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ABSTRACT 
We numerically investigated the annular electroconvection that takes place in a 

dielectric liquid lying between two concentric cylinder electrodes. A uniform injection 

of arbitrary strengths either from the inner or outer cylinder introduces free charge 

carriers into the system, and the resulting Coulomb force induces electroconvection. 

The problem is characterized by a linear instability that corresponds to the onset of 

flow motion. The linear stability criteria were determined from direct numerical results 

and by linear stability analysis, and the results obtained with the two approaches show 

an excellent agreement. We focused on the fully developed flow pattern in the finite 

amplitude regime. We observed very different flow motions that were highly dependent 

on the injection strength.  

   Index Terms — Electrohydrodynamics; dielectric liquid; charge injection; numerical 

analysis; annular geometry.  

1 INTRODUCTION

ELECTRO-hydrodynamics (EHD) deals with the 

interaction between the electric field and the fluid motion [1]. 

A fundamental problem in EHD is concerned with the 

Coulomb-driven convection in a single-phase dielectric liquid 

[2,3]. The Coulomb force exerting on the free space charges 

serves as a body force and drives the flow motion. The 

induced motion contributes to the passage of electric current, 

and the consequent voltage-current characteristics. There are 

two main sources for free space charges in an isothermal 

liquid: the charge injection at the electrode/liquid interface 

[4,5] and the field-enhanced dissociation in the bulk liquid 

[6,7]. For a liquid of low conductivity and subjected to a high 

electric field, the charge injection mechanism often plays the 

dominant role in generating space charges [2,3,8].  

In this study we consider the limit case that ions are injected 

from one electrode (i.e. unipolar injection) into a perfectly 

insulating liquid. Various electrode shapes and configurations, 

symmetrical or asymmetrical, have been considered to study 

EHD flows [9]. The symmetrical configurations (e.g., the 

parallel plates, concentric cylinders and spheres) are 

particularly interesting due to that under some assumptions the 

system may possess a linear instability bifurcation. This means 

that the driving Coulomb force is required to be sufficiently 

strong to overcome the viscous damping, and then the flow 

motion will arise. The prediction and understanding of the 

onset flow motion can be viewed as a first and also critical 

step in understanding more complex phenomena.  

Previous studies mainly focused on the simplest parallel 

plate configuration, whereas less attention was paid to the 

configurations of cylinder and sphere. It is interesting to point 

out that the electroconvection between two parallel plates 

shares strong analogy with the classic Rayleigh-Bénard 

convection (RBC) that happens in a planar liquid layer heated 

from below [3]. However, such analogy no longer exists for 

the cylindrical geometry that we will consider in this study. 



Instead, we may compare the annular electroconvection to the 

Taylor-Couette (TC) flow in the gap between two rotating 

cylinders [10]. The change of the configuration from plate to 

cylinder complicates the problem by introducing two new 

factors: the injection direction (from the inner or outer 

cylinder) and the radius ratio between the two electrodes. 

From the practical application point of view, the cylinder 

configuration is more interesting than the plate one. A typical 

example is concerned with the heat transfer enhancement in 

tubes (wire/cylinder) [11]. 

The linear stability analysis with the unipolar injection 

induced annular electroconvection in a dielectric liquid lying 

between two concentric cylinder electrodes was performed 

two or three decades ago in a series of studies [12,13,14]. 

Very recently, Fernandes et al. revisited the problem and 

conducted a 2D normal-mode linear stability analysis [15]. In 

addition, they also performed the first direct numerical 

simulation with this configuration [16]. Only the strong 

injection case of C=10 (C being the dimensionless injection 

strength parameter) was considered in their numerical study. 

For this injection strength, they observed a stationary flow 

pattern in the finite amplitude regime, which means the 

driving parameter is slightly higher than the linear stability 

criterion, no matter which direction the charges are injected 

and the radius ratio. Furthermore, they also extended the 

driving parameter far away from the linear stability criteria, 

and they observed oscillatory and chaotic flows.  

One core difficulty in simulating Coulomb-driven 

convection lies in the method for the charge conservation 

equation, which is strongly convection-dominated. In [17], we 

borrowed the so-named total variation diminishing (TVD) 

schemes from the field of computational gas dynamics, and 

applied them to the charge conservation equation. We 

investigated the electroconvection in the plate configuration 

induced by strong and weak injection in [17] and [18], 

respectively. We noticed the very different flow patterns at the 

onset of motion in the weak and strong injection regimes. In 

our recent study [19], we developed an efficient method for 

the electric field–space charge coupled problems with 

complex geometries. Later in [20], we coupled the method of 

[19] with a Navier-Stokes solver, and with the new tool we 

studied the annular electroconvection induced by a strong 

unipolar injection. For direct comparsion to the results in 

[16,17], the injection strength C in [20] is also fixed to 10.  In 

[20] we focused on the flow’s subcritical bifurcation behavior, 

a very characteristic feature of Coulomb-driven convection. In 

addition, a complete bifurcation diagram in the finite 

amplitude regime was also provided in that study. 

We extend here the study to arbitrary injection strength. The 

first numerical results of annular electroconvection in weak 

and medium injection regimes will be presented. The linear 

stability criteria predicted by the stability analysis will be used 

to verify our direct numerical results in the first place. Then 

we will highlight the complex flow patterns relating to the 

injection strength in the finite amplitude regime. The 

remainder of the paper is organized as follows. In Section 2, 

we present the physical problem, governing equations and 

boundary conditions. In Section 3, the methods are briefly 

described. Results and discussion are presented in Section 4. 

Finally, in Section 5, we summarize our findings and suggest 

some working directions.  

2  PROBLEM FORMULATION 

This section covers the description of the physical problem, 

the governing equations, the dimensionless parameters, and 

the boundary conditions.  

2.1 PHYSICAL PROBLEM 

We consider a layer of perfectly insulating liquid lying 

between two concentric infinite cylinder electrodes and 

subjected to an electrical potential difference ∆V. The physical 

problem is sketched in Figure 1, along with the Cartesian 

coordinate system used in this work. The two-dimensional 

problem is considered. The applied voltage produces a radial 

electric field and charge injection from the emitter electrode 

into the bulk. The injection is from only one electrode, either 

from the inner or the outer side. The injection is assumed to be 

homogeneous and autonomous, which means the injected 

charge density always takes a constant value, neither 

influenced by the local electric field nor the flow motion [2, 3]. 

The radii of the inner and outer cylinders are Ri and Ro, 

respectively. The fluid of density ρ, dynamic viscosity η and 

permittivity ε, is assumed to be incompressible and Newtonian. 

 
Figure 1. Sketch of annular electroconvection between two cylinders.  

 

The physical problem owns complex and strong nonlinear 

couplings. First, the appearance of space charges modifies the 

electric field, which in turn affects the charge distribution via 

the ion drift mechanism. In addition, the flow is driven by the 

Coulomb force (i.e. the charge density distribution and electric 

field), while the distribution of space charges relies heavily on 

the fluid velocity field via the ion convection mechanism.  

2.2 GOVERNING EQUATIONS  

For an isothermal dielectric liquid under the effect of an 

electric field, the complete governing equations include a 

reduced set of Maxwell’s equations in the electroquasistatics 

limit, and the Navier-Stokes equations [1]. Taking as scales 

H=(Ro-Ri) for length, ∆V for electric potential, K∆V/H for 
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for charge density, the resulting non-dimensional governing 

equations are [1,8,20]:  
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where the vectors ],[ vuu 


 and [ , ]x yE E E  denote the 

fluid velocity and electric field. The scalars V and q represent 

the electric potential and the space charge density. The 

modified pressure p~  includes an extra contribution from the 

electrostriction force term [3]. The last term in (2) represents 

the Coulomb force. The diffusion term in the charge 

conservation equation (3) has been neglected to keep 

consistence with previous studies. Two dimensionless 

numbers appear in the above equations,  
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The electric Rayleigh number T represents the ratio between 

the Coulomb force to the viscous force. The mobility number 

M is defined as the ratio between the so-called hydrodynamic 

mobility (ε/ρ)
1/2

 to the true ionic mobility K. The definition 

equation shows that M depends only on the fluid properties.  

Besides T and M, the problem also depends on the injection 

strength C, injection direction, and the radius ratio Γ. In 

dimensionless form, C and Γ are defined as  
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where q0 is the injected charge density at emitter electrode.  

According to [21], the injection strength can be 

preliminarily classified into three regimes: strong (5<C), 

medium (0.2<C<5), and weak (C<0.2). Different injection 

regimes can be experimentally achieved by different methods. 

Lacroix et al., [22] and Malraison and Atten [23] covered the 

electrodes with ion exchange membranes and obtained a 

Space-Charge-Limited (SCL, C→∞) injection; Denat et al., 

[24] and Mccluskey et al., [25] used bare electrodes and the 

liquids saturated with salts to produce a weak or medium 

injection; Zhang [26] also used bare electrodes and a liquid 

with no salt, and the injection was estimated to be weak. 

2.3 BOUNDARY AND INITIAL CONDITIONS  

The dimensionless domain is defined as the gap between the 

two cylinders, i.e. Γ/(1-Γ)=Ri≤ r ≤ Ro=1/(1-Γ), 0<Γ<1 and 0 ≤ 

θ ≤ 2π. The no-slip condition for velocity (u=v=0) is applied 

on the two cylinders. The constant electric potentials lead to 

V=1 and V=0 at the emitter and collector respectively. Since (3) 

is a hyperbolic equation, only one-side boundary condition is 

required for q. The assumption of homogeneous and 

autonomous injection leads to q=C at the emitter. 
 

Table 1. The Values for Coefficients Ae and Be in Equation (6),  Γ=0.5 

C 
Inner  Outer  

Ae Be Ae Be 

0.05 0.266 27.281 0.264 -31.963 

0.1 0.372 12.860 0.368 -17.542 

0.5 0.772 1.382 0.729 -6.128 

1.0 1.000 0.000 0.901 -4.811 

5.0 1.390 -0.923 1.091 -4.048 

10.0 1.439 -0.979 1.104 -4.012 

20.0 1.455 -0.995 1.108 -4.003 

 

The set of governing equations (1-5) together with the 

above boundary conditions possesses a hydrostatic solution, 

which means the fluid keeps rest while charges transfer solely 

by drift due to electric field. The hydrostatic solution may be 

expressed as [14]: 
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where δ = +1 and -1 for the inner and outer injection, 

respectively. The parameters Ae and Be are two constants 

depending on C, Γ and the injection direction. The implicit 

functions used to determine Ae and Be can be found in [14]. 

For some cases considered in this study, the values of Ae and 

Be can be found in Table 1. The hydrostatic solutions serve as 

the initial conditions for direct numerical simulations. 

3  METHODS 

    Several methods including the linear stability analysis, 

direct numerical simulation and a simple phenomenological 

modal analysis were employed in this study. The linear 

stability analysis method developed by Agrait and Castellanos 

[14] was adapted to study the 2D case with longitudinal modes. 

The critical stability criteria obtained by the linear stability 

analysis is used to verify direct numerical results. The modal 

analysis is used to understand the evolution of different modes, 

and the method was detailed in [20].   

We developed an in-house direct numerical program based 

on a 2
nd

 order finite volume method to solve equations (1-5) 

[27]. The solution domain is discretized with structured grids 

made up of nonorthogonal quadrilaterals. The collocated 

arrangement is employed, which means all variables are stored 

at the center of each quadrilateral mesh. The solver contains 

two modules: one for the Navier-Stokes equations (1-2) and 

the other one for the electrostatic equations (3-5). The two 

modules are coupled in a sequential procedure. For the 

Navier-Stokes equations, the central differencing (CD) scheme 

and the improved deferred correction (IDC) scheme [28] are 

used to compute the convective and diffusive fluxes, 

respectively. The 2
nd

 order semi-implicit three time levels (I3L) 

scheme [27] is used for time integration. The coupling 

between the fluid velocity and pressure is undertaken by the 

SIMPLE algorithm [29]. To prevent the unphysical checker-



boarder pressure field with the collocated arrangement, the 

Rhie-Chow momentum interpolation [30] is implemented. The 

algorithm for electrostatic equations (3-5) is well explained in 

[19]. The Smooth Monotonic Algorithm for Real Transport 

(SMART) scheme [31] is applied to the charge conservation 

equation (3). An improved least-squares method [32] is used 

to calculate the electric field and other gradients. For more 

numerical details, please refer to [19, 33].  

4  RESULTS AND DISCUSSION 

The physical problem is fully defined by four dimensionless 

numbers (T, M, C and Γ) and the injection direction. In this 

study, we consider a representative radius ratio Γ=0.5 (i.e. 

Ri=1.0, Ro=2.0). The mobility number M is fixed as 60, which 

corresponds to the silicon oil used in the experimental studies 

of [25, 34]. The injection of arbitrary strength, either from the 

inner or outer cylinder, will be considered.  

4.1 HYDROSTATIC SOLUTIONS AND GRID 
CONSIDERATION 

We first validate our numerical solver by computing the 

hydrostatic solutions. In Figure 2 we have compared our 

numerical results of charge density distribution in the radial 

direction with the analytical ones. The numerical solutions are 

obtained by switching off the module for the Navier-Stokes 

equations. A perfect agreement is always obtained.   
 

 
(a) 

 
(b) 

Figure 2. Comparison between the analytical and numerical charge density 

distributions at hydrostatic state: (a) inner injection, (b) outer injection. Note 
that the charge density q has been normalized with the injection strength C for 

better display.  

For all injection strengths the charge density continually 

decreases from the emitter to the collector. In addition, along 

with the increase of C, the variation of charge density in the 

region close to the emitter becomes sharper. For the same 

injection strength, the outer injection case shows a more rapid 

decrease than the inner injection one. For example, for C=20 

and the same small distance from the injector (say 0.05), the 

charge density drops 77.8% with inner injection while 87.6% 

with the outer case. 

These distribution characteristics of charge density with 

the strength and direction of injection put forward different 

requirements for the grid design. A uniform grid works well 

for weak and medium injection, while a non-uniform (non-

uniformity only appears in the radial direction) grid is very 

necessary for strong injection. After various grid convergence 

tests, we finally chose a uniform grid with 400×150 cells, a 

uniform grid with 450×150 cells, a non-uniform grid with 

500×175 cells and a non-uniform grid with 500×200 cells for 

the computations of the weak injection (C<0.2, inner and 

outer), medium injection (0.2<C<5, inner and outer), inner 

strong injection (5<C), and outer strong injection (5<C), 

respectively. 

4.2 LINEAR STABILITY CRITERIA 

   We have performed a stability analysis to analytically 

predict the linear stability criteria. The criteria are expressed 

through the critical electric Rayleigh number Tc and the 

critical Fourier mode mc. The results are summarized in Figure 

3. Note that the linear stability criteria are independent on the 

mobility number M. 

   For both injection directions, increasing C yields lower Tc, 

which implies that the system is more unstable in the strong 

regime than in the weak one, as a consequence of a greater 

Coulomb force for stronger injection. For very weak injection 

the value of Tc scales in such a way that TcC
2
 tends to a fixed 

value, the same behavior already observed in the configuration 

of parallel plates [35, 36]. Similarly, for C>>1, Tc tends 

towards a fixed value. This asymptotic behavior is due to that 

the presence of space charge limits the injected current and the 

Coulomb force in that limit. 
 

 
Figure 3. Variation of the critical electric Rayleigh number Tc and the critical 

Fourier mode m with the injection strength C. 
 

Figure 3 shows that the outer injection configuration is 

more unstable than the inner injection one for weak injection 



case. The inner injection case is the most unstable in the 

strong injection limit. The crossover takes place for C≈1.0. A 

similar behavior was found by Agraït and Castellanos [14] 

including 3D modes and the 2D results of Fernandes et al. [16] 

with a different radius ratio. The differences between the 

critical values for weak injection are rather small, because, in 

this limit, the electric field is not affected by the injected 

charge. Things are different for the strong injection case, 

where a gradient of charge of geometrical origin superimposes 

to the gradient due to Coulomb repulsion, resulting in a more 

unstable situation. 

Although the Fourier mode number, associated to the 

number of convective cells, remains unchanged for the inner 

injection configuration, it changes from 7 to 8 in the outer 

injection case. 

4.3 DIRECT NUMERICAL RESULTS 

To numerically determine the critical stability parameter, 

we gradually increase T from zero until we observe the onset 

of flow. Experimentally, this is done by increasing the applied 

voltage. For all cases (arbitrary strengths and both injection 

directions), we have found that the system keeps a rest state 

when T<Tc, and once T is just above Tc the system jumps to a 

convective state of a certain strength.  
 

Table 2. Comparison Between Analytical and Numerical Predictions of the 

Linear Stability Criteria Expressed Through the Critical Electric Rayleigh 

Number Tc and the Critical Fourier mode mc, Γ=0.5. Note That the Numerical 
Values of mc are the Pair Numbers of Convective Cells at the Exponentially 

Growing Stage of Flow Motion. 

C 
Inner  outer  

mc Tc Pattern mc Tc Pattern 

10.0 
A 7 122.84 --- 8 221.38 --- 

N 7 122.75 S 8 220.71 S 

5.0 
A 7 137.62 --- 8 230.43 --- 

N 7 136.82 S 8 230.18 S 

1.0 
A 7 511.85 --- 7 513.27 --- 

N 7 510.96 I 7 512.94 I 

0.5 
A 7 1444.16 --- 7 1258.53 --- 

N 7 1448.01 I 7 1245.04  

0.1 
A 7 26470.11 --- 7 20827.23 --- 

N 7 26441.80 C 7 20751.01 C 

0.05 
A 7 101603.92 --- 7 79075.60 --- 

N 7 100777.12 C 7 78944.30 C 

Note: the 2nd column: A-analytical, N-Numerical; the 5th and 8th column: S- 
stationary, I-irregular, C–chaotic.  

 

We have recorded the time histories of the maximum fluid 

velocity norm Vmax defined as 
2 2Vmax max u v  

 
 and 

of the modal amplitudes. In addition, we have output the 

stream function and charge density distribution to show the 

flow structure. As we will present below in the Vmax – time 

figures, there are always three different stages for each case: 

an initial hydrostatic stage, the subsequent exponentially 

growing one, and the final stage corresponding to the fully 

developed convection. By checking the iso-contours of stream 

function at the second stage, there is a fixed number of 

counter-rotating vortex pairs that regularly distributed. The 

number of vortex pairs should be compared with the critical 

Fourier mode mc predicted by the stability analysis [37]. We 

have extracted the growth rate of the second stage to 

numerically determine the critical electric Rayleigh number Tc 

[17, 38]. In Table 2 we have summarized some linear stability 

criteria determined from direct numerical results and 

analytically predicted by the stability analysis. A perfect 

agreement is shown for mc, and the maximum discrepancy 

between the analytical and numerical values of Tc is less than 

1%. The agreement between analytical and numerical stability 

criteria fully verified our numerical solver and stability 

analysis method. 

However, the flow patterns at the third stage are diverse 

and highly dependent on the injection strength. We present 

below a detailed description of different flow patterns.  
 

1) Stationary flow pattern  
 

For C≥2 and both injection directions, a stationary flow 

pattern is finally formed. Figure 4 plots the time histories of 

Vmax for the representative case of C=5. The fluid velocity 

continuously increases from zero and reaches a maximum, and 

then remains constant. Figure 5 shows the charge density 

distribution and the corresponding stream function for the 

final steady convection.  
 

 
Figure 4. Time histories of the maximum velocity norm for strong injection 

regime, C=5. Note that the values of Tc for inner and outer injection are 

137.62 and 230.43, respectively. 

 

By checking the fluid velocity field and the electric field, 

we notice that the maximum fluid velocity in the radial 

direction (Vr = 3.672, inner; Vr = 3.315, outer) is higher than 

the maximum electric field (Er = 1.300, inner; Er = 1.890, 

outer), which means the charge density distribution is mainly 

controlled by the fluid motion. This results in a region strictly 

free of charges (q→0), a very characteristic feature of 

Coulomb-driven convection. There are 7 and 8 discrete charge 

void regions in Figures 5a and 5b, respectively. Each void 

region corresponds to a pair of counter-rotating convective 

cells; see Figures 5c and 5d. At beginning of the second stage, 

the positions of convective cells are chosen randomly.  
 



 

 
(a) (b) 

 
(c) (d) 

Figure 5.  Distributions of charge density (up) and stream function (bottom) 

for strong injection, C=5, (a) and (c) with inner injection, T=165; (b) and (d) 

with outer injection, T=255.  

    
2) Irregular flow pattern  

 

For weaker injection strengths (C < 2), still taking T close to 

Tc, we observe that the flow first reaches a quasi-stationary 

flow pattern. This first process is the same as described in the 

previous subsection. But after a period of adjustment, the flow 

destabilizes and bifurcates to another pattern which may be 

steady or unsteady depending on the injection strength and the 

value of T. The secondary bifurcation is due to the nonlinear 

effect because of the high driving parameter.  

In Figure 6 we have provided two representative examples 

of C=1.0 and 0.5. Figure 7 plots the charge density distribution 

for four cases (points A, B, C and D marked in Figure 6a) to 

show the flow structure. Figure 6a shows that for C=1.0 and 

T=600, the inner injection induced flow transits from 7 void 

regions (Figure 7a) to a stationary state with 8 void regions 

(Figure 7b); the flow pattern of outer injection transits from 7 

void regions (Figure 7c) to a unsteady state with the number of 

void region periodically changing between 8 and 11. In Figure 

7d we can roughly identify 10 void regions. 

The phenomenological modal analysis has been performed 

to understand the evolution of different modes. For C=1.0 and 

T=600, we have observed in the inner injection case the 

dominant mode changes from m=7 at point A to m=8 at point 

B, and in the outer injection case the modes of m=6~12 are 

excited to a certain amplitude while other modes are very 

small.  

 
(a) 

 
(b) 

Figure 6. Time histories of the maximum velocity norm for (a) C=1.0 and (b) 

C=0.5. Note that the values of Tc for C=0.5 are 1444.16 (inner) and 1258.53 

(outer), and for C=1.0 are 511.85 (inner) and 513.27 (inner).  
 

 

 
(a) (b) 

 
(c) (d) 

Figure 7. Distributions of charge density for four cases marked in Figure 6a: 

(a) Point A, (b) Point B, (c) Point C, (d) Point D.  



3) Chaotic flow pattern  
 

For very weak injection (C≤0.4), we observe a chaotic 

flow pattern. Figure 8 plots the time evolution of Vmax for the 

representative case of C=0.1. The electric Rayleigh number T 

is set to 3.0×10
4
 and 2.5×10

4
 for inner and outer injection, 

respectively. At the third stage the velocity signals show 

dramatic fluctuations around an average value. 
 

 
(a) 

 
(b) 

Figure 8 Time histories of the maximum velocity norm for weak injection 

regime, C=0.1, (a) inner injection, T=3×104, and (b) outer injection, T 2.5×104. 
Note that the values of Tc for inner and outer injection are 26470.11 and 

20827.23, respectively. 

 

 

 
(a) (b) 

Figure 9 Snapshots of charge density distribution at the chaotic state for weak 

injection, C=0.1, (a) inner, 3×104; (b) outer, T = 2.5×104.  

 

Two snapshots of the charge density distribution are 

depicted in Figures 9a and 9b, which represent very irregular 

flow motions. Though we can still roughly distinguish the 

charge-free region from the charge-covered region, the 

number, shapes and positions of these charge-free regions are 

continually changing over the entire time period. When the 

injection strength is weak, the charge density in the charge-

covered region takes the value of C because of the weak 

Coulomb repulsion between charges [38]. 
 

 
(a) 

 
(b) 

Figure 10 (a) Semilog plots of the pwer spectral curves corresponding to 

Vmax versus time plotted in Figure 8a and (b) a slice of the time evolution of 
the modal amplitudes, inner injection, C=0.1, T=3×104.  

 

The spectral analysis with the volatile signals of velocity 

shows a broadband spectrum with an exponential decay (see 

Figure 10a), which reveals the chaotic nature of the flow 

motions. By checking the time evolution of the modal 

components (Figure 10b), all modes (m = 1 ~ 15) are excited. 

The interaction between these excited modes leads to the 

chaotic flow pattern. In Figure 10b, only the modes of m = 7 ~ 

12 are plotted to simplify the display. 

4.4 DISCUSSION 

A characteristic feature of Coulomb-driven convection 

with the symmetrical electrode geometry lies in its subcritical 

nature of the linear bifurcation. For a full description of the 

subcritical bifurcation, please refer to [2] or [3]. Here we 

highlight that this type of bifurcation is based on the fact that a 

stable electroconvective motion requires the maximum fluid 

velocity to be higher than the ionic velocity [39, 40]. Once the 

system losses its linear stability, the liquid velocity will 

increase in time until this condition is satisfied. Since the 

velocity of the liquid that returns towards the injector is 



greater than the drift velocity of the emitted ions, there is a 

region where the ions cannot enter, and this region appears 

void of charge, as we showed in the previous subsection. We 

have compared the fluid velocity and the electric field at the 

third stage for each test case, and have found that this 

condition is always fulfilled. Since the subcritical nature of the 

bifurcation leads to a finite amplitude electroconvection, the 

convective flow may not always be viscous dominated, even 

in the neighborhood of the linear stability criterion 

Once the electroconvective motion is fully developed, its 

pattern is mainly decided by the electric Reynolds number 

defined as R = T/M
2
 [8, 22]. For strong injection, Tc is small 

and its corresponding value of R is also small, which implies 

that the viscous effect is dominating, and thus a steady flow 

pattern is expected. On the contrary, for weak injection, Tc is 

so high that the corresponding R value is much greater than 

the transition value (a reference value is 10 [8]) that separates 

the viscous and inertial dominated regimes. For this case, the 

inertial effects are dominant, and the system passes from the 

rest state directly to chaos. The periodic and chaotic flows 

shown in [16] with a fixed strong injection strength are 

achieved by increasing T, which essentially equals to the 

increase of R.  

5  CONCLUSIONS 

We studied the two-dimensional annular electroconvection 

induced by unipolar injection in a dielectric liquid lying 

between two concentric cylinder electrodes. The 

representative case with the radius ratio between the two 

concentric circular cylinders of 0.5 was considered. The 

injection can be either from the inner or outer electrode. This 

paper extended our recent study with the strong injection [20] 

to arbitrary strengths. Due to the uniform injection and the 

highly symmetrical electrode geometry, the problem possesses 

a hydrostatic solution. The linear stability criterion that 

corresponds to the onset of flow motion was determined from 

the direct numerical results and by the linear stability analysis. 

A good agreement between the results obtained with the two 

approaches was always obtained. Once the flow enters into the 

finite amplitude regime and fully develops, we observed that 

the flow pattern was highly dependent on the injection 

strength C. For C≥2, the flow is characterized by a steady 

convection. For weaker injection strength (C<2), a secondary 

bifurcation arises because of the nonlinear effects. For very 

weak injection (C≤0.4), a chaotic flow pattern is observed. 

These complex flow patterns can be understood by evaluating 

the relatively important role played by the viscous and inertial 

effects. 

Our present finding with the relationship between the flow 

pattern and injection strength provides an indirect way to 

roughly judge the injection regime. In experiments, it is often 

difficult to know in advance the injection strength. By 

observing the flow pattern at the critical voltage, we may 

know the injection strength is strong, weak or extremely weak. 

In a future work, we will determine the route to chaos for 

annular electroconvection by continually varying the driving 

electric Rayleigh number or the dimensionless mobility 

number, which can be achieved experimentally by adjusting 

the applied voltage or changing the working liquid, 

respectively.  

ACKNOWLEDGMENT 

This work was partially funded by the French Government 

program “Investissements d’Avenir” (LABEX 

INTERACTIFS, reference ANR-11-LABX-0017-01) (to Jian 

Wu), a grant of the French district Poitou- Charentes (to P. 

Traoré), and partially by financial support from the Spanish 

Ministerio de Cienciay Tecnología (MCYT) under Research 

Project No. FIS2011-25161 and Junta de Andalucía under 

research projects P10-FQM-5735 and P09-FQM-4584 (to A. T. 

Pérez).   

REFERENCES 
[1] A. Castellanos, “Electrohydrodynamics,” Springer, New York, 1998. 

[2] A. Castellanos, “Coulomb-driven convection in Electrohydrodynamics,” 
IEEE Trans. Electr. Ins. vol. 26, pp. 1201-1215, 1991. 

[3] P. Atten, “Electrohydrodynamic instability and motion induced by 

injected space charge in insulating liquids,” IEEE Trans. Electr. Ins. vol. 
3, pp. 1-17, 1996. 

[4] A. Denat, B. Gosse, and J. P. Gosse, “Ion injections in hydrocarbons,” J. 

Electrostatics, vol.7, pp. 205-225, 1979.  
[5] A. Alj, A. Denat, J. P. Gosse, et al., “Creation of charge carriers in 

nonpolar liquids,” IEEE Trans. Electr. Ins.  Vol.2, pp.221-231, 1985. 

[6] L. Onsager, “Deviations from Ohm's law in weak electrolytes,” J. Chem. 

Phys, vol. 2(9), pp. 599-615, 1934.  

[7] F. Pontiga and A. Castellanos, “Physical mechanisms of instability in a 

liquid layer subjected to an electric field and a thermal gradient,” Phys. 
Fluids, vol. 6.5, pp. 1684-1701, 1994.  

[8] P. Atten and L. Elouadie, “EHD convection in a dielectric liquid 
subjected to unipolar injection: coaxial wire/cylinder geometry,” J. 

Electrostatics, vol. 34, pp. 279-297, 1995.  

[9] Y. K. Suh, “Modeling and simulation of ion transport in dielectric 
liquids-Fundamentals and review,” IEEE Trans. Dielect. Electr. Ins.   vol. 

19(3): 831-848, 2012.  

[10] F. W. Langford, and D. D Rusu, “Pattern formation in annular 
convection,” Physica A, vol. 261(1), pp.188-203, 1998.   

[11] J. Fernández and R.. Poulter, “Radial mass flow in electro- 

hydrodynamically-enhanced forced heat transfer in tubes,” Int. J. Heat 
Mass Transfer, vol. 30, pp. 2125-2136, 1987. 

[12] A. T. Richardson and R. Poulter, “Electrophoretic instability in a 

diffusion-free dielectric liquid in an annular geometry,” J. Phys. D: Appl. 
Phys. vol. 9, pp.  L45, 1976. 

[13] A. T. Richardson, “The linear instability of a dielectric liquid contained 

in a cylindrical annulus and subjected to unipolar charge injection,” Q. J. 
Mech. Appl. Math. vol.  33, pp.  277-292, 1980. 

[14] N. Agrät and A. Castellanos, “Linear convective patterns in cylindrical 

geometry for unipolar injection,” Phys. Fluids, vol. 2, pp. 37-44, 1990. 
[15] D. V. Fernandes, H. D. Lee, S. Park, and Y. K. Suh, 

“Electrohydrodynamic instability of dielectric liquid between concentric 

circular cylinders subjected to unipolar charge injection,” J. Mech. Sci. 
Tech. vol. 27, pp. 461-467, 2013. 

[16] D. V. Fernandes, H. D. Lee, S. Park, and Y. K. Suh, “Numerical 

simulation of the electro-convective onset and complex flows of 
dielectric liquid in an annulus,” J. Mech. Sci. Tech. vol. 26, pp. 3785-

3793, 2012. 

[17] P. Traoré and A. T. Pérez, “Two-dimensional numerical analysis of 
electroconvection in a dielectric liquid subjected to strong unipolar 

injection,” Phys. Fluid, vol. 24, pp.  037102, 2012. 

[18] P. Traoré and J Wu, “On the limitation of imposed velocity field strategy 
for Coulomb-driven electroconvection flow simulations”, J. Fluid Mech., 

vol. 727, R3, 2013.  

[19] J. Wu, P. Traoré, and C. Louste, “An efficient finite volume method for 
electric field–space charge coupled problems,” J. Electrostatics, vol. 

71(3), pp. 319-325, 2013. 



[20] J. Wu, P. A. Vázquez, P. Traoré, and A. T. Alberto, “Finite amplitude 

electroconvection induced by strong unipolar injection between two 
coaxial cylinders,” Phys. Fluid, Vol. 26, pp. 124105, 2014. 

[21] R. Tobazéon, “Electrohydrodynamic instabilities and electroconvection 

in the transient and AC regime of unipolar injection in insulating liquids: 
A review,” J. Electrostatics, vol. 15(3), pp. 359-384, 1984.  

[22]  J. C. Lacroix, P. Atten, and E. J. Hopfinger, “Electroconvection in a 

dielectric layer subjected to unipolar injection,” J. Fluid Mech., vol. 69, 
pp. 539-563, 1975. 

[23] B. Malraison and P. Atten, “Chaotic behavior of instability due to 

unipolar ion injection in a dielectric liquid,” Phys. Rev. Lett., vol. 49, pp. 
723-726, 1982. 

[24] A. Denat, B. Gosse and J. P. Gosse, “Ion injections in hydrocarbons”, J. 

Electrostatics, vol. 7, pp. 205-225, 1979. 
[25] F. M. J. McCluskey, P. Atten, and A. T. Pérez, “Heat transfer 

enhancement by electroconvection resulting from an injected space 

charge between parallel plates,” Int. J. Heat Mass Transfer, vol. 34(9), 

pp. 2237-2250, 1991. 

[26] X. Zhang, “Electro-optic signatures of turbulent electroconvection in 

dielectric liquids”, Appl. Phys. Lett., vol. 104(20), pp. 202901, 2014. 
[27] J. H. Ferziger and M. Perić, “Computational methods for fluid dynamics,” 

Berlin: Springer, 2002. 

[28] P. Traoré, Y. M. Ahipo, and C. Louste, “A robust and efficient finite 
volume scheme for the discretization of diffusive flux on extremely 

skewed meshes in complex geometries,” J. Comput. Phys. vol. 228, pp. 

5148-5159, 2009. 
[29] S. V. Patankar and D. B. Spalding, “A calculation procedure for heat, 

mass and momentum transfer in three-dimensional parabolic flows,” Int. 
J. Heat Mass Transfer, vol. 15, pp. 1787-1806, 1972. 

[30] C. M. Rhie and W. L. Chow, “Numerical study of the turbulent flow 

past an airfoil with trailing edge separation,” AIAA J. vol. 21(11), pp. 
1525-1532, 1983. 

[31] P. H. Gaskell and A. K. C. Lau, “Curvature-compensated convective 

transport: SMART, A new boundedness-preserving transport algorithm,” 
Int. J. Numer. Meth. Fluids, vol. 8, pp.  617-641, 1988. 

[32] D.J. Mavriplis, “Revisiting the least-squares procedure for gradient 

reconstruction on unstructured meshes,” AIAA Paper, 2003-3986, 2003.  
[33] J. Wu, and P. Traoré, “A finite volume method for electro-thermo-

convective phenomena in a plane layer of dielectric liquid,” Numer. 

Heat Transfer A-Appl., DOI:10.1080/10407782.2014.986410, accepted 
for publication. 

[34] P. Atten, F. M. J. McCluskey, and A. T. Pérez, “Electroconvection and 

its effect on heat transfer,” IEEE Trans. Electr. Ins., vol. 23(4), pp. 659-
667, 1988. 

[35] P. Atten, and R. Moreau, “Stabilité électrohydrodynamique des liquides 

isolants soumis à une injection unipolaire,” J.  Mécanique vol. 11(3), pp. 
471-521, 1972. 

[36] P. Atten, and J. C. Lacroix, “Non-linear hydrodynamic stability of 

liquids subjected to unipolar injection,” J. Mécanique vol. 18, pp. 469-
510, 1979. 

[37] P. Tsai, Z. A. Daya, V. B. Deyirmenjian, et al. “Direct numerical 

simulation of supercritical annular electroconvection,” Phys. Rev. E, vol. 
76(2), pp. 026305, 2007.  

[38] A. Castellanos, and P. Atten, “Numerical modeling of finite amplitude 

convection of liquids subjected to unipolar injection,” IEEE Trans. Ind. 
Appl. IA-23, pp. 825-830, 1987.  

[39] N. Felici, “Phénomènes hydro et aérodynamiques dans la conduction des 

diélectriques fluids”,  Revue Générale de l’Electricité vol. 78, pp. 717-
734, 1969. 

[40] P. Atten P, and J. C. Lacroix, “Non-linear hydrodynamic stability of 

liquids subjected to unipolar injection”, Journal de Mécanique, vol. 18, 
pp. 469-510, 1979.  

 

Jian Wu (M’13) was born in Jiangxi, China, in 

1985. He received the B.Eng. degree in thermal 

energy and power engineering, the B.B.A. degree 

in business administration, and the M.Eng. degree 
in refrigeration and cryogenic engineering from 

Harbin Institute of Technology (China) in 2006, 

2006, and 2008, respectively.  He obtained his 
Ph.D. degree in fluid mechanics from University 

of Poitiers, France, in Sept. 2012. 

From Oct. 2012 to Oct. 2014, he worked as a 
Research Engineer at PPRIME Institute, University of Poitiers (France). 

Currently he is a visiting researcher of University of Seville (Spain). His areas 

of research include electro-hydrodynamics, electro-thermo-hydrodynamics, 
and computational fluid dynamics. He has coauthored 17 peer-reviewed 

journal papers and about 20 conference papers.  

Dr. Wu is a member of IEEE Dielectrics and Electrical Insulation Society 
and IEEE Industry Applications Society, and a member of European 

Mechanics Society.  

 
Philippe Traoré was born in Grenoble, France in 

September 1963. He graduated from the Superior 

National Engineer School of Aeronautical 
Constructions of Toulouse, France in 1987 and 

received, from University of Toulouse, the Ph.D. 

degree in fluid mechanics in 1996.  
He is currently the deputy director of the 

mechanical department of the University of 

Poitiers (France) where he teaches fluid mechanic and scientific computation. 

His research interests focus on general Computational Fluid Dynamic, two-

phase flows, granular media as well as on Electro-hydrodynamic. 

 

 

Pedro A. Vázquez was born in Seville, Spain in 

1969. He received his B.Sc degree from the 

University of Seville, Spain in 1992, and the 
Ph.D. degree in Physics from the same university 

in 1998. He is currently Associate Professor at the 

Departement of Applied Physics III of the 
University of Seville, Spain.  

 

 

Alberto T. Pérez was born in El Puerto de Santa 
María Cádiz, (Spain) in 1962. He obtained a 

Bachelor degree from the University of Seville 

(Spain) in 1985 and a PhD from the same 
university in 1989.  

He is currently Professor at the University of 

Seville. He has co-authored more than 40 papers on Electro-hydrodynamics, 
Cohesive Granular Materials and Suspensions in Dielectric Liquids.  He was 

Invited Professor at the Universities of Poitiers (2007 and 2013) and Nice 

(2008), both in France, and Invited Researcher at the LPMC-CNRS in Nice 
(2003). He served as Vice Dean of the Faculty of Physics at the University of 

Seville for 12 years.  

Dr. Pérez is member of the American Physical Society. 

 

 

 

 




