLQR mutants isolated from patients with UTI. It has been previously thought that 

multiple mutations are required to generate clinical ciprofloxacin resistance in E. coli 

strains. Nevertheless, our work shows how urinary tract conditions may provide an ideal 

scenario for the generation and selection of LLQR with single mutations or qnr genes, 
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which would allow its survival during ciprofloxacin treatmen under physiological 

concentrations, even though LLR strains were considered susceptible to 

fluoroquinolones. Furthermore, it has been demonstrated that a strong positive 

correlation between increased mutation rate and successful accumulation of quinolone 

resistance–associated mutations 
98

 exists in E. coli strains isolated from patients with 

UTI. In this manner, the presence of chromosomal mutations like GyrA S83L or 

plasmidic Qnr determinants increase the mutant prevention concentration, facilitating 

the selection of additional resistance mutations 
234

. 

  It should also be emphasized that fluoroquinolone antibiotics stimulate two 

important bacterial pathways to produce genetic variation: mutagenesis and 

recombination 
149,235.

 Ciprofloxacin produces double-strand breaks, potentially lethal 

DNA lesions that occur under physiological conditions through collapse of stalled 

replication forks, overlapping repair tracts or spontaneous breakage of DNA 
 236

. E. coli 

efficiently repairs double-strand breaks through a series of reactions carried out by 

enzymes participating in homologous recombination and replication that are induced by 

the SOS system. Thereby, ciprofloxacin acts as an inducer of the SOS system, which 

leads to an increase in mutagenesis, recombination and/or horizontal gene transfer, key 

processes for the emergence and spread of resistance 
237

. Therefore, fluoroquinolones 

can be viewed as a double-edged sword that may promote the generation of antibiotic 

resistance.  

It is also important to notice that E. coli strains growing in the urinary tract are 

frequently under stress because they are starved, under antibiotic treatment, or 

challenged by the need to colonize novel environments with low pH values or under the 

inhibitory effects of host defense mechanisms 
238

. Justice and colleagues demonstrated 
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that the ability to form filaments in bladder cells, an important virulence property that 

facilitates persistence in the murine cystitis model 
239

, is the result of bacterial SOS 

response induction. This result demonstrates that the SOS system is activated during 

bladder cell invasion. Thus, mutation and recombiation rates are probably much higher 

in the course of a UTI process than those determined in vitro. Furthermore, the urinary 

tract represents a heterogeneous environment, where bacteria are frequently attached to 

cell surfaces or inside the host cells. The presence of different microenvironments 

allows the emergence and co-existance of different phenotypes, which may promote 

higher degrees of antibiotic-resistant mutations.  

  Taken together, the arguments presented above let us to propose that prevalent 

mutations conferring LLQR phenotypes could provide the basal level of resistance 

needed to withstand the first hours during ciprofloxacin treatment under UTI conditions. 

Then, the surviving population will benefits from increased mutation and recombination 

rates, providing a window for the emergence of additional resistance. Therefore, 

ciprofloxacin might trigger a phenomenon known as “directional selection”         

(Figure 10), in which the susceptible phenotypes would be at a disadvantage compared 

to the more resistant phenotypes 
240

. This will cause a shift in the population towards 

more resistant strains, increasing their proportion. In our case, this effect is enhanced by 

the presence of LLQR strains and urinary physiological conditions, which reduce 

ciprofloxacin activity. This effect could explain, at least in part, the high rates of 

fluoroquinolones resistance in E. coli isolates from patients with UTI. In this way, it has 

been reported that patients previously treated with fluoroquinolones are more prone to 

urinary tract infection caused by ciprofloxacin-resistant E. coli strains 
241

. The study 

performed by Ena and colleagues 
241

 showed that previous treatment with quinolones, 

urinary abnormalities, patient age higher than 64 years and the presence of a urinary 
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catheter were independent factors related to infecions caused by quinolone-resistant 

microorganisms. Similar results have been reported in more recent studies 
86,88,242

. 

 

Figure 10. Directional selection as a product of antibiotic treatment under urinary tract 

physiological conditions. A) Initial population of susceptible E. coli strains in the urinary tract, 

with the presence of LLR mutants. B & C) If antibiotic activity is reduced under UTI 

conditions, LLR strains could be selected. In this sense, the antibiotic contributes to a 

directional selection, shifting the original susceptible population. Moreover the mutagenesis 

effect of antibiotics might contribute to the development of high-resistant strains. 

Andersson and Hughes 
33

 suggested that most resistance mechanisms incur a 

fitness cost for the bacterium, which is manifested by a decreased bacterial growth rate. 

Antibiotics target important functions such as cell wall synthesis or regulation of 
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chromosome supercoiling, hence mutations in genes participating in these processes 

arguably cause a reduction in fitness 
243

. To evaluate the impact of CMQR mutations on 

bacterial fitness, we studied the growth rates of these strains. Previously, Machuca and 

colleagues 
244

 showed that no significant differences, in terms of maximal growth rate, 

were observed during the exponential phase in a set of isogenic strains carrying the 

most frequent chromosomal mutations related with quinolones resistance. This 

experiment was performed in Lysogeny Broth (LB) and M9 media. Additionally, fitness 

cost was also measured with competition experiments using a murine model of systemic 

infection. Commonly, fitness experiments are performed in rich or in defined minimal 

media, which differs with real physiological conditions 
245.

 Fitness is relative and should 

be measured in physiological environments in order to establish its predictive value in 

determining the clinical outcome of infection 
243

. Therefore, a correct estimation of the 

potential fitness cost of antimicrobial resistance is an essential factor for predicting  the 

risk of resistance development in the urinary tract 
90

. For this reason, we performed 

growth curves in MH broth and urine at pH values of 7, 6 and 5, using an automated 

spectrophotometer under controlled conditions of temperature and shaking. The patterns 

of the curves obtained (Annexe II) were similar for all isogenic derivates within the 

same medium, showing that the LLQR mutations studied have a reduced effect in 

fitness, being the strains able to grow in urine at different pH values. Acidification of 

urine, including pH 5, led to only small decreases in growth, demonstrating that E. coli 

is well adapted to extreme pH values.  

The third part of this thesis aimed to investigate the effect of urinary tract 

physiological conditions on fosfomycin activity. The steps by which E. coli strains 

harboring mutations related with fosfomycin resistance arise and spread during UTI is 

not well known. For this reason, in Publication III we evaluated the effect of urine, pH 
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variation and anaerobiosis on fosfomycin MIC values against a set of isogenic strains 

carrying the most prevalent chromosomal mutations conferring fosfomycin-resistance 

and their combinations.  

The first concern that we found during this work was the lack of information 

about the prevalence of LLFR mutations in E. coli isolates from UTI, as well as the 

identification of the molecular mechanisms related with fosfomycin-resistance patterns. 

Nilsson and colleagues 
183

 performed the first study where fosfomycin-resisatance 

chromosomal mutations related were studied, analysing thirteen E. coli fosfomycin-

resistant strains from UTIs. In four isolates, gene-inactivating mutations were found in 

the uhpT and/or uhpA gene; and one strain carried a mutation in glpT as well as a 

deletion in uhpA. However, in eight strains the mechanisms of fosfomycin resistance 

were not identified. Similar results were obtained by Takahata and colleagues 
246

, where 

the lack of an entire uhpT gene and the insertion of an ISEcp1 element in the glpT gene 

were the most prevalent mutations in six E. coli fosfomycin-resistant clinical strains. In 

two further publications, the presence of fosfomycin-resistance mutations were studied 

in ESBL-producing E. coli strains, showing a wide range of mutations in uhpT, glpT, 

uhpA, and murA genes, as well as the presence of FosA 
193,216,247

. There are only two 

publications where LLFR strains have been studied, showing several mutations and 

deletions in uhpT, glpT, cyaA and ptsI genes 
183,192

. 

Although mutations in uhpT, glpT, cyaA and ptsI genes seem to be the main 

sources of fosfomycin resistance, there is no identified mutation-pattern of fosfomycin 

resistance. Unlike ciprofloxacin, the mutations and deletions found in fosfomycin-

resistant strains from previous works are largely different. Due to the lack of 

correlation, the impact of each mutation or partial deletion should be carefully studied.  
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In Publication III, we included the strain E. coli BW25113 and ten isogenic 

strains carrying the most prevalent single (ΔuhpT, ΔglpT, ΔcyaA and ΔptsI) and double 

deletions (ΔglpT-ΔuhpT, ΔglpT-ΔcyaA, ΔglpT-ΔptsI, ΔuhpT-ΔcyaA, ΔuhpT-ΔptsI and 

ΔptsI-ΔcyaA) in fosfomycin-resistance genes 
217

. In order to exclude the possibility that 

the effects observed were specific to the strain BW25113, we evaluate the effect of 

urinary tract physiological conditions in five E. coli clinical isolates from patients with 

UTI. Overall, our results demonstrate that urinary tract physiological conditions might 

have a profound impact on fosfomycin activity against strains with fosfomycin-

resistance mutations. Specifically, acid pH values and anaerobiosis have a great effect 

on fosfomycin activity, converting most of the strains categorized as resistant, according 

to the international guidelines, into susceptible. Nonetheless, the presence of urine 

increases the MIC values for some strains, although this effect is attenuated under acidic 

conditions and incubation under anaerobic conditions. We showed the effect of single 

and double-deletions on genes related with fosfomycin-resistance under physiological 

conditions, confirming that standard susceptibility testing could underestimate the effect 

of fosfomycin, mainly in patients with acid pH values in urine.  

Fosfomycin resistance has been previously related with a high biological cost, 

entailing a generally reduced fitness that compromises competition with the normal 

microbiota in the human host 
182

. The effect of fosfomycin-resistance mutations on 

fitness is of particular interest in UPECs, because if the cost is high enough, the resistant 

bacteria will not growth on the minimal rate needed to stablish an infection in the 

bladder 
183,248

. As was previously mentioned, to obtain a correct estimation of the 

potential fitness cost, we determined the maximal growth rates per hour in urine at 

different pH values for all isogenic strains, comparing the results obtained with those in 

MH. As can be observed in Publication III, all strains with single and double deletions 
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showed statistically significant decreases in growth rates when grew in urine at different 

pH values, compared with the strain BW25113. This result is in agreement with 

previous studies which demonstrated that fosfomycin-resistant strains show lower 

growth rates 
183

, decreased adhesion to uroepithelial cells as well as urinary catheters 

182
, and alteration in cell surface hydrophobicity 

249
. The possible causes of these defects 

in bacterial physiology are likely attributed to the pleiotropic effects caused by 

fosfomycin resistance mutations. For instance, mutations in cyaA and ptsI genes lead to 

lowered cAMP levels, which imply lower expression of uhpT and glpT, and thus, 

increased fosfomycin resistance. However, cAMP is a key metabolite in bacterial 

physiology and the perturbation of its level is expected to drastically alter bacterial 

homoestasis 
250

. In this line, it has been stated that a reduction of cAMP levels cause a 

reduction in pilus biosynthesis, reducing the virulence factors in fosfomycin-resistant 

strains 
183

. It should be noted that fitness cost of fosfomycin resistance needs to be 

measured for each particular species, being the observations made in just one species 

not extrapolable to another 
251

. The uptake of fosfomycin in Pseudomonas aeruginosa 

depends exclusively on GlpT transporter, which does not seem to be regulated by 

cAMP levels. Thus, fosfomycin resistance in P. aeruginosa was related with an absence 

of in vivo fitness cost 
251

. 

In the other hand, only increased MurA levels have been correlated with higher 

levels of fosfomycin resistance at a low fitness cost in E. coli 
200

. However, to date no 

clinical studies reporting strains with high MurA levels have been published. Moreover, 

as mentioned in Chapter III, there are few reports of clinical isolates showing 

mutations in the murA gene, and none in the catalytic site of MurA, because most of 

them reduce drastically bacterial cell viability. 
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In contrast with ciprofloxacin, treatment with fosfomycin does not activate the 

SOS system in E. coli 
200

. Thus, it has been demonstrated that fosfomycin treatment 

does not increase the number of fosfomycin-resistant mutants 
252

 nor the homologous 

recombination rates 
253

. Furthermore, the low prevalence of fosfomycin-resistant E. coli 

strains from patients with UTI may suggest that the prevalence of LLFR strains should 

be very low. If we combine the previous considerations with the high-fitness cost of 

these mutations and the increment of fosfomycin activity under UTI conditions, it leads 

to exactly the opposite situation of what was described in Figure 10. In this way, our 

results demonstrate that urinary tract physiological conditions might have a profound 

impact on fosfomycin activity against strains with fosfomycin-resistance mutations, 

adding a new explanation to the low prevalence of E. coli fosfomycin-resistant variants 

in UTIs. 

Concerning the clinical and physiological characteristics of patients with UTI 

caused by E. coli, there are several factors associated with urine pH modification that 

should be taken into consideration when the treatment is chosen. Pregnant women have 

an increased glomerular filtration rate and higher urinary calcium excretion throughout 

pregnancy, with higher urine pH values in the second and third trimesters 
254

. Thiazide 

diuretic intake is also associated with a higher urine pH by reducing the urinary uric 

acid excretion 
255

. Furthermore, there are genetic disorders that are related with urine 

alkalization. Thus, Gitelman syndrome is an autosomal recessive disorder of the 

thiazide-sensitive sodium chloride cotransporter, expressed at the distal convoluted 

tubule, which is accompanied by an inappropriately high urine pH 
256

. In these cases, if 

fosfomycin is the treatment of choice, the presence of LLFR could lead to treatment 

failure and the development of fosfomycin resistance. Thus, urinary pH values could 

have practical interest in the management of these patients, where the physician should 
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select the course best suited to the individual patient. 

  On the other side, there are also clinical factors related with urine acidification. 

It has been reported that the composition of the diet affects acid-base balance in the 

body. A higher protein intake significantly increases the renal acid excretion by 

increasing ammonium output, thus acidifying the urine 
257, 258

. Moreover, the effect of 

urine pH on ciprofloxacin and fosfomycin activity may become relevant in patients with 

certain underlying characteristics or diseases. It is known that patients with 

hypertension are associated with a lower urinary citrate and higher acid excretion, 

resulting in lower urine pH values 
259

. This effect can also be found in patients with type 

2 diabetes or metabolic acidosis 
260

. There are some patient characteristics that are 

related with lower pH values in urine, like older age or higher body weight 
261,262

. Some 

medications can also acidify urine, such as loop diuretics or mineralocorticoids 
263,264

. 

Consequently, if ciprofloxacin is the treatment chosen in patients with factors related to 

urine acidification, and the UTI is produced by LLQR mutants, it could result in 

therapeutic failure and increased selective pressure, promoting the development of 

bacterial resistance.  

Another posibility is modifying the urine pH of patients with UTI, either 

increasing urine pH by alkalinisation (e.g. by the use of potassium citrate or sodium 

bicarbonate 
265,266

) with the aim of increasing the activity of ciprofloxacin, or by 

acidifying the urine, with the aim of increasing the activity of fosfomycin. However, 

urinary pH modification is frequently difficult to achieve and is rarely, if ever, 

necessary. To acidify the urine, it is often necessary to modify the diet by restriction of 

agents that tend to alkalinize the urine (milk, fruit, juices, sodium bicarbonate) 
1
. 

Another major problem with acidification is that patients with renal insufficiency are 
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unable to excrete an acid load, and may become systematically acidotic when urinary 

acidification is attempted 
267

. Similar problems could be found with urine   

alkalinization 
268

. For this reason, the best choice should be the selection of the 

antibiotic therapy according to the clinical characteristics of the patient. 
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The studies developed in this Thesis have led to results that allow the following main 

conclusions:  

1. Urinary tract physiological conditions have a profound impact on ciprofloxacin 

and fosfomycin activity against E. coli strains harboring the most prevalent LLR 

mutations.  

 

2. The presence of urine, low-pH and anaerobiosis reduce ciprofloxacin activity. 

These conditions generate an ideal environment for the selection of strains 

harboring LLQR determinants, decreasing their susceptibility to ciprofloxacin, 

allowing for the survival of microorganisms traditionally considered as 

susceptible. 

 

3. Despite the general belief that multiple mutations are required to generate 

clinically important resistance in E. coli, the results presented here show that 

LLQR mutants are capable for surviving under physiological concentrations of 

ciprofloxacin in the bladder. 

 

4. The presence of acid pH values and anaerobiosis have a great effect on 

fosfomycin activity, converting most of the strains categorized as resistant, 

according to the international guidelines, into susceptible.  

 

 

5. The effects of urine, pH and anaerobiosis observed in the isogenic strains have 

been corroborated in clinical strains with LLR and high-resistance mutations.  
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6. Internationally recommended methods for MIC determination produce poor 

estimations of ciprofloxacin and fosfomycin activity against LLR E. coli strains 

under urinary physiological conditions. Under this assumption, international 

guidelines should prompt a reconsideration of clinical breakpoints, taking into 

account physiological conditions during infection. 

 

7. Urinary pH values could have practical interest in the management of patients 

with UTI, where the physician should select the course best appropriate to the 

individual patient.  
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Annexe I: Additional scientific production 
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 La sensibilidad a ciprofloxacino de cepas de Escherichia coli portadoras de 

determinantes plasmídicos de bajo nivel de resistencia a quinolonas disminuye 

en orina a pH ácido y anaerobiosis. Guillermo Martín-Gutiérrez; Jerónimo 

Rodríguez-Beltrán; José Manuel Rodríguez-Martínez; José Antonio Lepe; 

Álvaro Pascual; Javier Aznar; Jesús Blázquez. XIX Congreso Nacional de la 

SEIMC, Sevilla (2015). 
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Aznar; Álvero Pascual; Jesús Blázquez. 25th European Congress of Clinical 
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 Title: Las condiciones del tracto urinario modulan la susceptibilidad de 
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Scientific event: Seminario Programa de Enfermedades Infecciosas y del 

Sistema Inmunitario. 

Organizer: Instituto de Biomedicina de Sevilla. 

Centre: Instituto de Biomedicina de Sevilla. 
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Annexe II  
 

 
Figure 11: Growth curves of ATCC 25113 and nine isogenic strains in MH and urine at pH 7, 6 and 5. EC01: ΔmarR; EC02: gyrA (S83L); EC03: 

ΔmarR-gyrA(S83L); EC04: gyrA(S83L)–parC(S80R); EC05: ΔmarR-gyrA(S83L)-parC(S80R); EC06: gyrA(S83L)-gyrA(D87N); EC07: ΔmarR-

gyrA(S83L)-gyrA(D87N); EC08: gyrA(S83L)-gyrA(D87N)-parC(S80R); EC09: ΔmarR-gyrA(S83L)-gyrA(D87N)-parC(S80R). Error bars represent 

standard errors of the means of re- sults from at least four replicates. MH, Mueller-Hinton; UR, urine; OD, optical density. 
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Annexe III 

Publication I, additional figure. 

 

 Figure 12: Ciprofloxcin susceptibility testing for the strains ATCC 25922, EC02 (gyrA S83L) 

and EC05 (ΔmarR, gyrA S83L, parC S80R) using the gradient MIC strip methodology. MICs 

(µg/mL) are indicated at the right bottom for each condition. MH: Mueller-Hinton agar; UR7: 

urine-agar pH7; UR6: urine-agar pH6; UR5: urine-agar pH5.  
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Annexe IV 

 

Figure 13: Growth curves of E. coli BW25113 and ten isogenic strains with deletions in genes related with FOS-resistance, growing in MH 

and urine at different pH values. Error bars represent standard errors of the means of results from at least ten replicates.  MH, Mueller-Hinton; 

UR, urine; OD, optical density. 
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