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Abstract

The main objective of this thesis is to study the long time behavior of several kinds of infinite di-
mensional dynamical systems associated to partial differential equations containing some kinds of
hereditary characteristics (such as variable delay, distributed delay or memory, etc) in terms of pull-
back/random attractors and the stability analysis of stationary (steady-state) solutions. The thesis
consists of three parts, and each part consists of two chapters.

Chapter 1 is devoted to the dynamics of an integer order stochastic reaction-diffusion equation
with thermal memory when the nonlinear term is subcritical or critical. First of all, instead of the
classic Galerkin approximations, a semigroup method together with the Lax-Milgram theorem is
used to prove the existence, uniqueness and continuity of mild solutions. Then, the dynamics of solu-
tions is analyzed by a priori estimates, and the existence of pullback random attractors is established.
Besides, we prove that this pullback random attractors cannot "explode", a property known as upper
semicontinuity.

It is well-known that integer order reaction-diffusion has been extensively applied in physics,
biomedical and chemical sciences. Nevertheless, this integer order reaction-diffusion equation is
inadequate to model some real situations, for instance, anisotropic diffusion, anomalous diffusion.
But fractional order reaction-diffusion equation can model these phenomena successfully.

Hence, in Chapter 2, we focus on the asymptotical behavior of a fractional stochastic reaction-
diffusion equation with memory, which is also called fractional integro-differential equation. Exis-
tence and uniqueness of mild solutions is proved by using the Lumer-Phillips theorem. Next, under
appropriate assumptions on the memory kernel and on the magnitude of the nonlinearity, the existence
of random attractor is achieved by obtaining some uniform estimates. Moreover, the random attractor
is shown to have finite Hausdorff dimension, which means the asymptotic behavior of the system is
determined by only a finite number of degrees of freedom, though the random attractor is a subset of
an infinite-dimensional phase space.

As we can see, the first two chapters consider an important partial function differential equations
with infinite distributed delay. However, partial functional differential equations include more than
only distributed delays; for instance, also variable delay terms can be considered. Therefore, in the
next chapter, we consider another significant partial functional differential equation but with variable
delay.

In Chapter 3, we discuss the stability of stationary solutions to 2D Navier-Stokes equations when
the external force contains unbounded variable delay. Above all, the existence and uniqueness of
solutions is proved by Galerkin approximations and the energy method. The existence of stationary
solutions is then established by means of the Lax-Milgram theorem and the Schauder fixed point the-
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vi ABSTRACT

orem. Afterward, the local stability analysis of stationary solutions is carried out by several different
approaches: the classical Lyapunov function method, the Razumikhin-Lyapunov technique and by
constructing appropriate Lyapunov functionals. Nevertheless, by these methods, the best result we
can obtain is the asymptotical stability of stationary solutions by constructing a suitable Lyapunov
functionals. Fortunately, we could obtain polynomial stability of the steady-state in a particular case
of unbounded variable delay, namely, the proportional delay.

However, the exponential stability of stationary solutions to Navier-Stokes equation with un-
bounded variable delay still seems an open problem. We can also wonder about the stability of
stationary solutions to 2D Navier-Stokes equations with unbounded delay when it is perturbed by
random noise.

Hence, in Chapter 4, a stochastic 2D Navier-Stokes equation with unbounded delay is analyzed
in the phase space of continuous bounded functions with limits at −∞. The existence and uniqueness
of solutions in the case of infinite delay is first proved by using the classical Galerkin approxima-
tions. Next, the local stability analysis of constant solutions (equilibria) is carried out by exploiting
two methods. Namely, the Lyapunov function method and by constructing appropriate Lyapunov
functionals. Although it is not possible, in general, to establish the exponential convergence of the
stationary solutions, the polynomial convergence towards the stationary solutions, in a particular case
of unbounded variable delay can be proved. We would also like to mention that exponential stability
of other special cases of infinite delay remains as an open problem for both the deterministic and
stochastic cases.

Notice that Chapter 3 and Chapter 4 are both concerned with delayed Navier-Stokes equations,
which is a very important Newtonian fluids, and it is extensively applied in physics, chemistry,
medicine, etc. However, there are also many important fluids, such as blood, polymer solutions,
and biological fluids, etc, whose motion cannot be modeled precisely by Newtonian fluids but by
non-Newtonian fluids. Hence, in the next two chapters, we are interested in the long time behavior of
an incompressible non-Newtonian fluids with delay.

In Chapter 5, we study the dynamics of non-autonomous incompressible non-Newtonian fluids
with finite delay. The existence of global solution is showed by classical Galerkin approximations
and the energy method. Actually, we also prove the uniqueness of solutions as well as the continuous
dependence of solutions on the initial value. Then, the existence of pullback attractors for the non-
autonomous dynamical system associated to this problem is established under a weaker condition
in space C([−h, 0]; H2) rather than space C([−h, 0]; L2), and this improves the available results that
worked on non-Newtonian fluids.

Finally, in Chapter 6, we consider the exponential stability of an incompressible non-Newtonian
fluids with finite delay. The existence and uniqueness of stationary solutions are first established,
and this is not an obvious and straightforward work because of the nonlinearity and the complexity
of the term N(u). The exponential stability of steady-state solutions is then analyzed by means of
four different approaches. The first one is the classical Lyapunov function method, which requires
the differentiability of the delay term. But this may seem a very restrictive condition. Luckily, we
could use a Razumikhin type argument to weaken this condition, but allow for more general types of
delay. In fact, we could obtain a better stability result by this technique. Then, a method relying on the
construction of Lyapunov functionals and another one using a Gronwall-like lemma are also exploited
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to study the stability, respectively. We would like to emphasize that by using a Gronwall-like lemma,
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Resumen

En esta tesis estudiamos el comportamiento asintótico de sistemas dinámicos infinito-dimensionales
asociados a ecuaciones en derivadas parciales funcionales que contienen algunos términos con pro-
piedades hereditarias (tales como retraso variable, retraso distribuido o memoria, etc.). En concreto
analizamos la existencia de atractores de tipo “pullback” y aleatorios, estudio de su estructura y
carácter finito dimensional, así como el estudio de la estabilidad de soluciones estacionarias. La tesis
consta de tres partes y cada parte contiene dos capítulos.

El Capítulo 1 está dedicado a estudiar el comportamiento asintótico de una ecuación de reacción-
difusion estocástica con memoria térmica en los casos en que el término no lineal sea subcrítico
y crítico. En lugar de la aproximación clásica de Galerkin, se usa un método de semigrupo junto
con el teorema de Lax-Milgram para demostrar la existencia, unicidad, regularidad y continuidad de
las soluciones débiles. Posteriormente, analizamos la dinámica de las soluciones mediante estima-
ciones a priori, y establecemos la existencia de atractores aleatorios para el sistema dinámico aleato-
rio asociado al problema. Además, demostramos que este atractor aleatorio no puede “explotar”, una
propiedad conocida como semi-continuidad superior. Las ecuaciones en derivadas parciales de tipo
estándar (en las que aparece el operador de Laplace (−∆)α con α = 1) se aplican ampliamente en
problemas de física, biología y química. Sin embargo, en algunos casos, el proceso de partículas salta
de un punto a otro con probabilidad de decaimiento en la ley de potencia, que no podría caracteri-
zarse por estas ecuaciones estándar sino por ecuaciones fraccionarias (es decir, el operador de Laplace
(−∆)α con 0 < α < 1).

Por lo tanto, en el Capítulo 2 estudiamos una ecuación fraccionaria de reacción-difusión es-
tocástica que describe un proceso de reacción-difusión con memoria que depende de la temperatura.
Más precisamente, investigamos el buen planteamiento y la dinámica de la ecuación fraccionaria
de reacción-difusión estocástica con memoria térmica, que también se denomina ecuación integro-
diferencial. La existencia y la singularidad de las soluciones de esta ecuación integro-diferencial se
demuestran usando el teorema de Lumer-Phillips. Luego, bajo hipótesis apropiadas sobre el núcleo
del término de memoria y sobre la magnitud de la no linealidad, demostramos la existencia del atrac-
tor aleatorio y logramos obtener algunas estimaciones uniformes que permiten concluir que el atractor
aleatorio tiene dimensión de Hausdorff finita, lo que significa que el comportamiento asintótico del
sistema está determinado un número finito de grados de libertad, aunque el atractor aleatorio es un
subconjunto de un espacio de fase de dimensión infinita.

Como acabamos de exponer, en la primera parte hemos considerado una clase de ecuaciones en
derivadas parciales con retardo distribuido infinito, la existencia de atractor aleatorio, así como su
semi-continuidad superior. Sin embargo, las ecuaciones en derivadas parciales funcionales incluyen
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x RESUMEN

muchos más tipos de términos con retraso que los distribuidos, por ejemplo, también los retrasos de
tipo variable tienen bastante interés. Por esta razón, en la Parte II, consideramos otro tipo de ecuación
en derivadas parciales funcional que incluye el caso de retraso variable.

En el Capítulo 3, estudiamos la estabilidad de las ecuaciones 2D de Navier-Stokes cuando la
fuerza externa contiene características hereditarias en el espacio de fase de funciones continuas y aco-
tadas con límite en −∞. Primero, demostramos la existencia, unicidad y regularidad de las soluciones
mediante las aproximaciones de Galerkin y el método de la energía. La existencia de soluciones esta-
cionarias la establecemos mediante el teorema Lax-Milgram y el teorema del punto fijo de Schauder.
La estabilidad de las soluciones la analizamos mediante varios enfoques diferentes: el método clásico
de función Lyapunov, la técnica de Razumikhin-Lyapunov y la construcción de funcionales de Lya-
punov apropiados. Sin embargo, mediante estos métodos, el mejor resultado que podemos obtener es
la estabilidad asintótica de la solución estacionaria mediante la construcción de una funciones de Lya-
punov apropiada. Vale la pena mencionar que podríamos demostrar la estabilidad polinómica de la
solución estacionaria en un caso particular de retraso variable no acotado. Sin embargo, también nos
preguntamos sobre el comportamiento asintótico de las ecuaciones 2D de Navier-Stokes con retraso
no acotado cuando es el modelo contiene una perturbación estocástica.

Por lo tanto, en el Capítulo 4 analizamos algunos resultados de ecuaciones bidimensionales es-
tocásticas de Navier-Stokes con retraso ilimitado. La existencia y unicidad de las soluciones en el
caso de un retraso ilimitado (infinito) se demuestran primero utilizando la técnica clásica de las aprox-
imaciones de Galerkin. El análisis de la estabilidad local de las soluciones constantes (equilibrios)
también se lleva a cabo explotando varios enfoques. A saber, el método de las funciones de Lya-
punov, y la construcción de apropiados funcionales Lyapunov. Aunque no es posible, en general,
establecer condiciones que garanticen el comportamiento asintótico exponencial de las soluciones,
algunas condiciones suficientes aseguran la estabilidad polinómica de la solución estacionaria en un
caso particular de retraso variable ilimitado, mientras que la estabilidad exponencial para otros casos
especiales con retraso infinito permanece como un problema abierto tanto para el caso determinista
como para el caso estocástico.

Observemos que en los capítulos 3 y 4 investigamos fluidos Newtonianos, en concreto, las ecua-
ciones de Navier-Stokes. Sin embargo, hay muchos fluidos importantes, como por ejemplo la sangre,
los plásticos fundidos, las fibras sintéticas, las pinturas y grasas, las soluciones de polímeros, suspen-
siones, adhesivos, tintes, barnices y fluidos biológicos, etc., cuyos movimientos no pueden modelarse
con fluidos Newtonianos de forma precisa, pero sí que pueden hacerse usando fluidos no Newtoni-
anos. Por lo tanto, en los próximos dos capítulos, analizamos el comportamiento límite de los fluidos
no Newtonianos con retraso.

En el Capítulo 5 investigamos la dinámica de un fluido no Newtoniano incompresible no autónomo
con retraso. La existencia de una solución global se obtiene mediante la aproximación clásica de
Galerkin y el método de la energía. En realidad, también demostramos la unicidad de la solución y la
dependencia continua respecto de los valores iniciales. Posteriormente analizamos el comportamiento
límite del sistema dinámico asociado al fluido incompresible no Newtoniano. Finalmente, establece-
mos la existencia de atractores de tipo pullback para el sistema dinámico no autónomo asociado al
problema.

Finalmente, en el Capítulo 6 consideramos la estabilidad exponencial de un fluido no Newtoniano
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incompresible. La existencia y la regularidad de las soluciones estacionarias se establecen primero.
La estabilidad exponencial de las soluciones estacionarias se analiza a continuación por medio de
cuatro enfoques diferentes. El primero es el método clásico de las funciones de Lyapunov, mientras
que el segundo se basa en un argumento tipo Razumikhin. Luego, utilizamos un método que se basa
en la construcción de funcionales de Lyapunov y otro que usa un lema de tipo Gronwall que permiten
estudiar la estabilidad, respectivamente.

Los resultados de estos seis capítulos forman parte del contenido de los siguientes trabajos:

• L. Liu and T. Caraballo, Analysis of a stochastic 2d Navier-Stokes model with infinite delay, J.
Dyn. Diff. Equ. (sometido).

• L. Liu and T. Caraballo, Well-posedness and dynamics of a fractional stochastic integro- differ-
ential equation, Phys. D, 355 (2017), pp. 45–57.

• L. Liu, T. Caraballo, and X. Fu, Exponential stability of an incompressible non-newtonian fluids
with delay, Discr. Cont. Dyn. Syst. B. (2018) (aceptado)

• L. Liu, T. Caraballo, and X. Fu, Dynamics of a non-autonomous incompressible non- Newto-
nian fluid with delay, Dyn. Partial Differ. Equ., 14 (2017), pp. 375–402.

• L. Liu, T. Caraballo, and P. Kloeden, Long time behavior of stochastic parabolic problems with
white noise in materials with thermal memory, Rev. Mat. Complut., 30 (2017), pp. 687–717.

• L. Liu, T. Caraballo, and P. Marín-Rubio, Asymptotic behavior of 2d-Navier-Stokes equations
with infinite delay, J. Diff. Equ. (por aparecer), (2018).
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Introduction

Background

The study of dynamical systems could date back to the late 19th century. In 1881, H. Poincare
worked on celestial mechanics [140], and introduced the theory of qualitative differential equations,
which is known as the geometric theory of differential equations. Thanks to this theory, we could
investigate the asymptotic behavior of solutions directly through the equation itself without obtaining
the explicit solutions to the equation. Actually, it is almost impossible to obtain explicit solutions
to most differential equations. Almost at the same time, the Soviet mathematician Lyapunov [124]
made a huge and pioneering work on the qualitative theory of differential equations. He studied the
stability of solutions, the existence and regression of periodic orbits, which later became the founding
of dynamical systems. Then, from 1912 onwards, Birkhoff expanded the study of dynamical systems
in the context of the three-body problem, including his ergodic theorem, Birkhoff [13, 14]. There are
many great works on dynamical systems since then, such as D. Ruelle [144] , S.Smale [151]and F.
Takens [156], Liao Shantao, Wen Lan et al. [46, 62, 68, 114, 172].

Classified by the dimension of the phase space, dynamical systems can be classified into finite
dimensional dynamical systems and infinite dimensional dynamical systems. Research on finite-
dimensional dynamical systems has been undergoing at least 50 years old, but the problem of dy-
namical systems is far from being limited to finite-dimensional situations. In fact, many realistic
problems belong to the framework of infinite dimensional dynamical systems, as they are modeled
by partial differential equations. For instance, the problem of flow past body in flow mechanics,
namely, vortex appears when the water flows past the object that is settled in the water. Another
famous example is Benard’s convection problem, i.e., if we heat a closed container full of liquid,
and when its bottom temperature equals the top temperature, then the convection, even chaos occurs.
Besides, some dissipative partial differential equations, such as, reaction-diffusion equation[101],
Navier-Stokes equation[99], non-Newtonian fluids, Kuramoto-Sivashinskey equation, Cahn-Hilliard
equation as well as Ginzburg-Landan equation, etc, have showed similar chaos phenomena. In addi-
tion, compared with finite dimensional dynamical systems, infinite dimensional dynamical systems
display new trait, it could exhibit not only time chaos but also spatial chaos, which is related tightly
to our daily life. All of this demonstrate that it is necessary and very important for us to study infinite
dimensional dynamical systems. Even more, it is possible that we may find a new way to the study
of turbulence by investigating infinite dimensional dynamical systems. This is why physicists, math-
ematicians and mechanics are devoted to the investigation of infinite dimensional dynamical systems.
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xiv INTRODUCTION

It is worth mentioning that infinite-dimensional dynamical systems not only interacts with other
fields of dynamical systems (such as differential dynamical systems, Hamiltonian dynamical systems,
topological dynamical systems, complex dynamical systems, ergodic theory, stochastic dynamical
systems, etc.), but also penetrates closely into many aspects such as physics, mechanics and even
biology, biomedicine, economics, ocean-atmosphere, and engineering technology.

On the other hand, in many case, the change of systems depends not only on the present state,
but also on the previous history. In fact, the time lag in dynamical systems is usually unavoidable,
even if the information is transmitted at the speed of light. In this case, partial functional differential
equations instead of partial differential equations can describe the evolution of the systems much
more better. Moreover, partial functional differential equations are also increasingly appearing in
the disciplines of population ecology, cell biology, and biomolecular chemistry. Needless to say, the
study of infinite dimensional dynamic systems generated by partial functional differential equations
has great significance. It attracts many mathematicians to start working in this area.

All of these indicate that it is imperative to study the asymptotic behavior of infinite dimensional
dynamical systems produced by partial functional differential equations, which has important theo-
retical significance. First of all, it can help to complete the theory of infinite dimensional dynamical
systems, promote the development of disciplines, such as functional differential equations, dynamical
systems as well as numerical mathematics etc. Moreover, this study has huge practical application
value. We benefit of understanding biology, medicine, chemistry, physics, control engineering, at-
mosphere, and ocean phenomena better, especially chaos, so that we could understand and master
the law of these disciplines. Then we could serve the world better with these knowledges, which, in
return, gives inexhaustible vitality of studying infinite dimensional dynamical systems associated to
partial functional differential equations.

Research state

In recent decades, the theory of infinite dimensional dynamical systems has made tremendous devel-
opments and produced many important achievements. Guo et al. [83, 86], Zhong et al. [155, 182],
Zhou et al. [183], Ladyzhenskaya [111], Temam [75, 160], M.Vishik [164], Hale [89], Robinson
[143], Chueshov [48, 49] and Sell [145, 146], Haraux [94, 95], Zelik [9, 163, 176] study the global
attractors and their dimensions of some dissipative nonlinear evolution equations, the existence of
inertial manifolds and the problems of inertial manifolds. A.Babin and M.Vishik[6], V. Chepyzhov
and M.Vishik [47, 165], T. Caraballo [23, 28], P. Kloeden [106, 107], Duan [154], Moise [134],
Cui and Langa [58], Miranville et al. [132, 133], investigate the existence of pullback attractors for
non-autonomous infinite dimensional dynamical systems, meanwhile [51, 57, 74, 148] focus on the
existence of random attractors to stochastic infinite dimensional dynamical systems, and Han et al.
[10, 34, 92, 93, 169] studied the existence of attractor for lattice dynamical systems. For more in-
formation about attractors, please refer [54, 96, 98, 159]. And for exponential attractor, trajectory
attractor, dimension of attractor, inertial manifolds, readers are referred to [43, 60, 166].

As far as we know, compared to infinite dimensional dynamical systems associated to PDEs, there
are less work on infinite dimensional dynamical systems associated to PFDEs at present. Xu et al.
[112, 168] and Caraballo et al. [19] mainly focus on the global exponential stability of dynamical
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systems and the existence of attractors. In this thesis, we will study the long time behavior of infinite
dimensional dynamical systems associated to several kinds of partial functional differential equations
in terms of pullback attractor and stability of stationary solutions. Consequently, we will structure our
work in three parts.

Part I: Parabolic problems with thermal memory

As an important mathematical-physical model, reaction-diffusion equations have extensive ap-
plications. For instance, we use reaction-diffusion equations to model nonlinear heat transport, or
to describe the motion of fluids, such as water, oil and gas in porous media, or to model the elec-
tron of semiconductors. In fact, the reaction-diffusion equations have also been applied in biological
mathematics, ecological environment, biomedical, chemical, physical problems. Besides, reaction-
diffusion equations have also been used to study both the reaction of Belousov-Zhabotinskii and the
metabolism of enzymes.

And there are many significant works on reaction-diffusion equations, for example, Pata et al.
analyzed the long time behavior of a deterministic reaction-diffusion equation with memory in [52,
53] and studied the thermal equation in [78, 137] and its existence of attractors. Li [113] proved the
existence of uniform attractors for parabolic problems with memory in the cases that the nonlinearities
are subcritical and critical. Nevertheless, as far as we know, most of those models are considered in
deterministic case, namely, they did not take into account white noise effects. Therefore, in the
first chapter of Part I, we focus on the long time behavior of a stochastic reaction-diffusion equation
with thermal memory. The existence and uniqueness of mild solutions instead of weak solutions are
proved by a semigroup method. Then the existence and uniqueness of pullback random attractor is
established in the critical and subcritical cases.

Notice that, the mentioned references deal with integer order reaction-diffusion equation. How-
ever, it has been proved that sometimes, especially when self-orgnization phenomena occurs, a frac-
tional order differential equation can model this phenomena more precisely. Thus, in Chapter 2 of
Part I, we study a fractional stochastic reaction-diffusion equation with thermal memory. First of all,
the well-posedness is proved by Lumer-Philips theorem. Then Sobolev embedding theorem is used
to prove the existence of random attractor with finite Hausdorff dimension. We would like to men-
tion that [85, 121] studied the existence and ergodicity of random attractors in fractional stochastic
reaction-diffusion equations without memory.

All the results of Part I are new. In some extent, these results improve the available corresponding
work in the literature. The results in Chapter 1 have been published in [119] (L. Liu, T. Caraballo, and
P. Kloeden, Long time behavior of stochastic parabolic problems with white noise in materials with
thermal memory, Rev. Mat. Complut., 30 (2017), pp. 687–717), while the work [116] (L. Liu and
T. Caraballo, Well-posedness and dynamics of a fractional stochastic integro-differential equation,
Phys. D, 355 (2017), pp. 45–57) contains the results proved in Chapter 2.
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Part II: Navier-Stokes equation with infinite delay

This part is devoted to a well-known Newtonian fluids, i.e., 2D–Navier-Stokes fluids. Navier-
Stokes model is one of the most important mathematical physics equation, and is more widely used
in real life. For instance, in aeronautics and astronautics, the Navier-Stokes model can simulate the
helicopter hovering aerodynamic performance. On the other hand, the Navier-Stokes equation can
simulate the movement of small-scale water in offshore engineering. Studying the Navier-Stokes
equation also helps us to understand the oceans, benefit the development and utilization of marine
resources and develop the marine economy and industry.

Caraballo et al. [27, 29, 30, 131] discuss the existence of solutions for 2D/3D Navier-Stokes
equations with time delays, existence and regularity of attractors, [35] analyze the existence and
uniqueness as well as exponential stability of the fixed point of the Navier-Stokes equations with time
delay. Marín-Rubio et al. [130] analyzed a case with distributed unbounded delay. However, there is
no work on Navier-Stokes equations with unbounded variable delay. Thus, in Chapter 3 we analyze
the asymptotic behavior of Navier-Stokes equations with unbounded variable delay. The existence
and uniqueness of weak solutions is obtained by the theory of partial functional differential equa-
tions. Then by constructing a suitable Lyapunov functionals, the asymptotical stability of stationary
solutions is proved. Besides, the polynomial stability is established under proportional delay case.
We would like to point out that in this case of unbounded delay, polynomial stability is the best result
we were able to obtain, but it remains as an open problem the point of analyzing whether there may
be cases in which we can prove exponential stability.

On the other hand, a natural question also appears. We wonder about the behavior of our model
when some noise may appear. There are some previous work already done concerning stochastic
2D-Navier-Stokes equations with finite delay. Here, in Chapter 4, we extend our previous analysis
carried out in Chapter 3 to the stochastic framework. In [157, 158] Taniguchi studied the existence and
uniqueness of solutions and the exponential stability of solutions to the stochastic 2D-Navier-Stokes
equations. In Chapter 4, we discuss a type of stochastic 2D-Navier-Stokes equation with unbounded
delay, and taking into account that our random term is not linear, which means Ornstein-Uhlenbeck
transformation can not transform our stochastic problem into a random one, we cannot use the theory
of random dynamical systems, and this brings additional difficulties to our proofs. Furthermore, the
classical way to prove the uniqueness of solution is not enough now. A technical lemma is introduced
to prove the existence and uniqueness of weak solutions. Then the asymptotic stability of stationary
(steady-state) solutions is proved as well as the polynomial stability.

However, as we have already mentioned, the exponential stability of other special cases of infinite
delay remains as an open problem for the deterministic and the stochastic cases.

The results in Chapter 3 are contained in the paper [120] (L. Liu, T. Caraballo, and P. Marín-
Rubio, Asymptotic behavior of 2d-Navier-Stokes equations with infinite delay, J. Diff. Equ. (to ap-
pear), (2018)), while the ones in Chapter 4 are in [115] (L. Liu and T. Caraballo, Analysis of a
stochastic 2d Navier-Stokes model with infinite delay, J. Dyn. Diff. Equ. (submitted)).
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Part III: Non-Newtonian models with delay
Even though there are many Newtonian fluids in our real world, such as water, alcohol and most of

the pure liquid, low molecular weight compounds, etc, we cannot ignore non-Newtonian fluids, since
many other very important fluids, such as blood, cornstarch, cytoplasm, polyethylene, oil, mud, apple-
sauce, agar, etc, are non-Newtonian fluids. Actually, non-Newtonian fluids have various application
in medicine, chemical industry and environmental protection. In medicine, for example, human blood
belongs to non-Newtonian fluids, mastery of non-Newtonian viscous features and hemodynamics of
blood, which is beneficial for observation and control the blood viscosity, but also helps to diagnose
and treat cardiovascular disease; and because artherosclerosis arises in the arterial wall shear stress is
closely related. In chemical industry, making full use of the viscous characteristics of non-Newtonian
fluids can be applied to wastewater treatment, which is very conductive to environmental protection.

There is a wide literature already published on non-Newtonian fluids. The existence and unique-
ness of solutions of non-Newtonian flow without delay is studied in [7, 12], while a maximal com-
pact attractor of a non-Newtonian system in an unbounded channel is obtained in [15]. Zhao et al.
[178–180] studied the existence and regularity of pullback attractors for non-Newtonian fluids prob-
lems with time-delay, while [103] focused on pullback attractor of a non-autonomous non-Newtonian
equation with bounded variable delays.

However, in these works, the existence and stability of stationary solutions to non-Newtonian
fluids with delay are seldom discussed. Hence, Part III is devoted to analyzing the asymptotic be-
havior of non-Newtonian fluids problems with delay. First, in Chapter 5 we generalize the result of
[103] to a more general delay case, in other words, our results hold true for variable and distributed
delays but with weaker condition on the forcing terms. The existence and uniqueness of weak solu-
tions are showed by the energy method. And the existence of pullback attractor in the phase space
C([−h, 0]; H2) is established by using the pullback ω-limit compactness and a priori estimates. These
results improve the corresponding ones in [103] .

Then, in Chapter 6, we analyze the existence and exponential stability of stationary solutions.
Though [85] investigated the stationary solution to a non-Newtonian fluids without delay, there is no
any detailed proof for the existence of stationary solutions. Therefore, the first goal of this chapter is
to prove the existence and uniqueness of stationary solutions, which is not a trivial task at all. Finally,
four different approaches are used to verify the exponential stability of stationary solutions.

The results in Chapter 5 are contained in the paper [118] (L. Liu, T. Caraballo, and X. Fu, Dynam-
ics of a non-autonomous incompressible non- Newtonian fluid with delay, Dyn. Partial Differ. Equ.,
14 (2017), pp. 375–402.), while the results in Chapter 6 are contained in [117] (L. Liu, T. Caraballo,
and X. Fu, Exponential stability of an incompressible non-Newtonian fluids with delay, Discr. Cont.
Dyn. Syst. B, accepted).

Open Problems
This work focuses on the asymptotic behavior of infinite dimensional dynamical systems associated
to several kinds of partial functional differential equations. In particular, stochastic reaction-diffusion
equations with memory, 2D Navier-Stokes equations with unbounded delay as well as non-Newtonian



xviii INTRODUCTION

with bounded delay. Also the existence of pullback/random attractors is proved in some cases and the
asymptotic stability, either polynomial or exponential stability are obtained.

However, there are still many problems in these fields that need further study. As for reaction-
diffusion equation with memory, which has been proved to possess pullback attractor. But the di-
mension of the attractor and the existence of inertial manifolds is still unsolved, the existence and
uniqueness of stationary solutions and its exponential stability is unknown, either.

When it comes to the fractional reaction-diffusion equation with memory, we still wonder the
low bound of this random attractors, and the existence of inertial manifolds as well as their morse
decomposition. Besides, the long time behavior of time-fractional reaction-diffusion equation and
fractional Brownian motion are still unknown.

For Navier-Stokes equations with unbounded delay, we have shown the polynomial stability of
fixed points under the case of unbounded variable delay. Nevertheless, we wonder whether we can
obtain the exponential stability of stationary solutions and existence of attractor. Especially, we are
interested in the pantograph equation, which is a typical but simple unbounded variable delayed dif-
ferential equation. We believe that the study of pantograph equation can help us to improve our
knowledge about 2D–Navier-Stokes equations with unbounded delay.

To the end, we still studied non-Newtonian fluids with finite delay, the existence and uniqueness
of pullback attractor is established, and the exponential stability of stationary solutions are proved
as well. However, we still would like to analyze the Hausdorff dimension or fractal dimension of
the pullback attractor, as well as the existence of inertial manifolds and morse decomposition. Fur-
thermore, we also would like to discuss the dynamics of stochastic non-Newtonian fluids with both
finite delay and infinite delay. All the problems deserve our attraction, and actually, these are our
forthcoming work.
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Parabolic problems with thermal memory
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Part I focuses on a kind of stochastic parabolic problems with thermal memory. Two chapters are
included in this part, i.e., Chapter 1 and Chapter 2. First of all, we recall some basic concepts and the
theory of random dynamical systems, and introduce Ornstein-Uhlenbeck process, which is one of the
keys to solve our problems in both chapters.

Then, in Chapter 1, we analyze the dynamics of a stochastic parabolic problem with memory
which describes the heat flow in a rigid, isotropic, homogeneous heat conductor with linear memory.
The nonlinear source term satisfies subcritical and critical growth conditions. Such a nonlinear heat
supply might describe, for instance, temperature-dependent radiative phenomena (see, e.g. [174]). In
addition, a non-Fourier constitutive law for the heat flux is considered in this chapter. The resulting
linearized model is derived in the framework of the well-established theory of hear flow with memory
due to Coleman and Gurtin [50]. More precisely, we study the existence and uniqueness of solutions
for this model, and then the existence and upper-semicontinuity of the random attractor is established.

Notice that equations with fractional derivative are becoming a focus of interest since the frac-
tional derivative and fractional integral have a wide range of applications in physics, biology, chem-
istry, population dynamics, geophysical fluid dynamics, finance and other fields of applied sciences.
One meets them in the theory of systems with chaotic dynamics (see [147]), dynamics in a complex or
porous medium [65, 150]; random walks with a memory and flights [79] and many other situations. In
Chapter 2, we focus on the asymptotic behavior of a fractional stochastic reaction-diffusion equation
in materials with memory. The well-posedness is proved by a Lumper-Phillips theorem, and existence
of random attractor is obtained by a priori estimates, as well as the finite Hausdorff dimension of the
corresponding random attractor are showed.

Preliminaries
Now we are in a position to recall some notations about random dynamical systems as well as some
theory of pullback random attractors, see [2, 25, 28] for more information. We begin with the concepts
of parametric dynamical system, see [57]. Let X be a separable Banach space. To define a cocycle
for a non-autonomous stochastic equation in X, we need to use two parametric spaces, say, Ω1 and Ω,
where Ω1 is responsible for non-autonomous deterministic external terms and Ω for stochastic terms.
We may take Ω1 either as the collection of translations of deterministic time dependent terms [25, 63]
or simply as the collection of initial times [167]. In this paper, we choose Ω1 as the collection of
initial times and write Ω1 = R. For random parameters, we will choose the standard probability space
(Ω,F , P) where Ω = {ω ∈ C(R,R) : ω(0) = 0}, F is the Borel σ−algebra induced by the compact
open topology of Ω, and P is the Wiener measure on (Ω,F ). There is a group {θt}t∈R of mappings
acting on (Ω,F , P) defined by

θtω(·) = ω(· + t) − ω(t), for all ω ∈ Ω and t ∈ R. (0.0.1)

In terms of (0.0.1), one may define a new group {θ̃t}t∈R on the product space R ×Ω := Ω̃ given by

θ̃t(τ, ω) = (τ + t, θtω), for all (τ, ω) ∈ Ω̃, t ∈ R. (0.0.2)

Hereafter we write ω̃ = (τ, ω) with (τ, ω) ∈ Ω̃.
A cocycle of non-autonomous random dynamical systems is defined as follows.
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Definition 0.0.1. A mapping Φ : R+ × Ω̃ × X → X is called a continuous cocycle on X over R and
(Ω,F , P, {θt}t∈R) if for all t, s ∈ R+ and ω̃ ∈ Ω̃, the following conditions are satisfied:

(i) Φ(·, (τ, ·), ·) : R+ ×Ω × X → X is (B(R+) × F × B(X),B(X))-measurable;

(ii) Φ(0, ω̃, ·) is the identity on X;

(iii) Φ(t + s, ω̃, ·) = Φ(t, θ̃sω̃, ·) ◦ Φ(s, ω̃, ·);

(iv) Φ(t, ω̃, ·) : X → X is continuous.

Definition 0.0.2. A family D =
{
D(ω̃) : ω̃ ∈ Ω̃

}
of nonempty bounded subsets of X is said to be

tempered if for any c > 0
lim

t→+∞
e−ct sup

{
‖ x ‖X: x ∈ D(θ̃−tω̃)

}
= 0.

From now on, we use D to denote the collection of all tempered families of nonempty bounded
subsets of X.

Definition 0.0.3. Let K =
{
K(ω̃) : ω̃ ∈ Ω̃

}
∈ D. Then K is called a D-pullback absorbing set for a

cocycle Φ on X, if for every B ∈ D and all ω̃ ∈ Ω̃, there exists T = T (ω̃, B) > 0 such that

Φ
(
t, θ̃−tω̃, B(θ̃−tω̃)

)
⊂ K(ω̃) for all t > T.

Definition 0.0.4. Let B = {B(ω̃) : ω̃ ∈ Ω̃} ∈ D. Then Φ is said to be D−pullback asymptotically
compact in X if for all ω̃ ∈ Ω̃, the sequence{

Φ(tn, θ̃−tnω̃, xn) : xn ∈ B(θ̃−tnω̃)
}∞

n=1
has a convergent subsequence in X when tn → +∞.

Definition 0.0.5. A family A = {A(ω̃) : ω̃ ∈ Ω̃} ∈ D is called a pullback random attractor for Φ in
X if the following conditions are fulfilled:

(i) For each τ ∈ R, A(τ, ·) is measurable with respect to the P-completion of F in Ω and A(ω̃)
is compact for all ω̃ ∈ Ω̃.

(ii) A is invariant, that is, for every ω̃ ∈ Ω̃,

Φ(t, ω̃,A (ω̃)) = A(θ̃tω̃) for all t > 0.

(iii) A attracts every member of D, that is, for every B = {B(ω̃) : ω̃ ∈ Ω̃} ∈ D, and for every,
ω̃ ∈ Ω̃,

lim
t→+∞

distX

(
Φ

(
t, θ̃−tω̃, B(θ̃−tω̃)

)
,A (ω̃)

)
= 0,

where distX(·, ·) denotes the Hausdorff semi-distance under the norm of X, i.e., for two nonempty sets
A, B ⊂ X,

distX(A, B) := sup
a∈A

distX(a, B) = sup
a∈A

inf
b∈B
‖ a − b ‖X .
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Next we turn to introduce the definitions concerning u.s.c. for a family of sets.

Definition 0.0.6. ([28]) Let Z and I be metric spaces. A family of sets {Aε}ε∈I in Z is said to be upper
semi-continuous (u.s.c.) at ε0 ∈ I if

lim
ε→ε0

distZ(Aε , Aε0) = 0.

The following propositions can be found in [28, 51, 56].

Proposition 0.0.7. Let Φ be a continuous RDS on X over R and (Ω,F , P, {θt}t∈R) according to Defi-
nition 0.0.1. If Φ has a compact measurable (w.r.t F ) D−pullback attracting set K in D, then Φ has
a uniqueD−pullback attractorA inD given by

A(ω̃) =
⋂
r>0

⋃
t>r

Φ
(
t, θ̃−tω̃,K(θ̃−tω̃)

)
, for each ω̃ ∈ Ω̃.

Now, we still need to introduce the Ornstein-Uhlenbeck transformation, writing

z∗(ω) = −

∫ 0

−∞

esω(s)ds, (0.0.3)

it is easy to check that z(t, ω) = z∗(θtω) is an Ornstein-Uhlenbeck stationary process which solves the
Itô equation

dz + zdt = dW.

Therefore, if we denote z(ω)(x) = z∗(ω)h(x), then the real-valued stochastic process z(θtω)(x) =

z∗(θtω)h(x) is a solution to
dz + zdt = h(x)dW. (0.0.4)

Let us now recall that (see Proposition 4.3.3 in [2]) that there exists r1(ω) > 0 tempered s.t.

|z∗(ω)|2 + |z∗(ω)|p + |(−∆)
α
2 z∗(ω)|2 + |(−∆)αz∗(ω)|2 6 r0(ω), where r0(θtω) 6 e

λ
2 |t|r0(ω),

and λ will be specified later.
Then, it is straightforward to check that

|z(ω)|2 + |z(ω)|p + |(−∆)
α
2 z(ω)|2 + |(−∆)αz(ω)|2 6 r(ω), (0.0.5)

where r(ω) satisfies the same as r0(ω).
Then it follows from (0.0.5) that, for P-a.e. ω ∈ Ω,

|z(θtω)|2 + |z(θtω)|p + |(−∆)
α
2 z(θtω)|2 + |(−∆)αz(θtω)|2 6 e

λ
2 |t|r(θtω), t ∈ R. (0.0.6)
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Chapter 1

Long time behavior of stochastic parabolic
problems with thermal memory

A large class of physical phenomena in which delay effects occur, such as viscoelasticity, population
dynamics or heat flow in real conductors is modeled by equations in materials with memory, where
the dynamics is influenced by the past history of the state variables. This is because that materials
with memory have the property that the mathematical-physical description of their state at a given
point of time includes such states in which the materials have been at earlier points of time. Here, in
this chapter we study the following stochastic parabolic equation in materials with thermal memory
with subcritical and critical nonlinearity

∂u
∂t
−
∂

∂t

∫ t

−∞

µ1(t − s)u(x, s)ds − λ∆u −
∫ t

−∞

µ2(t − s)∆u(x, s)ds + f (u)

= g(x, t) + εh(x)
dW
dt
, x ∈ O, t > τ,

(1.0.1)

with initial and boundary values

u(x, τ) = uτ(x), x ∈ O, u(x, t) = 0, x ∈ ∂O, t > τ, (1.0.2)

where O ⊂ Rn, n > 3 is a bounded domain with smooth boundary, λ > 0 and ε are constants. In
addition, u(x, t) is the unknown function, µ1, µ2 : R+ → R are the heat flux memory kernels, f is the
nonlinear heat supply satisfying some dissipativeness and growth conditions, g(x, t) is time-dependent
forcing term, h ∈ H2(O)∩W2,p(O) and W is real valued two-sided Wiener process on some probability
space which will be specified later.

Equations with memory have received increasing interest in recent years. The authors of [19, 76,
78, 81] studied the existence of pullback attractor, global attractors, uniform attractors and exponential
stability of heat equation (1.0.1) with µ1 = 0. Damped wave equations with memory were investigated
in [44, 61, 138, 180], while hyperbolic phase-field systems with memory were considered in [73,
82]. Li [113] proved the existence of uniform attractors for parabolic problems with memory in the
cases that the nonlinearities term is subcritical and critical. Nevertheless, as far as we know, most of

7
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those models are considered in deterministic case, namely they did not take into account white noise
effects. But the authors of [110, 162] have demonstrated that, under certain circumstances, the noise
can benefit the system in some way. This is an interesting phenomenon because noise is generally
considered as a nuisance to systems. To the best of our knowledge, no work has been reported on the
existence and uniqueness of mild solution and limit behavior of solutions for equation (1.0.1) with
critical nonlinear term.

Motivated by the above considerations, we will analyze the dynamics of solutions to (1.0.1) when
the nonlinear heat supply f has a subcritical growth exponent and a critical growth exponent. More
precisely, we will focus on (1.0.1) in three aspects: (i) Existence, uniqueness and continuity of mild
solutions will be studied by a semigroup method (see [139]). (ii) The existence and uniqueness of
pullback random attractor will be proved by a priori estimates and solution decomposition method.
(iii) The upper semi-continuity of pullback random attractor will also be checked. We mention that
Caraballo [16] considered the existence and asymptotic behavior for a stochastic heat equation with
multiplicative noise in materials with memory, mean-square random attractors of stochastic delay
differential equations with random delay were studied in [173]. Readers are referred to [17, 18, 41]
for more information about stochastic partial differential equations with memory or delay.

To this end, the framework of this chapter is as follows. In the next Section 1.1, we recall some
definitions and basic theory of random dynamical systems. Then in Section 1.2, we show the well-
posedness of problem Eq.(1.0.1), and Section 1.3 establishes the existence of pullback random attrac-
tor. Finally, Section 1.4 contains the upper semi-continuity of the random attractor that is obtained in
Section 1.3.

1.1 Definitions and Basic Theory
We have already recalled some definitions at the beginning of Part I. But in order to improve the
completion and readability, we prefer to present some abstract spaces, which particularly fit this
chapter.

Let A = −∆ with domain D(A) = H1
0(O) ∩ H2(O). Denote by (·, ·) and ‖ · ‖ the L2(O) inner

product and the norm, respectively. Consider the family of Hilbert spaces D(As/2), s ∈ R, whose inner
products and norms are given by

(·, ·)D(As/2) = (As/2·, As/2·) and ‖ · ‖D(As/2) = ‖As/2 · ‖.

Then one has the compact and dense injections,

D(As/2) ↪→ D(Ar/2), ∀ s > r,

and the continuous embedding,

D(As/2) ↪→ L2n/(n−2s)(O), ∀ s ∈ [0,
n
2

).

Recall the following interpolation results: let α > β. For every ϑ, 0 6 ϑ 6 1, there is a constant
C = C(α, β, ϑ), s.t.

‖Aν/2u‖ 6 C‖Aα/2u‖ϑ‖Aβ/2u‖1−ϑ, ∀ u ∈ D(Aα/2),
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where ν = ϑα + (1 − ϑ)β. For convenience, denote by

Hs = D(As/2) with norm ‖ · ‖Hs = ‖As/2 · ‖.

Then,H0 = L2(O),H1 = H1
0(O), andH2 = H1

0(O) ∩ H2(O).
In order to deal with the memory term of (1.0.1), we introduce the family of weighted spaces. In

view of (H1) and (H2), we consider the weighted Hilbert spaces L2
νi

(R+;Hr), i = 1, 2, endowed with
the inner products and norms, respectively,

(φ1, φ2)νi,Hr =

∫ ∞

0
νi(s)(φ1(s), φ2(s))Hr ds, ‖φ‖2νi,Hr

=

∫ ∞

0
νi(s)‖φ(s)‖2

Hr
ds, i = 1, 2.

As in [77, 80], we introduce the Hilbert spaces,

Qr
ν1,ν2

= L2
ν1

(R+;Hr) ∩ L2
ν2

(R+;Hr+1),

endowed with the inner products,

(η1, η2)Qr
ν1 ,ν2

=

∫ ∞

0
ν1(s)

(
Ar/2η1(s), Ar/2η2(s)

)
ds +

∫ ∞

0
ν2(s)

(
A(r+1)/2η1(s), A(r+1)/2η2(s)

)
ds,

and the norms

‖η‖2Qr
ν1 ,ν2

= (η, η)Qr
ν1 ,ν2

=

∫ ∞

0
ν1(s)‖Ar/2η(s)‖2ds +

∫ ∞

0
ν2(s)‖A(r+1)/2η(s)‖2ds.

Finally, we define the product spaces,

Mr = Hr × Q
r
ν1,ν2

,

where
Hr = D(A

r
2 ), Qr

ν1,ν2
= L2

ν1
(R+;Hr) ∩ L2

ν2
(R+;Hr+1),

that endowed with the norms,

‖z‖2
Mr

= ‖(u, η)‖2
Mr

= ‖u‖2
Hr

+ ‖η‖2
Qr
ν1 ,ν2

, z = (u, η) ∈ Mr.

For the upper semi-continuity of a family of parameterized pullback attractors, we borrow the
following results from [24, 26].

Proposition 1.1.1. Let I be an interval of R. Given ε ∈ I, let {Φε(t, ω̃)}ε∈I be a family of continuous
RDSs on X over R and (Ω,F , P, {θt}t∈R). Suppose that

(i) there exists a map Rε0 : ω̃→ R such that B =
{
B(ω̃) = {x ∈ X : ‖x‖X 6 Rε0(ω̃)} : ω̃ ∈ Ω̃

}
∈ D,

(ii) for each ε ∈ I, Φε has a pullback attractorAε and a pullback absorbing set Dε such that for all
ω̃ ∈ Ω̃, lim

ε→ε0
sup ‖Dε(ω̃)‖X 6 Rε0(ω̃),

(iii)
⋃
ε∈I
Aε(ω̃) is precompact in X for each ω̃ ∈ Ω̃,

(iv) there exists ε0 ∈ I such that lim
n→+∞

Φεn(t, ω̃, xn) = Φε0(t, ω̃, x) for every t ∈ R+, ω̃ ∈ Ω̃, εn, ε0 with
εn → ε0, and xn, x with xn → x.

Then for each ω̃ ∈ Ω̃, dH(Aε(ω̃),Aε0(ω̃))→ 0 as ε → ε0.
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1.2 Well-posedness
Now we prove the existence of solutions by a semigroup method and the Lax-Milgram theorem.
Before stating the problem in a suitable framework, we enumerate the assumptions on the term in
which the delay is present. Hereafter, we suppose that the nonlinear heat supply f (u) satisfies

(f1) f ∈ C1(R), f (0) = 0;

(f2) f (s)s > α1|s|p+1 − α2, s ∈ R;

(f3) | f ′(s)| 6 α3(1 + |s|p−1), s ∈ R,

where 1 < p 6 1 + 4
n , αi, i = 1, 2, 3, are positive numbers. In order to study the dynamical behavior of

(1.0.1) with critical nonlinearity, we also impose the assumption as in [42, 113],

(f4) lim
|s|→∞

| f ′(s)|

|s|
4
n

= 0,

which implies that for any given ν > 0, there is a positive constant Cν such that

| f (s1) − f (s2)| 6 |s1 − s2|(Cν + ν|s1|
4
n + ν|s2|

4
n ). (1.2.1)

Remark 1.2.1. (i) From ( f 3), it is not difficult to check that | f (s)| 6 α4 + α5|s|p holds for any
s ∈ R, where α4, α5 are positive constants.

(ii) As it is pointed out in [113], the lack of bound from below for f ′ is the reason for 1 + 4
n to be the

critical exponent for the nonlinearity f . And in case of (1.2.1), we call f is an almost critical
nonlinearity.

Assume that µ′1(∞) = µ2(∞) = µ1(∞) = 0. Let ν1(s) = µ′′1 (s) and ν2(s) = −µ′2(s) satisfy

(H1) νi ∈ C1(R+) ∩ L1(R+), νi(s) > 0, ν′i(s) 6 0, i = 1, 2, ∀s ∈ R+,

(H2) ν′i(s) + δiνi(s) 6 0, i = 1, 2, ∀s ∈ R+,

where δi are positive constants, i = 1, 2.
Denote µ1(0) = µ0. Along the lines of the procedure suggested by Dafermos in his pioneering

work [59], we introduce the new variable

ηt(x, s) =

∫ s

0
ut(x, r)dr =

∫ t

t−s
u(x, r)dr, s > 0, (1.2.2)

where
ut(x, s) = u(x, t − s), s > 0.

Then the original equation (1.0.1)-(1.0.2) can be transformed into the following equivalent system by
(1.2.2):

∂u
∂t
− µ0u − λ∆u +

∫ ∞

0
ν1(s)ηt(s)ds −

∫ ∞

0
ν2(s)∆ηt(s)ds + f (u) = g(x, t) + εh(x)

dW
dt
,

∂tη
t(x, s) + ∂sη

t(x, s) = u, x ∈ O, s > 0, t > τ,
(1.2.3)
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with the initial and boundary values

u(x, τ) = uτ(x), ητ(x, s) = ητ(x, s), x ∈ O, u(x, t) = 0, ηt(x, s) = 0 x ∈ ∂O, s > 0, t > τ. (1.2.4)

Note that Eq.(1.2.3) is stochastic equation, and we need to transfer (1.2.3) into a deterministic one
only with random parameter.

Set v(t) = u(t)− εz(θtω). Problem (1.2.3)-(1.2.4) can be transformed into a pathwise deterministic
problem by (0.0.4)

∂v
∂t
− µ0v − λ∆v +

∫ ∞

0
ν1(s)ηt(s)ds −

∫ ∞

0
ν2(s)∆ηt(s)ds + f (u) = g(x, t) + ε(µ0 + 1)z + ελ∆z,

∂tη
t + ∂sη

t = v + εz, x ∈ O, t > τ,
(1.2.5)

with the initial and boundary values

v(x, τ) = u(x, τ) − εz(θτω) = vτ(x), ητ(x, s) = ητ(x, s), x ∈ O, s > 0,
v(x, t) = 0, ηt(x, s) = 0, x ∈ ∂O, s > 0, t > τ.

(1.2.6)

In order to present our results, we write the system (1.2.5)-(1.2.6) as a Cauchy problem

dφ
dt

= Lφ + F(φ, θtω, t), (1.2.7)

defined in the phase space

M0 = L2(O) × Q0
ν1,ν2

with norms

‖φ‖2 = ‖(v, ηt)‖2 = ‖v‖2 + ‖ηt‖2Q0
ν1 ,ν2

= ‖v‖2 + ‖ηt‖2L2
ν1 (R+;L2(O)) + ‖ηt‖2L2

ν2 (R+;H1
0 (O)).

Also take φ = (v(t), ηt) ∈ M0. Then system (1.2.5) is equivalent to the Cauchy problem (1.2.7)
with

Lφ = (µ0v + λ∆v −
∫ ∞

0
ν1(s)ηt(s)ds +

∫ ∞

0
ν2(s)∆ηt(s)ds, v − ∂sη

t)

and
F(φ, θtω, t) = (− f (v + εz) + g + ε(µ0 + 1)z + ελ∆z, εz) . (1.2.8)

It is proved in [138] that

∂tη
t = −∂sη

t + v + εz, ηt(0) = 0,

can be considered as ∂tη
t = Tηt + v + εz, where

Tηt = −∂sη
t, ηt ∈ D(T ),
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is the generator of a translation semigroup with domain

D(T ) =
{
ηt ∈ Q0

ν1,ν2
|∂sη

t ∈ Q0
ν1,ν2

, ηt(0) = 0
}
.

Since the domain of L is defined by

D(L) = {φ ∈ M0|Lφ ∈ M0} ,

we have

D(L) =

{
(v, ηt) ∈ M0|v ∈ H1

0(O), ηt ∈ D(T ), µ0v + λ∆v −
∫ ∞

0
ν1(s)ηt(s)ds +

∫ ∞

0
ν2(s)∆ηt(s)ds ∈ L2(O)

}
.

For the coefficient λ in (1.0.1), we assume that λλ1 − 2µ0 > 0, where λ1 is the first eigenvalue of A
in H1

0(O). From now on, we denote by c a generic positive number which may change its value from
line to line or even in the same line.

Theorem 1.2.2. (Well-posedness) Assume that hypotheses (f1)-(f2) are satisfied, g ∈ L2
loc(R; L2(O))

and the initial data (vτ, ητ) ∈ M0. Then, problem (1.2.7) possesses a unique mild solution with

v ∈ C([τ,∞); L2(O)) and ηt ∈ C([τ,∞); Q0
ν1,ν2

). (1.2.9)

If the initial data (vτ, ητ) ∈ D(L), then the solution is regular, namely,

v ∈ C([τ,∞); H1
0(O)) and ηt ∈ C([τ,∞); Q1

ν1,ν2
).

In addition, if φ = (v, ηt), φ̄ = (v̄, η̄t) are two mild solutions of (1.2.7), then for any T > τ,

‖φ(t) − φ̄(t)‖2
M0
6 ec0T ‖φ(τ) − φ̄(τ)‖2

M0
, τ 6 t 6 T, (1.2.10)

where c0 is a positive constant depending on the initial data.

Proof. The proof is split into three steps.
Step 1: We show that the operator L is the infinitesimal generator of a C0−semigroup of contrac-

tion eLt inM0, that is, L is m-dissipative inM0. By the definition of Lφ,

(Lφ, φ)M0 =

(
µ0v + λ∆v −

∫ ∞

0
ν1(s)ηt(s)ds +

∫ ∞

0
ν2(s)∆ηt(s)ds, v

)
L2(O)

+ (v − ∂sη
t, ηt)Q0

ν1 ,ν2

= µ0‖v‖2 − λ‖∇v‖2 −
∫ ∞

0
ν1(s)

∫
O

∂sη
t · ηtdxds −

∫ ∞

0
ν2(s)

∫
O

∂s∇η
t · ∇ηtdxds

6 µ0‖v‖2 − λ‖∇v‖2 −
δ1

2
‖ηt‖L2

ν1 (R+;L2(O)) −
δ2

2
‖ηt‖L2

ν2 (R+;H1
0 (O))

6 (µ0 − λ1λ)‖v‖2 −
δ1

2
‖ηt‖L2

ν1 (R+;L2(O)) −
δ2

2
‖ηt‖L2

ν2 (R+;H1
0 (O)) 6 0, for all φ ∈ D(L),

which shows that L is dissipative inM0.
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Now we show that L is maximal, i.e., for each F ∈ M0, there exists a solution φ ∈ D(L) of

(I − L)φ = F.

Equivalently, for each F = ( f1, f2) ∈ M0, there exists φ = (v, ηt) ∈ D(L) such that

v − µ0v − λ∆v +

∫ ∞

0
ν1(s)ηt(s)ds −

∫ ∞

0
ν2(s)∆ηt(s)ds = f1,

ηt − v + ∂sη
t = f2.

(1.2.11)

To solve the above systems, we begin with multiplying (1.2.11)2 by es and then integrate over (0, s),

ηt(s) = v(1 − e−s) +

∫ s

0
eτ−s f2(τ)dτ. (1.2.12)

Substituting (1.2.12) into (1.2.11)1 and denoting k1 =
∫ ∞

0
ν1(s)(1 − e−s)ds, k2 =

∫ ∞
0
ν2(s)(1 − e−s)ds,

we obtain

(1+k1−µ0)v−(λ+k2)∆v = −

∫ ∞

0
ν1(s)

∫ s

0
eτ−s f2(τ)dτds+

∫ ∞

0
ν2(s)

∫ s

0
eτ−s∆ f2(τ)dτds+ f1. (1.2.13)

In order to solve (1.2.13), we define the bilinear form

a(w1,w2) = (1 + k1 − µ0)
∫
O

w1w2dx + (λ + k2)
∫
O

∇w1∇w2dx, w1,w2 ∈ H1
0(O).

It is easy to check that a(w1,w2) is continuous and coercive in H1
0(O). Also we have

H1
0(O) ↪→ L2(O) ↪→ H−1(O).

We are going to apply the Lax-Milgram theorem. It suffices to prove that the right-hand side of
(1.2.13) is an element of H−1(O). Obviously,

f1 ∈ L2(O) ↪→ H−1(O).

Let f ∗ = −
∫ ∞

0
ν1(s)

∫ s

0
eτ−s f2(τ)dτds +

∫ ∞
0
ν2(s)

∫ s

0
eτ−s∆ f2(τ)dτds. We only need to verify that f ∗ ∈

H−1(O). We use similar arguments used by Giorgi et al. [77]. For w ∈ H1
0(O) with ‖∇w‖ 6 1, it is not

difficulty to check that∣∣∣∣( f ∗,w)H−1,H1
0

∣∣∣∣ =

∣∣∣∣∣−∫ ∞

0
ν1(s)

∫ s

0
eτ−s

∫
O

f2(τ)wdxdτds +

∫ ∞

0
ν2(s)

∫ s

0
eτ−s

∫
O

∇ f2(τ)∇wdxdτds
∣∣∣∣∣ < ∞,

which implies that f ∗ ∈ H−1(O). Then, by the Lax-Milgram theorem, equation (1.2.13) has a weak
solution

ṽ ∈ H1
0(O).
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In view of (1.2.12), we obtain

η̃t(s) = ṽ(1 − e−s) +

∫ s

0
f2(τ)eτ−sdτ

and need to show that η̃t ∈ Q0
µ1,µ2

. From (1.2.12) and the fact that ṽ ∈ H1
0(O), we find

‖∇η̃t‖2 6 ‖∇ṽ‖2 +

∫ s

0
eτ−s‖∇ f2(τ)‖2dτ, ‖η̃t‖2 6 ‖ṽ‖2 +

∫ s

0
eτ−s‖ f2(τ)‖2dτ.

Then ∫ ∞

0
ν1(s)‖η̃t(s)‖2ds +

∫ ∞

0
ν2(s)‖∇η̃t(s)‖2ds

6 k1‖ṽ‖2 + k2‖∇ṽ‖2 +

∫ ∞

0
ν2(τ)‖∇ f2(τ)‖2dτ < ∞,

and hence η̃t ∈ Q0
ν1,ν2

. It follows that

φ̃ = (ṽ, η̃t) ∈ M0

is a weak solution of (1.2.11).
To complete the proof of the maximality of L, we still need to show that φ̃ ∈ D(L). Indeed, from

(1.2.11)2, we see that

∂sη̃
t = f2 + ṽ − η̃t ∈ Q0

ν1,ν2
.

Since η̃t(0) = 0, we conclude that η̃t ∈ D(T ). By inspection (1.2.11)1, we find that

−µ0ṽ − λ∆ṽ +

∫ ∞

0
ν1(s)η̃t(s)ds −

∫ ∞

0
ν2(s)∆η̃t(s)ds = −ṽ + f1 ∈ L2(O).

Therefore (ṽ, η̃t) ∈ D(L).
Step 2: We are going to prove that the operator F(φ, θtω, t) defined in (1.2.8) is locally Lipschitz

with respect to φ fromM0 intoM0 for ω ∈ Ω, and that F(φ, θtω, t) is continuous in (φ, t) and mea-
surable in ω w.r.t. F . Let B be a bounded set inM0 and φ, φ̄ ∈ B. Writing φ = (v, ηt), φ̄ = (v̄, η̄t),
then

‖F(φ, θtω, t) − F(φ̄, θtω, t)‖2M0
=

∫
O

| f (ū) − f (u)|2dx. (1.2.14)

Since f ∈ C1(R), for any N > 0, there exists L f (N) > 0 such that for all |s1| 6 N, |s2| 6 N, we have

| f (s1) − f (s2)| 6 L f (N)|s1 − s2|,

which along with (1.2.14) yields

‖F(φ, θtω, t) − F(φ̄, θtω, t)‖2M0
=

∫
O

| f (ū) − f (u)|2dx 6 L2
f (B)‖v − v̄‖2 6 L2

f (B)‖v − v̄‖2
M0
.
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From Step 1, Step 2 and the Lumer-Phillips theorem (see for instance [139, Theorem 6.1.4 and 6.1.5]),
problem (1.2.7) has a unique local mild solution

φ(t, τ, ω, φτ) = eLtφτ(ω) +

∫ t

τ

eL(t−r)F(φ(r, τ, ω, φτ), θrω, r)dr (1.2.15)

defined on [τ,T ]. Next, in Step 3, we will prove that the local mild solution, in fact, is global solution,
i.e., T = +∞.

Step 3: Set δ0 = min{δ1, δ2}. Taking the inner product of (1.2.7)1 with v in L2(O), and (1.2.7)2

with ηt in Q0
ν1,ν2

, then adding the two results gives

d
dt

(‖v‖2 + ‖ηt‖2Q0
ν1 ,ν2

) + (λλ1 − 2µ0)‖v‖2 + δ0‖η
t‖2 + α1‖u‖

p+1
p+1 6 c + c‖g‖2 + cε(‖z‖2 + ‖z‖p+1

p+1 + ‖∇z‖2).

Hence with δ = min{λλ1 − 2µ0,
δ0
2 } we have

d
dt

(‖v‖2 + ‖ηt‖2Q0
ν1 ,ν2

) + δ(‖v‖2 + ‖ηt‖2Q0
ν1 ,ν2

) 6 c + c‖g‖2 + cε(‖z‖2 + ‖z‖p+1
p+1 + ‖∇z‖2). (1.2.16)

By the Gronwall Lemma, we obtain, for any t ∈ [τ,T ],

‖v‖2 + ‖ηt‖2Q0
ν1 ,ν2
6 e−δ(t−τ)(‖vτ‖2 + ‖ητ‖

2
Q0
ν1 ,ν2

) + c
∫ t

τ

eδ(s−t)ds + c
∫ t

τ

eδ(s−t)‖g(s)‖2ds

+ cε
∫ t

τ

eδ(s−t)(‖z(θsω)‖2 + ‖z(θsω)‖p+1
p+1 + ‖∇z(θsω)‖2)ds < ∞,

where we use the fact that z(θtω) is continuous in t, for any fixed T > τ and t ∈ [τ,T ]. Then,

‖φ(t, τ, ω, φτ(ω))‖2
M0

= ‖v‖2 + ‖ηt‖2Q0
ν1 ,ν2

< ∞,

which means that the local mild solution we obtained above cannot blow up in finite time, i.e., T =

∞. Hence, problem (1.2.7) has a unique global mild solution φ ∈ C([τ,∞);M0) for all t > τ, so
(1.2.9) holds. Moreover, the continuity with respect to initial data, namely, (1.2.10), follows from the
representation formula and the locally Lipschitz property of F. �

1.3 Existence of pullback random attractor inM0

We now establish the existence of a pullback attractor in phase spaceM0. From Theorem 1.2.2, we
know that φ = (v, ηt) is a global solution to problem (1.2.7), define (Ω,F , P, (θt)t∈R):

Φ : R+ × Ω̃ ×M0 →M0, (t, ω̃, φτ)→ Φ(t, ω̃, φτ),

for the stochastic problem (1.2.7). Given t ∈ R+, (τ, ω) ∈ Ω̃ and φτ ∈ M0, set

Φ(t, (τ, ω), φτ) = φ(t+τ, τ, θ−τω, φτ(θ−τω)) =
(
v(t + τ, τ, θ−τω, vτ(θ−τω)), ηt(t + τ, τ, θ−τω, ητ(θ−τω))(s)

)
,

(1.3.1)
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where ηt(t + τ, τ, θ−τω, ητ(θ−τω))(s) =
∫ s

0
u(t + τ − r, τ, θr−τω, uτ(θr−τω))dr.

Hence, ψ = (u, ηt) is a global solution to problem (1.0.1). Then the solution ψ = (u, ηt) ∈
C([τ,∞);M0) defines a continuous random dynamical system over R and (Ω,F , P, (θt)t∈R):

Ψ : R+ × Ω̃ ×M0 →M0, (t, ω̃, ψτ)→ Ψ(t, ω̃, ψτ).

Given t ∈ R+, (τ, ω) ∈ Ω̃ and ψτ ∈ M0, set

Ψ(t, (τ, ω), ψτ) = ψ(t + τ, τ, θ−τω, ψτ(θ−τω)) = φ(t + τ, τ, θ−τω, φτ(θ−τω)) + (εz(θtω), 0). (1.3.2)

Obviously, Φ and Ψ defined by (1.3.1) and (1.3.2), respectively, satisfy all conditions (i)-(iii) in Defi-
nition 0.0.1. On the other hand, we can see that

Ψ(t, (τ, ω), ψτ) = T (θtω)Φ(t, (τ, ω), φτ),

where T (ω)(a, b)> = (a + εz(ω), 0)> is an homeomorphism ofM0. Hence, Φ and Ψ are equivalent.
In what follows, we establish uniform estimates for the solutions to problem (1.2.7) and prove the
existence and upper semi-continuity of a pullback random attractor for RDS Φ based on Proposition
0.0.7 and Proposition 1.1.1. To this end, we specify a collectionDδ of families of subsets ofM0.

Suppose D = {D(ω̃) : ω̃ ∈ Ω̃} is a family of bounded nonempty subsets of M0 satisfying, for
every ω̃ ∈ Ω̃,

lim
s→−∞

eδs‖D(θ̃sω̃)‖2
M0

= 0, (1.3.3)

where the positive number δ = min{λλ1 − 2µ0}. Denote byDδ the collection of all tempered families
of tempered nonempty subsets ofM0 which fulfil condition (1.3.3), i.e.,

Dδ =
{
D = {D(ω̃) : ω̃ ∈ Ω̃} : D satisfies (1.3.3)

}
. (1.3.4)

1.3.1 Existence of pullback absorbing set inM0

This subsection is devoted to obtaining a pullback absorbing set for the cocycle Φ inM0. Henceforth,
we assume that g ∈ Cb(R, L2(O)), where Cb(R, L2(O)) denotes the set of continuous bounded functions
from R into L2(O). We begin with the following lemma.

Lemma 1.3.1. Assume that (f1)-(f3) and (H1)− (H2) hold. Let B = {B(τ, ω) : (τ, ω) ∈ Ω̃} ∈ Dδ. Then

‖v(τ, τ − t, θ−τω, vτ−t)‖2 + ‖ηt(τ, τ − t, θ−τω, ητ−t)‖2Q0
ν1 ,ν2
6 R(ω) (1.3.5)

for any φτ−t = (vτ−t, ητ−t) ∈ B(θ̃−t(τ, ω)), where R(ω) = γ1 + γ1(ε2 + ε p+1)r(ω).

Proof. By a similar procedure as to Step 3 in Section 3, we have

d
dt

(‖v‖2 + ‖ηt‖2Q0
ν1 ,ν2

) + δ(‖v‖2 + ‖ηt‖2Q0
ν1 ,ν2

) + α1‖u‖
p+1
p+1

6 ε2
(
1 +

4λ1(µ0 + 1)2

λ
+

2k0

δ0

)
‖z‖2 +

(
εα4

2(p + 1)

)p+1

(
α1

p
)−p‖z‖p+1

p+1

+ ε2(2λ +
2k0

δ0
)‖∇z‖2 +

4λ1

λ
‖g‖2 + 2α3|O|.

(1.3.6)
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Multiplying (1.3.6) by eδt and then integrating over [τ − t, τ] with t > 0, we obtain for every ω ∈ Ω,

‖v(τ, τ − t, ω, vτ−t)‖2 + ‖ηt(τ, τ − t, ω, ητ−t)‖2Q0
ν1 ,ν2

6 e−δt(‖vτ−t‖
2 + ‖ητ−t‖

2
Q0
ν1 ,ν2

) + γ0

∫ τ

τ−t
eδ(s−τ)(1 + ‖g‖2)ds

+ γ0ε
2
∫ τ

τ−t
eδ(s−τ)

(
‖z(θsω)‖2 + ‖∇z(θsω)‖2

)
ds + γ0ε

p+1
∫ τ

τ−t
eδ(s−τ)‖z(θsω)‖p+1

p+1ds,

(1.3.7)

where γ0 = max
{

4λ1
λ
, 2α3|O|, 1 +

4λ1(µ0+1)2

λ
+ 2k0

δ0
,
(

α4
2(p+1)

)p+1
(α1

p )−p, 2λ + 2k0
δ0

}
.

Recall that z(θtω) = h(x)z∗(θtω). Then we have

‖z(θtω)‖2 + ‖z(θtω)‖p+1
p+1 + ‖∇z(θtω)‖2 6 r(θtω)

where r(θtω) satisfies
r(θtω) 6 e

δ
2 |t|r(ω), t ∈ R.

Replacing ω by θ−τω in (1.3.7), we obtain

‖v(τ, τ − t, θ−τω, vτ−t)‖2 + ‖ηt(τ, τ − t, θ−τω, ητ−t)‖2Q0
ν1 ,ν2

6 e−δt(‖vτ−t‖
2 + ‖ητ−t‖

2
Q0
ν1 ,ν2

) + γ0

∫ τ

τ−t
eδ(s−τ)‖g‖2ds + γ0

∫ τ

τ−t
eδ(s−τ)ds

+ γ0ε
2
∫ τ

τ−t
eδ(s−τ)

(
‖z(θs−τω)‖2 + ‖∇z(θs−τω)‖2

)
ds + γ0ε

p+1
∫ τ

τ−t
eδ(s−τ)‖z(θs−τω)‖p+1

p+1ds

6 e−δt(‖vτ−t‖
2 + ‖ητ−t‖

2
Q0
ν1 ,ν2

) + γ0

∫ 0

−t
eδs(1 + ‖g‖2)ds + γ0(ε2 + ε p+1)

∫ 0

−t
e
δ
2 sr(ω)ds.

(1.3.8)

Since (vτ−t, ητ−t) ∈ B(θ̃−t(τ, ω)), there exists T (τ, ω, B) > 0 such that for all t > T (τ, ω, B),

e−δt(‖vτ−t‖
2 + ‖ητ−t‖

2
Q0
ν1 ,ν2

) 6
γ0(1 + ‖g‖2)

δ
.

Therefore, for all t > T (τ, ω, B),

‖v(τ, τ − t, θ−τω, vτ−t)‖2 + ‖ηt(τ, τ − t, θ−τω, ητ−t)‖2Q0
ν1 ,ν2

6 γ1 + γ1(ε2 + ε p+1)r(ω) := R(ω),

where γ1 = max{ 2γ0(1+‖g‖2)
δ

, γ0} and ‖g‖2 = sup
r∈R
‖g(·, r)‖2 < ∞. The proof is finished. �

Remark 1.3.2. Denote v(r) = v(r, τ − t, θ−τω, vτ−t) and ηt(r) = ηt(r, τ − t, θ−τω, ητ−t)(s), we can prove
that there exist a positive constant ρ0 and a tempered variable r(ω) such that

‖v(r, τ − t, θ−τω, vτ−t)‖2 + ‖η(r, τ − t, θ−τω, ητ−t)‖2Q0
ν1 ,ν2
6 ρ0 + ρ0(ε2 + ε p+1)e−

δ
2 (r−τ)r(ω).
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Define
D(τ, ω) := Dω =

{
φ ∈ M0 : ‖φ(τ, τ − t, θ−τω, φτ−t(θ−τω))‖2

M0
6 R(ω)

}
. (1.3.9)

Let D be the family consisting of these sets given by (1.3.9), i.e.,

D =
{
D(τ, ω) : D(τ, ω) is defined by (1.3.9), (τ, ω) ∈ Ω̃

}
. (1.3.10)

It is clear that D given by (1.3.10) belongs toDδ.
Next, we prove that the random dynamical system Φ associated to problem (1.2.7) has a compact

measurable pullback attracting set.

1.3.2 Decomposition of solutions
In this subsection, we decompose the solution of (1.2.7) into a sum of two parts, of which, one part
decays exponentially and the other one is bounded in a "higher regular" space by using the method in
[38, 81], and obtain some a priori estimates for the solutions, which are the basis for constructing a
compact measurable attracting set for RDS Φ.

For any (τ, ω) ∈ Ω̃, set

D1(τ, ω) =
⋃

t>T (τ,ω,D)

φ(τ, τ − t, θ−τω,D(τ − t, θ−tω)) ⊂ D(τ, ω), (1.3.11)

then by (1.3.9),

Φ(t, τ − t, θ−tω,D1(τ − t, θ−tω)) = φ(τ, τ − t, θ−τω,D1(τ − t, θ−tω)) ⊂ D1(τ, ω) ⊂ D(τ, ω), t > 0.
(1.3.12)

For any (τ, ω) ∈ Ω̃ and t > 0, let φ(r) = φ(r, τ − t, θ−τω, φτ−t(θ−τω)) (r > τ − t) be a mild solution
of system (1.2.7) with the initial value φτ−t(θ−τω) = (vτ−t, ητ−t) ∈ D1(τ − t, θ−tω) ⊂ D(τ − t, θ−tω),
then it follows from (1.3.12) that φ(r) ∈ D(r − τ, θr−τω) for all r > τ − t. We decompose φ(r) into
φ(r) = φL(r) + φN(r), where φL(r) = (vL(r), ηt

L(r)) and φN(r) = (vN(r), ηt
N(r)) satisfying, respectively,

∂tvL − µ0vL − λ∆vL +

∫ ∞

0
ν1(s)ηt

L(s)ds +

∫ ∞

0
ν2(s)∆ηt

L(s)ds + f (vL) + KvL = 0,

∂tη
t
L + ∂sη

t
L = vL, x ∈ O, s > 0, r > τ − t,

(1.3.13)

with the initial and boundary values

vL(x, t) = 0, ηt
L(x, s) = 0, x ∈ O, vL(x, τ) = vτ(x), ητL(x, s) = ητ(x, s), x ∈ ∂O, s > 0, r < τ − t.

(1.3.14)
and

∂tvN − µ0vN − λ∆vN +

∫ ∞

0
ν1(s)ηt

N(s)ds +

∫ ∞

0
ν2(s)∆ηt

N(s)ds + f (u) − f (vL)

= KvL + g + ε(µ0 + 1)z + ελ∆z,
∂tη

t
N + ∂sη

t
N = vN + εz, x ∈ O, s > 0, r > τ − t,

(1.3.15)
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with then initial and boundary values

vL(x, t) = 0, ηt
L(x, s) = 0, x ∈ O, vL(x, τ) = 0, ητL(x, s) = 0, x ∈ ∂O, s > 0, r < τ − t. (1.3.16)

Obviously, system (1.3.13) is a deterministic (non-random) non-autonomous system independent of
ω. Notice that assumption ( f 2) implies that there exists K0 > 0 such that f (u)u > −K0|u|2. Set
K > K0. In order to estimate the component of φL, we start with the estimate of vL.

Lemma 1.3.3. Suppose that assumptions of Lemma 1.3.1 hold. Then the solution of (1.3.13) satisfies

‖vL(τ, τ − t, vL,τ−t)‖2 + ‖ηt
L(τ, τ − t, ηL,τ−t)‖2Q0

ν1 ,ν2
6 e−δtR0(ω).

Proof. Multiplying (1.3.13)1 by vL and integrating over O in L2(O), multiplying (1.3.13)2 by ηt
L and

integrating over O in Q0
ν1,ν2

, then adding the results, we obtain

1
2

d
dt

(‖vL‖
2 + ‖ηt

L‖
2
Q0
ν1 ,ν2

) − µ0‖vL‖
2 + λ‖∇vL‖

2 +

∫ ∞

0
ν1(s)

∫
O

∂sη
t
L · η

t
Ldxds

+

∫ ∞

0
ν2(s)

∫
O

∂s∇η
t
L · ∇η

t
Ldxds +

∫
O

f (vL)vLdx = 0.
(1.3.17)

Some computations then yield

d
dt

(‖vL‖
2 + ‖ηt

L‖
2
Q0
ν1 ,ν2

) + δ(‖vL‖
2 + ‖ηt

L‖
2
Q0
ν1 ,ν2

) + (K − K0)‖vL‖
2 6 0. (1.3.18)

By the Gronwall Lemma, we conclude that there exits a tempered variable R0(ω) > 0 such that

‖vL(τ, τ − t, vL,τ−t)‖2 + ‖ηt
L(τ, τ − t, ηL,τ−t)‖2Q0

ν1 ,ν2
6 e−δt(‖vτ−t‖

2 + ‖ητ−t‖
2
Q0
ν1 ,ν2

) 6 e−δtR0(ω). (1.3.19)

This finishes the proof. �

Hereafter, denote Ri(ξ, τ, ω) = ρi + ρi(ε2 + ε p)lie−βi(ξ−τ)r(ω)ni , Ri(ω) := R(τ, τ, ω) = ρi + ρi(ε2 +

ε p)lir(ω)ni for ρi, li, βi, ni > 0, i = 1, 2, 3, · · · , and ξ > τ − t.

Lemma 1.3.4. Assume that ( f 1) − ( f 3) hold with 1 < p < 1 + 4/n, or ( f 1) − ( f 2) and ( f 4) hold with
p = 1 + 4/n, then the solution of (1.3.15) satisfies the inequality

‖vN(τ, τ − t, θ−τω, 0)‖2σ + ‖ηt
N(τ, τ − t, θ−τω, 0)‖2Qσ

ν1 ,ν2
6 R4(ω),

where 0 < σ < min{1, 2p−np+2
2 }.

Proof. Taking the inner product of (1.3.15)1 with AσvN in L2(O), (1.3.15)2 with Aσηt
N in Q0

ν1,ν2
, we

obtain
1
2

d
dt

(‖A
σ
2 vN‖

2 + ‖ηt
N‖

2
Qσ
ν1 ,ν2

) − µ0‖A
σ
2 vN‖

2 + λ‖A
1+σ

2 vN‖
2 +

δ0

2
‖ηt‖2Qσ

ν1 ,ν2
+

∫
O

( f (u) − f (vL))AσvNdx

6

∫
O

g · AσvNdx +

∫
O

KvL · AσvNdx + ε(µ0 + 1)
∫
O

z · AσvNdx + ελ

∫
O

∆z · AσvNdx

+

∫ ∞

0
ν1(s)

∫
O

A
σ
2 (vN + εz) · A

σ
2 ηt

Ndxds +

∫ ∞

0
ν2(s)

∫
O

A
1+σ

2 (vN + εz) · A
1+σ

2 ηt
Ndxds.

(1.3.20)
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By the Young’s inequality, we have

∫
O

g · AσvNdx +

∫
O

KvL · AσvNdx + ε(µ0 + 1)
∫
O

z · AσvNdx + ελ

∫
O

∆z · AσvNdx

6
λλ1

4
‖AσvN‖

2 + c(‖g‖2 + ‖vL‖
2) + cε2(‖z‖2 + ‖∆z‖2).

(1.3.21)

Note that if p < 1 + 4/n, then p−1
4 n − 1−σ

2 < 1+σ
2 , and by Lemma 1.3.1 we know that

∣∣∣∣∣∫
O

( f (u) − f (vL))AσvNdx
∣∣∣∣∣

6 c
∫
O

(1 + |u|p−1 + |vL|
p−1)|vN + εz||AσvN |dx

6 c
∫
O

(1 + |u|p−1 + |vL|
p−1)|vN ||AσvN |dx + cε

∫
O

(1 + |u|p−1 + |vL|
p−1)|z||AσvN |dx

6 c
(
1 + (

∫
O

|u|2dx)(p−1)/2 + (
∫
O

|vL|
2dx)(p−1)/2

) (∫
O

|vN |
2n/(2n−np+2(1−σ))dx

)(2n−np+2(1−σ))/2n

×

(∫
O

|AσvN |
2n/(n−2(1−σ))dx

)(n−2(1−σ))/2n

+ cε
(
1 + (

∫
O

|u|2dx)(p−1)/2 + (
∫
O

|vL|
2dx)(p−1)/2

)
×

(∫
O

|z|2n/(2n−np+2(1−σ))dx
)(2n−np+2(1−σ))/2n (∫

O

|AσvN |
2n/(n−2(1−σ))dx

)(n−2(1−σ))/2n

6 c‖A(1+σ)/2vN‖ · ‖vN‖
L2n/[n−2( p−1

2 )n−(1−σ)](1 + ‖u‖p−1 + ‖vL‖
p−1)

+ cε‖A(1+σ)/2vN‖ · ‖z‖
L2n/[n−2( p−1

2 )n−(1−σ)](1 + ‖u‖p−1 + ‖vL‖
p−1)

6 c‖A(1+σ)/2vN‖ · ‖A
p−1

4 n− 1−σ
2 vN‖(1 + ‖u‖p−1 + ‖vL‖

p−1)

+ cε‖A(1+σ)/2vN‖ · ‖A
p−1

4 n− 1−σ
2 z‖(1 + ‖u‖p−1 + ‖vL‖

p−1)

6 c‖A(1+σ)/2vN‖ · ‖vN‖
1−ϑ‖A(1+σ)/2vN‖

ϑ(1 + ‖u‖p−1 + ‖vL‖
p−1)

+ cε‖A(1+σ)/2vN‖ · ‖A(1+σ)/2z‖(1 + ‖u‖p−1 + ‖vL‖
p−1)

6
λ

4
‖A(1+σ)/2vN‖

2 + c(1 + ‖u‖p−1 + ‖vL‖
p−1)

2
1−ϑ ‖vN‖

2 + cε2(1 + ‖u‖p−1 + ‖vL‖
p−1)2‖A

1+σ
2 z‖2.

(1.3.22)
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On the other hand, if p = 1 + 4/n, then∣∣∣∣∣∫
O

( f (u) − f (vL))AσvNdx
∣∣∣∣∣

6

∫
O

(Cν + ν|u|
4
n + ν|vL|

4
n )|vN + εz| · |AσvN |dx

6

∫
O

(Cν + ν|u|
4
n + ν|vL|

4
n )|vN | · |AσvN |dx + ε

∫
O

(Cν + ν|u|
4
n + ν|vL|

4
n )|z| · |AσvN |dx

6 Cν(
∫
O

|vN |
2n/(n+2(1−σ))dx)(n+2(1−σ))/2n(

∫
O

|AσvN |
2n/(n−2(1−σ))dx)(n−2(1−σ))/2n + ν

(
(
∫
O

|u|2dx)2/n + (
∫
O

|vL|
2dx)2/n

)
× (

∫
O

|vN |
2n/[n−2(1+σ)]dx)[n−2(1+σ)]/2n(

∫
O

|AσvN |
2n/[n−2(1−σ)]dx)[n−2(1−σ)]/2n

+ Cνε(
∫
O

|z|2n/(n+2(1−σ))dx)(n+2(1−σ))/2n(
∫
O

|AσvN |
2n/(n−2(1−σ))dx)(n−2(1−σ))/2n + νε

(
(
∫
O

|u|2dx)2/n + (
∫
O

|vL|
2dx)2/n

)
× (

∫
O

|z|2n/[n−2(1+σ)]dx)[n−2(1+σ)]/2n(
∫
O

|AσvN |
2n/[n−2(1−σ)]dx)[n−2(1−σ)]/2n

6 Cν‖vN‖L2n/(n+2(1−σ))‖AσvN‖L2n/(n−2(1−σ)) + νC(‖u‖4/n + ‖vL‖
4/n)‖vN‖L2n/n−2(1+σ)‖AσvN‖Ln−2(1−σ)

+ Cνε‖z‖L2n/(n+2(1−σ))‖AσvN‖L2n/(n−2(1−σ)) + νεC(‖u‖4/n + ‖vL‖
4/n)‖z‖L2n/n−2(1+σ)‖AσvN‖Ln−2(1−σ)

6
λ

4
‖A

1+σ
2 vN‖

2 + cCν‖vN‖
2 + νCν(‖u‖

4
n + ‖vL‖

4
n )‖A

1+σ
2 vN‖

2

+ cC2
νε

2‖z‖2 + cν2ε2(‖u‖
4
n + ‖vL‖

4
n )2‖A

1+σ
2 z‖2.

(1.3.23)

If p = 1 + 4
n , then by Lemmas 1.3.1 and 1.3.3, we can choose ν small enough such that, for every

(τ, ω) ∈ Ω̃,

νCν(‖u‖
4
n + ‖vL‖

4
n )‖A

1+σ
2 vN‖

2 6
λ

4
‖A

1+σ
2 vN‖

2, cν2ε2(‖u‖
4
n + ‖vL‖

4
n )2‖A

1+σ
2 z‖2 6 cε2‖A

1+σ
2 z‖2. (1.3.24)

From (1.3.20)-(1.3.24), we have

d
dt

(‖A
σ
2 vN‖

2 + ‖ηt
N‖

2
Qσ
ν1 ,ν2

) + δ(‖A
σ
2 vN‖

2 + ‖ηt
N‖

2
Qσ
ν1 ,ν2

)

6 c(1 + ‖u‖p−1 + ‖vL‖
p−1)

2
1−θ ‖vN‖

2 + cε2(1 + ‖u‖p−1 + ‖vL‖
p−1)2‖A

1+σ
2 z‖2

+ cε2(‖z‖2 + ‖∆z‖2) + c(‖g‖2 + e−δ(r−τ+t)R0(ω))

6 R1(r, τ, ω) + cε2(1 + R2(r, τ, ω))(‖z(θr−τω)‖2 + ‖A
1+σ

2 z(θr−τω)‖2 + ‖∆z(θr−τω)‖2)

+ c(1 + e−δ(r−τ+t)R0(ω)).

(1.3.25)

Applying the Gronwall lemma to (1.3.25)c, it follows that for t large enough,

‖A
σ
2 vN(τ, τ − t, θ−τω, 0)‖2 + ‖ηt

N(τ, τ − t, θ−τω, 0)‖2Qσ
ν1 ,ν2
6 R3(ω).

This completes the proof. �
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Lemma 1.3.5. Let the assumption of Lemma 1.3.4 hold. Then for any B = {B(τ, ω) : (τ, ω) ∈ Ω̃}(∈
Dδ) ⊂ Mσ and for any (vτ−t, ητ−t) ∈ B(θ̃−t(τ, ω)),

‖v(τ, τ − t, θ−τω, vτ−t)‖2σ + ‖ηt(τ, τ − t, θ−τω, ητ−t)‖2Qσ
ν1 ,ν2
6 R4(ω).

Proof. Taking the inner product of (1.2.5)1 with Aσv in L2(O) and (1.2.5)2 with Aσηt in Q0
µ1,µ2

. Then
we can finish the proof similarly to the proof of Lemma 1.3.1. �

On the basis of the above lemmas, we have the following results.

Lemma 1.3.6. For 0 < σ < 1
2 and σ 6 s 6 1, we have

‖A
s
2 vN(τ, τ − t, θ−τω, 0)‖2 + ‖ηt

N(τ, τ − t, θ−τω, 0)‖2Qs
ν1 ,ν2
6 R5(ω).

Proof. Multiplying (1.3.15)1 by AsvN , and (1.3.15)2 by Asηt
N , then sum the results to obtain

1
2

d
dt

(‖A
s
2 vN‖

2 + ‖ηt
N‖

2
Qs
ν1 ,ν2

) +
δ0

2
‖ηt

N‖
2
Qs
µ1 ,µ2
− µ0‖A

s
2 vN‖

2 + λ‖A
1+s

2 vN‖
2 +

∫
O

( f (u) − f (vL))AsvNdx

6

∫
O

g · AsvNdx +

∫
O

KvL · AsvNdx + ε

∫
O

((µ0 + 1)z + λ∆z) · AsvNdx + ε

∫ ∞

0
ν1(s)

∫
O

z · Asηt
Ndxds

+ ε

∫ ∞

0
ν2(s)

∫
O

A
1+s

2 z · A
1+s

2 ηt
Ndxds.

(1.3.26)

If n > 4, by straightforward computations we have

2n > (n − 2σ)p + 2(s + σ − 1), (1.3.27)

and if n = 3, we can choose σ close to 1/2 such that (1.3.27) holds. Hence,∣∣∣∣∣∫
O

( f (u) − f (vL))AsvNdx
∣∣∣∣∣

6 c
∫
O

(1 + |u|p−1 + |vL|
p−1)|vN + εz| · |AsvN |dx

6 c
∫
O

(1 + |u|p−1 + |vL|
p−1)|vN | · |AsvN |dx + cε

∫
O

(1 + |u|p−1 + |vL|
p−1)|z| · |AsvN |dx

6 c
{

1 + (
∫
O

|u|
2n

n−2σ dx)
n−2σ

2n (p−1) + (
∫
O

|vL|
2n

n−2σ dx)
n−2σ

2n (p−1)
}

(
∫
O

|vN |
2n
ñ dx)

ñ
2n

· (
∫
O

|AsvN |
2n

n−2(1−s) dx)
n−2(1−s)

2n + cε
{

1 + (
∫
O

|u|
2n

n−2σ dx)
n−2σ

2n (p−1) + (
∫
O

|vL|
2n

n−2σ dx)
n−2σ

2n (p−1)
}

(
∫
O

|z|
2n
ñ dx)

ñ
2n · (

∫
O

|AsvN |
2n

n−2(1−s) dx)
n−2(1−s)

2n

6 c
{
1 + ‖A

σ
2 u‖p−1 + ‖A

σ
2 vL‖

p−1
}
‖vN‖L

2n
ñ
‖A

1+s
2 vN‖

+ cε
{
1 + ‖A

σ
2 u‖p−1 + ‖A

σ
2 vL‖

p−1
}
‖z‖

L
2n
ñ
‖A

1+s
2 vN‖,

(1.3.28)
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where ñ = 2n − [(n − 2σ)p + 2(s + σ − 1)].
Let s′ = [−n + (n− 2σ)p + 2(s +σ− 1)]/2. Since p 6 1 + 4

n , we can choose p > 0 such that s′ > 0.
By calculation, we get that 0 < s′ < 1 + s. Thus, using interpolation inequality, we obtain

‖vN‖L
2n
ñ

= ‖vN‖ 2n
n−2[−n+(n−2σ)p+2(s+σ−1)]/2

= ‖vN‖
L

2n
n−2s′
6 c‖A

s′
2 vN‖ 6 c‖vN‖

1−ϑ‖A
1+s

2 vN‖
ϑ, 0 < ϑ < 1,

which together with (1.3.28) implies that

|

∫
O

( f (u) − f (vL))AsvNdx| 6
λ

4
‖A

1+s
2 vN‖

2 + c(1 + ‖A
σ
2 u‖p−1 + ‖A

σ
2 vL‖

p−1)
2

1−ϑ ‖vN‖
2

+ cε2(1 + ‖A
σ
2 u‖p−1 + ‖A

σ
2 vL‖

p−1)
2

1−ϑ ‖A
s′
2 z‖2.

(1.3.29)

On the other hand, thanks to the Young inequality,∫
O

g · AsvNdx +

∫
O

LvL · AsvNdx + cε
∫
O

(z + ∆z) · AsvNdx

6
λ

4
‖A

1+s
2 vN‖

2 + c(‖g‖2 + ‖vL‖
2) + cε2(‖z‖2 + ‖A

1+s
2 z‖2).

(1.3.30)

and

ε

∫ ∞

0
ν1(s)

∫
O

zAsηt
Ndxds + ε

∫ ∞

0
ν2(s)

∫
O

A
1+s

2 zA
1+s

2 ηt
Ndxds 6

δ0

4
‖ηt

N‖
2
Qs
ν1 ,ν2

+ cε2(‖A
s
2 z‖2 + ‖A

1+s
2 z‖2).

(1.3.31)

Therefore, it follows from (1.3.26) and (1.3.29)-(1.3.31) that

d
dt

(‖A
s
2 vN‖

2 + ‖ηt
N‖

2
Qs
ν1 ,ν2

) + δ(‖A
s
2 vN‖

2 + ‖ηt
N‖

2
Qs
ν1 ,ν2

)

6 c(1 + ‖g‖2) + c(1 + ‖A
σ
2 u‖p−1 + ‖A

σ
2 vL‖

p−1)
2

1−ϑ ‖vN‖
2

+ cε2(1 + ‖A
σ
2 u‖p−1 + ‖A

σ
2 vL‖

p−1)
2

1−ϑ ‖A
s
2 z‖2 + cε2(‖z‖2 + ‖A

1+σ
2 z‖2).

Applying Lemma 1.3.5 and the Gronwall lemma to the above inequality gives the desired result. �

1.3.3 Existence of the pullback random attractor
Now, we prove the compactness of the memory term. Note that for any (τ, ω) ∈ Ω̃, t > 0,

ηt
N(τ, τ− t, θ−τω, ηN,τ−t(θ−τω))(s) =


∫ s

0
uN(τ − r, τ − t, θr−τω, uN,τ−t(θr−τω))dr, 0 < s 6 t,∫ t

0
uN(τ − r, τ − t, θr−τω, uN,τ−t(θr−τω))dr, s > t.

(1.3.32)

Lemma 1.3.7. Under the assumption of Lemma 1.3.6. For every given (τ, ω) ∈ Ω̃, let

E(τ, ω) := E(τ, ω)(s) =
⋃

(vτ−t ,ητ−t)∈D1(τ−t,θ−tω)

⋃
t>0

ηt
N(τ, τ − t, θ−τω, ηN,τ−t(θ−τω))(s) ⊂ Q0

ν1,ν2
,

where φ = (v, ηt) is the solution of (1.2.7). Then E(τ, ω) is relatively compact in Q0
ν1,ν2

.
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Proof. By Lemma A.1.10, we need to verify two conditions:

(i) E(τ, ω) is bounded in L2
ν1

(R+;H1) ∩ H1
ν1

(R+;H0) and L2
ν2

(R+;H2) ∩ H1
ν2

(R+;H1);

(ii) supηt∈E(τ,ω)(‖η
t‖2
H0

+ ‖ηt‖2
H1

) 6 h(s).

From Lemma 1.3.6, we know that E(τ, ω) is bounded in L2
ν1

(R+;H1) ∩ L2
ν2

(R+;H2). By (1.3.32), we
have

∂sη
t
N(τ, τ − t, θ−τω, ηN,τ−t(θ−τω))(s) =

 uN(τ − s, τ − t, θs−τω, uN,τ−t(θs−τω)), 0 < s 6 t,

0, s > t.
(1.3.33)

By (H1), we know that ν1, ν2 ∈ C1(R+)∩ L1(R+), which along with Lemma 1.3.6 we find that E(τ, ω)
is bounded in H1

ν1
(R+;H0) ∩ H1

ν2
(R+;H1). Indeed, we have∫ ∞

0
ν1(s)‖∂sη

t
N‖

2ds +

∫ ∞

0
ν2(s)‖∇∂sη

t
N‖

2ds

=

∫ t

0
ν1(s)‖uN(τ − s)‖2ds +

∫ t

0
ν2(s)‖∇uN(τ − s)‖2ds

=

∫ t

0
ν1(τ − s)‖uN(s)‖2ds +

∫ t

0
ν2(τ − s)‖∇uN(s)‖2ds < ∞,

which implies (i) holds.
On the other hand, by (1.3.32) and using Lemma 1.3.6 again, we obtain that

sup
ηt∈E(τ,ω),s∈R+

(‖ηt(s)‖H0 + ‖ηt(s)‖H1)

= sup
t>0

sup
(vτ−t ,ητ−t)∈D1(τ−t,θ−tω),s∈R+

(
‖ηt

N(τ, τ − t, θ−τω, ηN,τ−t(θ−τω))(s)‖H0 + ‖ηt
N(τ, τ − t, θ−τω, ηN,τ−t(θ−τω))(s)‖H1

)
6 s2(R(ω) + R5(ω)) := h(s).

By (H2), we know that ν1 and ν2 decay exponentially, so it is easy to check that h(s) ∈ L1
ν1
∩ L1

ν2
. Then

(ii) holds. By Lemma A.1.10, the proof is complete. �

We can now state our main result about the existence of pullback random attractor for the RDS Φ.

Theorem 1.3.8. Assume that either ( f 1) − ( f 3) hold with 1 < p < 1 + 4
n , or ( f 1), ( f 2) and ( f 4)

hold with p = 1 + 4
n . Let (H1) − (H2) hold and g ∈ Cb(R; L2(O)). Then the RDS Φ associated with

(1.2.7) possesses a compact measurable D−pullback attracting set Λ(τ, ω) ⊂ M0 and possesses a
Dδ−pullback random attractorA(τ, ω) ⊆ Λ(τ, ω) ∩ D(τ, ω) for any (τ, ω) ∈ Ω̃.

Proof. For any (τ, ω) ∈ Ω̃, in view of Lemma 1.3.6, let Bs(τ, ω) be the closed ball of Hs of radius
R5(ω), where 0 < s 6 1. Setting

Λ(τ, ω) = Bs(τ, ω) × E(τ, ω), (1.3.34)
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then Λ(τ, ω) ∈ Dδ(M0). Since the embedding Hs ↪→ L2(O) is compact, Bs(τ, ω) is compact in
L2(O). We have proved in Lemma 1.3.7 that E(τ, ω) is compact in Q0

ν1,ν2
, so Λ(τ, ω) is compact in

M0(:= L2(O) × Q0
ν1,ν2

).
Now we show the following attraction property of Λ(τ, ω), namely, for every B0 ∈ Dδ(M0),

lim
t→+∞

dM0

(
Φ(t, τ − t, θ−tω, B0(τ − t, θ−tω)),Λ(τ, ω)

)
= 0. (1.3.35)

By Lemma 1.3.1, there exists t∗ = t∗(τ, ω, B0) > 0 such that

φ(τ, τ − t, θ−τω, B0(τ − t, θ−tω)) ⊆ D(τ, ω), ∀t > t∗. (1.3.36)

Let t > t∗ and t0 = t − t∗ > T (τ, ω, B0). Using the cocycle property (iii) in Definition 0.0.1, we have

φ(τ, τ − t, θ−τω, B0(τ − t, θ−tω))
= φ(τ, τ − t0 − t∗, θ−τω, B0(τ − t0 − t∗, θ−tω))
= φ(τ, τ − t0, θ−τω, φ(τ − t0, τ − t0 − t∗, θ−τω, B0(τ − t0 − t∗, θ−tω)))
⊆ φ(τ, τ − t0, θ−τω,D(τ − t0, θ−t0ω)) ⊆ D1(τ, ω).

(1.3.37)

Take any φ(τ, τ − t, θ−τω, φτ−t(θ−τω)) ∈ φ(τ, τ − t, θ−τω, B0(τ − t, θ−tω)) for t > t∗ + T (τ, ω, B0), where
φτ−t(θ−τω) ∈ B0(τ − t, θ−tω). From (1.3.37) and Lemma 1.3.6, we have

φN(τ, τ − t, θ−τω, φτ−t(θ−τω)) = φ(τ, τ − t, θ−τω, φτ−t(θ−τω)) − φL(τ, τ − t, θ−τω, φL,τ−t(θ−τω)) ∈ Λ(τ, ω).
(1.3.38)

Thus, by Lemma 1.3.3, we obtain

inf
χ∈Λ(τ,ω)

‖φ(τ, τ − t, θ−τω, φτ−t(θ−τω)) − χ‖2
M0
6 ‖φL(τ, τ − t, θ−τω, φL,τ−t(θ−τω))‖2

M0

6 R0(ω)e−δt, ∀t > t∗ + T (τ, ω, B0).
(1.3.39)

It follows that

dM0

(
Φ(t, τ − t, θ−tω, B0(θ − t, θ−tω)),Λ(τ, ω)

)
6 R0(ω)e−δt → 0 as t → +∞, (1.3.40)

which means (1.3.35) holds. By Proposition 0.0.7, RDS Φ associated with (1.2.7) possesses a
Dδ−pullback random attractorA(τ, ω) ⊆ Λ(τ, ω) ∩ D(τ, ω). The proof is completed. �

1.4 Upper semi-continuity of pullback random attractor
In this subsection, we regard the coefficient ε ∈ R as a parameter in system (1.2.7). In view of
Theorem 1.2.2 and 1.3.8, we can define a family of random dynamical system {Φε(t, (τ, ω))}ε∈R asso-
ciated to (1.2.7), and know that {Φε(t, (τ, ω))}ε∈R possess a corresponding family of pullback random
attractors {Aε(τ, ω)}ε∈R. Here let us consider the upper semi-continuity of pullback random attractors
{Aε(τ, ω)}ε∈R as ε → ε0 by Proposition 1.1.1.

Based on Proposition 1.1.1 and the results in Section 4, we have the following upper semi-
continuity of pullback random attractors {Aε(τ, ω)}ε∈R for {Φε(t, (τ, ω))}ε∈R.
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Theorem 1.4.1. Suppose that the conditions in Theorem 1.3.8 hold. Then for any (τ, ω) ∈ Ω̃,

lim
ε→ε0

dM0 (Aε(τ, ω),Aε0(τ, ω)) = sup
φ∈Aε (τ,ω)

inf
φ̃∈Aε0 (τ,ω)

‖φ − φ̃‖M0 = 0. (1.4.1)

Proof. Let us check that conditions (i)-(iv) of Proposition 1.1.1 are fulfilled.
(i) It is trivial to verify that for any ε0 ∈ R, there exists F = {F(τ, ω) = {φε0 ∈ M0 : ‖φε0‖2

M0
6

Rε0(τ, ω)} : (τ, ω) ∈ Ω̃} ∈ Dδ with Rε0(τ, ω) = 2γ1 + γ1(ε2
0 + ε

p+1
0 )r(ω).

(ii) By Lemma 1.3.1 and Theorem 1.3.8, we know that for any (τ, ω) ∈ Ω̃ and ε ∈ R, the pullback
random attractor Aε(τ, ω) for Φε(t, (τ, ω)) is included in the absorbing ball D(ε, ω) = {φε ∈ M0 :
‖φε‖2

M0
6 Rε(τ, ω)}, i.e., Aε(τ, ω) ⊆ D(τ, ω) ⊂ M0, where Rε(τ, ω) = γ1 + γ1(ε2 + ε p+1)r(ω). We can

check that
lim sup

ε→ε0

Rε(τ, ω) 6 Rε0(τ, ω). (1.4.2)

(iii) Let |ε | 6 1. For every (τ, ω) ∈ Ω̃, using Theorem 1.3.8 once again, we find that Aε(τ, ω) ⊆
Λε(τ, ω) ⊂ M0. Note that R5(ω) and Rε(τ, ω) are both increasing functions in |ε |. By the construction
of Λε(τ, ω) in (1.3.34), we can choose the compact set Λε(τ, ω) satisfying

Λε(τ, ω) ⊂ Λ1(τ, ω), ∀ |ε| 6 1. (1.4.3)

Hence, ⋃
|ε|61

Aε(τ, ω) ⊆
⋃
|ε |61

Λε(τ, ω) ⊆ Λ1(τ, ω) ⊂ M0. (1.4.4)

Thus,
⋃
|ε|61A

ε(τ, ω) is precompact inM0.
(iv) Let |ε | 6 1. For every t > 0, (τ, ω) ∈ Ω̃, let φε(t, (τ, ω), φετ(ω)) and φε0(t, (τ, ω), φε0

τ (ω)) be
the solutions of (1.2.7) with ε and ε0, initial data φετ(ω) and φε0

τ (ω), respectively. Set U = φε − φε0 =

(w, ξ) = (vε − vε0 , ηt
ε − η

t
ε0

), then

U̇ = LU + F(U), Uτ = φετ(ω) − φε0
τ (ω), (1.4.5)

where

LU =

(
µ0w + λ∆w −

∫ ∞

0
ν1(s)ξt(s)ds +

∫ ∞

0
ν2(s)∆ξt(s)ds,w − ∂sξ

t

)
,

F(U) = Fε(φε , θtω, t) − Fε0(φε0 , θtω, t)
= ((ε − ε0)(µ0 + 1)z(θtω) + (ε − ε0)λ∆z(θtω) + f (uε0) − f (uε), (ε − ε0)z(θtω)) ,

Uτ(ω) =
(
vετ − vε0

τ , η
ε
τ − η

ε0
τ

)
.

Take the inner product of (1.4.5) with U inM0 to obtain

1
2

d
dt
‖U‖2

M0
= (LU,U)M0 + (F(U),U)M0 . (1.4.6)

By (H2), we have

(LU,U)M0 6 (µ0 − λ1λ)‖w‖2 −
δ0

2
‖ξt‖2

M0
6 −δ‖U‖2

M0
. (1.4.7)
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(F(U),U)M0 = (ε − ε0)(µ0 + 1)
∫
O

zwdx − (ε − ε0)λ
∫
O

∇z∇wdx + (ε − ε0)
∫ ∞

0
ν1(s)

∫
O

zξtdxds

+ (ε − ε0)
∫ ∞

0
ν2(s)

∫
O

∇z∇ξtdxds +

∫
O

( f (uε0) − f (uε))wdx

6 c(ε − ε0)2(‖z‖2 + ‖∇z‖2) + c(‖w‖2 + ‖∇w‖2) +
δ0

4
‖ξt‖2Q0

ν1 ,ν2
+

∫
O

( f (uε0) − f (uε))wdx

(1.4.8)

For the last term in (1.4.8), we have∫
O

( f (uε0) − f (uε))wdx 6 R6(r, τ, ω)(‖w‖2 + ‖∇w‖2), if p < 1 +
4
n
, (1.4.9)

and ∫
O

( f (uε0) − f (uε))wdx 6 R7(r, τ, ω)‖∇w‖2, if p = 1 +
4
n
. (1.4.10)

It follows from (1.4.6)-(1.4.10) that

d
dt
‖U‖2

M0
6 R8(r, τ, ω)‖U‖2

M0
+ c(ε − ε0)2(‖z(θtω)‖2 + ‖∇z(θtω)‖2), r > τ − t. (1.4.11)

Apply the Gronwall lemma to (1.4.11) with ω replaced by θ−τω to find

‖U(τ, τ − t, θ−τω,Uτ−t)‖2M0

= ‖vε(τ, τ − t, θ−τω, vετ−t) − vε0(τ, τ − t, θ−τω, v
ε0
τ−t)‖

2 + ‖ηt
ε(τ, τ − t, θ−τω, ηετ−t) − η

t
ε0

(τ, τ − t, θ−τω, η
ε0
τ−t)‖

2
Q0
ν1 ,ν2

6 ‖φε(τ, τ − t, θ−τω, φετ−t) − φ
ε0(τ, τ − t, θ−τω, φ

ε0
τ−t)‖

2
M0

e
∫ τ
τ−t ρ8+ρ8(ε2+ε p)l8 e−β8(s−τ)r(ω)n8 ds

+ c(ε − ε0)2
∫ τ

τ−t
e
∫ r
τ
ρ8+ρ8(ε2+ε p)l8 e−β8(s−τ)r(ω)n8 ds(‖z(θr−τω)‖2 + ‖∇z(θr−τω)‖2)dr.

(1.4.12)

From (1.4.12), we see that for any (τ, ω) ∈ Ω̃, t > 0, εn → ε0, and φεn
τ−t, φ

ε0
τ−t ∈ M0 with φεn

τ−t → φε0
τ−t, it

holds that:

lim
n→∞

(
‖vεn(τ, τ − t, θ−τω, v

εn
τ−t) − vε0(τ, τ − t, θ−τω, v

ε0
τ−t)‖

2

+ ‖ηt
εn

(τ, τ − t, θ−τω, η
εn
τ−t) − η

t
ε0

(τ, τ − t, θ−τω, η
ε0
τ−t)‖

2
Q0
ν1 ,ν2

)
= 0.

(1.4.13)

Up to now, all of the conditions (i)-(iv) of Proposition 1.1.1 are satisfied. The proof is finished. �

Remark 1.4.2. We would like to mention that in [113], Li proved the existence of uniform attractor
for (1.0.1) with ε = 0, but did not consider the pullback set up for the asymptotic behavior, which is
our motivation for our paper.
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Up to now, we have studied stochastic standard parabolic problem with memory as well as subcrit-
ical and critical nonlinearity, namely, Eq. (1.0.1). The existence of random attractor as well as upper
semi-continuity of the random attractor are established. However, as we said at the very beginning of
this Part that the fractional derivative equation can exhibit significant self-organization phenomena or
asymmetry, which is very different from the classic derivative equation. Besides, the fractional differ-
ential equations have a wide range of applications in physics, biology, finance and so on. Therefore,
in the next chapter, we discuss a stochastic fractional parabolic problem with memory.



Chapter 2

Dynamics of a fractional stochastic
reaction-diffusion equation with thermal
memory

In this chapter we investigate the well-posedness and dynamics of a fractional stochastic integro-
differential equation describing a reaction process depending on the temperature itself, and which
is derived in the framework of the well-established theory of heat flows with memory (see [50]) on
O ⊂ R3, which is a bounded domain with smooth boundary ∂O,

∂u
∂t

+ β(1 − γ)(−∆)αu +

∫ ∞

0
µ(s)(−∆)αu(t − s)ds + f (u) = k(x) + h(x)

dW
dt
, x ∈ O, t > 0, (2.0.1)

with boundary condition
u(x, t) = 0, x ∈ ∂O, t > 0, (2.0.2)

and initial condition
u(x, t) = u0(x, t), x ∈ O, t 6 0. (2.0.3)

Here, α ∈ (0, 1), β ∈ (0,+∞) and γ ∈ (0, 1), u(x, t) is the unknown function, while µ is a decreasing
and non-negative memory kernel; f is a nonlinear reaction term (for instance, f (u) = u3 − u), k(·) ∈
L2(O) and h(·) ∈ H2α(O) are given functions. W is a two-sided real-valued Wiener process on a
probability space which will be specified later. In the present case, the dynamics of u relies on the
past history of the diffusion term, that is,

∫ ∞
0
µ(s)(−∆)αu(t − s)ds.

Problem (2.0.1) with α = 1 as well as h(x) = 0 is well known and has been extensively studied
(see [22, 55]), and can be interpreted as a model of heat diffusion with memory which also accounts
for a reaction process depending on the temperature itself (see [76] and related references therein).
Namely, if u(t) represents the temperature of a material occupying O for any time t, as in [50], we can
consider the following heat flux law

−→q (x, t) = −β(1 − γ)∇u(x, t) −
∫ ∞

0
µ(s)∇u(x, t − s)ds,

29
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where β(1−γ) is the instantaneous heat conductivity and µ(s) is a memory or relaxation kernel. Then,
assuming the total energy is proportional to u (with proportionality constant 1 for simplicity), the
standard semilinear heat equation with memory, i.e.,

∂u
∂t
− β(1 − γ)∆u −

∫ ∞

0
µ(s)∆u(t − s)ds + f (u) = k(x), (2.0.4)

could be recovered from the energy balance

ut + ∇ · −→q = k − f (u),

(see [38] for a more detailed explanation and more references on the topic). This kind of equation
can also be proposed to describe many different phenomena, such as the evolution of the velocity of
certain viscoelastic fluids [64], the thermo mechanical behavior of polymers [87, 142], the diffusion
of the chemical potential of a penetrant in polymers near the glass transition [102], and some models
in population dynamics [67]. Concerning equation (2.0.4) (which is a deterministic heat equation
with memory) existence, uniqueness, and asymptotic behavior results can be found in [55, 78, 81]. In
particular, equation (2.0.4) is shown to have a uniform attractor, which has finite Hausdorff dimension
(see [78]), whereas in [77] the existence of absorbing sets in suitable function spaces is achieved.

Observe that the aforementioned literature mainly dealt with versions of Eq. (2.0.4) in a determin-
istic context. But, it is sensible to assume that the models of certain phenomena from the real world
are more realistic if some kind of uncertainty, for instance, some randomness or environmental noise,
is also considered in the formulation. In fact, the random perturbations are intrinsic effects in a variety
of settings and spatial scales. They may be most obviously influential at the microscopic and smaller
scales but indirectly they play an important role in macroscopic phenomena. We will take into account
an additive noise in our model which we interpret as the environmental noisy effect produced on the
system, and will exploit the theory of random dynamical systems (see [2, 11]) to obtain information
on the dynamics of our model, in particular we will be able to prove the existence of random attractor.
When α = 1, problem (2.0.1) reduces to a standard stochastic heat equation with memory. In this
case, a similar stochastic equation with additive noise in materials with memory is studied in [38],
and the existence of pullback attractors is also established, while in [16], the existence and stability of
solutions for stochastic heat equations with multiplicative noise in materials with memory is proved.

Nevertheless, the previously cited references are concerned with equations with standard Laplace
operator, namely, α = 1 in equation (2.0.1). However, it is mentioned in [8] that some research on
classical diffusion equation may be inadequate to model many real situations, for instance, a particle
plume spreads faster than that predicted by the classical model, and may exhibit significant self-
organization phenomena or asymmetry, see details in [152]. In this case, these situations are called
anomalous diffusion. One popular model for anomalous diffusion is the fractional diffusion equation,
where the usual second derivative operator in space, i.e., the Laplacian operator −∆, is replaced by a
fractional derivative operator (−∆)α with 0 < α < 1. Indeed, equations with fractional derivative are
becoming a focus of interest since the fractional derivative and fractional integral have a wide range of
applications in physics, biology, chemistry, population dynamics, geophysical fluid dynamics, finance
and other fields of applied sciences. One meets them in the theory of systems with chaotic dynamics
(see [147, 175]); dynamics in a complex or porous medium [65, 150]; random walks with a memory
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and flights [79] and many other situations. When µ = 0, this is the case of no memory term, (2.0.1)
reduces to a fractional stochastic parabolic equation with noise. In this case, the ergodicity of a
stochastic fractional reaction-diffusion equation with additive noise is studied in [85], whereas the
existence of random attractor for a fractional stochastic reaction-diffusion equation is proved in [121]
under the assumption of α ∈ [ 1

2 , 1). However, as far as we know, there are no works dealing with
fractional stochastic reaction-diffusion equations with both white noise term and memory terms, and
this is the reason of the current investigation in this paper.

Inspired by [38, 85], we are devoted to investigating a stochastic fractional integro-differential
equation. More precisely, in this work, we analyze the well-posedness and dynamics of a fractional
stochastic reaction-diffusion equation with memory term, which is expressed by convolution integrals
and represent the past history of one or more variables. The main features of the present paper work
are summarized as follows: Both the fractional diffusion term (instead of standard diffusion term, i.e.,
−∆u) and the memory term are considered. Besides, the well-posedness is analyzed by a semigroup
method (see [139] for more information), which is different from the classical Faedo-Galerkin method
(see [160]). Then the existence of random attractor is established by a priori estimates and solutions
decomposition. Moreover, by using the method introduced by Debussche in [60], we obtain that the
random attractor has finite Hausdorff dimension.

2.1 Definitions and Basic Theory
Let (X, ‖ · ‖X) be a separable Hilbert space with the Borel σ−algebra B(X), and {θt : Ω → Ω, t ∈ R}
be a family of measure preserving transformations of a probability space (Ω,F , P).

In this chapter we need some theory of random dynamical systems. Since we introduced them in
Preliminaries I, all we need to do is to replace ω̃ by ω in Definition 0.0.1-0.0.4 as well as Proposition
0.0.7. Besides, we need to replace "cocycles" by "random dynamical systems" in this chapter, since
we only work on stochastic equation without time-dependent forcing term. We would also like to
mention that we only recall some notations and propositions that are particular for this chapter in
Section 2.1.

Definition 2.1.1. Let X be a metric space with a metric d. A set-valued map ω→ B(ω) taking values
in the closed/compact subsets of X is said to be a random closed/compact set in X if the mapping
ω 7−→ dist(x, B(ω)) is measurable for all x ∈ X, where d(x,D) := infy∈D d(x, y). A set-valued map
ω 7→ U(ω) taking values in the open subsets of X is said to be a random open set if ω 7→ Uc(ω) is a
random closed set, where Uc(ω) denotes the complement of U, i.e., Uc := X\U.

Definition 2.1.2. Let A be a linear operator on a Hilbert space X. For any m ∈ N, the m−dimensional
trace of A is defined as

Trm(A) = sup
Q

m∑
j=1

(Au j, u j)X,

where the supremum ranges over all possible orthogonal projections Q in X on the m−dimensional
space QX belonging to the domain of A, and {u1, u2, · · · , um} is an orthonormal basis of QX.
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Proposition 2.1.3. (See [122]) Let A(ω) be a compact measurable set which is invariant under a
random map Ψ(ω)(·), ω ∈ Ω, for some ergodic metric dynamical system (Ω,F , P, (θt)t∈R). Assume
that the following conditions are satisfied.

(i) Ψ(ω)(·) is almost surely uniformly differentiable on A(ω), that is, for every u, u + h ∈ A(ω),
there exists DΨ(ω, u) in L(X), the space of the bounded linear operators from X to X, such that

‖Ψ(ω)(u + h) − Ψ(ω)(u) − DΨ(ω, u)h‖ 6 k(ω)‖h‖1+ρ,

where ρ > 0 and k(ω) is a random variable satisfying k(ω) > 1 and E(ln k) < ∞.

(ii) ωd(DΨ(ω, u)) 6 ωd(ω) holds when u ∈ A(ω) and there is some random variableωd(ω) satisfying
E(ln(ωd)) < 0, where

ωd(DΨ(ω, u)) = α1(DΨ(ω, u)) · · ·αd(DΨ(ω, u)),

αd(DΨ(ω, u)) = sup
G⊂X,dimG6d

inf
v∈G,‖v‖X=1

‖DΨ(ω, u)v‖.

(iii) α1(DΨ(ω, u)) 6 α1(ω) holds when u ∈ A(ω) and there is a random variable α1(ω) > 1 with
E(lnα1) < ∞.

Then the Hausdorff dimension dH(A(ω)) ofA(ω) is less than d almost surely.

Throughout the work, we denote by A = (−∆)α (0 < α < 1) the fractional Laplace operator with
domain D(A) = H2α(O). With usual notation, we introduce the space Lp, Hk and Hk

0 acting on O. Let
‖ · ‖ and (·, ·) denote the norm and the inner product on the real Hilbert space L2(O), respectively, and
let ‖ · ‖p denote the Lp−norm. With abuse of notation, we use (·, ·) to denote also duality between Lp

and its dual space Lq.
The inner products on Hα(O), H2α(O) can be defined in the following manner:

(u, v)Hα(O) = ((−∆)
α
2 u, (−∆)

α
2 v)

and
(u, v)H2α(O) = ((−∆)αu, (−∆)αv).

Assuming µ(∞) = 0, set
g(s) = −µ′(s). (2.1.1)

In what follows, we take β = 2, γ = 1
2 for simplicity, and the following set of hypotheses are required:

(H1) g(·) ∈ C1(R+) ∩ L1(R+), g(s) > 0, g′(s) 6 0, g′(s) + δg(s) 6 0, ∀ s ∈ R+ and some δ > 0;

(H2) f (·) ∈ C1(R+), f (u)u > α1|u|p − α2, f ′(u) > −α3, | f (u)| 6 α4(1 + |u|p−1),
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where αi (i = 1, 2, 3, 4), p > 1 are positive numbers.
Note that (H1) implies the exponential decay of g(·). Nevertheless, it allows g(·) to have a singu-

larity at s = 0, whose order is less than 1, since g(·) is a non-negative L1−function.
Now, let L2

g(R+, L2(O)) be the Hilbert space of L2−valued functions on R+, endowed with the inner
product

(η1, η2)L2
g(R+,L2(O)) =

∫ ∞

0
g(s)

∫
O

η1(s, x) · η2(s, x)dxds.

Similarly on M := L2
g(R+,Hα(O)) and M1 := L2

g(R+,H2α(O)), respectively, we have the inner products

(η1, η2)L2
g(R+,Hα(O)) =

∫ ∞

0
g(s)

∫
O

(−∆)α/2η1(s, x) · (−∆)α/2η2(s, x)dxds

and
(η1, η2)L2

g(R+,H2α(O)) =

∫ ∞

0
g(s)

∫
O

(−∆)αη1(s, x) · (−∆)αη2(s, x)dxds,

where operators (−∆)α/2 and (−∆)α are considered with respect the spatial variable x ∈ O. In the
sequel, we will omit the variable x when no confusion is possible.

Finally, we introduce the Hilbert spaces

H = L2(O) × L2
g(R+,Hα(O))

and
V = Hα(O) × L2

g(R+,H2α(O)).

Using (2.1.1) and the classic variable change (1.2.2) (which is from Chapter 1), Eq. (2.0.1)-(2.0.3)
could be transform into

∂u
∂t

+ (−∆)αu +

∫ ∞

0
g(s)(−∆)αηt(s)ds + f (u) = k(x) + h(x)

dW
dt
, x ∈ O, t > 0, (2.1.2)

∂tη
t = −∂sη

t + u, x ∈ O, t > 0, s > 0, (2.1.3)

with boundary condition
u(x, t) = 0, x ∈ ∂O, t > 0, (2.1.4)

and initial condition

u(x, t) = u0(x, t), η0(x, s) = η0(x, s), x ∈ O, t 6 0, s > 0. (2.1.5)

And the term

η0(x, s) =

∫ s

0
u0(x, r)dr =

∫ 0

−s
u(x, r)dr, x ∈ O, s > 0,

is the prescribed initial integral past history of u(x, t), which does not depend on u0(x, t), and is
assumed to vanish on ∂O, as well as u(x, t). As a consequence it follows that

ηt(x, s) = 0, x ∈ ∂O, t > 0 and s > 0.
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Indeed, the above assertion is obvious if t > s, and if t < s we can write

ηt(x, s) = η0(x, s − t) +

∫ t

0
u(x, r)dr.

In order to present our results, let us write system (2.1.2)-(2.1.5) as a Cauchy problem. Denote
w(t) = (u(t), ηt), w0 = (u0, η0), and set

Lw = (−(−∆)αu −
∫ ∞

0
g(s)(−∆)αηt(s)ds, u − ∂sη

t).

and

F(w, θtω) = (k − f (u) + h
dW
dt
, 0).

Problem (2.1.2)-(2.1.5) can be written

dw
dt

= Lw + F(w, θtω) (2.1.6)

w(x, t) = 0, x ∈ ∂O, t > 0, (2.1.7)

w(x, t) = w0(x, t), x ∈ O, t 6 0. (2.1.8)

Now we present our main results of this paper.
Theorem 2.2.4 Assume that hypotheses (H1)-(H2) are satisfied and initial data (u0, η0) ∈ H . Then,
problem (2.1.6)-(2.1.8) possesses a unique mild solution in the class

u ∈ C([0,∞); L2(O)), and ηt ∈ C([0,∞); M). (2.1.9)

If initial data (u0, η0) ∈ D(L), then the solution is more regular, i.e., u ∈ C([0,∞); Hα(O)), and
ηt ∈ C([0,∞); M1). In addition, if w(t) = (u, ηt) and w̄(t) = (ū, η̄t) are two mild solutions of (2.1.6)-
(2.1.8), then for any T > 0,

‖w(t) − w̄(t)‖2
H
6 ecT ‖w(0) − w̄(0)‖2

H
, 0 6 t 6 T, (2.1.10)

where c > 0 is a constant independent of the initial data.
The proof of Theorem 2.2.4 is presented in Section 3 by means of semigroup arguments.
The next main result of our paper concerns the generation of a random dynamical system, the ex-

istence of the corresponding random attractor and its finite Hausdorff dimension. These are included
in Theorems 2.3.7 and 2.4.2 which are the content included in the theorem below (see Sections 4 and
5).
Theorem (See Theorem 2.3.7 and 2.4.2) Assume that k(·) ∈ L2(O) and that hypotheses (H1)-(H2)
hold with α ∈ [ 1

2 , 1) and p ∈ [2, 1 + 3
3−2α ). Then the random dynamical system Φ generated by (2.1.6)-

(2.1.8) possesses a random attractor A in H . Moreover, if the second derivative of f is bounded,
then the random attractor has finite Hausdorff dimension.
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2.2 Well-posedness
In this section, we show the existence, uniqueness and continuous dependence of mild solutions of
the problem (2.1.6)-(2.1.8).

Formally, if u solves Eq. (2.1.2), then the variable v(t) = u(t) − z(θtω) should satisfy

∂v
∂t

+ (−∆)αv +

∫ ∞

0
g(s)(−∆)αηt(s)ds + f (v + z) = k(x) + z − (−∆)αz.

with boundary condition and initial condition:

v(x, t) = 0, ηt(x, s) = 0, x ∈ ∂O, t > 0, v(x, t) = v0(x, t), η0(x, s) = η0(x, s), x ∈ O, s > 0, t 6 0,

where we use Ornstein-Uhlenbeck transformation, and z(θtω) is from (0.0.4).
Similarly, we can write the above system as a Cauchy problem. To this end, denote ϕ(t, ω, ϕ0) =

(v(t, ω, v0), ηt(ω, η0(·))) with v0 = u0 − z(ω), η0 = η0(·), we have the following compact form

dϕ
dt

= Lϕ + F(ϕ, θtω)

ϕ(0, ω, ϕ0) = (v0, η0(·)) := ϕ0,
(2.2.1)

where

Lϕ =

(
−(−∆)αv −

∫ ∞

0
g(s)(−∆)αηt(s)ds,−∂sη

t + v
)

(2.2.2)

and
F(ϕ, θtω) =

(
k − f (u) − (−∆)αz(θtω) + z(θtω), z(θtω)

)
. (2.2.3)

By the proof in [138], we obtain that the domain of T is

D(T ) = {ηt ∈ M|∂sη
t ∈ M, η(0) = 0}.

Since the domain of L is defined by

D(L) = {ϕ ∈ H|Lϕ ∈ H} ,

one has

D(L) =
{
(v, ηt) ∈ H | v ∈ L2(O), ηt ∈ D(T ), − (−∆)αv −

∫ ∞

0
g(s)(−∆)αηt(s)ds ∈ L2(O)

}
.

We begin with the following lemma, which is an important step to prove the existence of mild
solution of problem (2.2.1).

Lemma 2.2.1. Operator L is the infinitesimal generator of a C0−semigroup of contractions eLt inH .
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Proof. We show that L is m-dissipative inH . By (H1) and the definition of Lϕ, we infer that

(Lϕ, ϕ) = −‖(−∆)
α
2 v‖2 +

1
2

∫ ∞

0
g′(s)‖(−∆)

α
2 ηt(s)‖2ds 6 0,

for all ϕ = (v, ηt) ∈ D(L). This proves that L is dissipative inH .
Next we show that L is maximal, that is, for each F ∈ H , there exists a solution ϕ ∈ D(L) of

(I − L)ϕ = F.

Equivalently, for each F = ( f1, f2) ∈ H , there exists ϕ = (v, ηt) ∈ D(L) such that

v + (−∆)αv +

∫ ∞

0
g(s)(−∆)αηt(s)ds = f1, (2.2.4)

ηt − v + ∂sη
t = f2. (2.2.5)

To solve system (2.2.4)-(2.2.5), we first multiply (2.2.5) by es and integrate over (0, s). Then,

ηt = v(1 − e−s) +

∫ s

0
eτ−s f2(τ)dτ. (2.2.6)

Including (2.2.6) into (2.2.4) we obtain, by denoting k1 =
∫ ∞

0
g(s)(1 − e−s)ds,

v + (−∆)αv + k1(−∆)αv = f1 −

∫ ∞

0
g(s)

∫ s

0
eτ−s(−∆)α f2(τ)dτds. (2.2.7)

In order to solve equation (2.2.7) we define the bilinear form

a(w1,w2) =

∫
O

w1w2dx +

∫
O

(−∆)
α
2 w1 · (−∆)

α
2 w2dx + k1

∫
O

(−∆)
α
2 w1 · (−∆)

α
2 w2dx, w1,w2 ∈ Hα(O).

It is easy to check that a(w1,w2) is continuous and coercive in Hα(O). And we have

Hα(O) ↪→ L2(O) ↪→ H−α(O).

We now aim at applying the Lax-Milgram theorem. It suffices to prove that the right hand side of
(2.2.7) is an element of H−α(O). Obviously,

f1 ∈ H−α(O).

Let f ∗ denote the last term in (2.2.7), and we only need to show that f ∗ ∈ H−α(O). We apply arguments
similar to those used by Giorgi [76]. For w ∈ Hα(O) with ‖(−∆)

α
2 w‖ 6 1,∣∣∣( f ∗,w)H−α,Hα

∣∣∣ =

∣∣∣∣∣∣
∫ ∞

0
g(s)

∫ s

0
eτ−s

(∫
O

(−∆)
α
2 f2(τ)(−∆)

α
2 wdx

)
dτds

∣∣∣∣∣∣
6

∫ ∞

0
eτ‖(−∆)

α
2 f2(τ)‖

∫ ∞

τ

g(s)e−sdsdτ

6

∫ ∞

0
eτg(τ)‖(−∆)

α
2 f2(τ)‖

∫ ∞

τ

e−sdsdτ

=

∫ ∞

0
g(τ)‖(−∆)

α
2 f2(τ)‖dτ < ∞,
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which implies that f ∗ ∈ H−α(O). Then, thanks to Lax-Milgram’s theorem, Eq. (2.2.7) has a weak
solution

ṽ ∈ Hα(O).

Now, in view of (2.2.5), it follows

η̃t(s) = ṽ(1 − e−s) +

∫ s

0
f2(τ)eτ−sdτ.

Let us show that η̃t ∈ M. From (2.2.6), taking into account that ṽ ∈ Hα(O), we obtain

‖(−∆)
α
2 η̃t(s)‖2 6 ‖(−∆)

α
2 ṽ‖2 +

∫ s

0
eτ−s‖(−∆)

α
2 f2(τ)‖2dτ.

Then, as above in the proof of f ∗,∫ ∞

0
g(s)‖(−∆)

α
2 η̃t(s)‖2ds 6 k0‖(−∆)

α
2 ṽ‖2 +

∫ ∞

0
g(s)

∫ s

0
eτ−s‖(−∆)

α
2 f2(τ)‖2dτds

6 k0‖(−∆)
α
2 ṽ‖2 +

∫ ∞

0
g(τ)‖(−∆)

α
2 f2(τ)‖2dτ

6 k0‖(−∆)
α
2 ṽ‖2 + ‖ f2(τ)‖2M < ∞,

and hence η̃t ∈ M. It follows that
ϕ̃ = (ṽ, η̃t) ∈ H

is a weak solution of (2.2.4)-(2.2.5).
To complete the proof of maximality of L we prove that ϕ̃ ∈ D(L). Indeed, from (2.2.5) we see

that
∂sη̃

t = f2 + ṽ − η̃t ∈ M.

Obviously η̃(0) = 0, we conclude that η̃t ∈ D(T ). By inspection of (2.2.4) we find that

(−∆)αṽ +

∫ ∞

0
g(s)(−∆)αη̃t(s)ds = −ṽ + f1 ∈ L2(O).

Therefore (ṽ, η̃) ∈ D(L). �

Lemma 2.2.2. The operator F : H → H defined in (2.2.3) is locally Lipschitz continuous.

Proof. Let B be a bounded set inH and ϕ, ϕ̄ ∈ B. Writing ϕ = (v, ηt), ϕ̄ = (v̄, η̄t) and using (H2), one
obtains

‖F(ϕ, θtω) − F(ϕ̄, θtω)‖2
H

= ‖ f (ϕ̄) − f (ϕ)‖22

=

∫
O

| f (v̄ + z) − f (v + z) |2 dx

=

∫
O

| − f
′

· (v − v̄) |2 dx

6

∫
O

| α3(v − v̄) |2 dx

6 α2
3‖v − v̄‖2

6 α2
3‖ϕ − ϕ̄‖

2
H
.
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�

To complete the existence of solution, we still need the following lemma.

Lemma 2.2.3. Assume that (H1)-(H2) hold. Then for any fixed T > 0, the solution ϕ of problem
(2.2.1) satisfies the following inequality:

‖ϕ(t, ω, ϕ0)‖2
H
6 ‖ϕ0‖

2
H

+ c
∫ T

0
eλs(‖z(θsω)‖2 + ‖z(θsω)‖p

p + ‖(−∆)
α
2 z(θsω)‖2)ds

+ c(eλT − 1), ∀t ∈ [0,T ].

Proof. Taking the inner product of (2.2.1) with ϕ inH yields

1
2

d
dt
‖ϕ‖2

H
= (Lϕ, ϕ)H + (F(ϕ, θtω), ϕ)H , (2.2.8)

where

(Lϕ, ϕ)H = −‖(−∆)
α
2 v‖2 −

∫ ∞

0
g(s)

∫
O

(−∆)
α
2 ηt · (−∆)

α
2 vdxds + (−∂sη

t + v, ηt)M. (2.2.9)

From (H1), we have

(−∂sη
t + v, ηt)M =

1
2

∫ ∞

0
g
′

(s)‖(−∆)
α
2 ηt‖2ds +

∫ ∞

0
g(s)

∫
O

(−∆)
α
2 v · (−∆)

α
2 ηtdxds

6 −
δ

2

∫ ∞

0
g(s)‖(−∆)

α
2 ηt‖2ds +

∫ ∞

0
g(s)

∫
O

(−∆)
α
2 v · (−∆)

α
2 ηtdxds.

(2.2.10)

On the other hand,

(F(ϕ, θtω), ϕ)H =

∫
O

(
k − f (u) − (−∆)αz + z

)
vdx + (z, ηt)M. (2.2.11)

By Hölder’s inequality and Young’s inequality, we obtain

(z, ηt)M =

∫ ∞

0
g(s)

∫
O

(−∆)
α
2 z · (−∆)

α
2 ηtdxds 6

δ

4
‖ηt‖2M + c‖(−∆)

α
2 z‖2. (2.2.12)

From (H2), and Young’s inequality,

−

∫
O

f (u)vdx 6 −
α1

2
‖u‖p

p + c(1 + ‖z‖2 + ‖z‖p
p),∫

O

kvdx 6
λ1

8
‖v‖2 +

2‖k‖2

λ1
,

(−(−∆)αz, v) 6
1
2
‖(−∆)

α
2 v‖2 +

1
2
‖(−∆)

α
2 z‖2,

(z, v) 6
λ1

8
‖v‖2 +

2
λ1
‖z‖2.

(2.2.13)
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It follows from (2.2.8)-(2.2.13) that

d
dt
‖ϕ‖2

H
+ ‖(−∆)

α
2 v‖2 +

δ

2
‖ηt‖2M + α1‖u‖p

p 6
λ1

2
‖v‖2 + c(1 + ‖z‖2 + ‖z‖p

p + ‖(−∆)
α
2 z‖2).

By Young’s inequality with 1
p/2 + 1

p/(p−2) = 1, we obtain

λ1‖v‖2 6
α1

2p ‖v‖
p
p + c|O| 6 α1‖u‖p

p + c(1 + ‖z‖p
p).

Take λ = min{λ1
2 ,

δ
2 }, then

d
dt
‖ϕ‖2

H
+ λ‖ϕ‖2

H
+ ‖(−∆)

α
2 v‖2 6 c(1 + ‖z‖2 + ‖z‖p

p + ‖(−∆)
α
2 z‖2). (2.2.14)

By the Gronwall lemma,

‖ϕ(t, ω, ϕ0(ω))‖2
H
6 e−λt‖ϕ0(ω)‖2

H
+ c

∫ t

0
eλ(s−t)

(
1 + ‖z(θsω)‖2 + ‖z(θsω)‖p

p

+ ‖(−∆)
α
2 z(θsω)‖2

)
ds.

(2.2.15)

Notice that z(θtω) is continuous in t, for any fixed T > 0 and t ∈ [0,T ]. Then, we obtain

‖ϕ(t, ω, ϕ0(ω))‖2
H
6 ‖ϕ0(ω)‖2

H
+ c

∫ T

0
eλs

(
‖z(θsω)‖2 + ‖z(θsω)‖p

p

+ ‖(−∆)
α
2 z(θsω)‖2

)
ds + c(eλT − 1) < ∞.

The proof is completed. �

Theorem 2.2.4. (Well-posedness) Assume that hypotheses (H1)-(H2) are satisfied and initial data
(u0, η0) ∈ H . Then, problem (2.1.6)-(2.1.8) possesses a unique mild solution in the class

u ∈ C([0,∞); L2(O)), and ηt ∈ C([0,∞); M). (2.2.16)

If initial data (u0, η0) ∈ D(L), then the solution is more regular, i.e., u ∈ C([0,∞); Hα(O)), and
ηt ∈ C([0,∞); M1). In addition, if w(t) = (u, ηt) and w̄(t) = (ū, η̄t) are two mild solutions of (2.1.6)-
(2.1.8), then for any T > 0,

‖w(t) − w̄(t)‖2
H
6 ecT ‖w(0) − w̄(0)‖2

H
, 0 6 t 6 T, (2.2.17)

where c > 0 is a constant independent of the initial data.

Proof. From Lemma 2.2.1 and 2.2.2, and Lumer-Phillip’s theorem (see for instance Pazy [139], The-
orem 6.1.4 and 6.1.5), problem (2.2.1) has a unique local mild solution

ϕ(t, ω, ϕ0) = eLtϕ0(ω) +

∫ t

0
eL(t−r)F(ϕ(r, ω, ϕ0), θrω)dr (2.2.18)
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defined in [0,T ].
Let us prove that T = ∞. Indeed, Lemma 2.2.3 implies that the local solution (v, ηt) cannot

blow-up in finite time and thus T = ∞. Hence, problem (2.2.1) has a global solution ϕ(·, ω, ϕ0) ∈
C([0,∞),H) with ϕ(0, ω, ϕ0) = ϕ0(ω) for all t > 0. Then, (2.2.16) holds. Moreover, the continuity
with respect to initial data, i.e. Eq. (2.2.17), follows from the representation formula (2.2.18) and the
Lipschitz property of F. �

Note that u(t, ω, u0) = v(t, ω, u0 − z(ω)) + z(θtω). Then the process φ = (u, ηt) is the solution of
problem (2.0.1)-(2.0.3). We now define a mapping Φ : R+ ×Ω ×H → H by

Φ(t, ω)φ0 = φ(t, ω, φ0)
=

(
u(t, ω, u0), ηt(ω, η0)

)
=

(
v(t, ω, u0 − z(ω)) + z(θtω), ηt(ω, η0)

)
, for all (t, ω, φ0) ∈ R+ ×Ω ×H .

(2.2.19)

It is not difficult to check that Φ is a continuous random dynamical system associated to Eq.(2.0.1).
In the next section, we establish uniform estimates for the solutions of problem (2.0.1)-(2.0.3) and
prove the existence of a random attractor for Φ.

2.3 Existence of random attractor
In this section we prove the existence of random attractor for our problem. We begin with the uniform
estimates of solutions that will be necessary for our analysis.

2.3.1 A priori estimates
Now, we first prove the existence of random absorbing sets for the RDS Φ, which is necessary to
establish the existence of random attractors. From now on, we always assume thatD is the collection
of all tempered subsets of H with respect to (Ω,F , P, (θt)t∈R). The next lemma shows that Φ has a
random absorbing set inH .

Lemma 2.3.1. Assume that (H1)− (H2) hold. Then there exists a random absorbing set {K(ω)}ω∈Ω ∈
D for Φ inH , i.e., for any B = {B(ω)}ω∈Ω ∈ D and P − a.e. ω ∈ Ω, there is T1B(ω) > 0 such that

Φ(t, θ−tω)B(θ−tω) ⊂ K(ω), ∀ t > T1B(ω).

Proof. The process is similar to that of Lemma 2.2.3 with slight modifications. We only sketch it. We
first derive uniform estimates on ϕ(t, ω, ϕ0) = (v(t, ω, v0), ηt(ω, η0)) = (u(t, ω, u0) − z(θtω), ηt(ω, η0)),
from which the uniform estimates on φ = (u(t, ω, u0), ηt(ω, η0)) follow immediately. Multiply (2.2.14)
by eλt and integrate over [0, t] to obtain

‖ϕ(t, ω, ϕ0)‖2
H

+

∫ t

0
eλ(s−t)‖(−∆)

α
2 v(s, ω, v0(ω))‖2ds

6 e−λt‖ϕ0(ω)‖2
H

+ c
∫ t

0
eλ(s−t)(1 + β(θsω))ds,

(2.3.1)
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where

β(θtω) := ‖z(θtω)‖2 + ‖z(θtω)‖p
p + ‖(−∆)

α
2 z(θtω)‖2 6 r(θtω),

and r(θtω) satisfies

r(θtω) 6 e
λ
2 |t|r(ω), t ∈ R.

Replacing ω by θ−tω in (2.3.1) yields

‖ϕ(t, θ−tω, ϕ0(θ−tω))‖2
H

+

∫ t

0
eλ(s−t)‖(−∆)

α
2 v(s, θ−tω, v0(θ−tω))‖2ds

6 e−λt‖ϕ0(θ−tω)‖2
H

+ c
∫ t

0
eλ(s−t)(1 + β(θs−tω))ds

6 e−λt‖ϕ0(θ−tω)‖2
H

+ c
∫ 0

−t
eλse−

λ
2 sr(ω)dr + c(1 − e−λt)

6 e−λt‖ϕ0(θ−tω)‖2
H

+
cr(ω)
λ

(1 − e−
λ
2 t) + c.

(2.3.2)

Note that Φ(t, ω)φ0(ω) = φ(t, ω, φ0(ω)) = (v(t, ω, u0 − z(ω)) + z(θtω), ηt(ω, η0)). Consequently, from
(2.3.2), we have, for all t > 0,

‖Φ(t, θ−tω)φ0(θ−tω)‖2
H

= ‖v(t, θ−tω, u0(θ−tω) − z(θ−tω)) + z(ω)‖2 + ‖ηt(θ−tω, η0(θ−tω))‖2M
6 2‖v(t, θ−tω, u0(θ−tω) − z(θ−tω))‖2 + 2‖z(ω)‖2 + ‖ηt(θ−tω, η0(θ−tω))‖2M
6 2e−λt(‖u0(θ−tω) − z(θ−tω)‖2 + ‖η0(θ−tω)‖2M) + cr(ω) + c + 2‖z(ω)‖2

6 4e−λt(‖u0(θ−tω)‖2 + ‖η0(θ−tω)‖2M + ‖z(θ−tω)‖2) + cr(ω) + c + 2‖z(ω)‖2

= 4e−λt(‖φ0(θ−tω)‖2
H

+ ‖z(θ−tω)‖2) + cr(ω) + c + 2‖z(ω)‖2.

(2.3.3)

Since φ0(θ−tω) ∈ B(θ−tω)(∈ D) and ‖z(ω)‖2 is tempered, there exists T1B(ω) > 0, such that for all
t > T1B(ω),

4e−λt(‖φ0(θ−tω)‖2
H

+ ‖z(θ−tω)‖2) 6 cr(ω) + c,

which along with (2.3.3) shows that, for all t > T1B(ω),

‖Φ(t, θ−tω)φ0(θ−tω)‖2
H
6 c(1 + r(ω) + ‖z(ω)‖2) := R0(ω). (2.3.4)

Given ω ∈ Ω, denote by

K(ω) =
{
φ ∈ H : ‖φ(t, θ−tω, φ0(θ−tω))‖2

H
6 R0(ω)

}
.

It is obviously that {K(ω)}ω∈Ω ∈ D. Further, (2.3.4) indicates that {K(ω)}ω∈Ω is a random absorbing
set for Φ inH , which completes the proof. �
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We next derive uniform estimates for u in Hα(O).

Lemma 2.3.2. Assume that (H1) − (H2) hold. Let B = {B(ω)}ω∈Ω ∈ D. Then there exists T2B(ω) >
T1B(ω), such that for all t > T2B(ω) and P − a.e. ω ∈ Ω, it follows∫ t+1

t
eλ(s−t)‖(−∆)

α
2 u(s, θ−t−1ω, u0(θ−t−1ω))‖2ds 6 cR0(ω),

where R0(ω) is defined as in Lemma 2.3.1.

Proof. By a similar procedure as it was done in Lemma 4.3 in [11], we can obtain∫ t+1

t
‖(−∆)

α
2 v(s, θ−t−1ω, v0(θ−t−1ω))‖2ds 6 c(1 + r(ω)).

On the other hand,

‖(−∆)
α
2 u(s, θ−t−1ω, u0(θ−t−1ω))‖2 = ‖(−∆)

α
2 v(s, θ−t−1ω, v0(θ−t−1ω)) + (−∆)

α
2 z(θs−t−1ω)‖2

6 2‖(−∆)
α
2 v(s, θ−t−1ω, v0(θ−t−1ω))‖2 + 2‖(−∆)

α
2 z(θs−t−1ω)‖2 for all t > 0.

(2.3.5)

Integrating inequality (2.3.5) with respect to s over [0, t], one can check that there exists T2B(ω) >
T1B(ω), such that for all t > T2B(ω) we have∫ t+1

t
‖(−∆)

α
2 u(s, θ−t−1ω, u0(θ−t−1ω))‖2ds 6 c(1 + r(ω) + ‖z(ω)‖2).

The proof is therefore completed. �

In order to show the existence of random attractor for Φ associated with the problem (2.0.1)-
(2.0.3), we need to prove the existence of compact measurable attracting set of Φ.

2.3.2 Asymptotic compactness
In this subsection, our main purpose is to obtain a random compact attracting set of Φ. To this end,
we decompose the solution of (2.2.1) into a sum of two parts: one decays exponentially and the other
is bounded in a “higher regular" space by using the method in [81], and obtain some a priori estimates
for the solutions, which are the basis to construct a compact measurable attracting set for Φ. More
precisely, we split the solution ϕ to (2.2.1) as the sum ϕ = ϕL + ϕN , where ϕL = ϕL(t, ω, ϕ0) = (vL, η

t
L)

and ϕN = ϕN(t, ω, ϕ0) = (vN , η
t
N) satisfy, respectively,{
∂tϕL = LϕL,
ϕL(t, ω, ϕ0) = ϕ0L(ω) = (v0, η0), s > 0, (2.3.6)

and {
∂tϕN = LϕN + F(ϕ, θtω),
ϕN(t, ω, ϕ0) = (0, 0), s > 0. (2.3.7)
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First we have to show that ϕL has an exponential decay, that is,

‖ϕL(t, θ−tω, ϕ0L(θ−tω))‖2
H
6 e−λt‖ϕ0(θ−tω)‖2

H
, ∀ ϕ0(θ−tω) ∈ H . (2.3.8)

It is apparent that the solution ϕL to (2.3.6) fulfills the estimates (2.3.2) with c = 0, namely,

‖ϕL(t, θ−tω, ϕ0L(θ−tω))‖2
H
6 e−λt‖ϕ0L(θ−tω)‖2

H
= e−λt‖ϕ0(θ−tω)‖2

H
. (2.3.9)

Note that φL = ϕL, we have

‖φL(t, θ−tω, φ0L(θ−tω))‖2
H
6 e−λt‖φ0(θ−tω)‖2

H
. (2.3.10)

Since

‖φN(t, θ−tω, 0)‖2
H
6 2‖φ(t, θ−tω, φ0(θ−tω))‖2

H
+ 2‖φL(t, θ−tω, φ0L(θ−tω))‖2

H
,

we also have

‖φN(t, θ−tω, 0)‖2
H
6 10e−λt‖φ0(θ−tω)‖2

H
+ c(1 + r(ω)). (2.3.11)

For further reference, we denote by ηt
N(ω, η0) the second component of the solution φN to (2.3.6) at

time t with initial time 0 and initial value φ(0, ω, φ0) = φ0(ω). Observe that ηt
N can be computed

explicitly from the second component of (2.3.7) and the zero boundary data as follows:

ηt
N(ω, η0) =


∫ s

0
uN(t − r)dr, 0 < s 6 t,∫ t

0
uN(t − r)dr, s > t.

(2.3.12)

Our goal is to build a compact attracting set for the random dynamical system Φ.

Lemma 2.3.3. Assume that (H1)-(H2) hold, α ∈ [ 1
2 , 1) and p ∈ [2, 1 + 3

3−2α ). Then there exists
T3B(ω) > T2B(ω), such that for all t > T3B(ω) and P-a.e. ω ∈ Ω, it follows

‖φN(t, θ−tω, 0)‖2V +
1
2

∫ t

0
eλ(s−t)‖(−∆)αvN(s, θ−t−1ω, 0)‖2ds 6 R1(ω),

where R1(ω) := c
(
1 + C(λ)

(
R2

0(ω) + R0(ω) + r(ω) + 1
))

.

Proof. First we take the inner product of the first part of (2.3.7) with (−∆)αvN in L2(O) to deduce

1
2

d
dt
‖(−∆)

α
2 vN‖

2 = −‖(−∆)αvN‖
2 −

∫ ∞

0
g(s)

∫
O

(−∆)αηt
N · (−∆)αvNdxds

+

∫
O

(k − f (u) − (−∆)αz + z) · (−∆)αvNdx.
(2.3.13)
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Using (H2), Lemma A.1.7 and Young’s inequality, we obtain

−

∫
O

f (u)(−∆)αvNdx 6
1
8
‖(−∆)αvN‖

2 + c‖1 + |u|p−1‖2

6
1
8
‖(−∆)αvN‖

2 + c + c‖u‖2p−2
2p−2

6
1
8
‖(−∆)αvN‖

2 + c + c‖(−∆)
α
2 u‖ζ‖u‖1−ζ

6
1
8
‖(−∆)αvN‖

2 + c + c(1 + ‖(−∆)
α
2 u‖2)(1 + ‖u‖2),

(2.3.14)

where ζ = 3
2α ( p−2

p−1 ).
On the other hand, by Young’s inequality, we have∫

O

(k(x) − (−∆)αz) · (−∆)αvNdx 6
3
8
‖(−∆)αvN‖

2 + c(1 + ‖(−∆)αz‖2),∫
O

z · (−∆)αvNdx 6
λ1

4
‖(−∆)

α
2 vN‖

2 +
1
λ1
‖(−∆)

α
2 z‖2.

By the precedent inequalities,

1
2

d
dt
‖(−∆)

α
2 vN‖

2 =
λ1

4
‖(−∆)

α
2 vN‖

2 −
1
2
‖(−∆)αvN‖

2 −

∫ ∞

0
g(s)

∫
O

(−∆)αηt
N · (−∆)αvNdxds

+ c(1 + ‖(−∆)
α
2 u‖2)(1 + ‖u‖2) + c(1 + ‖(−∆)

α
2 z‖2 + ‖(−∆)αz‖2).

(2.3.15)

Taking now the inner product of the second part of (2.3.7) with (−∆)2αηt
N , and thanks to similar

computations as above,

1
2

d
dt
‖(−∆)2αηt

N‖
2
M1

= −

∫ ∞

0
g(s)

∫
O

ηt
N,s · (−∆)2αηt

Ndxds +

∫ ∞

0
g(s)

∫
O

v · (−∆)2αηt
Ndxds

+

∫ ∞

0
g(s)

∫
O

z · (−∆)2αηt
Ndxds

6 −
δ

4

∫ ∞

0
g(s)‖(−∆)αηt

N‖
2ds −

∫ ∞

0
g(s)

∫
O

(−∆)αv · ∆ηt
Ndxds + c‖(−∆)αz‖2.

(2.3.16)

Adding (2.3.15) and (2.3.16),

d
dt
‖ϕN‖

2
V +

δ

2
‖(−∆)αηt

N‖
2
M1

+ ‖(−∆)αvN‖
2

6
λ1

2
‖(−∆)

α
2 vN‖

2 + cp(θtω) + c(1 + ‖(−∆)
α
2 u‖2)(1 + ‖u‖2) + c,

Using Gagliardo-Nirenberg’s inequality A.1.7,

λ1‖(−∆)
α
2 vN‖

2 6
1
2
‖(−∆)αvN‖

2 + c‖vN‖
2.
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Taking λ = min{λ1
2 ,

δ
2 }, by the previous inequalities we have

d
dt
‖ϕN‖

2
V + λ‖ϕN‖

2
V +

1
2
‖(−∆)αvN‖

2 6 cp(θtω) + c(1 + ‖(−∆)
α
2 u‖2)(1 + ‖u‖2) + c‖vN‖

2 + c, (2.3.17)

where p(θtω) = (1 + ‖(−∆)
α
2 z(θtω)‖2 + ‖(−∆)αz(θtω)‖2).

On the one hand, Lemma 2.3.1 and Lemma 2.3.2 ensure that there exists T3B(ω) > T2B(ω) such
that for all t > T3B(ω),∫ t+1

t
(1 + ‖(−∆)

α
2 u(s, θs−t−1ω, u0(θ−t−1ω))‖2)(1 + ‖u(s, θs−t−1ω, u0(θ−t−1ω))‖2)ds

+

∫ t+1

t
‖vN(s, θs−t−1ω, v0(θ−t−1ω))‖2ds +

∫ t+1

t
p(θs−t−1ω)ds

6 cR2
0(ω) + cR0(ω) + cr(ω) + c.

Then, by Lemma A.1.7 and Lemma A.1.8 we can prove that for all t > T3B(ω),

‖φN(t, θ−tω, 0)‖2V +
1
2

∫ t

0
eλ(s−t)‖(−∆)αvN(s, θ−t−1ω, 0)‖2ds

6 c
(
1 + C(λ)

(
R2

0(ω) + R0(ω) + r(ω) + 1
))

:= R1(ω),

as claimed. �

Remark 2.3.4. Notice that, unlike the previous results, we are imposing now some restrictions on
the values of α and p in Lemma 2.3.3. Indeed, the constant ζ = 3

2α ( p−2
p−1 ), appearing in (2.3.14), must

belong to the interval (0, 1), and this implies that, for a given α ∈ [ 1
2 , 1), p has to belong to the interval

[2, 1 + 3
3−2α ) (see Figure 1 below). We would like to emphasize that the statement in Lemma 2.3.3 also

holds true for α ∈ (0, 1
2 ), but as we will need to impose α ∈ [ 1

2 , 1) in Lemma 2.3.6 to ensure asymptotic
compactness of our random dynamical system, we prefer to state it in this way.

Remark 2.3.5. Caraballo et al. [38] proved the existence of a random attractor for random dynam-
ical systems associated to (2.0.1) with α = 1 and p > 1, while [55] investigated the deterministic
version of (2.0.1) (i.e. h(x) = 0) with α = 1 dealing with global attractors for the whole range p < 4.
And in [121], authors considered (2.0.1) with µ = 0 in the whole space Rn, they assume that p > 1
and α ∈ [ 1

2 , 1) hold, and proved random attractor in L2(Rn).

We now are in the position to finalize the proof of the existence of a random attractor.

Lemma 2.3.6. Assume that (H1) − (H2) hold, α ∈ [ 1
2 , 1) and p ∈ [2, 1 + 3

3−2α ). Denote by

N =
⋃

η0∈K(θ−tω)

⋃
t>T3B(ω)

⋃
ω∈Ω

ηt
N(θ−tω, η0),

where {K(ω)}ω∈Ω is defined in Lemma 2.3.1 and T3B(ω) is defined in Lemma 2.3.3. Then N is rela-
tively compact in L2

g(R+,Hα(O)).
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Figure 2.1: α > f (p) = 3
2 (1 − 1

p−1 )

Proof. It is clear from Lemma 2.3.3 thatN is bounded in L2
g(R+,H2α(O)). Let ηt

N ∈ N . The derivative
of (2.3.12) yields

∂

∂s
ηt

N =

{
uN(t − s), 0 < s 6 t,
0, s > t. (2.3.18)

Thus ∫ ∞

0
g(s)

∥∥∥∥∥ ∂∂s
ηt

N

∥∥∥∥∥2

ds =

∫ t

0
g(s)‖uN(t − s)‖2ds =

∫ t

0
g(t − s)‖uN(s)‖2ds

6 g(0)
∫ t

0
eλ(s−t)‖uN(s)‖2ds < ∞.

(2.3.19)

We then conclude that N is bounded in L2
g(R+,H2α(O)) ∩ H1

g(R+, L2(O)). Moreover, we can verify
that, for every ηt ∈ N ,

sup
ηt∈N ,s>0

‖∇ηt‖2 =

 s ·
∫ t

t−s
‖∇uN(r)‖2dr, 0 < s 6 t,

s ·
∫ t

0
‖∇uN(r)‖2dr, s > t.

By the embedding H2α(O) ↪→ H1
0(O), we find that

sup
ηt∈N ,s>0

‖∇ηt‖2 6 seλs ·

∫ t

0
eλ(r−t)‖(−∆)αuN(r)‖2dr := h(s), t > 0.

Consequently, from Lemma 2.3.3 and the relation u = v + z, it is obvious that∫ ∞

0
g(s)‖∇ηt(s)‖2ds 6

∫ ∞

0
sg(s)eλsds

∫ t

0
eλ(r−t)‖(−∆)αuN(r)‖2dr < ∞,
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which shows that N ⊂ L2
g(R+,Hα(O)) is a bounded set and h(s) ∈ L1

g(R+). Using A.1.10, the proof
can be completed immediately. �

Now we restate our main result about existence of random attractor for the RDS Φ:

Theorem 2.3.7. Assume that (H1)− (H2) hold, α ∈ [1
2 , 1) and p ∈ [2, 1+ 3

3−2α ). Then for every ω ∈ Ω,
the random dynamical system Φ associated with Eq. (2.0.1) possesses a compact random attracting
set K̃(ω) ⊂ H and possesses a random attractor A = {A(ω)}ω∈Ω with A(ω) = K̃(ω) ∩ K(ω), where
K = {K(ω)}ω∈Ω is defined in Lemma 2.3.1.

Proof. Let BV(ω) be the closed ball in V = Hα(O) × L2
g(R+; H2α(O)) of radius R1(ω). Setting

K̃(ω) = BV(ω) × N with N is the closure of N , which is defined in Lemma 2.3.6. Since Hα(O) ↪→
L2(O) is compact and N is compact in L2

g(R+; Hα(O)). Thus, K̃(ω) is compact in H with H =

L2(O) × L2
g(R+; Hα(O)). Now we show the following attracting property of K̃(ω) holds for every

B = {B(ω)}ω∈Ω ∈ D, i.e.,
lim

t→+∞
distH

(
Φ(t, θ−tω)B(θ−tω), K̃(ω)

)
= 0. (2.3.20)

By Lemma 2.3.1, there exits t∗ = t∗(B) > 0 such that

Φ(t, θ−tω)B(θ−tω) ⊂ K(ω), ∀t > t∗, (2.3.21)

where K = {K(ω)}ω∈Ω is the absorbing set for Φ inH .
Setting t = t̃ + t∗ + t1 > 0, and using the cocycle properties, we deduce that

Φ(t, θ−tω)B(θ−tω) = Φ(t − t∗ − t1, θt∗+t1θ−tω) ◦ Φ(t∗ + t1, θ−tω)B(θ−tω)
⊂ Φ(t̃, θ−t̃ω)K(ω).

(2.3.22)

Pick any φ(t, θ−tω, φ0(θ−tω)) ∈ Φ(t, θ−tω)B(θ−tω) for t > t∗ + t1 > 0. Applying now Lemma 2.3.3 with
T3B(ω) = t∗ + t1 implies

‖(−∆)
α
2 uN‖

2 6 ‖φN‖
2
V 6 c(R1(ω) + ‖(−∆)

α
2 z(ω)‖2).

It is then clear that φN = (uN , η
t
N) ∈ K̃(ω). Therefore, from (2.3.10),

inf
m∈K̃(ω)

‖φ(t) − m‖H 6 ‖φL‖H 6 e−
λ
2 t‖φ0(θ−tω)‖H , ∀ t > t∗ + t1.

We conclude that

distH
(
Φ(t, θ−tω)B(θ−tω), K̃(ω)

)
6 e−

λ
2 t‖φ0(θ−tω)‖H → 0, as t → +∞.

The proof follows immediately from Proposition 0.0.7. �
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2.4 Finite Hausdorff dimension
In this section, we prove that the random attractorA(ω), whose existence has been proved in Section
2.3, has finite Hausdorff dimension. To this end, we need the following condition on f :

| f ′′(u)| 6 β1, for some β1 > 0. (2.4.1)

Set Φ(ω) = Φ(1, ω) and consider the following first variant equation of equation (2.1.6),

dW̃
dt

= LW̃ + F′(W̃, θtω)W̃, (2.4.2)

with
W̃(x, t) = W̃0(x, t) = h, t 6 0, (2.4.3)

F
′

(W̃, θtω)W̃ = (− f
′

(u)U(t), 0) (2.4.4)

and

LW̃ = (−(−∆)αU −
∫ ∞

0
g(s)(−∆)αV(s)ds,U − Vs), (2.4.5)

where W̃ = (U(t),V(t)) with U(t), V(t) are the derivative of u(t), ηt of problem (2.1.6), respectively.

Lemma 2.4.1. Assume that (H1)− (H2) hold, α ∈ [1
2 , 1) and p ∈ [2, 1 + 3

3−2α ), and (2.4.1) is fulfilled.
Then the mapping Φ(ω) is almost surely uniformly differentiable on A(ω): P-a.e. ω ∈ Ω, for every
w ∈ A(ω), there exists a bounded linear operator DΦ(ω,w) such that if w and w + h are in A(ω),
there holds

‖Φ(ω)(w + h) − Φ(ω)(w) − DΦ(ω,w)h‖H 6 k(ω)‖h‖1+ρ

H
,

where ρ > 0 and k(ω) is a random variable such that

k(ω) > 1, E(ln k) < ∞, ω ∈ Ω.

Moreover, for any w ∈ A(ω), DΦ(ω,w)h = W̃(1), where W̃(t) is the solution of Eq.(2.4.2).

Proof. Let w = (u(t), ηt), w̄ = (ū(t), η̄t) be solutions to Eq.(2.1.6) with initial data w(0) = w0, w̄(0) =

w̄0 and w0 − w̄0 = h. Then Y = w − w̄ satisfies the following problem

dY
dt

= LY + F(w, θtω) − F(w̄, θtω) (2.4.6)

with F(w, θtω) − F(w̄, θtω) = ( f (ū) − f (u), 0) and Y0 = w0 − w̄0 = h.
Taking the inner product of (2.4.6) with Y inH , we obtain

d
dt
‖Y‖2

H
= 2(LY,Y)H + 2(F(w, θtω) − F(w̄, θtω),Y)H . (2.4.7)
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Notice that

2(F(w, θtω) − F(w̄, θtω),Y)H = 2( f (ū) − f (u), u − ū)
= −2( f ′(u)(u − ū), u − ū)

6 2α3‖u − ū‖2

6 2α3‖Y‖2H .

(2.4.8)

and
2(LY,Y)H = −2‖(−∆)

α
2 (u − ū)‖2 +

∫ ∞

0
g′(s)‖(−∆)

α
2 (ηt − η̄t)‖2ds 6 0. (2.4.9)

Then, it follows from (2.4.7)-(2.4.9) that

d
dt
‖Y‖2

H
6 2α3‖Y‖2H . (2.4.10)

By Gronwall’s lemma, we obtain

‖Y(t, ω,Y0)‖2
H
6 e2α3t‖h‖2

H
, ∀ 0 6 t 6 1. (2.4.11)

Now, set Z = Y − W̃, then
dZ
dt

= LZ + F′(w, θtω)Z + H(w, w̄) (2.4.12)

with
Z(x, t) = Z0(x, t) = 0, t 6 0, (2.4.13)

where Z = (u − ū − U, ηt − η̄t − V), F′(w, θtω)Z = (− f ′(u)(u − ū − U), 0), while H(w, w̄) = ( f ′(u)(u −
ū) − f (u) + f (ū), 0).

Take the inner product of (2.4.12) with Z inH to get

d
dt
‖Z‖2

H
= 2(LZ,Z)H + 2(F′(w, θtω)Z,Z)H + 2(H(w, w̄),Z)H . (2.4.14)

Note that

2(LZ,Z)H = −2‖(−∆)
α
2 (u − ū − U)‖2

H
+

∫ ∞

0
g′(s)‖(−∆)

α
2 (ηt − η̄t − V)‖2ds 6 0, (2.4.15)

2(F′(w, θtω)Z,Z)H 6 2α3‖u − ū − U‖2 6 2α3‖Z‖2H , (2.4.16)

and from (2.4.1) and Taylor’s series, we derive

2(H(w, w̄),Z)H = 2( f ′′(u)(u − ū)2, u − ū − U)

6 c1‖u − ū‖4 + c‖u − ū − U‖2 6 c1‖u − ū‖4 + c‖Z‖2
H
.

(2.4.17)

It follows from (2.4.14)-(2.4.17) that

d
dt
‖Z‖2

H
6 c2‖Z‖2H + c1‖u − ū‖4. (2.4.18)
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Therefore, by Gronwall’s lemma, we find

‖Z‖2
H
6 c1ec2t

∫ t

0
‖u(s) − ū(s)‖4ds, (2.4.19)

which together with (2.4.11) gives that

‖Z(1)‖H 6 C1(ω)‖h‖1+ρ

H
, (2.4.20)

where C1(ω) =

√
c1ec2

4α3
(e4α3 − 1) and ρ = 1. Choose k(ω) = max{C1(ω), 1}. Hence, we obtain

E(ln k) < ∞.
Therefore, Φ(ω) is almost surely uniform differentiable onA(ω). Furthermore, the differential of

Φ(ω) at w is DΦ(ω,w). The proof is completed. �

Next, we check condition (iii) of Proposition 2.1.3. In fact, taking the inner product of (2.4.2)
with W̃ inH and performing analogous calculations to those leading to (2.4.20), we obtain

‖W̃(1)‖2
H
6 e2α3+δ‖W̃0‖

2
H
. (2.4.21)

Since α1(DΦ(ω,w)) is equal to the norm of DΦ(ω,w) ∈ L(H), we choose

α1(ω) = max
{
eα3+ δ

2 , 1
}
.

Then one has

α1(DΦ(ω,w)) 6 α1(ω),

and

E(lnα1) < ∞.

Theorem 2.4.2. Assume that (H1)− (H2) hold, α ∈ [1
2 , 1) and p ∈ [2, 1+ 3

3−2α ), and (2.4.1) is fulfilled.
Then the random attractorA(ω) has finite Hausdorff dimension.

Proof. Now, we only need to verify condition (ii) of Proposition 2.1.3.
To this end, let W̃ = (U,V) be a unitary vector belonging to the domain of L + F′(W̃, θtω) with

F′(W̃, θtω)W̃ = (− f ′(u)U, 0). Then((
L + F′(W̃, θtω)

)
W̃, W̃

)
H

= (LW̃, W̃)H − ( f ′(u)U,U)L2 . (2.4.22)

By means of direct calculations

(LW̃, W̃)H 6 −‖(−∆)
α
2 U‖2 −

δ

2
‖V‖2M, (2.4.23)

and
− ( f ′(u)U,U)L2 6 α3‖U‖2. (2.4.24)
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Thus, (
(L + F′(W̃, θtω))W̃, W̃

)
H
6 −‖(−∆)

α
2 U‖2 −

δ

2
‖V‖2M + α3‖U‖2. (2.4.25)

Therefore, we conclude that L + F′(W̃, θtω) 6 A, where A is the diagonal operator acting on L2(O) ⊗
L2

g(R+,Hα(O)) defined by (
−(−∆)α + α3I 0

0 − δ2 (−∆)α

)

From the definition of Trm (Definition 2.1.2), it is clear that Trm(L + F′(W̃, θtω)) 6 Trm(A). Since A
is diagonal, it is easy to see that

Trm(A) = sup
Q

m∑
j=1

(AW̃ j, W̃ j)H ,

where the supremum is taken over the projections Q of the form Q1 ⊗ Q2. This amounts to consider
vectors W̃ j where only one of the two components is non-zero (and in fact of norm one in its space).
Choose then m > max{β1, β2} > 0, and let n1, n2 be the numbers of vectors W̃ j of the form (U, 0) and
(0,V), respectively. Using Sobolev-Lieb-Thirring’s inequality, we have

Trm(A) 6 −β1|O|
αn1+α

1 + n1 −
δβ2

2
|O|αn1+α

2 +
δ

2
n2 + α3n1, (2.4.26)

and from [60] we can deduce that

ωm(DΦ(ω,w)) 6 exp
{
−β1|O|

αn1+α
1 + (1 + α3)n1 −

δβ2

2
|O|αn1+α

2 +
δ

2
n2

}
.

Denote

ωm(ω) = exp
{
−β1|O|

αn1+α
1 + (1 + α3)n1 −

δβ2

2
|O|αn1+α

2 +
δ

2
n2

}
.

On the other hand, (2.4.26) gives that

qm 6 −β1|O|
αn1+α

1 + (1 + α3)n1 −
δβ2

2
|O|αn1+α

2 +
δ

2
n2.

Since as m goes to infinity either n1 or n2 (or both) goes to infinity, it is clear that there exists m0 such
that qm0 < 0. Then we have ωm0(DΦ(ω,w)) 6 ωm0(ω) and E(lnωm0) < 0. Thus the desired conclusion
follows from Proposition 2.1.3.

�

As we have seen, in Part I we studied the long time behavior of a stochastic (fractional) parabolic
problem with delay, in which the delay is expressed by memory. In the next Part II, we will analyze
another kind of parabolic equation with variable delay, i.e., 2D–Navier-Stokes equations with infinite
delay.
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Part II

Navier-Stokes equation with infinite delay
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This Part II includes Chapter 3 and Chapter 4. The asymptotic behavior of one type of Newtonian
fluids, i.e., the Navier-Stokes equations with infinite delay, is studied here. Navier-Stokes equations
are within the most important mathematical physics model, and which is more widely used in real life.
For instance, in aeronautics and astronautics, the Navier-Stokes model can simulate the helicopter
hovering aerodynamic performance. On the other hand, the Navier-Stokes equation can simulate the
movement of small-scale water in offshore engineering. Studying the Navier-Stokes equation also
helps us to understand the oceans, benefit the development and utilization of marine resources and
develop the marine economy and industry.

Owing to the fact that Navier-Stokes equations provide a suitable model to describe the motion of
several important fluids, such as water, oil, air, etc, the long-time behavior of Navier-Stokes models
(and its variants) has been regarded as an interesting and important problem in the theory of fluid dy-
namics, and has been receiving much attention for many years (see [3–5, 51, 66, 160] and references
therein). The structure of this Part II is as follows. Next, we recall some basic definitions and abstract
spaces. Then in Chapter 3, we consider deterministic Navier-Stokes equation with infinite delay. To
conclude, in Chapter 4 we consider stochastic Navier-Stokes equation with unbounded delay.

In order to increase the readability of this work, we present the Navier-Stokes equations with
infinite delay as 

∂u
∂t
− ν∆u + (u · ∇)u + ∇p = f (t) + g(t, ut) in (0,T ) × O,

div u = 0 in (0,T ) × O,
u = 0 in (0,T ) × ∂O,
u(θ, x) = φ(θ, x), θ ∈ (−∞, 0], x ∈ O,

where O ⊂ R2 is an open and bounded set with boundary ∂O, ν > 0 is the kinematic viscosity, u is
the velocity field of the fluid, p denotes the pressure, φ is the initial datum, f is a nondelayed external
force term, and g is the external force containing some hereditary characteristic.

Now we recall some definitions. To start, we consider the following usual abstract spaces,

V =
{
u ∈ (C∞0 (O))2 : div u ≡ 0

}
,

H = the closure ofV in (L2(O))2 with norm | · |, and inner product (·, ·), where for u, v ∈ (L2(O))2,

(u, v) =

2∑
j=1

∫
O

u j(x)v j(x)dx,

V = the closure ofV in (H1
0(O))2 with norm ‖ · ‖, and inner product ((·, ·)), where for u, v ∈ (H1

0(O))2,

((u, v)) =

2∑
i, j=1

∫
O

∂u j

∂xi

∂v j

∂xi
dx.

Identifying H with its dual by the Riesz theorem, it follows that V ⊂ H ≡ H′ ⊂ V ′, where the
injections are dense and compact. We use ‖ · ‖∗ for the norm in V ′ and 〈·, ·〉 for the duality pairing
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between V and V ′. Now we define A : V → V ′ by 〈Au, v〉 = ((u, v)), and the trilinear form b on
V × V × V by

b(u, v,w) =

2∑
i, j=1

∫
O

ui
∂v j

∂xi
w jdx ∀ u, v,w ∈ V.

Let us denote B : V × V → V ′ the operator given by 〈B(u, v),w〉 = b(u, v,w), for all u, v,w ∈ V , and
B(u) = B(u, u).

We recall that

b(u, v,w) = −b(u,w, v) ∀ u, v,w ∈ V,

and, consequently,

b(u, v, v) = 0 ∀ u, v,w ∈ V.

Note that the trilinear form b satisfies the following inequalities which will be used later in proofs
(e.g., cf. [72, 130])

|b(u, v, u)| 6 ‖u‖2(L4(O))2‖v‖

6 2−1/2|u|‖u‖‖v‖ ∀ u, v ∈ V. (2.4.27)

There are several phase spaces which allow us to deal with infinite delays (e.g., cf. [91, 97, 135]).
As commented in the introduction, we aim to establish well-posedness and stability results for 2D
Navier-Stokes equations with infinite delay operators in

BCL−∞(H) =

{
ϕ ∈ C((−∞, 0]; H) : lim

θ→−∞
ϕ(θ) exists in H

}
,

which is a Banach space equipped with the norm

‖ϕ‖BCL−∞(H) = sup
θ∈(−∞,0]

|ϕ(θ)|H.

Similarly, we define

BCL−∞(V) =

{
ϕ ∈ C((−∞, 0]; V) : ‖ϕ(θ)‖ is bounded on (−∞, 0] and lim

θ→−∞
ϕ(θ) exists in V

}
,

Let us introduce some notation and assumptions on the delay and delay operator. We will denote
R+ = [0,∞). Let X be a Banach space and consider a fixed T > 0. Given u : (−∞,T ) → X, for each
t ∈ (0,T ), we denote by ut the function defined on (−∞, 0] by

ut(θ) = u(t + θ), θ ∈ (−∞, 0].



Chapter 3

Navier-Stokes equation with infinite delay

In this chapter, we investigate the following Navier-Stokes problem with unbounded delay

(P)



∂u
∂t
− ν∆u + (u · ∇)u + ∇p = f (t) + g(t, ut) in (0,T ) × O,

div u = 0 in (0,T ) × O,
u = 0 in (0,T ) × ∂O,
u(θ, x) = φ(θ, x), θ ∈ (−∞, 0], x ∈ O,

where O ⊂ R2 is an open and bounded set with boundary ∂O, ν > 0 is the kinematic viscosity, u is
the velocity field of the fluid, p denotes the pressure, φ is the initial datum, f is a nondelayed external
force term, and g is the external force containing some hereditary characteristic.

Due to their importance in fluid dynamics and in turbulence theory, the Navier-Stokes equations
with delay have also been extensively studied over the last years. The analysis of the Navier-Stokes
equations with hereditary terms was initiated by Caraballo and Real in [37], and developed in [20,
21, 32, 35, 39, 40], where several issues have been investigated the existence and uniqueness of
solution, stationary solution, the existence of attractors (global, pullback and random ones) and the
local exponential stability of state-steady solution of Navier-Stokes models with several types of delay
(constant, bounded variable delay as well as bounded distributed delay). In the papers [69, 72, 77,
127–129] the authors have discussed the asymptotic behavior and regularity of solutions of 2D Navier-
Stokes equations (and 3D-variations of Navier-Stokes models) with delay (finite and infinite). Wei
and Zhang [171] have obtained the exponential stability and almost surely exponential stability of the
weak solution for stochastic 2D Navier-Stokes equations with bounded variable delays by using the
approach proposed in [21, 37].

It is worth emphasizing that all the mentioned works deal with finite delay (constant delay,
bounded variable delay or bounded distributed delay) in the phase spaces C([−h, 0]; H) and L2(−h, 0; H)
or infinite distributed delay in

Cγ(H) = {ϕ ∈ C((−∞, 0]; H) : lim
θ→−∞

eγθϕ(θ) exists in H} (γ > 0).

In fact, a complete application of theory of attractors is carried out in [130] for a 2D Navier-Stokes
model with infinite delay in Cγ(H) under some assumptions relating the force f and the delay operator

57
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g among others. The positive character of γ plays a key role in those arguments. Without the help of
this extra exponential weight related to the γ parameter, we still aim to study long-time behavior of
solutions to problem (P), but the techniques from [130] do not seem to fit. So we wonder what can be
obtained if the space Cγ(H) is replaced. To our best knowledge, there is no work about Navier-Stokes
models with unbounded variable delay in the phase space

BCL−∞(H) = {ϕ ∈ C((−∞, 0]; H) : lim
θ→−∞

ϕ(θ) exists in H}.

Inspired by [37, 130], in this chapter we study the asymptotic behavior of solutions to 2D Navier-
Stokes equations with unbounded variable delay in the phase space BCL−∞(H). We discuss the ex-
istence, uniqueness of weak solution, stationary solution as well as stability of stationary solution by
several different approaches. More precisely, the existence and uniqueness of solution is proved by
the classic Galerkin approximation and energy method, while the existence of stationary solution is
established by the Schauder fixed point theorem and the Lax-Milgram theorem. Then, three methods
are considered to discuss the stability of the stationary solutions. First, we consider the local stability
of stationary solution by using Lyapunov functions, in which the differentiability of the delay term is
required, and this maybe seem as a strong condition in some situations. Fortunately, we can use the
Lyapunov-Razumihkin method to weaken the differentiability condition on the delay term, and only
the continuity of the operators of the model and continuity on the delay term are necessary, which
allows to include more general types of delay. By this method, but dealing with strong solution, a bet-
ter result can be obtained. Besides, by constructing Lyapunov functionals, we also show the stability
of stationary solution, which improves the one we obtain by a direct approach. Moreover, we verify,
by exhibiting a special case of unbounded variable delay, that it may not be possible, in general, to
ensure exponential stability of the stationary solutions when dealing with variable delays. In fact,
we are able to ensure the polynomial stability of stationary solutions in the particular case of propor-
tional delays. Therefore, for general unbounded delay the polynomial decay is a sharp result. It is
still an open problem to establish some sufficient conditions ensuring asymptotic convergence to the
stationary solutions with an exponential rate in some other situations of unbounded variable delays.

The framework of this chapter is as follows: in the next Section, we make clear the assumption
on delay term and present some examples of delay terms. And in Section 3.2, we prove the well-
posedenss of problem (P), then three different methods are used to analyze the stability of stationary
solution to problem (P) in Section 3.3. Finally, in Section 3.4, we verify the polynomial stability of
stationary solution in case of unbounded variable delay.

3.1 Preliminaries
We now enumerate the assumptions on the delay term g. Assume that g : [0,T ] × BCL−∞(H) →
(L2(O))2, then

(g1) For any ξ ∈ BCL−∞(H), the mapping [0,T ] 3 t 7→ g(t, ξ) ∈ (L2(O))2 is measurable.

(g2) g(·, 0) = 0.
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(g3) There exists a constant Lg > 0 such that, for any t ∈ [0,T ] and all ξ, η ∈ BCL−∞(H),

|g(t, ξ) − g(t, η)| 6 Lg‖ξ − η‖BCL−∞(H).

Remark 3.1.1. (i) As it is pointed out in [130], condition (g2) is not really a restriction, otherwise,
if |g(·, 0)| ∈ L2(0,T ), we could redefine f̂ (t) = f (t) + g(t, 0) and ĝ(t, ·) = g(t, ·) − g(t, 0). In this
way, the problem is exactly the same, but f̂ and ĝ satisfy the required assumptions.

(ii) Conditions (g2) and (g3) imply that, for any ξ ∈ BCL−∞(H),

|g(t, ξ)| 6 Lg‖ξ‖BCL−∞(H) ∀t ∈ [0,T ],

and therefore |g(·, ξ)| ∈ L∞(0,T ).

Now we provide some examples of (unbounded) delay forcing terms which can be set within our
general set-up (see [69, 70, 72, 77]).

Example 3.1.2 (Forcing term with unbounded variable delay). Let G : [0,T ] × R2 → R2 be a mea-
surable function satisfying G(t, 0) = 0 for all t ∈ [0,T ], and assume that there exists M > 0 such
that

|G(t, u) −G(t, v)|R2 6 M|u − v|R2 ∀u, v ∈ R2.

Consider a function ρ : [0,T ]→ R+, which plays the role of the delay. Assume that ρ(·) is measurable
and define g(t, ξ)(x) = G(t, ξ(−ρ(t))(x)) for each ξ ∈ BCL−∞(H), x ∈ O and t ∈ [0,T ].

Obviously, g satisfies (g1) − (g2). Now we check that g satisfies assumption (g3), for any ξ, η ∈
BCL−∞(H),

|g(t, ξ) − g(t, η)|2 =

∫
O

|G(t, ξ(−ρ(t))) −G(t, η(−ρ(t)))|2dx

6 M2
∫
O

|ξ(−ρ(t)) − η(−ρ(t))|2dx

6 M2 sup
θ60

∫
O

|ξ(θ) − η(θ)|2dx

= M2‖ξ − η‖2BCL−∞(H).

Example 3.1.3. The above example is using the mapping G via the Nemytskii operator to deal with
an operator from [0,T ] × H into (L2(O))2. So it is a particular case of the following. Take a Lipschitz
mapping (uniformly w.r.t. [0,T ]) G : [0,T ] × H → (L2(O))2 and consider g(t, ξ) := G(t, ξ(−ρ(t)) for
any measurable function ρ : [0,T ]→ R+. This operator g also fulfils (g1) − (g3).

Example 3.1.4 (Forcing term with distributed delay). Let G : [0,T ] × (−∞, 0] × R2 → R2 be a
measurable function satisfying G(t, s, 0) = 0 for all (t, s) ∈ [0,T ] × (−∞, 0], and suppose that there
exists a function α ∈ L1(−∞, 0) such that

|G(t, s, u) −G(t, s, v)|R2 6 α(s)|u − v|R2 ∀u, v ∈ R2, ∀t ∈ [0,T ], a.e. s ∈ (−∞, 0).
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Define g(t, ξ)(x) =
∫ 0

−∞
G(t, s, ξ(s)(x))ds for each ξ ∈ BCL−∞(H), t ∈ [0,T ], and x ∈ O. Then the

delayed term g in our problem becomes

g(t, ξ) =

∫ 0

−∞

G(t, s, ξ(s))ds.

It is easy to check that g satisfies (g1) − (g2). On the other hand, if ξ, η ∈ BCL−∞(H), for each
t ∈ [0,T ], we deduce

|g(t, ξ) − g(t, η)|2 6
∫
O

(∫ 0

−∞

|G(t, s, ξ(s)(x)) −G(t, s, η(s)(x))|R2ds
)2

dx

6

∫
O

(∫ 0

−∞

α(s)|ξ(s)(x) − η(s)(x)|R2ds
)2

dx

6

∫
O

(∫ 0

−∞

α(s)ds
) (∫ 0

−∞

α(s)|ξ(s)(x) − η(s)(x)|2
R2ds

)
dx

6 ‖α‖L1(−∞,0)

∫ 0

−∞

α(s)
∫
O

|ξ(s)(x) − η(s)(x)|2dxds

6 ‖α‖L1(−∞,0)

∫ 0

−∞

α(s)(sup
s60

∫
O

|ξ(s)(x) − η(s)(x)|2dx)ds

6 ‖α‖2L1(−∞,0)‖ξ − η‖
2
BCL−∞(H).

After introducing the above operators an equivalent abstract formulation to problem (P) is

du
dt

+ νAu + B(u) = f + g(t, ut) ∀t > 0, (3.1.1)

u0 = φ. (3.1.2)

Next we give the definition of weak solution to problem (3.1.1)-(3.1.2).

Definition 3.1.5. Given an initial datum φ ∈ BCL−∞(H), a weak solution u to (3.1.1)-(3.1.2) in the
interval (−∞,T ] is a function u ∈ C((−∞,T ]; H)∩ L2(0,T ; V) with u0 = φ(0) such that, for all v ∈ V,

d
dt

(u(t), v) + ν((u(t), v)) + b(u(t), u(t), v) = 〈 f (t), v〉 + (g(t, ut), v),

where the equation must be understood in the sense ofD′(0,T ).

3.2 Well-posedness
In this section we establish the existence of weak solution to (3.1.1)-(3.1.2) by a compactness method
using the classic Faedo-Galerkin scheme. Denote

λ1 = inf
v∈V\{0}

‖v‖2

|v|2
> 0.

For the existence of weak solution we have the following result.
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Theorem 3.2.1. Consider f ∈ L2(0,T ; V ′), g : [0,T ] × BCL−∞(H)→ (L2(O))2 satisfying (g1) − (g3)
and φ ∈ BCL−∞(H) given. Then there exists a unique weak solution to (3.1.1)-(3.1.2). Furthermore, if
f ∈ L2(0,T ; (L2(O))2) and φ ∈ BCL−∞(H) with φ(0) ∈ V, then the weak solution is a strong solution,
i.e., u ∈ L2(0,T ; D(A)) ∩C([0,T ]; V).

Proof. We split it into several steps.
Step 1. The Galerkin approximation. By the definition of A and the classical spectral theory of

elliptic operators, it follows that A possesses a sequence of eigenvalues {λ j} j≥1 and a corresponding
family of eigenfunctions {w j} j≥1 ⊂ V , which form a Hilbert basis of H, dense on V . We consider the
subspace Vm = span{w1,w2, · · · ,wm}, and the projector Pm : H → Vm given by Pmu =

∑m
j=1(u,w j)w j,

and define u(m)(t) =
∑m

j=1 γm, j(t)w j, where the superscript m will be used instead of (m), for short, since
no confusion is possible with powers of u, and where the coefficients γm, j(t) are required to satisfy the
Cauchy problem

d
dt

(um(t),w j) + ν((um(t),w j)) + b(um(t), um(t),w j) = 〈 f (t),w j〉 + (g(t, um
t ),w j), 1 6 j 6 m,

um(θ) = Pmφ(θ), θ ∈ (−∞, 0]. (3.2.1)

The above system of ordinary functional differential equations with infinite delay fulfills the condi-
tions for the existence and uniqueness of a local solution (e.g., cf. [90, 97, 161]). Hence, we conclude
that (3.2.1) has a unique local solution defined in [0, tm) with 0 6 tm ≤ T . Next, we will obtain a priori
estimates and ensure that the solutions um do exist in the whole interval [0,T ].

Step 2. A priori estimates. Multiplying each equation of (3.2.1) by γm, j(t), j = 1, . . . ,m, summing
up, and using Cauchy-Schwartz and Young’s inequalities, we obtain

1
2

d
dt
|um(t)|2 + ν‖um(t)‖2 6 ‖ f (t)‖∗‖um(t)‖ + Lg‖um

t ‖BCL−∞(H)|um(t)|

6
ν

2
‖um(t)‖2 +

‖ f (t)‖2∗
2ν

+ Lg‖um
t ‖

2
BCL−∞(H).

Hence,

|um(t)|2 + ν

∫ t

0
‖um(s)‖2ds 6 |um(0)|2 +

1
ν

∫ t

0
‖ f (s)‖2∗ds + 2Lg

∫ t

0
‖um

s ‖
2
BCL−∞(H)ds. (3.2.2)

Particularly, we have

‖um
t ‖

2
BCL−∞(H) 6 ‖φ‖

2
BCL−∞(H) +

1
ν

∫ t

0
‖ f (s)‖2∗ds + 2Lg

∫ t

0
‖um

s ‖
2
BCL−∞(H)ds.

Applying the Gronwall lemma, we obtain

‖um
t ‖

2
BCL−∞(H) 6

(
‖φ‖2BCL−∞(H) +

1
ν

∫ t

0
‖ f (s)‖2∗ds

)
e2Lgt,
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whence there exists a constant C > 0, depending on some constants of the problem (namely, ν, Lg and
f ), and on T and R > 0, such that

‖um
t ‖

2
BCL−∞(H) 6 C(T,R) ∀t ∈ [0,T ], ‖φ‖BCL−∞(H) 6 R, ∀m > 1,

which also implies that {um} is bounded in L∞(0,T ; H).
Now it follows from (3.2.2) and the above uniform estimates that

ν

∫ t

0
‖um(s)‖2ds 6 |um(0)|2 +

∫ t

0

(
1
ν
‖ f (s)‖2∗ + 2LgC(T,R)

)
ds.

We can conclude the existence of another constant (relabelled the same) C(T,R) such that

‖um‖2L2(0,T ;V) 6 C(T,R) ∀m > 1.

From (2.4.27) and (3.2.1),

‖(um)′‖∗ 6 ν‖um‖ + 21/2|um| · ‖um‖ + ‖ f ‖∗ + λ−1/2
1 |g(t, um

t )|,

which, together with Remark 2.1(ii) and the above estimates imply that {(um)′} is bounded in L2(0,T ; V ′).
Step 3. Approximation of initial datum in BCL−∞(H). Let us check

Pmφ→ φ in BCL−∞(H). (3.2.3)

Indeed, if not, there exist ε > 0 and a subsequence {θm} ⊂ (−∞, 0], such that

|Pmφ(θm) − φ(θm)| > ε ∀m. (3.2.4)

Assume that θm → −∞. Otherwise, if θm → θ, then Pmφ(θm) → φ(θ), since |Pmφ(θm) − φ(θ)| 6
|Pmφ(θm) − Pmφ(θ)| + |Pmφ(θ) − φ(θ)| → 0 as m → ∞. With θm → −∞ as m → ∞, if we denote
x = lim

θ→−∞
φ(θ), we obtain

|Pmφ(θm) − φ(θm)| 6 |Pmφ(θm) − Pmx| + |Pmx − x| + |x − φ(θm)| → 0,

which contradicts (3.2.4), so (3.2.3) holds true.
Step 4. Compactness results. Following the same lines as those in [130, Theorem 5, p. 2017]

with slight modifications, we can prove that

um → u in C([0,T ]; H).

Then steps 3 and 4 imply that

um
t → ut in BCL−∞(H) ∀t 6 T.

Actually,

sup
θ60
|um(t + θ) − u(t + θ)| = max

{
sup
θ6−t
|Pmφ(θ + t) − φ(θ + t)|, sup

−t6θ60
|um(t + θ) − u(t + θ)|

}
6 max

{
‖Pmφ − φ‖BCL−∞(H), sup

−t6θ60
|um(t + θ) − u(t + θ)|

}
→ 0.
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Therefore, combining (g3), we can prove that

g(·, um
· )→ g(·, u·) in L2(0,T ; H).

Thus, we can finally pass to the limit in (3.2.1), concluding that u solves (P).
Step 5. Uniqueness of solution. The uniqueness of solution can be obtained by using the Gronwall

Lemma (see [21, 130] for more details). �

3.3 Asymptotic behavior of solutions
In this section we analyze the long time behavior of solutions in a neighborhood of a stationary solu-
tion to (3.1.1) in some particular settings for the delay operator. First of all, we provide several results
ensuring the existence of stationary solutions and establish sufficient conditions for uniqueness. Then
we show various different methods that can be used to study the stability properties: the Lyapunov
function, the Razumikhin technique as well as by the construction of appropriate Lyapunov function-
als. All the cases will be related to model (3.1.1) with unbounded variable delays. We would also
like to mention that for particular unbounded variable delays, the exponential stability of stationary
solutions cannot be obtained. However, we will be able to obtain some polynomial stability in the
case of proportional variable delays.

3.3.1 Existence and uniqueness of stationary solutions
In order to investigate the existence and properties of stationary solutions to (3.1.1), we need to make
some extra assumptions. Namely, we assume that f is independent of time, i.e., f (t) ≡ f ∈ V ′,
and g, defined now for all positive times, also is autonomous somehow. Indeed, if we put directly
g autonomous, then the delay should have a distributed or fixed form, but an infinite variable delay
would not be possible, therefore the explicit presence of t in the operator should not removed if we
aim to keep the variable delay case. Namely, we introduce a new assumption for g. Denote by i the
trivial immersion i : H → BCL−∞(H) given by i(u) = ũ with ũ(t) = u for all t ≤ 0. We require now
that g fulfills

(g4) g(s, ξ) = g(t, ξ) for any s, t ∈ R+ and ξ ∈ i(H).

If (g2) − (g4) holds, we trivially have that g̃ : H → (L2(O))2 defined as g̃(u) = g(0, i(u)(0)), i.e.,
g̃ = g|R+×i(H), is of course autonomous, Lipschitz (with the same Lipschitz constant Lg) and g̃(0) = 0.

Example 3.3.1. Combining Examples 3.1.2 and 3.1.3 it is obvious that given a measurable function
ρ : R+ → R+ and G : H → (L2(O))2 Lipschitz with G(0) = 0, then R+×BCL∞(H) 3 (t, ξ) 7→ g(t, ξ) :=
G(ξ(−ρ(t))) ∈ (L2(O))2 fulfills (g1) − (g4).

A stationary solution to (3.1.1) is a function u∗ ∈ V such that

νAu∗ + B(u∗) = f + g̃(u∗). (3.3.1)
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Notice that (3.3.1) is not related to any delay form, and has already been analyzed in some previous
works (e.g., cf. [21, 37, 72, 130]). Existence, eventually uniqueness and regularity of stationary
solutions can be obtained from

Theorem 3.3.2. Suppose that g satisfies conditions (g2) − (g4) and ν > λ−1
1 Lg. Then,

(a) for all f ∈ V ′, there exists at least one solution to (3.3.1);

(b) if f ∈ (L2(O))2, the solutions to (3.3.1) belong to D(A);

(c) if (ν − λ−1
1 Lg)2 > (2λ1)−1/2‖ f ‖∗, then the solution to (3.3.1) is unique.

3.3.2 Local stability: a direct approach
In this section we prove the local stability of stationary solution obtained in Theorem 3.3.2 when g is
close to that in Example 3.3.1 (with a smoother driving term ρ) by a straightforward way.

Theorem 3.3.3. Consider f ∈ (L2(O))2, the delay forcing term is given by g(t, ut) = G(u(t − ρ(t)))
with G : H → (L2(O))2 a Lipschitz operator with Lipschitz constant M,G(0) = 0, and ρ ∈ C1(R+,R+)
with ρ∗ = supt>0 ρ

′(t) < 1. Then there exist two constants l1, l2, depending only on O, such that if

2ν >
(2 − ρ∗)λ−1

1 M
1 − ρ∗

+
l1

ν − λ−1
1 M
| f | +

l2

ν2(ν − λ−1
1 M)3

| f |3, (3.3.2)

then there exists at least one solution u∞ ∈ D(A) to (3.3.1), and there exists a positive constant C,
such that for any φ ∈ BCL−∞(H), the solution u to (3.1.1)-(3.1.2) with f (t) ≡ f satisfies

|u(t) − u∞|2 6 C
(
|φ(0) − u∞|2 + ‖φ − u∞‖2L2((−ρ(0),0);H)

)
∀t > 0.

Proof. Consider u the solution to (3.1.1)-(3.1.2) for f (t) ≡ f and let u∞ ∈ D(A) be a solution to
(3.3.1) (this is possible since (3.3.2) implies that ν > λ−1

1 M = λ−1
1 Lg so Theorem 3.3.2 applies). We

set w(t) = u(t) − u∞, and observe that

d
dt

w(t) + νAw(t) + B(u(t)) − B(u∞) = G(u(t − ρ(t))) −G(u∞).

By standard computations,

d
dt
|w(t)|2 = −2ν‖w(t)‖2 − 2(B(u(t)) − B(u∞),w(t)) + 2(G(u(t − ρ(t))) −G(u∞),w(t))

6 −2ν‖w(t)‖2 − 2b(w(t), u∞,w(t)) + 2M|u(t − ρ(t)) − u∞||w(t)|

6 (−2ν + λ−1
1 M)‖w(t)‖2 − 2b(w(t), u∞,w(t)) + M|w(t − ρ(t))|2. (3.3.3)

By (2.4.27), and using Sobolev embeddings (introducing suitable constants c0, c′0, c1), we have

2|b(w(t), u∞,w(t))| 6 2|w(t)|2(L4(O))2‖u∞‖

6 c021/2λ−1/2
1 ‖w(t)‖2|Au∞|.
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Since u∞ solves (3.3.1), we deduce

ν|Au∞| 6 | f | + |G(u∞)| + |B(u∞)|
6 | f | + M|u∞| + c′0‖u∞‖|u∞|∞

6 | f | + λ−1/2
1 M‖u∞‖ +

c2
1λ
−1/2
1

2ν
‖u∞‖3 +

ν

2
|Au∞|,

from which we obtain that

|Au∞| 6
2
ν
| f | +

2λ−1/2
1 M
ν

‖u∞‖ +
c2

1λ
−1/2
1

ν2 ‖u∞‖3.

On the other hand,

ν‖u∞‖2 = ( f , u∞) + (G(u∞), u∞)

6 λ−1/2
1 | f |‖u∞‖ + λ−1

1 M‖u∞‖2,

which implies

‖u∞‖ 6
λ−1/2

1 | f |

ν − λ−1
1 M

.

Hence, from the above inequalities,

|Au∞| 6
2
ν
| f | +

2λ−1
1 M

ν(ν − λ−1
1 M)

| f | +
c2

1λ
−2
1

ν2(ν − λ−1
1 M)3

| f |3.

Now, thanks to the previous inequalities,

d
dt
|w(t)|2 6

(
− 2ν + λ−1

1 M +
l1

ν − λ−1
1 M
| f | +

l2

ν2(ν − λ−1
1 M)3

| f |3
)
‖w(t)‖2 + M|w(t − ρ(t))|2, (3.3.4)

where
l1 = c023/2λ−1/2

1 , l2 = 21/2c0c2
1λ
−5/2
1 . (3.3.5)

Taking η = s − ρ(s) = τ(s),

M
∫ t

0
|w(s − ρ(s))|2ds 6

M
1 − ρ∗

∫ t

−ρ(0)
|w(η)|2dη.

Therefore, integrating (3.3.4) over [0, t],

|w(t)|2 6 |w(0)|2 +

∫ t

0

(
λ−1

1 M
1 − ρ∗

− 2ν + λ−1
1 M +

l1

ν − λ−1
1 M
| f | +

l2

ν2(ν − λ−1
1 M)3

| f |3
)
‖w(s)‖2ds

+
M

1 − ρ∗

∫ 0

−ρ(0)
|w(s)|2ds,
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which, together with (3.3.2), yield

|w(t)|2 6 |w(0)|2 +
M

1 − ρ∗

∫ 0

−ρ(0)
|w(s)|2ds,

whence the statement follows taking C = max {1,M/(1 − ρ∗)}. �

Remark 3.3.4. Notice that if we wish to obtain exponential stability by the Lyapunov method, we can
multiply (3.3.3) by eλt. Then by a similar process with slight modification, we would obtain

eλt|w(t)|2 6 |w(0)|2+

∫ t

0

(
λλ−1

1 −2ν+λ−1
1 M+

l1

ν − λ−1
1 M
| f |+

l2

ν2(ν − λ−1
1 M)3

| f |3
)

eλs‖w(s)‖2ds

+ M
∫ t

0
eλs|w(s − ρ(s))|2ds.

Now we estimate the delay term. Setting η = s − ρ(s) = τ(s), we have∫ t

0
eλs|w(s − ρ(s))|2ds 6

1
1 − ρ∗

∫ t−ρ(t)

−ρ(0)
eλτ

−1(η)|w(η)|2dη.

Assuming τ−1(t) 6 t + h (what implies that necessarily ρ(t) ∈ [0, h], h > 0) for all t > −ρ(0),∫ t

0
eλs|w(s − ρ(s))|2ds 6

eλh

1 − ρ∗

∫ t

−ρ(0)
eλη|w(η)|2dη.

Therefore,

eλt|w(t)|2 6 |w(0)|2+

∫ t

0

(
λλ−1

1 −2ν+λ−1
1 M+

l1

ν − λ−1
1 M
| f |+

l2

ν2(ν − λ−1
1 M)3

| f |3
)

eλs‖w(s)‖2ds

+ M
∫ t

0
eλs|w(s − ρ(s))|2ds

6 |w(0)|2+

∫ t

0

(
λλ−1

1 −2ν+λ−1
1 M+

l1

ν − λ−1
1 M
| f |+

l2

ν2(ν − λ−1
1 M)3

| f |3
)

eλs‖w(s)‖2ds

+
Meλh

1 − ρ∗

∫ t

0
eλs|w(s)|2ds +

Meλh

1 − ρ∗

∫ 0

−ρ(0)
eλη|w(η)|2dη,

neglecting the first integral on the right hand side, which is negative for 0 < λ � 1 thanks to (3.3.2),
we have

|w(t)|2 6 e−λt

(
|w(0)|2 +

Meλh

1 − ρ∗

∫ 0

−ρ(0)
eλη|w(η)|2dη

)
6 Ce−λt

(
|w(0)|2 + ‖φ − u∞‖L2((−ρ(0),0);H)

)
,

where C = max{1,Meλh/(1 − ρ∗)}. However, as mentioned before, this argument requires that ρ(t) ∈
[0, h] is bounded. In other words, we could not prove, in general, the exponential stability of stationary
solution to (3.1.1) with unbounded variable delay by Theorem 3.3.3.
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Remark 3.3.5. Observe that there exists at least one stationary solution under assumptions of The-
orem 3.3.3, but it might not be unique since the relation on the coefficients are different from The-
orem 3.3.2 (c), which ensures the uniqueness of stationary solution. However, if 2(2λ1)−1/4‖ f ‖1/2∗ 6
λ−1

1 Mρ∗

1−ρ∗
+ l1

ν−λ−1
1 M | f |+

l2
ν2(ν−λ−1

1 M)3 | f |3, then Theorem 3.3.2 (c) implies that the stationary solution is unique.

3.3.3 A Razumikhin technique
In the previous paragraph we have showed the local stability of stationary solution when the delay op-
erator g contains unbounded variable delay which is driven by a continuously differentiable function
ρ. However, it is possible to relax this restriction and prove a result for more general delay forcing
terms by using a different method, namely, the Razumikhin method, which is also widely used in
dealing with the stability properties of delay differential equations. But it is worth mentioning that
this approach requires some kind of continuity concerning both the operators in the model and the
delay term, and we also need to work with strong solutions instead of weak ones.

Theorem 3.3.6. Consider f ∈ (L2(O))2 and g : R+ × BCL−∞(H) → (L2(O))2 satisfying conditions
(g1) − (g4) (uniformly for any T > 0) and such that for all ξ ∈ BCL−∞(H) the mapping R+ 3 t 7→
g(t, ξ) ∈ (L2(O))2 is continuous. If there exists a stationary solution u∞ ∈ D(A) to (3.1.1) such that

− ν〈A(φ(0) − u∞), φ(0) − u∞〉 − 〈B(φ(0)) − B(u∞), φ(0) − u∞〉
+ (g(t, φ) − g(t, u∞), φ(0) − u∞) < 0, t > 0, (3.3.6)

whenever φ ∈ BCL−∞(H) with φ(0) ∈ V and φ , u∞ satisfies

‖φ − u∞‖2BCL−∞(H) = |φ(0) − u∞|2, (3.3.7)

then, for such φ,
|u(t; φ) − u∞|2 < ‖φ − u∞‖2BCL−∞(H) ∀ t > 0. (3.3.8)

Proof. We argue by contradiction. Suppose there exists an initial datum φ ∈ BCL−∞(H) with φ(0) ∈ V
and φ , u∞, such that (3.3.8) is false. Then, denoting

σ = inf{t > 0 : |u(t, φ) − u∞| ≥ ‖φ − u∞‖2BCL−∞(H)},

we obtain that for all 0 6 t 6 σ

|u(t; φ) − u∞|2 6 |u(σ; φ) − u∞|2 = ‖φ − u∞‖2BCL−∞(H), (3.3.9)

and there is a sequence {tk}k>1 ⊂ [σ,∞) such that tk ↘ σ, as k → ∞, and

|u(tk; φ) − u∞|2 ≥ |u(σ; φ) − u∞|2. (3.3.10)

On the other hand, by virtue of (3.3.9) it is easy to deduce that

sup
θ60
|u(σ + θ; φ) − u∞|2 = ‖uσ − u∞‖2BCL−∞(H) = |u(σ; φ) − u∞|2,
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which, in view of assumption (3.3.6)-(3.3.7), immediately implies

− ν〈A(u(σ; φ) − u∞), u(σ; φ) − u∞〉 − 〈B(u(σ; φ)) − B(u∞), u(σ; φ) − u∞〉
+ (g(σ, uσ(·; φ)) − g(t, u∞), u(σ; φ) − u∞) < 0.

By the continuity of the operators in the problem, there exists ε∗ > 0 such that for all ε ∈ (0, ε∗] and
t ∈ [σ,σ + ε]

− ν〈A(u(t; φ) − u∞), u(t; φ) − u∞〉 − 〈B(u(t; φ)) − B(u∞), u(t; φ) − u∞〉
+ (g(t, ut(·; φ)) − g(t, u∞), u(t; φ) − u∞) < 0.

Denoting w(t) = u(t; φ) − u∞,

d
dt
|w(t)|2 = −2ν〈Aw(t),w(t)〉 − 2〈B(u(t, φ)) − B(u∞),w(t)〉 + 2(g(t, ut) − g(t, u∞),w(t))

for all t ∈ [σ,σ + ε]. Therefore we obtain

|w(σ + ε; φ)|2 − |w(σ; φ)|2 = − 2
∫ σ+ε

σ

ν〈Aw(t),w(t)〉 − 〈B(u(t, φ)) − B(u∞),w(t)〉dt

+ 2
∫ σ+ε

σ

(g(t, ut) − g(t, u∞),w(t))dt < 0.

Thus |w(σ + ε; φ)|2 < |w(σ; φ)|2, which contradicts (3.3.10). Hence (3.3.8) is true. �

Remark 3.3.7. (i) The above result is valid even without uniqueness of stationary solution.

(ii) In the spirit of Example 3.3.1, it can be applied when g(t, ξ) := G(ξ(−ρ(t))) for (t, ξ) ∈ R+ ×

BCL∞(H), with ρ ∈ C(R+;R+).

A sufficient condition which implies (3.3.6) but easier to check in applications is given in the
following

Corollary 3.3.8. Suppose that f and g satisfy the assumptions of Theorem 3.3.3. If

2ν > 2λ−1
1 M +

l1

ν − λ−1
1 M
| f | +

l2

ν2(ν − λ−1
1 M)3

| f |3, (3.3.11)

where l1, l2 are defined in (3.3.5), then there exists at least one solution u∞ ∈ D(A) to (3.3.1). More-
over, for all φ ∈ BCL−∞(H) with φ(0) ∈ V and φ , u∞, the strong solution u(t; φ) to (3.1.1)-(3.1.2),
satisfies (3.3.8).

Proof. Since ν > λ−1
1 M, existence of stationary solution is guaranteed by Theorem 3.3.2 (a).

For the second statement we check that condition (3.3.11) implies the ones of Theorem 3.3.6.
Indeed, suppose that φ ∈ BCL−∞(H), with φ(0) ∈ V , is close to some stationary solution u∞ (but not
equal, otherwise it is trivial) and satisfies

‖φ − u∞‖2BCL−∞(H) = |φ(0) − u∞|2.
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Now we verify that (3.3.6) holds. Indeed

− ν〈A(φ(0)−u∞), φ(0)−u∞〉−〈B(φ(0)) − B(u∞), φ(0) − u∞〉+(g(t, φ) − g(t, u∞), φ(0)−u∞)

6 − ν‖φ(0) − u∞‖2 − b(φ(0) − u∞, u∞, φ(0) − u∞) + M‖φ − u∞‖BCL−∞(H)|φ(0) − u∞|

6 − ν‖φ(0) − u∞‖2 + λ−1
1 M‖φ(0) − u∞‖2 + |b(φ(0) − u∞, u∞, φ(0) − u∞)|.

By similar computations to those in the proof of Theorem 3.3.3

− ν〈A(φ(0)−u∞), φ(0)−u∞〉−〈B(φ(0)) − B(u∞), φ(0) − u∞〉+(g(t, φ) − g(t, u∞), φ(0)−u∞)

6

(
−ν + λ−1

1 M +
l1

2(ν − λ−1
1 M)

| f | +
l2

2ν2(ν − λ−1
1 M)3

| f |3
)
‖φ(0) − u∞‖2,

which is negative by (3.3.11). Thus, (3.3.6) holds and therefore (3.3.8) too. �

Remark 3.3.9. Observe that the Razumihkin technique only requires continuity on the delay term and
the operators of the model. Here (3.3.11) allows more choices for ν ensuring stability than the values
provided by the condition (3.3.2). In other words, this latter result improves the former one.

3.3.4 Stability via the construction of Lyapunov functionals
In this paragraph we analyze the stability of a very particular stationary solution to (3.1.1) by con-
structing Lyapunov functionals. Namely we assume that the stationary solution is the trivial one,
of course modifying suitable the assumptions on f and g. We start by recalling a result, borrowed
from [40], which is the key to prove the result concerning the construction of Lyapunov function-
als. To this end, let us introduce an abstract problem; consider operators Ã(t, ·) : V → V ′ and
f̃ (t, ·) : BCL−∞(H)→ (L2(O))2 with Ã(t, 0) = 0 and f̃ (t, 0) = 0. Assume that the following problem is
well-posed and the solution is continuous with respect to "t", i.e. u(·; φ) ∈ C((−∞,T ]; H)∩L2(0,T ; V),
for all T > 0:

du
dt

= Ã(t, u) + f̃ (t, ut) ∀t > 0,

u(s) = φ(s), s ∈ (−∞, 0],
(3.3.12)

To prove the stability of the trivial solution to (3.3.12) by constructing Lyapunov functionals, we
have the following result (cf. [40, Theorem 1.1] for a similar result).

Proposition 3.3.10. Assume that there exists a functional U : R+ × BCL−∞(H) → R+ such that, for
any φ ∈ BCL−∞(H), the following conditions hold

U(t, ut) > γ1|u(t)|2 ∀t > 0,

U(0, u0) 6 γ2‖φ‖
2
BCL−∞(H),

d
dt

U(t, ut) 6 −γ3|u(t)|2, t > 0,

where γ1, γ2, γ3 are positive numbers and u(·) = u(·; φ) is the solution to (3.3.12). Then the trivial
solution of (3.3.12) is asymptotically stable.
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Proof. From the first two conditions of Proposition 3.3.10, we have

γ1|u(t)|2 6 U(t, ut) 6 U(0, u0) 6 U(0,0 ) 6 γ2‖φ‖
2
BCL−∞(H),

which means
|u(t)|2 6

γ2

γ1
‖φ‖2BCL−∞(H), ∀t > 0. (3.3.13)

Notice that d
dt U(t, ut) 6 −γ3|u(t)|2, we deduce that∫ ∞

0
|u(s)|2ds 6

γ2

γ3
‖φ‖2BCL−∞(H). (3.3.14)

On the other hand, the solution of problem (3.3.12) is continuous respect to "t", which implies that the
function |u(t)|2 is continuous with respect to "t", which together with (3.3.13) and (3.3.14), we obtain
that

lim
t→+∞

|u(t)|2 = 0,

namely, the trivial solution of problem (3.3.12) asymptotically stable. �

We will apply the above result to the following equation, which is a particular case of (3.3.12).

du
dt

= Ã(t, u) + F(u(t − ρ(t))), (3.3.15)

where Ã(t, ·) : V → V ′ and F : H → (L2(O))2 are appropriate operators. The following result is a
slight variation of [40, Theorem 2.1].

Theorem 3.3.11. Assume that operators in (3.3.15) satisfy

〈Ã(t, u), u〉 6 −γ‖u‖2, γ > 0,

F : H → (L2(O))2, |F(u)| 6 α|u|, u ∈ V,

ρ ∈ C1(R+;R+), ρ′(t) 6 ρ∗ < 1.

Then the trivial solution of (3.3.15) is stable provided that

γ ≥
α

λ1
√

1 − ρ∗
. (3.3.16)

Proof. We construct U : R+ × BCL−∞(H)→ R+ for (3.3.15) in the form

U(t, φ) = |φ(0)|2 +
c

1 − ρ∗

∫ 0

−ρ(t)
|φ(s)|2ds,
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where c > 0 is a suitable constant, to be determined later on, such that U is a Lyapunov functional.
Denoting by U(t) = U(t, ut(·; φ)), where ut(·; φ) is the solution to (3.3.15) with initial value φ, we have
U(t) = |u(t)|2 + c

1−ρ∗

∫ t

t−ρ(t)
‖u(s)‖2ds. Consequently,

d
dt

U(t) = 2〈Ã(t, u(t)) + F(u(t − ρ(t))), u(t)〉 +
c

1 − ρ∗
|u(t)|2 −

c(1 − ρ′(t))
(1 − ρ∗)

‖u(t − ρ(t))‖2

6 −2γ‖u(t)‖2 + 2α|u(t − ρ(t))||u(t)| +
c

λ1(1 − ρ∗)
‖u(t)‖2 − c|u(t − ρ(t))|2

≤

(
−2γ + λ−1

1

(
c

1 − ρ∗
+
α2

c

))
‖u(t)‖2,

where Poincaré and Young’s inequalities have been used. Minimizing the coefficient in brackets in
the right hand side, which is attained for c = α

√
1 − ρ∗, we conclude that

d
dt

U(t) ≤ 2

−γ +
α

λ1
√

1 − ρ∗

 ‖u(t)‖2.

Then by (3.3.16) it arises d
dt U(t) 6 0. As it is easy to check that U(·, ·) satisfies all the conditions in

Proposition 3.3.10, the stability statement holds. �

Now going back to our original problem of this section, suppose that the origin is a stationary
solution to (3.1.1), where we are assuming that f ≡ 0 and g(t, ut) = G(u(t − ρ(t))) with G : H →
(L2(O))2 a Lipschitz continuous function with Lipschitz constant M > 0 and G(0) = 0.

Corollary 3.3.12. Consider the Navier-Stokes problem

du
dt

+ νAu + B(u) = G(u(t − ρ(t))) ∀t > 0, (3.3.17)

where G : H → (L2(O))2 fulfills the above conditions and ν > λ−1
1 M. Then, u ≡ 0 is the unique

stationary solution. Moreover, it is stable provided that ν ≥ M/(λ1
√

1 − ρ∗).

Proof. The first part is a consequence of Theorem 3.3.2 (c).
Second statement follows from Theorem 3.3.11. Indeed (3.3.17) can be set in (3.3.15) by denoting

Ã(t, u) = −νAu − B(u) and F(u(t − ρ(t))) = G(u(t − ρ(t))) taking γ = ν and α = M. �

Remark 3.3.13. Taking f ≡ 0 in Theorem 3.3.3, the trivial solution to (3.1.1) is stable if ν > (2−ρ∗)λ−1
1 M

2(1−ρ∗)
.

Since (2−ρ∗)λ−1
1 M

2(1−ρ∗)
> M

λ1
√

1−ρ∗
for ρ∗ ∈ (0, 1), Corollary 3.3.12 improves, for this case, the condition

established in Theorem 3.3.3.

3.4 Polynomial stability: a special unbounded variable delay case
As mentioned in the introduction, the main goal of this paper is to analyze the stability of stationary
solutions to (3.1.1) in the unbounded variable delay case, less studied than finite delay cases. Three
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different methods have been used to study the stability of stationary solution in previous sections.
However, instead of exponential stability, only local stability of the stationary solution of (3.1.1) is
obtained. In fact, even for simple ordinary differential equations with unbounded variable delay, for
instance, the pantograph equation, in which the delay term is given by ρ(t) = (1 − λ)t with 0 < λ < 1,
the exponential stability of stationary solution cannot be reached. But, fortunately, in this simple
case the polynomial stability of stationary solution can be obtained, see [1, 104, 105] for details.
Enlightened by [1], we show that it is still possible to prove the polynomial stability of stationary
solution to Navier-Stokes equation with proportional delay, which is a particular case of unbounded
variable delay. To this end, we first review the following pantograph equation and some technical
lemmas that are used in this framework.

An example of the pantograph equation reads

x′(t) = ax(t) + bx(λt) ∀t > 0, x(0) = x0, λ ∈ (0, 1), (3.4.1)

which has been studied in [1, 104, 105] amongst many others.
The following lemma will be useful.

Lemma 3.4.1. (Cf. [1, Lemma 3.4]) Let a ∈ R, b > 0 and λ ∈ (0, 1). Assume x is the solution to
(3.4.1) with x(0) > 0. Suppose p ∈ C(R+,R+) satisfies

D+ p(t) 6 ap(t) + bp(λt), t > 0,

with 0 < p(0) < x(0) and where D+ denotes the Dini derivative. Then p(t) 6 x(t) for all t > 0.

Lemma 3.4.2. (Cf. [1, Lemma 3.5]) Let x be a solution to (3.4.1). If a < 0, b ∈ R, then there exists
C = C(a, b, λ) > 0 such that

lim sup
t→∞

|x(t)|
tµ

= C|x(0)|,

where µ ∈ R obeys
0 = a + |b|λµ.

Then, for some (possible new) C = C(a, b, λ) > 0, we have

|x(t)| 6 C|x(0)|(1 + t)µ, t > 0. (3.4.2)

Observe that if µ < 0, then (3.4.2) implies polynomial stability of the trivial solution to (3.4.1).
Next we use this idea to prove the polynomial stability of stationary solution to (3.1.1).

Theorem 3.4.3. Consider (3.1.1) with f ≡ 0, g(t, ut) := Lgu(λt) with 0 < λ < 1, Lg ∈ R and ν >
λ−1

1 |Lg|. Then the origin is the unique stationary solution and any evolutionary solution u converges
to zero polynomially, namely, there exist C = C(ν, Lg, λ) > 0 and µ < 0 such that

|u(t)|2 < C|u(0)|2(1 + t)µ ∀t > 0,

where µ satisfies |Lg| − 2νλ1 + |Lg|λ
µ = 0 .
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Proof. Taking the inner product of (3.1.1) with u in H, we obtain

d
dt
|u(t)|2 + 2ν‖u(t)‖2 = 2Lg(u(λt), u(t)).

By Poincaré and Young’s inequalities we have that

d
dt
|u(t)|2 + 2λ1ν|u(t)|2 6 |Lg||u(t)|2 + |Lg||u(λt)|2.

Denoting by w(t) = |u(t)|2,
w′(t) 6 (−2λ1ν + |Lg|)w(t) + |Lg|w(λt).

By Lemmas 3.4.1 and 3.4.2, there exists C = C(ν, Lg, λ) > 0 and µ ∈ R such that

w(t) 6 Cw(0)(1 + t)µ,

Since −2λ1ν + 2|Lg| < 0, it holds that µ < 0. Then the polynomial decay of solutions follows. �

Remark 3.4.4. (i) From Theorem 3.4.3 we find that, as long as we have ν > λ−1
1 |Lg|, any solution

to (3.1.1) converges polynomially to zero. In this case, this result improves all the stability
results established previously.

(ii) In fact, our result can be extended to a more general case, namely, if the delay term is defined
as g(t, φ) = G(φ(−(1 − λ)t)), which is also Lipschitz.

(iii) From [1] we know that the convergence to equilibria needs not be at an exponential rate for
equations with unbounded delay. Actually, for unbounded variable delay, even in the simplest
case, i.e., the pantograph equation (3.4.1), only polynomial stability can be obtained because
the solutions behave in polynomial way (cf. [104, Theorem 3] for more details). Consequently,
it is still an open problem to obtain sufficient conditions for the exponential stability of solutions
for equations with other types of unbounded variable delay. This will be investigated in future.
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Chapter 4

Stochastic Navier-Stokes equation with
infinite delay

In this chapter we generalize the results in Chapter 3 to the stochastic case. In other words, we will
investigate the following stochastic Navier-Stokes equation with infinite delay

du
dt
− ν∆u + (u · ∇)u + ∇p = f (t) + g1(t, ut) + g2(t, ut)

dW(t)
dt

, in (τ,T ) × O, (4.0.1)

div u ≡ 0, in (τ,T ) × O, (4.0.2)

u = 0, in (τ,T ) × ∂O, (4.0.3)

u(τ + s, x) = φ(s, x), s ∈ (−∞, 0], x ∈ O, (4.0.4)

where O ⊂ R2 is a bounded open set with boundary ∂O, ν > 0 is the kinematic viscosity, u is the
velocity field of the fluid, p is the pressure, φ is the initial datum, f is a nondelayed external force
field, and g1, g2 are external forces containing some hereditary characteristic.

In [45, 171], authors established exponential stability to stochastic Navier-Stokes equations with
bounded variable delay, respectively. And Taniguchi proved the existence and asymptotic behaviour
of energy solutions to Navier-Stokes equations driven by Levy processes and external force terms
with finite delay in [158].

However, as far as we know, there is no available work about stochastic Navier-Stokes equations
with infinite delay, neither distributed delay nor unbounded variable delay. It is worth mentioning that
many authors took the weighted space Cγ as the phase space when dealt with differential equations
with infinite delay, and obtained exponential stability and convergence. Nevertheless, the methods
that are used to prove exponential stability and the convergence of solutions only work for differential
equations with distributed delay, and it does not work for unbounded variable delays, for example,
the stochastic pantograph equation. Fortunately, authors in [120] solved this problem by choosing

BCL−∞(H) = {ϕ ∈ C((−∞, 0]; H) : lim
θ→−∞

ϕ(θ) exists in H}

as the phase space. But in this case, only asymptotic stability was established as they were not able to
prove exponential stability. Yet under some special unbounded variable delay case, they obtained the
polynomial stability of stationary solution.

75
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Motivated by [1, 158], we study now a type of stochastic 2D-Navier-Stokes equations with infinite
delay. More precisely, we will prove the existence and uniqueness of solution to Eq. (4.0.1), then
focus on the stability analysis with unbounded variable delay. Besides, we study the polynomial
stability of the stationary solution to Navier-Stokes equation with proportional delay. The classical
Galerkin method will be used to prove the existence of solutions. However, the traditional technique
to prove uniqueness of solution, used in the deterministic case, is not enough to verify the uniqueness
of solution any more in the stochastic case. The main reason is that we cannot bound the trilinear
term directly as we did in the deterministic case. Therefore, more technical skills are needed. Indeed,
we use some auxiliary lemmas to solve this difficulty, and this is not trivial at all. And we can claim
that the stability results proved for stochastic Navier-Stokes equations with unbounded variable delay
are new.

4.1 Premilinaries
Let (Ω, P,F) be a probability space on which an increasing and right continuous family {Ft}t∈[0,∞)

of complete sub-σ−algebra of F is defined. Let βn(t)(n = 1, 2, 3, · · · ) be a sequence of real valued
one-dimensional standard Brownian motions mutually independent on (Ω, P,F). Set

W(t) =

∞∑
n=1

√
λ′nβn(t)en, t > 0,

where λ′n(n = 1, 2, 3, · · · ) are nonnegative real numbers such that
∞∑

n=1
λ′n < +∞, and {en}(n = 1, 2, 3, · · · )

is a complete orthonormal basis in the real and separable Hilbert space K. Let Q ∈ L(K,K) be the
operator defined by Qen = λ′nen. The above K−valued stochastic process W(t) is called a Q−Wiener
process. Given real numbers a < b, and a separable Hilbert space H we will denote by I2(a, b; H) the
space of all processes X ∈ L2(Ω × (a, b),F ⊗B((a, b)), dP ⊗ dt; H) (where B((a, b)) denotes the Borel
σ−algebra on (a, b)) such that X(t) is F−measurable a.e. t ∈ (a, b). The space I2(a, b; H) is a closed
subspace of L2(Ω × (a, b),F ⊗ B((a, b)), dP ⊗ dt; H).

We will denote by C(a, b; H) the Banach space of all continuous functions from [a, b] into H
equipped with sup norm. We will write L2(Ω; C(a, b; H)) instead of L2(Ω,F, dP; C(a, b; H)).

Let us also consider a real number T > 0. If we consider a function x ∈ C(−∞,T ; H), for
each t ∈ [0,T ] we will denote xt ∈ C(−∞, 0; H) by xt(s) = x(t + s), ∀s ∈ (−∞, 0]. Moreover, if
y ∈ L2(−∞,T ; H), we will also denote yt ∈ L2(−∞, 0; H), for a.e. t ∈ (0,T ), by yt(s) = y(t + s) a.e. s ∈
(−∞, 0].

We now enumerate the assumptions on the delay terms g1, g2, we assume that gi : [τ,T ] ×
BCL−∞(H)→ (L2(O))2, i = 1, 2.

(g1) For any ξ ∈ BCL−∞(H), the mapping [τ,T ] 3 t 7→ gi(t, ξ) ∈ (L2(O))2 is measurable.

(g2) gi(·, 0) = 0.
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(g3) There exists a constants Lgi > 0 such that, for any t ∈ [τ,T ] and all ξ, η ∈ BCL−∞(H),

|gi(t, ξ) − gi(t, η)| 6 Lgi‖ξ − η‖BCL−∞(H).

Remark 4.1.1. (i) As pointed out in [130], condition (g2) is not really a restriction, since otherwise,
if |gi(·, 0)| ∈ L2(τ,T ), we could redefine f̂i(t) = fi(t) + gi(t, 0) and ĝi(t, ·) = gi(t, ·) − gi(t, 0). In this way
the problem is exactly the same, f̂ and ĝ satisfy the required assumptions.
(ii) Conditions (g2) and (g3) imply that

|gi(t, ξ)| 6 Lgi‖ξ‖BCL−∞(H),

so |gi(t, ξ)| ∈ L∞(τ,T ).

Examples of delay forcing term which satisfy (g1) − (g3) could see Example 3.1.2, 3.1.3 and
3.1.4 in Chapter 3. Later on, to illustrate the different methods for the stability analysis, we focus on
unbounded variable delays case. Readers are referred to [120] for details of the examples .
Next we give the definition of weak solution for problem (4.0.1).

Definition 4.1.2. A stochastic process u(t), t > 0, is said to be a weak solution of Eq. (4.0.1), if

(1a) u(t) is F-adapted,

(1b) u(t) ∈ I2(−∞,T ; V) ∩ L2(Ω; C(−∞,T ; H)),

(1c) The following equation holds as an identity in V ′

u(t) = φ(0) − ν
∫ t

0
Au(s)ds −

∫ t

0
B(u(s))ds +

∫ t

0
( f (s) + g1(s, us)) ds +

∫ t

0
g2(s, us)dW(s), t ∈ [0,T ].

u(t) = φ(t), t ∈ (−∞, 0].

The following lemma (see Sritharan and Sundar [153]) is essential to prove the uniqueness of
solution.

Lemma 4.1.3. There exist a λ > 0 such that for any u, v ∈ V,

−2(B(u) − B(v), u − v) − ν(A(u − v), u − v) 6 λ‖v‖44|u − v|2.

Denote by

λ1 = inf
v∈V\{0}

‖v‖2

|v|2
> 0.
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4.2 Existence and uniqueness of solutions
In this section, we establish existence and uniqueness of weak solution for Eq.(4.0.1). We begin with
the uniqueness.

Lemma 4.2.1. Assume that (g1) − (g3) hold true. Then, for φ ∈ I2(−∞, 0; V) ∩ L2(Ω; BCL−∞(H)),
such that E[sup−∞<s60 |φ(s)|4] < ∞, there exists at most one weak solution to (4.0.1).

Proof. Let u(t) and v(t) be two solutions to (4.0.1) with the same initial value u(s) = v(s) = φ(s), s 6
0. Let N > 1 be any fixed integer and

τN := inf
{

t 6 T :
∫ t

0
|v(s)|44ds > N

}
.

Without loss of generality we may assume that E
∫ T

0
|v(s)|44ds < ∞. Actually, this is a direct conse-

quence of Lemma 4.2.4. Set

r(t) := exp
(
−λ

∫ t

0
|v(s)|44ds

)
,

where λ > 0 is the one in Lemma 4.1.3. Hence,

r(t ∧ τN) > exp(−λN).

Applying Itô formula to the function r(t)|u(t) − v(t)|2, we have that

r(t)|u(t) − v(t)|2 = −λ

∫ t

0
r(s)|v(s)|44|u(s) − v(s)|2ds

+ 2
∫ t

0
r(s) (u(s) − v(s),−νA(u(s) − v(s)) − B(u(s)) + B(v(s))) ds

+ 2
∫ t

0
r(s) (u(s) − v(s), g1(s, us) − g1(s, vs)) ds

+ 2
∫ t

0
r(s) (u(s) − v(s), g2(s, us) − g2(s, vs)) dW(s)

+

∫ t

0
r(s)|g2(s, us) − g2(s, vs)|2ds.

Thanks to Lemma 4.1.3, taking the supremum (w.r.t. t) and then taking expectation.

E
[

sup
06l6t∧τN

r(l)|u(l) − v(l)|2
]

+ νE
∫ t∧τN

0
r(s)‖u(s) − v(s)‖2ds

6 2E
[

sup
06l6t∧τN

|

∫ l

0
r(s)(u(s) − v(s), g1(s, us) − g1(s, vs))ds|

]
+ 2E

[
sup

06l6t∧τN

|

∫ l

0
r(s)(u(s) − v(s), g2(s, us) − g2(s, vs))dW(s)|

]
+ E

[
sup

06l6t∧τN

∫ l

0
r(s)|g2(s, us) − g2(s, vs)|2ds

]
.
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The first term on the left-hand side of the above inequality can be bounded by

2E
[

sup
06l6t∧τN

|

∫ l

0
r(s)(u(s) − v(s), g1(s, us) − g1(s, vs))ds|

]
6

1
4

E
[

sup
06l6t∧τN

r(l)|u(l) − v(l)|2
]

+ 4L2
g1

∫ t

0
Er(s ∧ τN)|u(s ∧ τN) − v(s ∧ τN)|2ds.

On the other hand, Burkholder-Davis-Gundy’s inequality yields

2E
[

sup
06l6t∧τN

|

∫ l

0
r(s)(u(s) − v(s), g2(s, us) − g2(s, vs))dW(s)|

]
6 8E

{
sup

06l6t∧τN

r1/2(l)|u(l) − v(l)| · [
∫ t

0
r(s)|g2(s, us) − g2(s, vs)|2L0

2
ds]1/2

}
6

1
4

E[ sup
06l6t∧τN

r(l)|u(l) − v(l)|2] + 64L2
g2

∫ t

0
Er(s ∧ τN)|u(s ∧ τN) − v(s ∧ τN)|2ds.

And

E
[

sup
06l6t∧τN

∫ l

0
r(s)|g2(s, us) − g2(s, vs)|2ds

]
6 L2

g2

∫ t

0
Er(s ∧ τN)|u(s ∧ τN) − v(s ∧ τN)|2ds.

From the previous inequalities we have

E[ sup
06s6t
|u(s ∧ τN) − v(s ∧ τN)|2] + 2νE

∫ t

0
r(s ∧ τN)‖u(s ∧ τN) − v(s ∧ τN)‖2ds

6 (8L2
g1

+ 130L2
g2

)eλN
∫ t

0
E sup

06τ6s
|u(τ ∧ τN) − v(τ ∧ τN)|2ds.

By the Gronwall Lemma,

E[ sup
06s6t
|u(s ∧ τN) − v(s ∧ τN)|2] = 0.

Thus for any fixed N > 1,

u(t ∧ τN) = v(t ∧ τN), a.e., ω ∈ Ω.

By Markov’s inequality,

P(τN < T ) = P
(∫ t

0
|v(s)|44ds > N

)
6

E
∫ t

0
|v(s)|44ds

N
,

since E
∫ t

0
|v(s)|44ds < ∞, we obtain that τN → T as N → ∞. Consequently, u(t) = v(t), a.e., ω ∈ Ω,

for all t 6 T . The proof is completed.
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Remark 4.2.2. In above proof, we used Markov’s inequality, and that is why we need the fourth
moment of solutions be finite, see [141] for more details about Markov’s inequality.

�

Let 0 < T 6 ∞ and thus T = ∞ means [0,T ] = [0,∞). Let {w j}
∞
j=1 ⊂ D(A) be a complete

orthonormal basis in L2(O). Now we use the Galerkin approximation method to prove the existence
of weak solutions to Eq. (4.0.1). Set

un(t) =

n∑
j=1

αn j(t)w j,

where αn j(t) are determined by the following ordinary differential stochastic systems:

(un(t),w j) = (u0n,w j) +

∫ t

0
(−νAun(s) + PnB(un(s)) + Pn f (s),w j)ds

+

∫ t

0
(Png1(s, uns),w j)ds +

∫ t

0
(Png2(s, uns)dW(s),w j), j = 1, 2, · · · , n,

with an initial value un(t) = Pnφ(t), t ∈ (−∞, 0], where u0n = un(0) = Pnφ(0) =
n∑

j=1
(u0,w j)w j.

Consider the next stochastic equation

un(t) = u0n +

∫ t

0
(−νAun(s) + B(un(s)) + Pn f (s))ds +

∫ t

0
Png1(s, uns)ds +

∫ t

0
Png2(s, uns)dW(s).

un(t) = Pnφ(t), t ∈ (−∞, 0],

where u0n = un(0) = Pnφ(0).

Lemma 4.2.3. Assume that (g1) − (g3) hold and E
∫ t

0
| f (s)|4ds < ∞. Then, for φ ∈ I2(−∞, 0; V) ∩

L2(Ω; BCL−∞(H)) such that E[ sup
−∞<s60

|φ(s)|4] < ∞, there exists a constant c0 > 0 such that

E[ sup
06s6t
|un(s)|2] +

∫ t

0
E‖un(s)‖2ds 6 c0, uniformly in n > 1.

Proof. Use Itô’s formula for |un(t)|2,

|un(t)|2 = |Pnu0|
2 + 2

∫ t

0
(−νAun(s) − B(un(s)), un(s))ds + 2

∫ t

0
( f (s) + g1(s, uns), un(s))ds

+ 2
∫ t

0
(g2(s, uns), un(s))dW(s) +

∫ t

0
|g2(s, uns)|2ds.

(4.2.1)
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Note that (un(t),−B(un(t))) = 0. Taking supremum w.r.t t in (4.2.1) and expectation, we obtain

E[ sup
06s6t
|un(s)|2] + 2ν

∫ t

0
E‖un(s)‖2ds

6 E|u0|
2 + 2E[ sup

06τ6t

∫ τ

0
|un(s)|| f (s)|ds] + 2E[ sup

06τ6t

∫ τ

0
|un(s)||g1(s, uns)|ds]

+ 2E[ sup
06τ6t
|

∫ τ

0
(un(s), g2(s, uns))dW(s)|] + E[ sup

06τ6t

∫ τ

0
|g2(s, uns)|2ds]

= E|u0|
2 + J1 + J2 + J3 + J4.

J1 = 2E[ sup
06τ6t

∫ τ

0
|un(s)|| f (s)|ds] 6

∫ t

0
E[ sup

06τ6s
|un(τ)|2]dτ + E

∫ t

0
| f (s)|2ds.

J2 = 2E[ sup
06τ6t

∫ τ

0
|un(s)||g1(s, uns)|ds] 6

1
4

E[ sup
06s6t
|un(s)|2] + 4L2

g1

∫ t

0
E[ sup

06τ6s
|un(τ)|2]ds + 4L2

g1
E[ sup
−∞<s60

|φ(s)|4].

By Burkholder-Davis-Gundy’s inequality,

J3 = 2E[ sup
06τ6t
|

∫ τ

0
(un(s), g2(s, uns))dW(s)|]

6 8E[(
∫ t

0
|un(s)|2|g2(s, uns)|2ds)1/2]

6
1
4

E[ sup
06s6t
|un(s)|2] + 64L2

g2

∫ t

0
E[ sup

06τ6s
|un(τ)|2]ds + 64L2

g2
E[ sup
−∞<s60

|φ(s)|4].

J4 = E[ sup
06τ6t
|

∫ τ

0
|g2(s, uns)|2ds] 6 L2

g2

∫ t

0
E[ sup

06τ6s
|un(τ)|2]ds + L2

g2
E[ sup
−∞<s60

|φ(s)|4].

1
2

E[ sup
06s6t
|un(s)|2] + 2ν

∫ t

0
E‖un(s)‖2ds

6 E|u0|
2 + E

∫ t

0
| f (s)|2ds + (4L2

g1
+ 65L2

g2
)E[ sup

−∞<s60
|φ(s)|4] + (1 + 4L2

g1
+ 65L2

g2
)
∫ t

0
E[ sup

06τ6s
|un(τ)|2]ds.

Then the conclusion follows directly from the Gronwall Lemma. �

Lemma 4.2.4. Assume that (g1) − (g3) hold and E
∫ t

0
| f (s)|4ds < ∞. Then, for φ ∈ I2(−∞, 0; V) ∩

L2(Ω; BCL−∞(H)) such that E[sup−∞<s60 |φ(s)|4] < ∞, there exists a δ > 0, which is independent of n
and will be specified later, such that E

∫ t

0
|un(s)|44ds < δ.
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Proof. Applying the Itô formula to |un(t)|4,

|un(t)|4 = |Pnu0|
4 + 4

∫ t

0
|un(s)|2(un(s),−νAun(s) − B(un(s)))ds + 4

∫ t

0
|un(s)|2( f (s) + g1(s, uns), un(s))ds

+ 4
∫ t

0
|un(s)|2(un(s), g2(s, uns))dW(s) + 6

∫ t

0
|un(s)|2|g2(s, uns)|2L0

2
ds.

Taking supremum and expectation,

E
[

sup
06τ6t
|un(τ)|4

]
+ 4νE

[∫ t

0
|un(s)|2‖un(s)‖2ds

]
6 E|u0|

4 + 2E
[

sup
06τ6t

∫ τ

0
|un(s)|2(| f |2 + |un(s)|2)ds

]
+ 2E

[
sup
06τ6t

∫ τ

0
|un(s)|2(L2

g1
|uns|

2 + |un(s)|2)ds
]

+ 4E
[

sup
06τ6t

∫ τ

0
|un(s)|2(un(s), g2(s, uns))dW(s)

]
+ 6L2

g2
E

[
sup
06τ6t

∫ τ

0
|un(s)|2|uns|

2ds
]

= E|u0|
4 + I1 + I2 + I3 + I4.

Now we estimate Ii, i = 1, 2, 3, 4, one by one.

I1 = 2E
[

sup
06τ6t

∫ τ

0
|un(s)|2(| f |2 + |un(s)|2)ds

]
6 3

∫ t

0
E[ sup

06τ6s
|un(τ)|4]ds + E

∫ t

0
| f (s)|4ds.

I2 = 2E
[

sup
06τ6t

∫ τ

0
|un(s)|2(L2

g1
|uns|

2 + |un(s)|2)ds
]
6 2(1 + L2

g1
)
∫ t

0
E[ sup

06τ6s
|un(τ)|4]ds + L2

g1
E[ sup
−∞<s60

|φ(s)|4].

Using Burkholder-Davis-Gundy’s inequality,

I3 6
1
2

E[ sup
06τ6t
|un(τ)|4] + 256L2

g2

∫ t

0
E[ sup

06τ6s
|un(τ)|4]ds + 256L2

g2
E[ sup
−∞<s60

|φ(s)|4].

I4 6 6L2
g2

∫ t

0
E[ sup

06τ6s
|un(τ)|4]ds + 6L2

g2
E[ sup
−∞<s60

|φ(s)|4].

Consequently,

1
2

E
[

sup
06τ6t
|un(τ)|4

]
+ 4νE

[∫ t

0
|un(s)|2‖u(s)‖2ds

]
6 c f + cg

∫ t

0
E[ sup

06τ6s
|un(τ)|4]ds.

By the Gronwall Lemma, there exists a C0 > 0 such that

E
[

sup
06τ6t
|un(τ)|4

]
+ 8νE

[∫ t

0
|un(s)|2‖u(s)‖2ds

]
6 C0.
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From inequality A.1.1, we obtain that

|un(s)|4 6 2−
1
4 |un(s)|1/2‖un(s)‖1/2.

Thus, there exists a constant δ = C0
16ν such that

E
∫ t

0
|un(s)|44ds 6

1
2

E
∫ t

0
|un(s)|2‖un(s)‖2ds < δ.

The proof is completed. �

Under more suitable assumption, we can prove the existence and uniqueness of solutions of our
problem. There is a positive constant λ (the same as the one in Lemma 4.1.3) such that for all
u, v ∈ L2(−∞,T ; V) and for all t ∈ [0,T ], it holds∫ t

0
|g2(s, us) − g2(s, vs)|2ds − ν

∫ t

0
‖u(s) − v(s)‖2ds

6 λ

∫ t

0
|v(s)|44|u(s) − v(s)|2 + 2

∫ t

0
(B(u) − B(v), u(s) − v(s))ds

+ ν

∫ t

0
(Au(s) − Av(s), u(s) − v(s))ds − 2

∫ t

0
(g1(s, us) − g1(s, vs), u(s) − v(s))ds.

(4.2.2)

We have the next Theorem:

Theorem 4.2.5. Assume that (g1) − (g3) and (4.2.2) and E
∫ t

0
| f (s)|4ds < ∞ hold. Then, for φ ∈

I2(−∞, 0; V) ∩ L2(Ω; BCL−∞(H)) such that E[sup−∞<s60 |φ(s)|4] < ∞, there exists a unique solution u
to

u(t) = φ(0) − ν
∫ t

0
Au(s)ds −

∫ t

0
B(u(s))ds +

∫ t

0
( f (s) + g1(s, us)) ds +

∫ t

0
g2(s, us)dW(s),

u(t) = φ(t), t ∈ (−∞, 0],
(4.2.3)

where the equation holds as an identity in V ′ almost surely for every t ∈ [0,T ].

Proof. By Lemma 4.2.3-4.2.4, we obtain that the subsequence un(t) (relabeled the same) converges
weakly to u(t) ∈ L2(Ω; L∞(0,T ; H)) ∩ L2(Ω × [0,T ]; V) ∩ L4(Ω × [0,T ]; L4(O)). Moreover,

−νAun − B(un) ⇀ χ weakly in L2(Ω × [0,T ]; V ′),

g1(t, unt) ⇀ ζ weakly in L2(Ω × [0,T ]; H),

g2(t, unt) ⇀ σ weakly in L2(Ω × [0,T ]; H).

We use the absolutely continuous function ϕk on [0,T ] with ϕ′k ∈ L2(0,T ) and ϕk(T ) = 0 defined as
follows

ϕk(s) =


1 0 6 s 6 t − 1

2k ,
1
2 + k(t − s) t − 1

2k < s 6 t + 1
2k ,

0 t + 1
2k < s 6 T.
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Apply Itô formula to function (un(s), ξ)ϕk(s), ξ ∈ H1
0(O), to get

0 = (un0, ξ)ϕk(0) − k
∫ t+ 1

2k

t− 1
2k

(un(s), ξ)ds +

∫ T

0
(−νAun(s) − B(un(s)), ξ)ϕk(s)ds

+

∫ T

0
(g1(s, uns), ξ)ϕk(s)ds +

∫ T

0
(g2(s, uns), ξ)ϕk(s)dW(s) +

∫ T

0
( f (s), ξ)ϕk(s)ds.

Let k → ∞ in above inequality, we have

(un(t), ξ) = (un0, ξ) +

∫ T

0
(−νAun(s) − B(un(s)), ξ)ds

+

∫ T

0
(g1(s, uns), ξ)ds +

∫ T

0
(g2(s, uns), ξ)dW(s) +

∫ T

0
( f (s), ξ)ds.

Take n→ ∞,

u(t) = u0 +

∫ t

0
(χ(s) + f (s) + ζ)ds +

∫ t

0
σdW(s).

Define ρ(t) =
∫ t

0
|z(s)|44ds, z ∈ L4(Ω × [0,T ]; L4(O)) and z(s) = φ(s), s 6 0. Using Itô formula to

exp(−λρ(t))|u(t)|2 and exp(−λρ(t))|un(t)|2, respectively.

Ee−λρ(t)|u(t)|2 = E|u0|
2 − E

∫ t

0
λe−λρ(s)|z(s)|44|u(s)|2ds + 2E

∫ t

0
e−λρ(s)(χ(s) + f (s) + ζ, u(s))ds

+ E
∫ t

0
e−λρ(s)|σ|2ds,

and

Ee−λρ(t)|un(t)|2 = E|un0|
2 − E

∫ t

0
λe−λρ(s)|z(s)|44|un(s)|2ds

+ 2E
∫ t

0
e−λρ(s)(−νAun(s) − B(un(s)) + f (s), un(s))ds

+ 2E
∫ t

0
e−λρ(s)(g1(s, uns), un(s))ds

+ E
∫ t

0
e−λρ(s)|g2(s, uns)|2ds.

Define αn, βn and γn as follows

αn = −E
∫ t

0
λe−λρ(s)|z(s)|44|un(s) − z(s)|2ds + 2E

∫ t

0
e−λρ(s)(−νAun(s) − B(un(s)), un(s) − z(s))ds

− 2E
∫ t

0
e−λρ(s)(−νAz − B(z), un(s) − z(s))ds + 2E

∫ t

0
e−λρ(s)(g1(s, uns) − g1(s, zs), un(s) − z(s))ds

+ E
∫ t

0
e−λρ(s)|g2(s, uns) − g2(s, zs)|2ds.
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βn = −E
∫ t

0
λe−λρ(s)|z(s)|44|un(s)|2ds + 2E

∫ t

0
e−λρ(s)(−νAun(s) − B(un(s)), un(s))ds

+ 2E
∫ t

0
e−λρ(s)(g1(s, uns), un(s))ds + E

∫ t

0
e−λρ(s)|g2(s, uns)|2ds.

γn = −E
∫ t

0
λe−λρ(s)|z(s)|44(|z(s)|2 − 2(un(s), z(s)))ds

+ 2E
∫ t

0
e−λρ(s)(−νAun(s) − B(un(s)),−z(s))ds

− 2E
∫ t

0
e−λρ(s)(−νAz − B(z(s)) + g1(s, zs), un(s) − z(s))ds

+ 2E
∫ t

0
e−λρ(s)(g1(s, uns),−z(s))ds + E

∫ t

0
e−λρ(s)(g2(s, zs) − 2g2(s, uns), g2(s, zs))ds.

Obviously,
αn = βn + γn.

By Lemma 4.1.3 and (4.2.2), we have αn 6 0.

0 > lim inf
n→∞

αn

> −E
∫ t

0
λe−λρ(s)|z(s)|44|u(s) − z(s)|2ds + 2E

∫ t

0
e−λρ(s)(χ, u(s) − z(s))ds

− 2E
∫ t

0
e−λρ(s)(−νAz − B(z), u(s) − z(s))ds + 2E

∫ t

0
e−λρ(s)(ζ − g1(s, zs), u(s) − z(s))ds

+ E
∫ t

0
e−λρ(s)|σ − g2(s, zs)|2ds.

Take z(t) = u(t) in above inequality, it follows that σ = g2(t, ut), t ∈ [0,T ], where we use the fact that
e−λρ(t) is bounded for t ∈ [0, 1]. On the other hand, notice that

βn = Ee−λρ(t)|un(t)|2 − E|un(0)|2 − 2E
∫ t

0
e−λρ(s)( f (s), un(s))ds.

lim inf
n→∞

βn > Ee−λρ(t)|u(t)|2 − E|u(0)|2 − 2E
∫ t

0
e−λρ(s)( f (s), u(s))ds

= −E
∫ t

0
λe−λρ(s)|z(s)|44|u(s)|2ds + 2E

∫ t

0
e−λρ(s)(χ + ζ, u(s))ds

+ E
∫ t

0
e−λρ(s)|g2(s, us)|2ds.
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lim inf
n→∞

γn > −E
∫ t

0
λe−λρ(s)|z(s)|44(|z(s)|2 − 2(u(s), z(s)))ds + 2E

∫ t

0
e−λρ(s)(χ,−z(s))ds

− 2E
∫ t

0
e−λρ(s)(−νAz − B(z), u(s) − z(s))ds − 2E

∫ t

0
e−λρ(s)(g1(s, zs), u(s) − z(s))ds

+ 2E
∫ t

0
e−λρ(s)(ζ,−z(s))ds + E

∫ t

0
e−λρ(s)(g2(s, zs) − 2g2(s, us), g2(s, zs))ds.

0 > lim inf
n→∞

αn > lim inf
n→∞

βn + lim inf
n→∞

γn

> −E
∫ t

0
λe−λρ(s)|z(s)|44|u(s) − z(s)|2ds + 2E

∫ t

0
e−λρ(s)(χ + ζ, u(s) − z(s))ds

− 2E
∫ t

0
e−λρ(s)(−νAz − B(z), u(s) − z(s))ds − 2E

∫ t

0
e−λρ(s)(g1(s, zs), u(s) − z(s))ds

+ E
∫ t

0
e−λρ(s)|g2(s, zs) − g2(s, us)|2ds.

Thus

0 6 E
∫ t

0
e−λρ(s)|g2(s, zs) − g2(s, us)|2ds

6 2E
∫ t

0
e−λρ(s)(−νAz − B(z) + g1(s, zs), u(s) − z(s))ds − 2E

∫ t

0
e−λρ(s)(χ + ζ, u(s) − z(s))ds

+ λE
∫ t

0
e−λρ(s)|z(s)|44|u(s) − z(s)|2ds.

For any fixed v ∈ C∞0 (O). Set z(t) = u(t) − θv.

0 6 2E
∫ t

0
e−λρ(s)(−νA(u − θv) − B(u − θv) + g1(s, us − θv), v)ds

− 2E
∫ t

0
e−λρ(s)(χ + ζ, v)ds + θλE

∫ t

0
e−λρ(s)|z(s)|44|v|

2ds.

Let θ → 0, we obtain

E
∫ t

0
(χ + ζ + νAu(s) + B(u(s)) − g1(s, us), v)ds = 0.

Since v is any, and C∞0 (O) = H1
0(O).∫ t

0
(−νAu(s) − B(u(s)) + g1(s, us))ds =

∫ t

0
(χ + ζ)ds.

Hence,

u(t) = u0 −

∫ t

0
(νAu(s) + B(u(s)))ds +

∫ t

0
f (s)ds +

∫ t

0
g1(s, us)ds +

∫ t

0
g2(s, us)dW(s), a.e. ω ∈ Ω.

Therefore, there exists a unique weak solution to (4.0.1) on [0,T ]. This completes the proof of the
theorem. �
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Corollary 4.2.6. Assume that (g1) − (g3) hold, E[ sup
−∞<s60

| f (s)|4] < ∞, and

νλ1 > 2Lg1 + L2
g2
.

Then for every φ ∈ I2(−∞, 0; V) ∩ L2(Ω; BCL−∞(H)) such that E[ sup
−∞<s60

|φ(s)|4] < ∞, there exists a

unique solution u to (4.2.3).

Proof. It is not difficult to verify that the assumption νλ1 > 2Lg1 + L2
g2

is sufficient to obtain (4.2.2).
Therefore, the proof is finished by Theorem 4.2.5. �

4.3 Asymptotic behavior of solutions
In this section we analyze the long time behavior of solutions in a neighborhood of a stationary
solution to (4.0.1). First, we state a general result ensuring the existence and uniqueness of stationary
solutions. Then, we show two methods to study the stability properties: the Lyapunov function
as well as the construction of Lyapunov functionals. Both cases will be related to the unbounded
variable delay case. We also would like to point out that, although we will provide some sufficient
condition ensuring the asymptotic stability of stationary solutions, to prove that this stability is indeed
exponential remains as an open problem in general in the unbounded variable delay case. Nevertheless
we will be able to prove polynomial asymptotic stability in some particular cases which have some
relevance in applications.

4.3.1 Existence and uniqueness of stationary solutions
For convenience, we consider our model in an abstract formulation as

du
dt

+ νAu + B(u) = f + g1(t, ut) + g2(t, ut)
dW
dt
, (4.3.1)

with f (t) ≡ f ∈ V ′. A stationary solution u∗ to (6.2.1) must satisfy

(νAu∗ + B(u∗) − f − g1(t, u∗))t =

∫ t

0
g2(s, u∗) dW(s), ∀t > 0, (4.3.2)

and, according to [37, Remark 3.1], this means that u∗ must be a stationary solution of the determin-
istic equation, in other words

νAu∗ + B(u∗) = f + g1(t, u∗), (4.3.3)

which is an equality in V ′ and is a deterministic case of equation (4.3.2).
Thus, to discuss the stability of weak solutions to stochastic (4.3.1), we first need to consider the

existence of stationary solutions to equation (4.3.3).
To carry out our analysis, for any u ∈ H we denote by û the function defined in (−∞, 0] by

û(θ) = u, for all θ 6 0, and we assume that the forcing term g1, g2 satisfy that

gi(t, û) = Gi(u), i = 1, 2, for all u ∈ H,
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where Gi : R2 → R2, i = 1, 2 are functions satisfying

G1(0) = 0, (4.3.4)

and that there exists Mi > 0, i = 1, 2 for which

|Gi(u) −Gi(v)|R2 6 Mi|u − v|R2 , ∀u, v ∈ R2, i = 1, 2, (4.3.5)

and by Gi(u) we denote the element in H defined by Gi(u)(x) = Gi(u(x)) for all x ∈ O.
Then equation (4.3.2) and equation (4.3.3) can be rewritten respectively as

νAu∗ + B(u∗) − f −G1(u∗) = G2(u∗)
W(t)

t
, ∀t > 0, (4.3.6)

and
νAu∗ + B(u∗) = f + G1(u∗). (4.3.7)

Remark 4.3.1. As it is pointed out in [37, Remark 3.1], any stationary solution, for instance u∗,
to (4.3.6) is also a stationary solution to equation (4.3.7) , but it is possible that equation (4.3.7)
possesses more than one stationary solution, for example u1, and u1 , u∗. However, if we assume
that equation (4.3.7) has a unique stationary solution u1, then u1 = u∗, and in this case it must hold
G2(u∗) = 0 since (4.3.6) must hold for all t > 0.

From now on, we always suppose that the stochastic equation (4.3.1) has a time-independent
solution u∞, which satisfies equation (4.3.6) . Actually, this can happen when we take g2 in such a
way that g2 vanishes at a stationary point, for instance, g2(t, u) = G2(u − u∞). See [37, Remark 4.3]
for more details.

Theorem 4.3.2. Suppose that G1 satisfies conditions (4.3.4)-(4.3.5) and ν > λ−1
1 M1. Then,

(a) for all f ∈ V ′ there exists at least one stationary solution to (4.3.1);

(b) if f ∈ (L2(O))2, the stationary solutions belong to D(A);

(c) if (ν − λ−1
1 M1)2 > (2λ1)−

1
2 ‖ f ‖∗, then the stationary solution to (4.3.1) is unique.

Proof. By a similar method as that of [37, Theorem 4.1, p. 1087], the theorem can be proved. We
omit it here. �

4.3.2 Local stability: A direct approach

In this subsection, we prove the local stability of stationary solution by a straightforward way. Sup-
pose that ρ ∈ C1([0,+∞)), ρ(t) > 0 for all t > 0 and ρ∗ = sup

t>0
ρ′(t) < 1.
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Theorem 4.3.3. Let gi(t, ut) = Gi(u(t − ρ(t))), i = 1, 2, satisfying (4.3.4)-(4.3.5). Assume that there
exists constant c1 > 0, depending only on O, such that if f ∈ (L2(O))2 and ν > λ−1

1 M1 + (2λ1)−
1
4 ‖ f ‖

1
2
∗

satisfies in addition

2ν >
(2 − ρ∗)M1 + M2

2

λ1(1 − ρ∗)
+

c1| f |
λ1(ν − λ−1

1 M1)
. (4.3.8)

Then there exists a unique stationary solution u∞ ∈ D(A) of (4.3.7), and for all φ ∈ BCL−∞(H) ∩
L2((−∞, 0); H), the corresponding solution u of (4.0.1) with f (t) ≡ f satisfies

E|u(t) − u∞|2 6 E|u0 − u∞|2 +
M1 + M2

2

(1 − ρ∗)

∫ 0

−∞

E[|φ(s) − u∞|2]ds. (4.3.9)

Proof. Consider u the solution of (4.0.1) for f (t) ≡ f , and let u∞ ∈ D(A) be a stationary solution to
(4.3.1). Apply Itô formula to function |u(t) − u∞|2,

|u(t) − u∞|2 = |u0 − u∞|2 + 2
∫ t

0
(−νA(u − u∞) − B(u) + B(u∞), u − u∞)ds

+ 2
∫ t

0
(G1(u(s − ρ(s))) −G1(u∞), u − u∞)ds

+ 2
∫ t

0
(G2(u(s − ρ(s))) −G2(u∞), u − u∞)dW(s) +

∫ t

0
|G2(u(s − ρ(s)))|2L0

2
ds

(4.3.10)

Take expectation,

E|u(t) − u∞|2 = E|u0 − u∞|2 − 2ν
∫ t

0
E[‖u − u∞‖2]ds − 2

∫ t

0
E(B(u) − B(u∞), u − u∞)ds

+ 2
∫ t

0
E(G1(u(s − ρ(s))) −G1(u∞), u − u∞)ds +

∫ t

0
E|G2(u(s − ρ(s)))|2L0

2
ds.

(4.3.11)

2(B(u) − B(u∞), u − u∞) = 2b(u − u∞, u∞, u − u∞) 6
c1
√
λ1
‖u − u∞‖2‖u∞‖.

Since,

νAu∞ + B(u∞) = f + G1(u∞),

‖u∞‖ 6
| f |

√
λ1(ν − λ−1

1 M1)
.

On the other hand,

2
∫ t

0
E(G1(u(s − ρ(s))) −G1(u∞), u − u∞)ds

6
(2 − ρ∗)M1

λ1(1 − ρ∗)

∫ t

0
E[‖u − u∞‖2]ds +

M1

(1 − ρ∗)

∫ 0

−∞

E[ sup
−∞<s60

|φ(s) − u∞|2]ds.
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By (4.3.2), we have∫ t

0
E|G2(u(s − ρ(s)))|2L0

2
ds 6

M2
2

λ1(1 − ρ∗)

∫ t

0
E[‖u − u∞‖2]ds +

M2
2

(1 − ρ∗)

∫ t

0
E[ sup
−∞<s60

|φ(s) − u∞|2]ds.

Hence,

E|u(t) − u∞|2 6 E|u0 − u∞|2 +

−2ν +
c1| f |

√
λ1(ν − λ−1

1 M1)
+

(2 − ρ∗)M1

λ1(1 − ρ∗)
+

M2
2

λ1(1 − ρ∗)

 ·∫ t

0
E[‖u − u∞‖2]ds +

M1 + M2
2

(1 − ρ∗)

∫ 0

−∞

E[ sup
−∞<s60

|φ(s) − u∞|2]ds.

Therefore, by (4.3.8) we have

E|u(t) − u∞|2 6 E|u0 − u∞|2 +
M1 + M2

2

(1 − ρ∗)
E[|φ(s) − u∞|2L2(−∞,0;H)].

The proof is completed. �

Remark 4.3.4. In order to obtain that the weak solution to Eq.(4.3.1) converges exponentially to
u∞ and thus u∞ is exponentially stable in the mean square by this technique, we need that ρ(t) be
bounded. See [120] for details.

4.3.3 Stability via the construction of Lyapunov functionals
In this subsection, we first show the asymptotic stability of the trivial solution by constructing suitable
Lyapunov functionals of the following class of nonlinear stochastic partial differential equations, and
later we will apply these abstract results to our Navier-Stokes model. See [149] for more details.

Let us consider the following problem

du(t) = (A(t, u(t)) + f (t, ut))dt + g(t, ut)dW(t), t ∈ [0,T ],
u(t) = φ(t), t ∈ (−∞, 0],

(4.3.12)

where A(t, ·) : V → V ′ with 〈A(t, u), u〉 6 0, for all v ∈ V , f (t, ·) : BCL−∞(H) → H and g(t, ·) :
BCL−∞(H) → L(K,H) satisfy the following Lipschitz conditions: there exist L f , Lg such that for all
t > 0 and all ξ, η ∈ BCL−∞(H),

| f (t, ξ) − f (t, η)| 6 L f ‖ξ − η‖BCL−∞(H),

|g(t, ξ) − g(t, η)| 6 Lg‖ξ − η‖BCL−∞(H).
(4.3.13)

The existence and uniqueness of solution to (4.3.12) can be proved by a similar process as we did in
Section 3. For a fixed T > 0, given an initial value φ ∈ I2(−∞, 0; V) ∩ L2(Ω; BCL−∞(H)), a solution
to (4.3.12) is a process u(·) ∈ I2(−∞,T ; V) ∩ L2(Ω; C(−∞,T ; H)) such that

u(t) = φ(0) +

∫ t

0
A(s, u(s))ds +

∫ t

0
f (s, us)ds +

∫ t

0
g(s, us)dW(s), t ∈ [0,T ], P − a.s.

u(t) = φ(t), t ∈ (−∞, 0],
(4.3.14)
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where the first equality is defined in V ′.
From now on, we are interested in the longtime behavior of the solutions to (4.3.12). To this

end, we need the Itô formula for the solutions of (4.3.14). We define an associate operator L which
is usually called the “generator” of equation (4.3.14). To deal with the stochastic differential of
the process σ(t) = v(t, u(t)), where u(t) is a solution of equation (4.3.12), and the function v(t, u) :
[0,∞) × V → R+ has continuous partial derivatives

v′t(t, u) =
∂v(t, u)
∂t

, v′u(t, u) =
∂v(t, u)
∂u

, v′′uu(t, u) =
∂2v(t, u)
∂u2 ,

the Itô formula for σ(t) reads

dσ(t) = Lv(t, u(t))dt + 〈v′u(t, u(t)), g(t, ut)dW(t)〉,

where the generator L is defined in the following way

Lv(t, u(t)) = v′t(t, u(t)) + 〈v′u(t, u(t)), A(t, ut) + f (t, ut)〉 +
1
2

Tr[v′′uu(t, u(t))g(t, ut)Qg∗(t, ut)].

The generator L can be applied also for some functionals V(t, ϕ) : [0,∞) × H → R+. Notice that,
although we are using the same letter V to denote the functionals and the Hilbert space, no confusion
is possible. Suppose that a functional V(t, ϕ) can be represented in the form V(t, ϕ) = V(t, ϕ(0), ϕ(θ)),
θ < 0 and for ϕ = ut, which is defined as ϕ(θ) = u(t + θ) put

Vϕ(t, u) = V(t, ϕ) = V(t, u, ϕ(θ)), θ 6 0,
u = ϕ(0) = u(t).

(4.3.15)

Denote by D be the set of functionals for which the function Vϕ(t, u), defined by (4.3.15), has a
continuous derivative with respect to t and two continuous derivatives with respect to u. For function-
als from D, the generator L of the equation (4.3.12) has the from

LV(t, ut) = V ′ϕt(t, u(t)) + 〈V ′ϕu(t, u(t)), A(t, u(t)) + f (t, ut)〉 +
1
2

Tr[v′′uu(t, u(t))g(t, ut)Qg∗(t, ut)].

For functionals from D, the Itô formula implies

E[V(t, ut) − V(s, us)] =

∫ t

s
ELV(r, ur)dr, t > s. (4.3.16)

Next proposition is a generalization of Theorem 2.1 in [149, p. 34] to an infinite dimensional
framework. More precisely, Theorem 2.1 in [149] was stated and proved for stochastic ordinary dif-
ferential equations with finite delays while we will prove it for stochastic partial differential equations
with unbounded delays.
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Proposition 4.3.5. Let V(t, ut) be a continuous functional such that for any solution u(t) of problem
(4.3.12) with p > 2, the following inequalities hold:

EV(t, ut) > γ1E|u(t)|p, ∀t > 0,
EV(0, φ) 6 γ2‖φ‖

p
1 ,

E[V(t, ut) − V(0, φ)] 6 −γ3

∫ t

0
E|u(s)|pds, t > 0,

where ‖φ‖p
1 := sup

θ60
E|ϕ(θ)|p. Then the trivial solution of (4.3.12) is asymptotically p-stable (i.e. asymp-

totically stable in the pth-moment).

Proof. For simplicity, we only prove the case when p = 2, although the proof for p , 2 can be
obtained in a similar way. By the assumption, we know that for any φ ∈ BCL−∞(H),

γ1E|u(t)|2 6 EV(t, ut) 6 EV(0, φ) 6 γ2‖φ‖
2
1 = γ2 sup

θ60
E|ϕ(θ)|2, (4.3.17)

which implies that the trivial solution is stable.
Notice that, by (4.3.17), we have

sup
t>0

E|u(t)|2 6
γ2

γ1
‖φ‖21. (4.3.18)

On the other hand, it follows from the condition of this proposition, we find∫ ∞

0
E|u(s)|2ds 6

1
γ3

EV(0, φ) 6
γ2

γ3
‖φ‖21 < ∞, (4.3.19)

Applying the generator L to function |u(t)|2 and using (4.3.13), we obtain

EL|u(t)|2 = 2E(u(t), A(t, u(t)) + f (t, ut)) + E|g(t, ut)|2

6 2E(u(t), f (t, ut)) + E|g2(t, ut)|2

6 E|u(t)|2 + (L2
f + L2

g)E|ut|
2
BCL∞(H)

= E|u(t)|2 + (L2
f + L2

g)E sup
θ60
|u(t + θ)|2

6 E|u(t)|2 + (L2
f + L2

g)E sup
θ6−t
|u(t + θ)|2 + (L2

f + L2
g)E sup

θ>−t
|u(t + θ)|2

6 E|u(t)|2 + (L2
f + L2

g)‖φ‖21 + (L2
f + L2

g) sup
t>0

E|u(t)|2

6 γ4,

(4.3.20)

where γ4 is a positive constant. Since from (4.3.16),

E[V(t, ut) − V(s, us)] =

∫ t

s
ELV(r, ur)dr.
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By (4.3.20), we have for any t2 > t1 > 0,

|E|u(t2)|2 − E|u(t1)|2| 6 γ4(t2 − t1),

that is to say the function E|u(t)|2 is Lipschitz, from which and (4.3.18)-(4.3.19), we obtain that
lim

t→+∞
E|u(t)|2 = 0.Therefore, the proof is finished. �

Theorem 4.3.6. Assume that the forcing terms gi(t, ut) are given by gi(t, ut) = Gi(u(t − ρ(t))), i = 1, 2,
and satisfy (4.3.4)-(4.3.5). Let f = 0 and

2ν >
(2 − ρ∗)M1 + M2

2

λ1(1 − ρ∗)
.

Then, there exists a unique stationary solution u∞ = 0 to (4.3.7), and any weak solution u(t) to (4.3.1)
converges to zero in mean square. In other words, zero is asymptotically mean-square stable.

Proof. We prove this theorem by constructing a Lyapunov functional following the general method
of construction described in [40]. Setting

V1(t, ut) = |u(t)|2,

then

LV1(t, ut) = 2(−νAu(t) − B(u(t)) + G1(u(t − ρ(t))), u(t)) + |G2(u(t − ρ(t)))|2

6 −2ν‖u(t)‖2 + 2(G1(u(t − ρ(t))), u(t)) + |G2(u(t − ρ(t)))|2

6 (−2νλ−1
1 + M1)|u(t)|2 + (M1 + M2

2)|u(t − ρ(t))|2.

Let

V2(t, ut) =
M1 + M2

2

1 − ρ∗

∫ t

t−ρ(t)
|u(s)|2ds,

so we have

LV2(t, ut) 6
M1 + M2

2

1 − ρ∗
|u(t)|2 − (M1 + M2

2)|u(t − ρ(t))|2.

Thanks to the above inequalities and the fact that 2ν > λ−1
1 M1 +

M1+M2
2

λ1(1−ρ∗)
, we obtain that there exists a

positive constant γ, such that the Lyapunov functional V(t, ut) defined by V1(t, ut) + V2(t, ut) fulfills

LV(t, ut) = L(V1(t, ut) + V2(t, ut)) 6 (−2νλ−1
1 + M1 +

M1 + M2
2

1 − ρ∗
)|u(t)|2 6 −γ|u(t)|2 6 0.

Therefore, the functional V(t, ut) = V1(t, ut) + V2(t, ut) = |u(t)|2 +
M1+M2

2
1−ρ∗

∫ t

t−ρ(t)
|u(s)|2ds satisfies the

conditions in Proposition 4.3.5, thus the trivial solution of (4.3.7) is asymptotically mean-square
stable, which also means that the stationary solution to (4.3.7) is unique. �
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4.4 Polynomial stability for special case
In this subsection, we will prove the polynomial stability and convergence of solution when the un-
bounded variable delay term is specially taken as ρ(t) = (1 − λ)t with 0 < λ < 1.

To do this, we need to introduce the following stochastic pantograph equation and some technical
lemmas that are needed later. But these lemmas have been presented in Chapter 3, we omit them here.

Theorem 4.4.1. Consider (4.0.1) with f = 0, g1(t, ut) = Lg1u(qt), g2(t, ut) = Lg2u(qt) with 0 < q < 1
and 2λ1ν > 2|Lg1 |+ L2

g2
, then there exists unique trivial solution u = 0 of (4.0.1), and all the solutions

of (4.0.1) converges to zero polynomially, namely, there exist C > 0 and µ < 0 such that

E|u(t)|2 < CE|u(0)|2(1 + t)µ, for all t > 0 (4.4.1)

where µ satisfies |Lg1 | − 2νλ1 + (|Lg1 | + L2
g2

)qµ = 0 .

Proof. Let f ≡ 0. Applying Itô formula to |u(t)|2, using a similar process as it did in Theorem 4.1 in
[1], we obtain

E[|u(t + h)|2] − E[|u(t)|2] 6 (−2νλ1 + |Lg1 |)E
∫ t+h

t
|u(s)|2ds + (|Lg1 | + L2

g2
)E

∫ t+h

t
|u(qs)|2ds.

Denote by v(t) = E|u(t)|2,

v′(t) 6 (−2λ1ν + |Lg1 |)v(t) + (|Lg1 | + L2
g2

)w(qt). (4.4.2)

By Lemma 3.4.1-3.4.2, there exist C = C(Lg1 , Lg2 , λ1, ν) > 0 and µ ∈ R such that

v(t) 6 Cv(0)(1 + t)µ,

Since −2λ1ν + 2|Lg1 | + L2
g2
< 0, it holds that µ < 0, and

E|u(t)|2 6 CE|u(0)|2(1 + t)µ.

Then the polynomial decay of solutions follows directly. �

Remark 4.4.2. (i) In this special case, gi(t, ut) = Lgiu(qt), i = 1, 2 with 0 < q < 1 and f ≡ 0.
As long as we have 2λ1ν > 2|Lg1 |+L2

g2
, then we can prove that the solution converges polynomially

to zero. In this sense, this result improves the stability results we established previously.

(ii) In fact, our result can be extended to more general case, namely, if the delay term g(t, φ) is defined as
g(t, φ) = G(φ(−(1 − λ)t)), with G satisfying a Lipschitz condition with Lipschitz constant Lg.

As one of the most important Newtonian fluids, both the deterministic and the stochastic Navier-
Stokes equations with unbounded delay have been discussed in this Part II. We obtained the polyno-
mial stability of stationary solution in some special case, but the exponential stability, in general, is
still an open problem as well as the existence of attractor in this case. However, at the same time,
another type of fluids are also worth analyzing, namely, the so-called non-Newtonian fluids. Actually,
many fluid materials, such as molten plastics, synthetic fibers, paints and greases, polymer solutions,
suspensions, adhesives, dyes, varnishes, and biological fluids like blood etc., their flow behavior can-
not be characterized by Newtonian relationships in the real world, these fluids belong to the class of
non-Newtonian ones. Therefore Part III will be devoted to studying the asymptotic behavior of some
non-Newtonian fluids with finite delay.
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As it is well known, the Navier-Stokes model of fluid restricts the linear relation between the
stress tensor and the velocity gradient (see [143, 160]). Fluids satisfying such constitutive relation-
ship are called Newtonian fluids, e.g. air, gases, water, motor oil, alcohols, and simply hydrocarbon
compounds. However, for many fluid materials, such as molten plastics, synthetic fibers, paints and
greases, polymer solutions, suspensions, adhesives, dyes, varnishes, and biological fluids like blood
etc., their flow behavior cannot be characterized by Newtonian relationships in the real world. By
weaken the constraints of the Stokes hypothesis, the mathematical theory of viscous non-Newtonian
fluids generalizes the usual Stokes model in three important aspects: nonlinear constitutive relations
between the viscous part of the stress tensor and velocity gradients, dependence of the viscous stress
tensor on velocity gradients of order two or higher, and constitutive relations for higher order stress
tensors which must be present in the balance of energy equations as soon as higher order velocity
gradients are considered into the theory [15, 84].

Actually, non-Newtonian fluids models have many application in medicine, chemical engineering
and environmental protection. In medicine, for example, human blood belongs to non-Newtonian
fluid, understanding non-Newtonian viscous features and hemodynamics of blood is not only benefi-
cial for blood observation and control, but also help for cardiovascular disease diagnose and treatment,
and because artherosclerosis arising in the arterial wall shear stress is closely related, considering that
the blood is non-Newtonian fluid, therefore studying blood flow in the brain direction helps to deter-
mine the location of cerebral aneurysms. In chemical industry, making full use of the viscous charac-
teristics of non-Newtonian fluid can be applied to wastewater treatment, which is very conducive to
environmental protection.

Part III focuses on the following incompressible non-Newtonian fluid with finite delay on a
bounded domain:

∂u
∂t

+ (u · ∇)u + ∇p = ∇ · µ(e(u)) + f (t, ut) + g(x, t), in (τ,+∞) × O, (4.4.3)

∇ · u = 0, in (τ,+∞) × O, (4.4.4)

u(τ + θ, x) = φ(θ, x), θ ∈ [−h, 0], x ∈ O. (4.4.5)

which is supplemented by the boundary conditions (νi je = 2µ1
∂ei j

∂xl
, i, j, l = 1, 2, and n = (n1, n2) the

exterior unit normal to ∂O)

u = 0, νi jn jnl = 0, i, j, k = 1, 2, on ∂O × (τ,+∞), (4.4.6)

where O is a smooth bounded domain of R2, the unknown vector function u = u(x, t) = (u(1), u(2))
denotes the velocity of the fluid, g(x, t) = g(t) = (g(1), g(2)) is a time-dependent external function, and
the scalar function p represents the pressure. The first condition in (4.4.6) represents the usual non-
slip condition associated with a viscous fluid, while the second one expresses the fact that the first
moments of the traction vanish on ∂O, it is a direct consequence of the principle of virtual work. The
time-dependent delay term f (t, ut) represents, for instance, the influences of an external force with
some kind of delay, memory or hereditary characteristics, although we can also model some kind of
feedback controls. Here, ut denotes a segment of the solution, in other words, given h > 0 and a
function u : [s − h,+∞) × O → R2, for each t > s we define the mapping ut : [−h, 0] × O → R2 by

ut(θ, x) = u(t + θ, x), for θ ∈ [−h, 0], x ∈ O.
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In this way, this abstract formulation includes several types of delay terms in a unified way. For
example, terms like

F1(t, u(t − h)), F2(u(t − ρ(t))),
∫ 0

−h
F3(t, θ, u(t + θ))dθ, (4.4.7)

where Fi (i = 1, 2, 3) are suitable functions, and ρ : R 7→ [0, h], can all be described by the following
corresponding fi defined as

f1(t, φ) = F1(t, φ(−h)), f2(t, φ) = F2(φ(−ρ(t))), f3(t, φ) =

∫ 0

−h
F3(t, θ, φ(θ))dθ, (4.4.8)

where φ : [−h, 0] → X (X denotes certain Banach or Hilbert space concerning the spatial variable).
Then, when we replace φ by ut in (4.4.8), we obtain (4.4.7). Readers are referred to [30, 31, 33] for
more details.

The structure of Part III is as follows. Since Chapter 5 and Chapter 6 work on exactly the same
systems, namely, problem (4.4.3)-(4.4.5), in order to avoid unnecessary repetitions, in Preliminaries
below we recall some definitions and abstract spaces, as well as the reformulation of problem (4.4.3)-
(4.4.5). Besides, we will state assumptions on the delay term f (t, ut) in this section. Then, in Chapter
5, we investigate the dynamics of a non-autonomous incompressible non-Newtonian fluids with de-
lay, and prove the existence of pullback attractor. Finally, in Chapter 6, we analyze the exponential
stability of problem (4.4.3)-(4.4.5).

Preliminaries
We first recall some notations which are necessary for our analysis although they are similar to those
in [7, 15, 103], but we prefer to introduce them here for completeness.

Lp(O) will denote the 2D vector Lebesgue space with norm ‖ · ‖Lp(O); particularly, ‖ · ‖L2(O) = ‖ · ‖,
Hm(O) is the 2D vector Sobolev space {φ : φ = (φ1, φ2) ∈ L2(O),∇kφ ∈ L2(O), k 6 m} with norm

‖ · ‖Hm(O),
H1

0(O) is the closure of {φ : φ = (φ1, φ2) ∈ C∞(O) ×C∞(O)} in H1(O),
V denotes the {φ ∈ C∞(O) ×C∞(O) : φ = (φ1, φ2), ∇ · φ = 0},
H is the closure ofV in L2(O) with norm ‖ · ‖; H′ is the dual space of H,
W denotes the closure ofV in H2(O) with norm ‖ · ‖W ; W ′=dual space of W,
(·, ·)−the inner product in H, 〈·, ·〉-the dual pairing between W and W ′.
distM(X,Y)−the Hausdorff semi-distance between X,Y ⊂ M, where M is a normed space, defined

by

distM(X,Y) = sup
x∈X

inf
y∈Y
‖x − y‖M.

Set

a(u, v) =

2∑
i, j,k=1

(
∂ei j(u)
∂xk

,
∂ei j(v)
∂xk

)
=

2∑
i, j,k=1

∫
O

∂ei j(u)
∂xk

·
∂ei j(v)
∂xk

dx, u, v ∈ W. (4.4.9)
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On the one hand, from the definition of a(·, ·) and Lemma A.1.3 in Section 6, we see that a(·, ·) defines
a positive definite symmetric bilinear form on W. As a consequence of the Lax-Milgram Lemma, we
obtain an isometric operator A ∈ L(W,W ′), via

〈Au, v〉 = a(u, v), u, v ∈ W.

On the other hand, denoting D(A) = {u ∈ W : Au ∈ H}, it turns out that D(A) is a Hilbert space
and A is also an isometry from D(A) to H. Actually, A = P∆2, where P is the Leray projector from
L2(O) to H and, for any u ∈ D(A), we have (see [180])

c1‖u‖W 6 ‖Au‖. (4.4.10)

We also define a continuous trilinear form on H1
0(O) × H1

0(O) × H1
0(O) by

b(u, v,w) =

2∑
i, j=1

∫
O

ui
∂v j

∂xi
w jdx, u, v,w ∈ H1

0(O).

Since W ⊂ H1
0(O), b(·, ·, ·) is continuous on W ×W ×W and it is easy to check that (see [160])

b(u, v,w) = −b(u,w, v), b(u, v, v) = 0, ∀u, v,w ∈ W. (4.4.11)

Now we can define below continuous functional B(u) := B(u, u) from W ×W to W ′, for any u ∈ W,
in the following way,

〈B(u),w〉 = b(u, u,w), ∀w ∈ W. (4.4.12)

To finish, we set

µ(u) = 2µ0(ε + |e(u)|2)−α/2,

for u ∈ W, and define N(u) as

〈N(u), v〉 =

2∑
i, j=1

∫
O

µ(u)ei j(u)ei j(v)dx, ∀v ∈ W. (4.4.13)

Then the functional N(u) is continuous from W to W ′. When u ∈ D(A), we can extend N(u) to H by
setting

〈N(u), v〉 = −

∫
O

{∇ · [µ(u)e(u)] · v} dx, ∀v ∈ H. (4.4.14)

From a physical point of view, the initial boundary problem of Eq. (4.4.3) can be formulated as

∂u
∂t

+ (u · ∇)u + ∇p = ∇ ·
(
2µ0(ε + |e|2)−

α
2 − 2µ1∆e

)
+ f (t, ut) + g(x, t), in (τ,+∞) × O, (4.4.15)

∇ · u = 0, in (τ,+∞) × O, (4.4.16)

u = 0, νi jn jnl = 0, on ∂O × (τ,∞), (4.4.17)
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u(τ + θ, x) = φ(θ, x), θ ∈ [−h, 0], x ∈ O. (4.4.18)

As usual, in the variational set-up, we get rid of the pressure and rewrite our problem (4.4.15)-
(4.4.18) in a weak formulation as follows (see [15, 177])

∂u
∂t

+ 2µ1Au + B(u) + N(u) = f (t, ut) + g(x, t), in (τ,+∞) × O, (4.4.19)

u(τ + θ, x) = φ(θ, x), θ ∈ [−h, 0], x ∈ O. (4.4.20)

We now state the assumptions that will be imposed on the function f : [τ,T ] × CH 7→ (L2(O))2

containing the delay along our analysis. We will assume that the given delay term satisfies:

(H1) For any ξ ∈ CH, the mapping [τ,T ] 3 t 7→ f (t, ξ) ∈ (L2(O))2 is measurable,

(H2) f (·, 0) = 0,

(H3) ∃ L f > 0 such that for any t ∈ [τ,T ] and all ξ, η ∈ CH,

‖ f (t, ξ) − f (t, η)‖L2(O) 6 L f ‖ξ − η‖CH ,

Remark 4.4.3. As it is pointed out in [30, 70, 130], (H2) is not really a restriction, and condition
(H2) and (H3) imply that

‖ f (t, ξ)‖L2(O) 6 L f ‖ξ‖CH ,

so that ‖ f (·, ξ)‖L2(O) ∈ L∞(τ,T ).

Examples of delay terms satisfying (H1)− (H3) can be seen in Chapter 3 but in a finite interval for the
delay. Now we are in the position to study the global dynamics of a non-autonomous incompressible
non-Newtonian fluids with delay.



Chapter 5

Dynamics of a non-autonomous
incompressible non-Newtonian fluids with
delay

The objective of this chapter is to study the well-posedness and dynamical behavior of the following
non-autonomous incompressible non-Newtonian fluids with delay in a 2D bounded domain, and for
the completeness of the chapter, we rewrite the non-Newtonian fluid system as:

∂u
∂t

+ (u · ∇)u + ∇p = ∇ · µ(e(u)) + f (t, ut) + g(x, t), in (τ,+∞) × O, (5.0.1)

∇ · u = 0, in (τ,+∞) × O, (5.0.2)

u(τ + θ, x) = φ(θ, x), θ ∈ [−h, 0], x ∈ O. (5.0.3)

System (5.0.1)-(5.0.3) is supplemented with the boundary conditions (νi je = 2µ1
∂ei j

∂xl
, i, j, l = 1, 2, and

n = (n1, n2) the exterior unit normal to ∂O)

u = 0, νi jn jnl = 0, i, j, k = 1, 2, on ∂O × (τ,+∞), (5.0.4)

where O is a smooth bounded domain of R2.
Problem (5.0.1)-(5.0.4) models the motion of an isothermal incompressible viscous fluid with

µ(e(u)) = (µi j(e(u)))2×2, which is usually called the extra stress tensor of the fluid and is a matrix of
order 2 × 2 in which

µi j(e(u)) = 2µ0(ε0 + |e|2)−
α
2 ei j − 2µ1∆ei j, i, j = 1, 2,

ei j = ei j(u) =
1
2

(
∂ui

∂x j
+
∂u j

∂xi
), |e|2 =

2∑
i, j=1

|ei j|
2,

(5.0.5)

where µ0, µ1, ε0 and α (0 < α < 1) are positive constants which generally depend on the temperature
and pressure. In (5.0.5) if µi j(e(u)) depends linearly on ei j(u), then we say the corresponding fluid
is a Newtonian one. If the relation between µi j(e(u)) and ei j(u) is nonlinear, then the fluid is said

101
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to be non-Newtonian. One can refer to [12, 15] and related references therein for more physical
explanations.

The existence and uniqueness of solution of non-Newtonian flow is studied in [7, 12, 15]. In
[177, 180, 181] the existence of (compact, global, pullback) attractor for a non-Newtonian equation
without delay has been analyzed, while [103] focused on pullback attractor of a non-autonomous non-
Newtonian equation with variable delays. Caraballo and Real [36] proved the existence and unique-
ness of solution for functional Navier-Stokes models with delay, and a non-classical non-autonomous
diffusion equation with delay was considered in [31].

Enlightened by [31], in this paper we first aim to show the existence, uniqueness and continuity
of solutions to (5.0.1)-(5.0.4) by the energy method (see [31, 70, 71]) and the classical Galerkin
approximation (see [160]). Our second goal is to establish the existence of pullback attractor in phase
space C([−h, 0]; H2(O)) by using pullbackD− ω−limit compactness and a priori estimates.

We would like to mention that we will give a relatively complete proof of the existence, unique-
ness and continuity of solutions to Eq.(5.0.1), which will be obtained assuming that g belongs to
a more general space than the one in [103], namely, g ∈ L2

loc(R; W ′) instead of g ∈ L2
loc(R; H).

And the assumption g ∈ L2
loc(R; H) is needed only when we show the existence of pullback ab-

sorbing set in the space CW . Moreover, we only need g ∈ L2
loc(R; H) and satisfying (5.3.14), i.e.,

lim
m→+∞

sup
t>τ

∫ t

τ
e−2µ1λm+1(t−s)‖g(s)‖2ds = 0, to establish that the process is pullback D − ω−limit compact

in CW . However, in some references, the fact that g ∈ C(R; H) is required to prove the pullback
D − ω−limit compactness in CW which is a much stronger assumption than ours. Besides, in [103]
the authors established the existence of pullback attractor for non-Newtonian fluid with variable de-
lay, and we generalize this result to model more general delay. In other words, our result is true for
both variable and distributed delays.

5.1 Definition and Basic Theory
We now recall some definitions and results concerning dynamical systems and pullback attractors.
These definitions and results can be found in [30, 100, 180, 184].

Let (X, dX) be a metric space, and denote R2
d = {(t, τ) ∈ R2 : τ 6 t}. A process U on X is a

mapping R2
d × X 3 (t, τ, x) 7→ U(t, τ)x ∈ X such that U(τ, τ)x = x for any τ ∈ R, x ∈ X, and

U(t, r)(U(r, τ)x) = U(t, τ)x for any τ 6 r 6 t and all x ∈ X.
Let P(X) denote the family of all nonempty subsets of X, and consider a family of nonempty

sets D0 = {D0(t) : t ∈ R} ⊂ P(X). Let D be a given nonempty class of sets parameterized in time,
D = {D(t) : t ∈ R} ⊂ P(X). The classD will be called a universe in P(X).

Definition 5.1.1. For any σ > 0, we will denote byDσ(X) the class of all families of nonempty subsets
D = {D(t) : t ∈ R} ⊂ P(X) such that

lim
t→−∞

(
eσt sup

u∈D(t)
‖u‖2X

)
= 0.
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Definition 5.1.2. It is said that D0 = {D0(t) : t ∈ R} ⊂ P(X) is pullbackD−absorbing for the process
{U(t, τ) : t > τ} on X if for any t ∈ R and any D = {D(t) : t ∈ R} ∈ D, there exists a τ0(t,D) 6 t such
that

U(t, τ)D(τ) ⊂ D0(t) for all τ 6 τ0(t,D).

Definition 5.1.3. Let {U(t, τ)} be a process on X. We say that {U(t, τ)} is pullback D − ω−limit
compact with respect to each t ∈ R, if for any family B = {B(t) : t ∈ R} ∈ D and for any ε > 0, there
exists t1 = t1(B, t, ε) > 0, such that

κ

⋃
s>t1

U(t, t − s)B(t − s)

 6 ε,
where κ is the Kuratowski measure of non-compactness (see [125] for more information).

Definition 5.1.4. The familyAD = {AD(t) : t ∈ R} ⊂ P(X) is a pullbackD−attractor for the process
{U(t, τ) : t > τ} in X if :

(i) for any t ∈ R, the setAD(t) is a nonempty compact subset of X,

(ii) AD is pullbackD−attracting, i.e.,

lim
τ→−∞

distX (U(t, τ)D(τ),AD(t)) = 0, for all D ∈ D, for any t ∈ R,

(iii) AD is invariant, i.e.,

U(t, τ)AD(τ) = AD(t), for all τ 6 t.

To analyze our problem with delay, we need to construct our process in a Banach space of seg-
ments of solutions. Namely, the space CX which we will define below. Let X be a Banach space and
let h > 0 be a given positive number (the time delay). Denote by CX the Banach space C([−h, 0]; X)
endowed with the norm ‖φ‖CX = sup

θ∈[−h,0]
‖φ(θ)‖X. To study the pullback D − ω−limit compactness of

the process on CX, we borrow some techniques from [100, 170].

Proposition 5.1.5. (see [100]) Let {U(t, τ)} be a continuous process on CX. Suppose that for each
t ∈ R, B = {B(t) : t ∈ R} ∈ D and ε > 0, there exist τ0 = τ0(t, B, ε) > 0, a finite dimensional subspace
X1 of X and δ > 0 such that

(i) for each fixed θ ∈ [−h, 0] ∥∥∥∥∥∥∥⋃s>τ0

⋃
ut(·)∈U(t,t−s)B(t−s)

Pu(t + θ)

∥∥∥∥∥∥∥
X

is bounded;

(ii) for all s > τ0, ut(·) ∈ U(t, t − s)B(t − s), θ1, θ2 ∈ [−h, 0] with |θ2 − θ1| < δ,

‖P(u(t + θ1) − u(t + θ2))‖X < ε;
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(iii) for all s > τ0, ut(·) ∈ U(t, t − s)B(t − s),

sup
θ∈[−h,0]

‖(I − P)u(t + θ)‖X < ε,

where P : X → X1 is the canonical projector. Then {U(t, τ)} is pullback D − ω−limit compact in CX

with respect to each t ∈ R.

The following proposition is similar to that of [28, 125, 184].

Proposition 5.1.6. Let {U(t, τ)}t>τ be a process on Banach space CX and D be a universe in P(CX).
Then, {U(t, τ)}t>τ possesses a unique pullback D−attractor AD = {AD(t) : t ∈ R}, for any t ∈ R and
D ∈ D,

AD(t) = ω(D, t) =
⋂
τ06t

⋃
τ6τ0

U(t, τ)D(τ)

if and only if

(a) {U(t, τ)}t>τ has a pullback D−absorbing set in CX,

(b) {U(t, τ)}t>τ is pullback D− ω−limit compact in CX.

5.2 Existence and continuity of solutions
In this section, by classical Faedo-Galerkin approximation and the energy method, we prove the
existence, uniqueness and continuity of solutions to problem (5.0.1)-(5.0.4). But, in order to simplify
the process of prove, we reformulate (5.0.1)-(5.0.4) into an abstract way, namely, (4.4.19)-(4.4.20)

Theorem 5.2.1. (Existence and uniqueness of solution) Assume (H1)− (H3) hold. Let g ∈ L2
loc(R,W

′)
and φ ∈ CH. Then, for any τ ∈ R,

(a) there exists a unique weak solution u to problem (4.4.19) satisfying

u ∈ C([τ − h,T ]; H) ∩ L∞(τ,T ; H) ∩ L2(τ,T ; W), ∀T > τ.

(b) If φ(0) ∈ W, and g ∈ L2
loc(R,H), then there exists a unique strong solution u to problem (4.4.19)

satisfying
u ∈ C([τ − h,T ]; W) ∩ L∞(τ,T ; W) ∩ L2(τ,T ; D(A)), ∀T > τ.

Proof. We split the proof into several steps.
Step 1. A Galerkin Scheme.
By the definition of A and the classical spectral theory of elliptic operators (see [126]), we see that

operator A possesses a sequence of eigenvalues {λn}
∞
n=1 and a corresponding family of eigenfunctions
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{wn}∞n=1 ⊂ W ∩ D(A), which form a basis of W and are orthonormal in H, we consider the subspace
Wm = span{w1,w2, · · · ,wm}, and the projector Pm : H → Wm defined as

Pmu =

m∑
n=1

(u,wn)wn, u ∈ H.

Define

um(t) =

m∑
n=1

γmnwn,

where the upper script m will be used instead of (m) for short, since no confusion is possible with
powers of u, and the coefficients γmn are required to satisfy the following system:(

∂

∂t
um(t),wn

)
+ 2µ1(Aum,wn) + 〈B(um(t)),wn〉 + 〈N(um(t)),wn〉

= ( f (t, um
t ),wn) + 〈g(t, x),wn〉, a.e. t > τ, 1 6 n 6 m,

(5.2.1)

and where the equations are understood in the sense ofD′(τ,T ), and the initial conditions are

um(τ + θ) = Pmφ(θ), for θ ∈ [−h, 0].

The above system of ordinary differential equations with finite delay fulfills the conditions for ex-
istence and uniqueness of local solution in [30, Theorem A1, p. 2450]. Hence, we can ensure that
problem (5.2.1) has a unique local solution defined in [τ, tm] with τ < tm 6 +∞ (see [91] for a similar
result).

Next, by a priori estimates, we verify that solutions um do exist for all time t ∈ [τ,+∞).
Step 2: A priori estimates
Multiplying (5.2.1) by γmn, summing from n = 1 to n = m, and using Lemma A.1.3 in Appendix,

we obtain, for all t ∈ [τ, tm], that

1
2

d
dt
‖um(t)‖2 + 2c1µ1‖um(t)‖2W + 〈B(um(t)), um(t)〉 + 〈N(um(t)), um(t)〉

6 ( f (t, um
t ), um(t)) + 〈g, um(t)〉.

(5.2.2)

Integrating over [τ, t],

1
2
‖um(t)‖2 + 2c1µ1

∫ t

τ

‖um(s)‖2Wds +

∫ t

τ

〈B(um(s)), um(s)〉ds +

∫ t

τ

〈N(um(s)), um(s)〉ds

6
1
2
‖um(τ)‖2 +

∫ t

τ

( f (s, um
s ), um(s))ds +

∫ t

τ

〈g, um(s)〉ds.
(5.2.3)

First, by (4.4.11) and (4.4.13), ∫ t

τ

〈B(um(s)), um(s)〉ds = 0, (5.2.4)
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and ∫ t

τ

〈N(um(s)), um(s)〉ds > 0. (5.2.5)

By the fact that ‖v‖W > ‖v‖ for all v ∈ W,∫ t

τ

〈g, um(s)〉ds 6
c1µ1

2

∫ t

τ

‖um(s)‖2Wds +
1

2c1µ1

∫ t

τ

‖g(s)‖2W′ds. (5.2.6)

From (H3) and Young’s inequality,∫ t

τ

( f (s, um
s ), um(s))ds 6

∫ t

τ

‖ f (s, um
s )‖ · ‖um(s)‖ds

6 L f

∫ t

τ

‖um
s ‖CH‖u

m(s)‖ds

6
c1µ1

2

∫ t

τ

‖um(s)‖2Wds +
L2

f

2c1µ1

∫ t

τ

‖um
s ‖

2
CH

ds.

(5.2.7)

It follows from (5.2.3)-(5.2.7) that

‖um(t)‖2 +2c1µ1

∫ t

τ

‖um(s)‖2Wds 6 ‖φ‖2CH
+

L2
f

c1µ1

∫ t

τ

‖um
s ‖

2
CH

ds+
1

c1µ1

∫ t

τ

‖g(s)‖2W′ds, ∀ t > τ. (5.2.8)

Replacing t by t + θ in (5.2.8) we obtain

‖um
t ‖

2
CH
6 ‖φ‖2CH

+
L2

f

c1µ1

∫ t

τ

‖um
s ‖

2
CH

ds +
1

c1µ1

∫ t

τ

‖g(s)‖2W′ds, ∀ t > τ,

and therefore, the Gronwall Lemma implies

‖um
t ‖

2
CH
6 e

L2
f

c1µ1
(t−τ)

(
‖φ‖2CH

+
1

c1µ1

∫ t

τ

‖g(s)‖2W′ds
)
, ∀ t > τ, ∀ m > 1. (5.2.9)

Then, by (5.2.9), we can check that for each T > τ and R > 0, there exists a positive constant
C(τ,T,R, L f ), depending on the constants of the problem c1, µ1, L f , g, and on τ,T,R, such that for all
m > 1,

‖um
t ‖

2
CH

+ ‖um‖2L2(τ,T ;W) 6 C(τ,T,R, L f ), ‖φ‖CH 6 R.

In particular, thanks to inequalities (5.2.8) and (5.2.9), and the fact that g ∈ L2
loc(R; W ′), we deduce

{um} is bounded in L∞(τ − h,T ; H) ∩ L2(τ,T ; W), ∀T > τ. (5.2.10)

On the other hand, for almost all t, B(u(t)) and N(u(t)) are elements of W ′, and the measurability of
the mappings

t ∈ [0,T ]→ B(u(t)) ∈ W ′,
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and

t ∈ [0,T ]→ N(u(t)) ∈ W ′

are straightforward. Moreover, thanks to (4.4.11), the Hölder inequality, embedding theorems, and
Lemma A.1.1 in Appendix, we have that for all ϕ ∈ W,

|〈B(u), ϕ〉| = |b(u, u, ϕ)| = | − b(u, ϕ, u)| =

∣∣∣∣∣∣∣
2∑

i, j=1

∫
O

ui
∂ϕ j

∂xi
u jdx

∣∣∣∣∣∣∣
6 c‖u‖2L4‖ϕ‖H1

0 (O) 6 c‖u‖ · ‖∇u‖ · ‖ϕ‖H1
0 (O) 6 c‖u‖ · ‖∆u‖ · ‖∆ϕ‖.

(5.2.11)

Using the fact that µ(u) = µ0(ε0 + |e|2)−
α
2 6 µ0ε

− α2
0 , we can also obtain

|〈N(u), ϕ〉| =

∣∣∣∣∣∣∣2
2∑

i, j=1

∫
O

µ(e(u))ei j(u)ei j(ϕ)dx

∣∣∣∣∣∣∣
6 2µ0ε

− α2
0

∫
O

2∑
i, j=1

|ei j(u)ei j(ϕ)|dx

6 c‖∇u‖ · ‖∇ϕ‖
6 c‖∆u‖ · ‖∆ϕ‖.

(5.2.12)

As a consequence of (5.2.11) and (5.2.12), the estimates hold true,

‖B(u)‖W′ 6 c‖u‖ · ‖∆u‖ (5.2.13)

and
‖N(u)‖W′ 6 c‖∆u‖. (5.2.14)

Hence, ∫ T

τ

‖B(u(s))‖2W′ds 6 c
∫ T

τ

‖u(s)‖2‖∆u(s)‖2ds 6 c
∫ T

τ

‖us‖
2
CH
‖∆u(s)‖2ds < ∞ (5.2.15)

and ∫ T

τ

‖N(u(s))‖2W′ds 6 c
∫ T

τ

‖∆u(s)‖2ds < ∞. (5.2.16)

To this end, we need to show that {(um)′} is bounded in L2(τ,T ; W ′). Let ϕ ∈ C1([0,T ],W) and ϕm be
the projection of ϕ in W, onto the space Wm = span{w1,w2, · · · ,wm}. By (5.2.1), we have∫

O

∂um

∂t
wndx

= −2µ1

2∑
i, j,k=1

∫
O

∂ei j(um)
∂xk

∂ei j(wn)
∂xk

dx −
2∑

i, j=1

∫
O

um
i

∂um
j

∂xi
wn

jdx

−

2∑
i, j=1

∫
O

µ(um)ei j(um)ei j(wn)dx +

∫
O

f (t, um
t )wndx +

∫
O

g(x, t)wndx, n = 1, 2, · · · ,m.

(5.2.17)
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Using (5.2.17) and the definition of ϕm,∫ T

τ

∫
O

∂um

∂t
ϕdxdt =

∫ T

τ

∫
O

∂um

∂t
ϕmdxdt

= −2µ1

2∑
i, j,k=1

∫ T

τ

∫
O

∂ei j(um)
∂xk

∂ei j(ϕm)
∂xk

dxdt −
2∑

i, j=1

∫ T

τ

∫
O

um
i

∂um
j

∂xi
ϕm

j dxdt

−

2∑
i, j=1

∫ T

τ

∫
O

µ(um)ei j(um)ei j(ϕm)dxdt +

∫ T

τ

∫
O

f (t, um
t )ϕmdxdt

+

∫ T

τ

∫
O

g(x, t)ϕmdxdt

= I1 + I2 + I3 + I4 + I5.

(5.2.18)

From (5.2.10),
|I1 + I4 + I5| 6 C1‖ϕ

m‖L2(τ,T ;W). (5.2.19)

By a similar argument to that one in (5.2.11) and (5.2.12), we can check that

|I2| 6 C2

∫ T

τ

‖um‖ · ‖∇um‖ · ‖∇ϕm‖dt 6 C3‖ϕ
m‖L2(τ,T ;W) (5.2.20)

as well as
|I3| 6 C4‖ϕ

m‖L2(τ,T ;W). (5.2.21)

Hence, from (5.2.17)-(5.2.21), we can conclude that∣∣∣∣∣∣
∫ T

τ

∫
O

∂um

∂t
ϕdxdt

∣∣∣∣∣∣ 6 C5‖ϕ
m‖L2(τ,T ;W) 6 C5‖ϕ‖L2(τ,T ;W), (5.2.22)

and ∥∥∥∥∥∂um

∂t

∥∥∥∥∥
L2(τ,T ;W′)

6 C6, (5.2.23)

where Ci (i = 1, 2, · · · , 6) are positive constants. Thus,

{(um)′} is bounded in L2(τ,T ; W ′), ∀T > τ. (5.2.24)

Step 3: The energy method and compactness results
Now, we combine some well-known compactness results with the energy method to pass to the

limit in a subsequence of {um} to obtain a solution of (5.0.1). Observe that

um|[τ−h,τ] = Pmφ→ φ in CH. (5.2.25)

By Step 1, Step 2 and compactness theorem, we deduce that there exist a subsequence (which we
relabel the same) {um}, a function u ∈ C([τ − h,∞); H), with u|[τ−h,τ] = φ, u ∈ L2(τ,T ; W), χ ∈
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L2(τ,T ; W ′) for all T > τ, and an element ξ ∈ L∞(τ,T,H) for all T > τ, such that

um ∗
⇀ u weakly-star in L∞(τ,T ; H),

um ⇀ u weakly in L2(τ,T ; W),

(um)′ ⇀ χ weakly in L2(τ,T ; W ′),

um → u strongly in L2(τ,T ; H),

f (·, um
· )

∗
⇀ ξ weakly-star in L∞(τ,T ; H).

(5.2.26)

We first prove that χ = u′ = du
dt . Indeed, since the approximate solutions {um} satisfy

um(s) = Pmφ(τ) +

∫ s

τ

dum

dt
dt, s ∈ [τ,T ], m = 1, 2, · · · .

From (5.2.25), we know

Pmφ(τ)→ φ(τ).

Then

u(s) = φ(τ) +

∫ s

τ

χdt,

by [160, Lemma 3.1, Chapter II], we immediately deduce that χ = u′ = du
dt .

Using (5.2.26)4, we can also assume that

um(t)→ u(t) in H a.e. t ∈ [τ,T ], (5.2.27)

which is not enough to deduce that ξ(·) = f (·, u·).
However, we can obtain convergence for all t > τ with a little more effort and in a more general

case. Notice that,

um(t) − um(s) =

∫ t

s
(um)′(r)dr in W ′, ∀ s, t ∈ [τ,T ],

and by (5.2.24) we have that {um} is equi-continuous on [τ,T ] with values in W ′, for all T > τ.
Since the injection of W in H is compact, the injection of H into W ′ is compact as well. Thus,

from (5.2.10) and the equi-continuity of {um} in W ′, using Arzelà-Ascoli theorem, we have (again, up
to a subsequence)

um → u in C([τ,T ]; W ′), ∀ T > τ. (5.2.28)

This, jointly with the fact H ⊂ W ′, (5.2.10) and [160, Lemma 3.3, Chapter II], allows us to claim that
for any sequence {tm} ⊂ [τ,∞), with tm → t,

um(tm) ⇀ u(t) weakly in H, (5.2.29)
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where we have used (5.2.28) in order to identify which is the weak limit.
Now we prove that in fact

um(tm)→ u(t) in C([τ,T ]; H) ∀ T > τ. (5.2.30)

If not, then, taking into account that u ∈ C([τ,∞); H), there would exist T > τ, ε1 > 0, a value
t0 ∈ [τ,T ], and subsequences (relabelled the same) {um} and {tm} ⊂ [τ,T ], with lim

m→+∞
tm = t0, such that

‖um(tm) − u(t0)‖ > ε1, ∀ m > 1.

To conclude that this is false, we use an energy method. Note that the following energy equality holds
for all um:

1
2

d
dt
‖um(t)‖2 + 2µ1a(um(t), um(t)) + 〈B(um(t)), um(t)〉 + 〈N(um(t)), um(t)〉

= ( f (t, um
t ), um(t)) + 〈g, um(t)〉.

(5.2.31)

By Lemma A.1.3, we find that

1
2

d
dt
‖um(t)‖2 + 2c1µ1‖um(t)‖2W + 〈B(um(t)), um(t)〉 + 〈N(um(t)), um(t)〉

6 ( f (t, um
t ), um(t)) + 〈g, um(t)〉.

(5.2.32)

Integrating (5.2.32) over [s, t] with respect to t,

1
2
‖um(t)‖2 + 2c1µ1

∫ t

s
‖um(r)‖2Wdr +

∫ t

s
〈B(um(r)), um(r)〉dr +

∫ t

s
〈N(um(r)), um(r)〉dr

6
1
2
‖um(s)‖2 +

∫ t

s
( f (r, um

r ), um(r))dr +

∫ t

s
〈g(r), um(r)〉dr.

(5.2.33)

Since 〈B(um(r)), um(r)〉 = 0 and 〈N(um(r)), um(r)〉 > 0, and∫ t

s
( f (r, um

r ), um(r))dr 6
c1µ1

2

∫ t

s
‖um(r)‖2Wdr +

1
2c1µ1

∫ t

s
‖ f (r, um

r )‖2dr

6
c1µ1

2

∫ t

s
‖um(r)‖2Wdr +

L2
f

2c1µ1

∫ t

s
‖um

r ‖CH dr

6
c1µ1

2

∫ t

s
‖um(r)‖2Wdr + C(t − s), ∀τ 6 s 6 t 6 T,

where C =
L2

f D

2c1µ1
, and D corresponds to the upper bound of ‖ut‖CH , it follows

‖um(t)‖2 6 ‖um(s)‖2 + 2
∫ t

s
〈g(r), um(r)〉dr + 2C(t − s), ∀τ 6 s 6 t 6 T. (5.2.34)
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On the one hand, observe that by (5.2.26), passing to the limit in (5.2.1), we have that u ∈ C([τ,T ]; H)
is a solution of a similar problem to (5.0.1), namely,(

∂

∂t
u(t),w

)
+ 2µ1a(u(t),w) + 〈B(u(t)),w〉 + 〈N(u(t)),w〉 = (ξ,w) + 〈g,w〉, ∀w ∈ W,

fulfilled with the initial datum u(τ) = φ(0). Therefore, it satisfies the energy equality

1
2
‖u(t)‖2 + 2µ1

∫ t

s
a(u(r), u(r))dr +

∫ t

s
〈B(u(r)), u(r)〉dr +

∫ t

s
〈N(u(r)), u(r)〉dr

=
1
2
‖u(s)‖2 +

∫ t

s
(ξ(r), u(r))dr +

∫ t

s
〈g(r), u(r)〉dr, ∀τ 6 s 6 t 6 T.

On the other hand, from (5.2.26)5 we deduce that∫ t

s
‖ξ(r)‖2dr 6 lim

m→+∞
inf

∫ t

s
‖ f (r, um

r )‖2dr 6 D(t − s), ∀τ 6 s 6 t 6 T,

which implies that u also satisfies inequality (5.2.34) (here we applied Lemma A.1.3) with the same
constant c1.

Now, consider the functions Jm, J : [τ,T ] 7→ R defined by

Jm(t) =
1
2
‖um(t)‖2 −

∫ t

τ

〈g(r), um(r)〉dr −C(t − τ),

J(t) =
1
2
‖u(t)‖2 −

∫ t

τ

〈g(r), u(r)〉dr −C(t − τ),

with C defined in (5.2.34). By (5.2.34) and the analogous inequality for u, it is clear that Jm and J are
non-increasing continuous functions. Moreover, by (5.2.26) and (5.2.27),

Jm(t)→ J(t) a.e. t ∈ [τ,T ]. (5.2.35)

Now we are ready to prove that
um(tm)→ u(t0) in H. (5.2.36)

Recall that from (5.2.29) we have

‖u(t0)‖ 6 lim
m→+∞

inf ‖um(tm)‖. (5.2.37)

Therefore, if we show that
lim

m→+∞
sup ‖um(tm)‖ 6 ‖u(t0)‖, (5.2.38)

then combining with (5.2.37), we can obtain lim
m→+∞

‖um(tm)‖ = ‖u(t0)‖, which means (5.2.36) holds
true.

Note that the case t0 = τ follows directly from (5.2.25) and (5.2.34) with s = τ. Hence, we can
assume that t0 > τ. Owing to this result, we approach t0 from the left by a sequence {t̃k}, namely,
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lim
k→+∞

t̃k ↗ t0, being {t̃k} values where (5.2.35) holds. Since J(·) is continuous at t0, for any ε > 0 there

is kε such that |J(t̃k) − J(t0)| < ε
2 for all k > kε . On the other hand, taking m > m(kε) such that tm > t̃kε ,

as Jm is non-increasing and for all t̃k the convergence (5.2.35) holds, one has

Jm(tm) − J(t0) 6 |Jm(t̃kε ) − J(t̃kε )| + |J(t̃kε ) − J(t0)|,

and taking m > m′(kε) > m(kε), such that |Jm(t̃kε ) − J(t̃kε )| <
ε
2 . It can also be deduced from (5.2.26)

that ∫ tm

τ

〈g(r), um(r)〉dr →
∫ t0

τ

〈g(r), u(r)〉dr,

We conclude that (5.2.38) holds. Thus, (5.2.36) and finally (5.2.30) are also true, as claimed. This
also implies, thanks to (5.2.25), that um

t → ut in CH for all t > τ. Therefore, we identify the weak
limit ξ from (5.2.26). Indeed, from the above convergence and since f satisfies (H3), we have that
f (·, um

· ) → f (·, u·) in L2(τ,T ; (L2(O))2) for all T > τ. Thus, we can pass to the limit finally in (5.2.1)
concluding that u solves (5.0.1).

Step 4: The uniqueness of solution
This can be obtained in the following way. Consider two weak solutions of (5.0.1), u and v, with

the same initial data, and denote w = u − v. We notice that

|b(u, v,w)| 6 2−
1
2 ‖u‖

1
2 ‖∇u‖

1
2 ‖∇v‖‖w‖

1
2 ‖∇w‖

1
2 , u, v,w ∈ W.

∂w
∂t

+ 2µ1Aw + B(u) − B(v) + N(u) − N(v) = f (t, ut) − f (t, vt), (5.2.39)

with initial value
w(τ) = 0. (5.2.40)

Take the inner product of (5.2.39) with w to yield that

1
2

d
dt
‖w‖2 + 2µ1a(w,w) + 〈B(u) − B(v),w〉 + 〈N(u) − N(v),w〉 = ( f (t, ut) − f (t, vt),w).

From the monotonicity of µ(u), it follows that

〈N(u) − N(v),w〉 = 2
∫
O

[µ(u)ei j(u) − µ(v)ei j(v)]ei j(w)dx > 0, (5.2.41)

and we also have
〈B(u) − B(v),w〉 = b(u, u,w) − b(v, v,w) = b(w, v,w). (5.2.42)

Then, for some αi > 0, i = 1, 2, 3,

|b(u, u,w) − b(v, v,w)| 6

∣∣∣∣∣∣
∫
O

wi
∂u j

∂xi
w jdx

∣∣∣∣∣∣ 6 α1‖w‖2L4‖∇u‖

6 α2‖w‖L2‖∇w‖ · ‖∇u‖ 6 α3‖w‖L2‖∆w‖ · ‖∆u‖.
(5.2.43)
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Using Lemma A.1.3, together with (5.2.42)-(5.2.43), we find that, for some c > 0,

d
dt
‖w‖2 6 c‖w‖ · ‖∆w‖ · ‖∆u‖ + 2( f (t, ut) − f (t, vt),w)

6 c‖w‖ · ‖∆w‖ · ‖∆u‖ + 2L f ‖ut − vt‖ · ‖w‖
6 c‖w‖ · ‖∆w‖ · ‖∆u‖ + 2L f ‖wt‖ · ‖w‖

6 c1µ1‖w‖2W + c‖w‖2‖∆u‖2 + 2L f ‖wt‖
2
CH
, for all t > τ,

and therefore,

d
dt
‖w‖2 6 c‖w‖2‖∆u‖2 + 2L f ‖wt‖

2
CH
, for all t > τ.

Integrating the above inequality over [τ, t] with respect to t,

‖w(t)‖2 6 c
∫ t

τ

‖w(r)‖2‖∆u(r)‖2dr + 2L f

∫ t

τ

‖wr‖
2
CH

dr.

Hence,

‖wt‖
2
CH
6

∫ t

τ

(c‖∆u(r)‖2 + 2L f )‖wr‖
2
CH

dr.

By the Gronwall lemma, we have

‖wt‖
2
CH
≡ 0.

Finally, the regularity in (b) is a consequence of well-known regularity results and the fact that, if
g ∈ L2

loc(R; (L2(O))2), then the function ĝ(t) = g(t) + f (t, ut), t > τ, belongs to L2
loc(τ,∞; (L2(O))2).

The proof is finished. �

Theorem 5.2.2. (Continuous dependence of solutions on initial values) Let g ∈ L2
loc(R; W ′), f :

R × CH 7→ (L2(O))2 satisfying (H1) − (H3), and φ, ψ ∈ CH be given. Let us denote u = u(·; τ, φ)
and v = v(·; τ, ψ) the corresponding weak solutions to problem (5.0.1). Then, the following estimate
holds:

‖ut − vt‖
2
CH
6 ‖φ − ψ‖2CH

exp
{∫ t

τ

(
c‖∆u(s)‖2 + 2L f

)
ds

}
.

Proof. Denote w = u− v. Analogously to the arguments in Theorem 5.2.1 for the proof of uniqueness
of weak solution to problem (5.0.1) we obtain

∂w
∂t

+ 2µ1Aw + (B(u) − B(v)) + (N(u) − N(v)) = f (t, ut) − f (t, vt). (5.2.44)

Multiplying (5.2.44) by w,

d
dt
‖w‖2 + 3c1µ1‖w‖2W 6 c‖w‖2‖∆u‖2 + 2L f ‖wt‖

2
CH
.
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Integrate the above inequality over [τ, t] with respect to t to get

‖w(t)‖2 6 ‖w(τ)‖2 + c
∫ t

τ

‖w(s)‖2‖∆u(s)‖2ds + 2L f

∫ t

τ

‖ws‖
2
CH

ds,

particularly,

‖wt‖
2
CH
6 ‖w(τ)‖2 +

∫ t

τ

(c‖∆u(s)‖2 + 2L f )‖ws‖
2
CH

ds.

Again by the Gronwall lemma, we have

‖wt‖
2
CH
6 ‖w(τ)‖2exp

{∫ t

τ

(
c‖∆u(s)‖2 + 2L f

)
ds

}
,

namely,

‖ut − vt‖
2
CH
6 ‖φ − ψ‖2CH

exp
{∫ t

τ

(
c‖∆u(s)‖2 + 2L f

)
ds

}
.

The proof is completed immediately. �

5.3 Uniform Estimates
In this section, we analyze the existence of pullbackD−attractor in CW .

5.3.1 Existence of pullback absorbing sets

Now, by the previous results, we are able to define correctly a process U on CH and CW associated to
(4.4.19), and then to obtain the existence of pullback attractors.

Theorem 5.3.1. Let g ∈ L2
loc(R; W ′) and f : R × CH → (L2(O))2 satisfying (H1) − (H3). Then, the

process U(t, τ) : CH → CH, with τ 6 t, given by

U(t, τ)φ = ut(·; τ, φ),

where u = u(·; τ, φ) is the unique weak solution to (4.4.19), defines a continuous process on CH.

Proof. It is a consequence of theorems 5.2.1 and 5.2.2. �

Remark 5.3.2. By a reasoning similar to the one in Theorem 5.2.2, we can conclude that U depends
continuously on the initial values in CW , which jointly with Theorem 5.2.1, allow us to show that U is
also a well-defined process on CW with g ∈ L2

loc(R; H) and initial datum φ ∈ CW .
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Next, we show the existence of pullback D−absorbing sets of U in CH and CW , and then verify
the pullbackD− ω−limit compactness of U in CW . Hereafter, we suppose that

there exists 0 < β < c1µ1 such that σ := β −
L2

f e
βh

c1µ1
> 0, (5.3.1)

and ∫ t

−∞

eσs
(
‖g(s)‖2W′ + ‖g(s)‖2

)
ds < ∞, ∀ t ∈ R,

and denote byD the class of all families of nonempty subsets D = {D(t)}t∈R ⊂ P(CX) such that

lim
t→−∞

(
eσt sup

u∈D(t)
‖u‖2CX

)
= 0,

where σ is defined in (5.3.1), CX = CH or CX = CW .

Remark 5.3.3. If c1µ1h > 1, there exists β which satisfies (5.3.1) when ehL2
f < c1µ1; if c1µ1h 6 1,

then we can choose β which satisfies (5.3.1) as long as ec1µ1hL2
f < (c1µ1)2 holds.

We now prove the existence of a pullback absorbing set in CH.

Lemma 5.3.4. (Pullback absorbing set in CH) Assume that (H1)-(H3) hold and g ∈ L2
loc(R; W ′). Let

B = {B(t) : t ∈ R} ∈ D. Then, there exists TB > 0, such that for any t ∈ R, all r > TB and
φ ∈ B(t − r) ⊂ CH, the weak solution u(·; t − r, φ) of Eq. (4.4.19) satisfies

‖ut‖
2
CH

= ‖U(t, t − r)φ‖2CH
6 ρ2

1(t),

where ρ2
1(t) := 1 + eβh−σt

∫ t

−∞
eσs‖g(s)‖2W′ds.

Proof. The uniform estimates that we require for the solutions which define the process U are analo-
gous to those provided in the proof of theorems 5.2.1-5.2.2, but there with Galerkin approximations.

For the sake of brevity, we only sketch the main ideas:
Multiplying (4.4.19) by u, by Lemma A.1.3, we have

1
2

d
dt
‖u‖2 + 2c1µ1‖u‖2W + 〈B(u), u〉 + 〈N(u), u〉 6 ( f (t, ut), u) + 〈g, u〉. (5.3.2)

Observe that

〈B(u), u〉 = 0, 〈N(u), u〉 > 0.

By (H3) and the Young inequality,

( f (t, ut), u) 6 ‖ f (t, ut)‖ · ‖u‖ 6 L f ‖ut‖ · ‖u‖ 6
L2

f

2c1µ1
‖ut‖

2
CH

+
c1µ1

2
‖u‖2W ,
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and

〈g, u〉 6
c1µ1

2
‖u‖2W +

1
2c1µ1

‖g‖2W′ .

From the above inequalities we obtain

d
dt
‖u‖2 + 2c1µ1‖u‖2W 6

L2
f

c1µ1
‖ut‖

2
CH

+
1

c1µ1
‖g‖2W′ . (5.3.3)

Multiplying (5.3.3) by eβt with 0 < β < c1µ1, and integrating the resulting over [τ, t] yield

eβt‖u(t)‖2 6 eβτ‖u(τ)‖2 +
L2

f

c1µ1

∫ t

τ

eβs‖us‖
2
CH

ds +
1

c1µ1

∫ t

τ

eβs‖g(s)‖2W′ds.

In particular we have

eβt‖ut‖
2
CH
6 eβ(τ+h)‖u(τ)‖2 +

L2
f e
βh

c1µ1

∫ t

τ

eβs‖us‖
2
CH

ds +
eβh

c1µ1

∫ t

τ

eβs‖g(s)‖2W′ds. (5.3.4)

By Lemma A.1.4 in Appendix, we obtain that

eβt‖ut‖
2
CH
6 eβ(h+τ)+

L2
f eβh

c1µ1
(t−τ)
‖φ‖2CH

+
eβh

c1µ1

∫ t

τ

eβs+
L2

f eβh

c1µ1
(t−s)
‖g(s)‖2W′ds, ∀ t > τ,

which means that

‖ut‖
2
CH
6 eβh−σ(t−τ)‖φ‖2CH

+
eβh

c1µ1

∫ t

τ

e−σ(t−s)‖g(s)‖2W′ds, ∀ t > τ.

We now consider the initial time t − r instead of τ, and then

‖ut‖
2
CH

= ‖U(t, t − r)φ‖2CH
6 eβh−σr‖φ‖2CH

+ eβh−σt
∫ t

t−r
eσs‖g(s)‖2W′ds

6 eβh−σr‖φ‖2CH
+ eβh−σt

∫ t

−∞

eσs‖g(s)‖2W′ds.
(5.3.5)

We deduce from (5.3.5) that there exists TB > 0, such that for all r > TB and all t ∈ R, it holds

‖ut‖
2
CH
6 1 + eβh−σt

∫ t

−∞

eσs‖g(s)‖2W′ds := ρ2
1(t). (5.3.6)

The proof is finished. �

Denoting by BCH (0, ρ1(t)) the closed ball in CH of center zero and radius ρ1(t), it is easy to check
that lim

t→−∞
eσtρ2

1(t) = 0. Hence, BCH (0, ρ1(t)) is a pullbackD−absorbing set for the process U in CH.
To our purpose, the following lemma is needed.
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Lemma 5.3.5. Assume that (H1)-(H3) hold and g ∈ L2
loc(R; W ′). Then for TB the absorbing time

corresponding to the set BCH (0, ρ1(t)) in Lemma 5.3.4, there holds∫ t

t−1
a(u(s; t − r, φ), u(s; t − r, φ))ds 6 ρ2

2(t),

for all r > TB, t ∈ R, where ρ2
2(t) := cρ2

1(t) + ce−σ(t−1)
∫ t

−∞
eσs‖g(s)‖2W′ds.

Proof. Denote u(·) = u(·; t0 − r, φ) for φ ∈ B(t0 − r) ⊂ CH, where t0 ∈ R is a fixed, but arbitrary,
number, and let us take r > TB, where we have chosen the same σ than in that proof. We can then
integrate (5.3.3) over [t − 1, t] for t > t0 and r > TB,

2c1µ1

∫ t

t−1
‖u(s)‖2Wds 6 ‖u(t − 1)‖2 +

L2
f

c1µ1

∫ t

t−1
‖us‖

2
CH

ds +
1

c1µ1

∫ t

t−1
‖g(s)‖2W′ds.

Therefore,

c1µ1

c2

∫ t

t−1
a(u(s), u(s))ds 6 c1µ1

∫ t

t−1
‖u(s)‖2Wds

6
1
2
‖u(t − 1)‖2 +

L2
f

2c1µ1

∫ t

t−1
‖us‖

2
CH

ds +
1

2c1µ1

∫ t

t−1
‖g(s)‖2W′ds.

Notice that by Lemma 5.3.4, for all r > TB, it follows

1
2
‖u(t − 1)‖2 +

L2
f

2c1µ1

∫ t

t−1
‖us‖

2
CH

ds 6 cρ2
1(t),

and ∫ t

t−1
‖g(s)‖2W′ds 6

∫ t

t−1
eσ(s−t+1)‖g(s)‖2W′ds 6 e−σ(t−1)

∫ t

−∞

eσs‖g(s)‖2W′ds.

Hence, we can deduce for all r > TB,∫ t

t−1
a(u(s), u(s))ds 6 cρ2

1(t) + ce−σ(t−1)
∫ t

−∞

eσs‖g(s)‖2W′ds := ρ2
2(t).

The proof is completed immediately. �

Lemma 5.3.6. (Pullback absorbing set in CW) Assume that (H1)-(H3) hold and g ∈ L2
loc(R; H). Then

the weak solution u of (4.4.19) satisfies

‖ut‖
2
CW

= ‖U(t, t − r)φ‖2CW
6 ρ2

3(t),

for all t > TB + 1 + h and t ∈ R, where ρ2
3(t) := 1

c1
(a2 + a3)ea1 , a1 = c

(
1 + ρ2

1(t)ρ2
2(t)

)
, a2 =

c
(
ρ2

1(t) + e−σ(t−1)
∫ t

−∞
eσs‖g(s)‖2ds

)
, and a3 = ρ2

2(t).
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Proof. Denote u(·) = u(·; t0 − r, φ) for φ(0) ∈ W, where t0 ∈ R is a fixed number, and let us take
r > TB. We multiply (4.4.19) by Au and obtain that for s > t0,

1
2

d
ds

a(u(s), u(s)) + 2µ1‖Au‖2 + 〈B(u), Au〉 + 〈N(u), Au〉 = ( f (s, us), Au) + (g, Au). (5.3.7)

On the one hand,

( f (s, us), Au) 6 ‖ f (s, us)‖ · ‖Au‖ 6 L f ‖us‖CH · ‖Au‖ 6
µ1

4
‖Au‖2 +

L2
f

µ1
‖us‖

2
CH
, (5.3.8)

(g, Au) 6
µ1

4
‖Au‖2 +

1
µ1
‖g‖2. (5.3.9)

By Hölder’s inequality and the Gagliardo-Nirenberg inequality,

|〈B(u), Au〉| 6 ‖Bu‖ · ‖Au‖ 6 ‖u‖L4‖∇u‖L4 · ‖Au‖ 6 c‖u‖
1
2
W‖u‖H1‖u‖

1
2 ‖Au‖

6 c‖Au‖
3
2 ‖u‖H1‖u‖

1
2 6

µ1

4
‖Au‖2 +

1
µ1
‖u‖2‖u‖4H1 .

(5.3.10)

Moreover, from the definition of N(u), one can check that

〈N(u), Au〉 = −

∫
O

{
∇ · [µ(u) · e(u)]

}
· Au dx

6 c(‖∇u‖ + ‖∆u‖) · ‖Au‖ 6
µ1

4
‖Au‖2 + c‖∆u‖2.

(5.3.11)

It follows from (5.3.7)-(5.3.11) that

d
ds

a(u, u) + 2µ1‖Au‖2 6
2L2

f

µ1
‖us‖

2
CH

+
2
µ1
‖g‖2 + c

(
1 + a(u, u)‖u‖2

)
a(u, u). (5.3.12)

On the other hand, from Lemma 5.3.4 we have for all r > TB,∫ t

t−1

2L2
f

µ1
‖us‖

2
CH

+
2
µ1
‖g‖2

 ds 6 c
(
ρ2

1(t) + e−σ(t−1)
∫ t

−∞

eσs‖g(s)‖2ds
)
.

In view of Lemma 5.3.5, for all r > TB,∫ t

t−1
a(u(s), u(s))‖u(s)‖2ds 6

∫ t

t−1
a(u(s), u(s))e−σseσs‖us‖

2
CH

ds 6 eσρ2
1(t)ρ2

2(t).

Now, by Lemma A.1.3 and A.1.5 in Appendix, we can conclude that

‖u(s)‖2W 6
1
c1

a(u, u) 6
1
c1

(a2 + a3)ea1 , for all s > t0 + 1, provided r > TB,
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where a1 = c
(
1 + ρ2

1(t)ρ2
2(t)

)
, a2 = c

(
ρ2

1(t) + e−σ(t−1)
∫ t

−∞
eσs‖g(s)‖2ds

)
, a3 = ρ2

2(t), and consequently,
if we take r > TB + h + 1,

sup
θ∈[−h,0]

‖u(t0 + θ)‖2W 6
1
c1

(a2 + a3)ea1 := ρ2
3(t), (5.3.13)

where the constants a1, a2, a3 and c1 in (5.3.13) are independent of the fixed time t0 ∈ R. Thus (5.3.13)
holds true for all t0 ∈ R. Denoting from now on

u(·) = u(·; t − r, φ),

we have for all t ∈ R, r > TB + h + 1,

‖ut‖
2
CW

= ‖U(t, t − r)φ‖2CW
6

1
c1

(a2 + a3)ea1 := ρ2
3(t),

as claimed. �

Obviously, it is easy to check that lim
t→−∞

eσtρ2
3(t) = 0. Denote by BCW (0, ρ3(t)) the closed ball in CW

of center zero and radius ρ3(t). Thus, BCW (0, ρ3(t)) is a pullback D−absorbing set for the process U
in CW .

5.3.2 pullbackD− ω−limit compactness
From now on, we assume that

lim
m→+∞

sup
t>τ

∫ t

τ

e−2µ1λm+1(t−s)‖g(s)‖2ds = 0. (5.3.14)

Remark 5.3.7. An example for g satisfying (5.3.14) is given in [170], i.e., if g is normal in L2
loc(R; H),

then (5.3.14) holds, which is proved in Lemma 3.1 of [123].

Now, we are in a position to prove pullbackD− ω−limit compactness of the process U in CW .

Lemma 5.3.8. Suppose that (H1)-(H3) and (5.3.14) hold. Then the process {U(t, τ)} corresponding
to problem (4.4.19)-(4.4.20) is pullbackD− ω−limit compact on CW .

Proof. By the classical spectral theory of elliptic operators, there exists a sequence {λn}
∞
n=1 satisfying

0 < λ1 6 λ2 6 · · · 6 λn 6 · · · , λn → +∞ as n→ +∞, (5.3.15)

and a family of elements {wn}
∞
n=1 ⊂ D(A), which forms a basis of W and is orthonormal in H, such

that
Awn = λnwn, ∀n ∈ N. (5.3.16)

Let Wm = span{w1,w2, · · · ,wm}, where m ∈ N will be specified later. Then Wm is a finite-dimensional
subspace of W. Denote by Pm the orthogonal projector from W into Wm and we obviously have
‖Pm‖ 6 1 for each m ∈ N.
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Set u = u1 + u2, where u1 = Pmu and u2 = (I − Pm)u. We decompose Eq. (4.4.19) as follows:

∂u2(t)
∂t

+ 2µ1Au2 + B(u) − PmB(u1) + N(u) − PmN(u1) = f (t, ut) − Pm f (t, u1t) + (I − Pm)g (5.3.17)

with initial data
u2(τ + t) = (I − Pm)φ(t), t ∈ [−h, 0], (5.3.18)

and
∂u1(t)
∂t

+ 2µ1Au1 + PmB(u1) + PmN(u1) = Pm f (t, u1t) + Pmg (5.3.19)

with initial data
u1(τ + t) = Pmφ(t), t ∈ [−h, 0]. (5.3.20)

We divide the proof into two steps: Step 1: For every fixed t ∈ R, any B = {B(t) : t ∈ R} ∈ D and
any ε > 0 we observe that for any T > t − s with s > 0, U(T, t − s)(φ) = {uT (·; t − s, φ) : u is a strong
solution to the problem (4.4.19) with φ ∈ B(t − s)}. We now show that condition (iii) of Proposition
5.1.5 holds.

Taking the inner product of (5.3.17) with Au2 = A(I − Pm)u in H, we have

1
2

d
dt

a(u2, u2) + 2µ1(Au2, Au2) + 〈B(u) − PmB(u1), Au2〉 + 〈N(u) − PmN(u1), Au2〉

= ( f (t, ut) − Pm f (t, u1t), Au2) + ((I − Pm)g, Au2).
(5.3.21)

Since (u1, u2) = 0, from Hölder’s inequality and Gagliardo-Nirenberg’s inequality,

1
2

d
dt

a(u2, u2)+2µ1‖Au2‖
2 6 |〈B(u), Au2〉|+ |〈N(u), Au2〉|+ |( f (t, ut), Au2)|+ |((I−Pm)g, Au2)|, (5.3.22)

|( f (t, ut), Au2)| 6
µ1

4
‖Au2‖

2 +
L2

f

µ1
‖ut‖

2
CH
, (5.3.23)

|((I − Pm)g, Au2)| 6
µ1

4
‖Au2‖

2 +
1
µ1
‖g‖2, (5.3.24)

|〈B(u), Au2〉| 6 ‖B(u)‖ · ‖Au2‖ 6 ‖u‖L4‖∇u‖L4‖Au2‖ 6 c‖u‖
1
2 ‖∇u‖

1
2 ‖u‖

1
4 ‖∆u‖

3
4 ‖Au2‖

6 c‖u‖
3
4 ‖∇u‖

1
2 ‖u‖

3
4
W‖Au2‖ 6

µ1

4
‖Au2‖

2 + c‖u‖
3
2 ‖∇u‖ · ‖u‖

3
2
W

6
µ1

4
‖Au2‖

2 + c‖u‖
3
2 ‖u‖

5
2
W ,

(5.3.25)

|〈N(u), Au2〉| =

∣∣∣∣∣−∫
O

{∇ · [µ(u)e(u)]} · Au2dx
∣∣∣∣∣

6 c(‖∇u‖ + ‖∆u‖) · ‖Au2‖ 6
µ1

4
‖Au2‖

2 + c‖∆u‖2.
(5.3.26)

From (5.3.22)-(5.3.26) it follows

d
dt

a(u2, u2) + 2µ1‖Au2‖
2 6

2L2
f

µ1
‖ut‖

2
CH

+
2
µ1
‖g‖2 + c‖u‖

3
2 ‖u‖

5
2
W + c‖u‖2W . (5.3.27)
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On the other hand, from (5.3.15)-(5.3.16), we infer

‖Au2‖
2 > λm+1(Au2, u2) = λm+1a(u2, u2),

which along with (5.3.27) give

d
dt

a(u2, u2) + 2µ1λm+1a(u2, u2) 6
2L2

f

µ1
‖ut‖

2
CH

+
2
µ1
‖g‖2 + c‖u‖

3
2 ‖u‖

5
2
W + c‖u‖2W . (5.3.28)

Applying the Gronwall lemma to (5.3.28) in the interval [τ, t + θ],

a(u2(t + θ), u2(t + θ)) 6 a(u2(τ), u2(τ))e−2µ1λm+1(t+θ−τ)

+ c
∫ t+θ

τ

e−2µ1λm+1(t+θ−s)
(
‖us‖

2
CH

+ ‖g(s)‖2 + ‖u(s)‖
3
2 ‖u(s)‖

5
2
W + c‖u(s)‖2W

)
ds.

From (5.3.14) and Lemma 3.1 in [123], we can select m + 1 large enough such that for all ε > 0 and
t > τ + h, we have 2µ1λm+1 − σ > 0, and

sup
θ∈[−h,0]

∫ t+θ

τ

e−2µ1λm+1(t+θ−s)‖g(s)‖2ds <
c1ε

2
. (5.3.29)

Thanks to Lemma 5.3.4 and 5.3.6, we can deduce that for large enough m + 1,

sup
θ∈[−h,0]

a(u2(τ), u2(τ))e−2µ1λm+1(t+θ−τ)

6 c2 sup
θ∈[−h,0]

‖u2τ‖
2
CW

e−2µ1λm+1(t+θ−τ) 6 ρ2
3(τ)e−2µ1λm+1(t+θ−τ) 6

c1ε

4
,

(5.3.30)

and

c sup
θ∈[−h,0]

∫ t+θ

τ

e−2µ1λm+1(t+θ−s)
(
‖us‖

2
CH

+ ‖u(s)‖
3
2 ‖u(s)‖

5
2
W + ‖u(s)‖2W

)
ds <

c1ε

4
. (5.3.31)

Therefore, from (5.3.29)-(5.3.31) we have

‖u2t‖
2
CW
6

1
c1

a(u2(t + θ), u2(t + θ)) < ε,

as claimed.
Step 2: We consider problem (5.3.19) and check condition (ii) in Proposition 5.1.5. Notice that

‖Au1‖
2
W 6 λm‖u1‖

2
W 6 λ

2
m‖u1‖

2.

Without loss of generality, we assume that θ1, θ2 ∈ [−h, 0] with 0 < θ1 − θ2 < 1. Hence,

‖u1(t + θ1) − u1(t + θ2)‖W 6
√
λm‖u1(t + θ1) − u1(t + θ2)‖ =

√
λm

∫ t+θ2

t+θ1

‖
du1

dt
‖dt

6
√
λm

∫ t+θ2

t+θ1

(
2µ1

√
λm‖u1‖W + ‖B(u1)‖ + ‖N(u1)‖ + ‖ f (s, u1s)‖ + ‖Pmg‖

)
ds.

(5.3.32)
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Since

‖B(u1)‖ 6 ‖u1‖L4‖∇u1‖L4 6 c‖u1‖
1
2 ‖∇u1‖

1
2 ‖u1‖

1
4 ‖∆u1‖

3
4 6 c‖u1‖

3
4 ‖∇u1‖

1
2 ‖∆u1‖

3
4 6 c‖∆u1‖

2, (5.3.33)

‖N(u1)‖ 6 c(‖∇u1‖ + ‖∆u1‖) 6 c‖∆u1‖, (5.3.34)

and
‖ f (s, u1s)‖ 6 L f ‖u1s‖CH . (5.3.35)

Thus, it follows from (5.3.32)-(5.3.35) that

‖u1(t + θ1) − u1(t + θ2)‖W 6 c
∫ t+θ2

t+θ1

(
‖u1(s)‖W + ‖u1(s)‖2W + ‖us‖CH + ‖Pmg(s)‖

)
ds. (5.3.36)

Using Lemma 5.3.5 and Young’s inequality,

c
∫ t+θ2

t+θ1

(
‖u1(s)‖W + ‖u1(s)‖2W

)
ds 6 c

∫ t+θ2

t+θ1

‖u1(s)‖2CW
ds + c|θ2 − θ1|

6 cρ2
3(t)|e−σθ1 − e−σθ2 | + c|θ2 − θ1|.

(5.3.37)

and

c
∫ t+θ2

t+θ1

‖us‖CH ds 6 c
∫ t+θ2

t+θ1

‖us‖
2
CH

ds + c|θ2 − θ1| 6 cρ2
1(t)|e−σθ1 − e−σθ2 | + c|θ2 − θ1|. (5.3.38)

Noting that g ∈ L2
loc(R; H),∫ t+θ2

t+θ1

‖Pmg(s)‖ds 6 c
∫ t+θ2

t+θ1

(
|θ1 − θ2|

1
2 ‖g(s)‖2 +

1

4|θ1 − θ2|
1
2

)
ds

6 c|θ1 − θ2|
1
2

∫ t+θ1−θ2

t
‖g(s)‖2ds +

1
4
|θ1 − θ2|

1
2

(5.3.39)

From (5.3.36)-(5.3.39), we obtain

‖u1(t + θ1) − u1(t + θ2)‖W = ‖Pm(u(t + θ1) − u(t + θ2))‖W < ε,

for any θ1, θ2 ∈ [−h, 0] with |θ1 − θ2| < δ, so condition (ii) in Proposition 5.1.5 is proved. By Lemma
5.3.6, we know that condition (i) in Proposition 5.1.5 holds true. Hence, we can conclude by Propo-
sition 5.1.5 that the process {U(t, τ)} is pullbackD− ω−limit compact in CW .

This completes the proof. �

5.4 Existence of PullbackD−attractor
We now state and prove the second main result of this Chapter.
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Theorem 5.4.1. Suppose that (H1)− (H3) and (5.3.14) hold. Then the process {U(t, τ)} associated to
problem (5.0.1)-(5.0.4) has a unique pullbackD−attractor {AD(t)}t∈R in CW .

Proof. By Lemma 5.3.6, we know that {U(t, τ)} has a pullbackD−absorbing set in CW , while Lemma
5.3.8 shows that {U(t, τ)} is pullback D − ω−limit compact in CW . Consequently, the proof can be
completed immediately by Proposition 5.1.6. �

Remark 5.4.2. We have obtained the existence of pullback attractor to a 2D-dimensional incompress-
ible non-Newtonian fluid with finite delay. But, in our opinion, there is still much work to be done
in this field. For example, it will be very meaningful to obtain some results on the finite (fractal or
Hausdorff) dimensionality of the pullback attractor. Also, we could consider the regularity of the at-
tractor as well as its internal structure for which it is important to study the existence of steady-state
solutions and their stability properties. Also the interesting and important 3D-dimensional case is
worth being considered. We plan to analyze all these topics in some forthcoming papers.
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Chapter 6

Exponential stability of an incompressible
non-Newtonian fluids with delay

Enlightened by the analysis carried out in [21], in this chapter we study the exponential stability of
our incompressible non-Newtonian fluids with delay, i.e., problem (4.4.3)-(4.4.6) analyzed in Chapter
5 and which we recall here again

∂u
∂t

+ (u · ∇)u + ∇p = ∇ · µ(e(u)) + f (t, ut) + g(x, t), in (τ,+∞) × O, (6.0.1)

∇ · u = 0, in (τ,+∞) × O, (6.0.2)

u(τ + θ, x) = φ(θ, x), θ ∈ [−h, 0], x ∈ O. (6.0.3)

System (6.0.1)-(6.0.3) is supplemented by the boundary conditions (τi je = 2µ1
∂ei j

∂xl
, i, j, l = 1, 2, and

ν = (ν1, ν2) denotes the exterior unit normal to ∂O)

u = 0, τi jν jνl = 0, i, j, l = 1, 2, on ∂O × (τ,+∞), (6.0.4)

Our main goal is to study the exponential stability of steady-state solutions by using the several
methods developed in [21, 45, 108, 109]. More precisely, the classical Lyapunov theory is used to
prove the exponential stability of solutions in the cases in which the delay terms are continuously
differentiable. Fortunately, this assumption, which somehow may be restrictive, can be weaken by an
appropriate application of the Razumikhin technique, where only the continuity on the operators of the
model is needed but more general types of delay are allowed, since continuity is the only requirement
for delay terms. A third way to study the asymptotic behavior of our problem is by constructing
Lyapunov functionals. In this way, a better stability result is achieved as long as a suitable Lyapunov
functionals can be constructed. The fourth alternative is based on a Gronwall-like lemma, which only
needs measurability for the delay functions but still ensures exponential stability.

Nevertheless, to establish our main stability results, we first need to prove the existence and even-
tual uniqueness of stationary solutions, which is not a trivial task due to the difficulties in handling the
nonlinear term N(u). Indeed, the proof of the existence of stationary solutions is much more compli-
cated and involved when we compare with other models, for example, Navier-Stokes. In other words,

125
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many more technicalities are required to deal with the nonlinear term N(u) and to obtain the exis-
tence of stationary solution, what represents one of the main difficulties of this work. In this respect,
it is worth mentioning that Guo and Lin studied in [84] the existence and uniqueness of stationary
solutions of non-Newtonian viscous incompressible fluids without delay, but this reference does not
contain a completed proof for the existence of such stationary solution, a gap which is solved in our
current paper since it can be obtained as a particular case of the analysis we are doing in this paper by
just taking h = 0. We would also like to point out that the existence and uniqueness of solutions, and
the existence of pullback attractors of our delay model have been investigated in our previous work
[118].

For better reading of this chapter, we rewrite problem (4.4.3)-(4.4.6), which is an abstract version
of system (6.0.1)-(6.0.4), as :

∂u
∂t

+ 2µ1Au + B(u) + N(u) = f (t, ut) + g(x, t), in (τ,+∞) × O, (6.0.5)

u(τ + θ, x) = φ(θ, x), θ ∈ [−h, 0], x ∈ O. (6.0.6)

Here, we would like to emphasize that the delay term f (t, ut) satisfies assumption (H1)− (H3), which
is given in Preliminaries of Part III and g ∈ L2

loc(0,T ; L2(O)).

6.1 Existence and uniqueness of stationary solutions
In this section, we first recall an existence and uniqueness result concerning our model, completed
with a statement about the regularity of solutions. Next we will prove a result ensuring the existence
and uniqueness of stationary solutions to our problem by exploiting the techniques of Galerkin’s
approximations, Lax-Milgram theorem as well as Schauder fixed pointed theorem. The presence
of the nonlinear term N(·) requires of a more involved and technical analysis compared with the
Newtonian case, which implies the nontrivial character of this proof.

In the sequel, we will use the following inequalities.

‖Au‖2 > λ1‖u‖2W , ‖u‖2W > ‖u‖
2, (6.1.1)

where λ1 is a positive constant.
To make this chapter as much self-contained as possible, let us recall a result ensuring existence

and uniqueness of solution to our problem which was stated and proved in Chapter 5, namely, Theo-
rem 5.2.1 (see also [118]).

Theorem 6.1.1. (see Theorem 5.2.1 and [118]) Assume that (H1) − (H3) hold. Let g ∈ L2
loc(R,W

′)
and φ ∈ CH. Then, for any τ ∈ R,

(a) there exists a unique weak solution u to problem (6.0.5) satisfying

u ∈ C([τ − h,T ]; H) ∩ L∞(τ,T ; H) ∩ L2(τ,T ; W), ∀T > τ.
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(b) If φ(0) ∈ W, and g ∈ L2
loc(R,H), then there exists a unique strong solution u to problem (6.0.5)

satisfying
u ∈ C([τ − h,T ]; W) ∩ L∞(τ,T ; W) ∩ L2(τ,T ; D(A)), ∀T > τ.

Although our interest in this paper is to analyze the stability properties of solutions in the case
of variable delays, we can consider the existence of steady-state solutions in a much more general
case which is described below. Indeed, to carry out our analysis, we will assume that there exists a
function F : R2 → R2 such that for any constant function ξ(·) : [−h, 0] → W, i.e. ξ(θ) = ξ∗ ∈ W for
all θ ∈ [−h, 0], it holds

f (t, ξ∗)(x) = F(ξ∗(x)), for all t ∈ R, x ∈ O, (6.1.2)

where F satisfies
F(0) = 0 (6.1.3)

and that there exits LF > 0 for which

|F(u) − F(v)|R2 6 LF |u − v|R2 , ∀ u, v ∈ R2. (6.1.4)

Now, we can study existence and uniqueness of steady-state solutions to the equation

du
dt

+ 2µ1Au + B(u) + N(u) = f (t, ut) + g, (6.1.5)

with g ∈ W ′ independent of t. Recall that such a stationary (or steady-state) solution to (6.1.5) is a
u∗ ∈ W such that

2µ1Au∗ + B(u∗) + N(u∗) = f (t, u∗) + g

for all t > 0, which can be written, according to our assumption, as

2µ1Au∗ + B(u∗) + N(u∗) = g + F(u∗). (6.1.6)

Theorem 6.1.2. Suppose that F satisfies (6.1.3)-(6.1.4) and 2λ1µ1 > LG. Then,

(a) for all g ∈ W ′, there exists a stationary solution to (6.1.5);

(b) if g ∈ (L2(O))2, the stationary solutions belong to D(A);

(c) there exists a constant C0(O) > 0, such that if (2λ1µ1 − LG)2 > C0(O)‖g‖∗, then the stationary
solution to (6.1.5) is unique.

Proof. (a) Denote Wm = span{w1,w2, · · · ,wm}, where {wn}
∞
n=1 ⊂ W ∩ D(A) form a basis of W and are

orthonormal in H. Now consider that for fixed zm ∈ Wm, there exists um satisfying

2µ1(Aum, vm) + b(zm, um, vm) + n(zm, um, vm) = (F(zm), vm) + 〈g, vm〉, ∀vm ∈ Wm. (6.1.7)

Notice that for each zm ∈ Wm, the functional (u, v) 7→ 2µ1(Au, v)+b(zm, u, v)+n(zm, u, v) is bilinear,
continuous and coercive in Wm × Wm. On the other hand, the functional v 7→ (F(zm), v) + 〈g, v〉 is
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obviously linear and continuous. Thanks to Lax-Milgram theorem, for each zm ∈ Wm, there exists a
unique um ∈ Wm such that (6.1.7) holds true.

Define the mapping Tm : Wm 7→ Wm given by

T (zm) = um.

We will see that for each m we can apply Schauder’s fixed point theorem to the map Tm (restricted to
a suitable subset Km ⊂ Wm) and ensure that we obtain um ∈ Wm such that

2µ1(Aum, vm) + b(um, um, vm) + n(um, um, vm) = (F(um), vm) + 〈g, vm〉, ∀vm ∈ Wm. (6.1.8)

Indeed, setting vm = um in (6.1.7) yields that

2µ1(Aum, um) + n(zm, um, um) = (F(zm), um) + 〈g, um〉. (6.1.9)

By (6.1.1),
2µ1(Aum, um) > 2λ1µ1‖um‖2W ,

and

(F(zm), um) + 〈g, um〉 6 LF‖zm‖‖um‖ + ‖g‖∗‖um‖W

6 LF‖zm‖‖um‖W + ‖g‖∗‖um‖W .

Since n(zm, um, um) > 0, the previous inequalities imply

2λ1µ1‖um‖W 6 LF‖zm‖ + ‖g‖∗.

Because 2λ1µ1 > LF , one may take k > 0 such that k(2λ1µ1 − LF) > ‖g‖∗ and, consequently,
2λ1µ1‖um‖W 6 LF‖zm‖ + k(2λ1µ1 − LF).

Define Km = {z ∈ Wm : ‖z‖W 6 k}, which is a convex set of W, and also compact since the inclusion
W ⊂ H1

0(O) is compact as well. Obviously, Tm : Km → Km is well defined due to the choice of the
constant k. Now we will use Schauder’s fixed point theorem to establish the existence of stationary
solutions. To do this, we still need to verify the continuity of Tm. Actually, take zm

1 , z
m
2 ∈ Wm, and

denote um
i = T (zm

i ), i = 1, 2, the respective solutions of (6.1.7). For any vm ∈ Wm we deduce

2µ1(A(um
1 − um

2 ), vm) + b(zm
1 , u

m
1 , v

m)− b(zm
2 , u

m
2 , v

m) + n(zm
1 , u

m
1 , v

m)− n(zm
2 , u

m
2 , v

m) = (F(zm
1 )− F(zm

2 ), vm).
(6.1.10)

Particulary, put vm = um
1 − um

2 in (6.1.10), then by (6.1.1) once more,

2λ1µ1‖um
1 − um

2 ‖
2
W 6 b(zm

2 , u
m
2 , v

m) − b(zm
1 , u

m
1 , v

m) + n(zm
2 , u

m
2 , v

m) − n(zm
1 , u

m
1 , v

m) + (F(zm
1 ) − F(zm

2 ), vm).
(6.1.11)

As for the trilinear term,

b(zm
2 , u

m
2 , v

m) − b(zm
1 , u

m
1 , v

m) = b(zm
2 − zm

1 , u
m
1 , u

m
1 − um

2 )
6 ‖zm

2 − zm
1 ‖(L4(O))2‖∇um

1 ‖(L2(O))2‖um
2 − um

1 ‖(L4(O))2

6 c0‖zm
2 − zm

1 ‖W‖u
m
1 ‖W‖u

m
2 − um

1 ‖W

6 c1‖zm
2 − zm

1 ‖W‖u
m
2 − um

1 ‖W .

(6.1.12)
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Then we estimate the nonlinear term,

n(zm
2 , u

m
2 , v

m) − n(zm
1 , u

m
1 , v

m)

=

2∑
i, j=1

∫
O

[µ(zm
2 )ei j(um

2 ) − µ(zm
1 )ei j(um

1 )]ei j(vm)dx

=

2∑
i, j=1

∫
O

[µ(zm
2 ) − µ(zm

1 )]ei j(um
2 )ei j(vm)dx −

2∑
i, j=1

∫
O

µ(zm
1 )|ei j(um

2 − um
1 )|2dx

6
2∑

i, j=1

∫
O

[µ(zm
2 ) − µ(zm

1 )]ei j(um
2 )ei j(vm)dx.

(6.1.13)

Using the mean value theorem to µ(zm
2 ) − µ(zm

1 ), there exists a constant s with |e(zm
1 )| < s < |e(zm

2 )|,
such that

µ(zm
2 ) − µ(zm

1 ) = 2µ0(ε + |e(zm
2 )|2)−

α
2 − 2µ0(ε + |e(zm

1 )|2)−
α
2

= 2µ0(−
α

2
)(ε + s2)−

α+2
2 (|e(zm

2 )|2 − |e(zm
1 )|2)

= −αµ0(ε + s2)−
α+2

2 (|e(zm
2 )| + |e(zm

1 )|)(|e(zm
2 )| − |e(zm

1 )|).

(6.1.14)

Hence,

n(zm
2 , u

m
2 , v

m) − n(zm
1 , u

m
1 , v

m)

6 2αµ0

2∑
i, j=1

∫
O

(ε + |e(zm
1 )|2)−

α+2
2 |e(zm

2 )||e(zm
2 − zm

1 )||ei j(um
2 )||ei j(vm)|dx

6 2αµ0ε
− α+2

2 ‖e(zm
2 )‖(L4(O))2‖e(zm

2 − zm
1 )‖(L4(O))2‖ei j(um

2 )‖(L4(O))2‖ei j(um
1 − um

2 )‖(L4(O))2

6 2αµ0ε
− α+2

2 c2‖zm
2 ‖W‖z

m
1 − zm

2 ‖W‖u
m
2 ‖W‖u

m
1 − um

2 ‖W

6 2αµ0ε
− α+2

2 c3‖zm
1 − zm

2 ‖W‖u
m
1 − um

2 ‖W .

(6.1.15)

On the other hand,

(F(zm
1 ) − F(zm

2 ), um
1 − um

2 ) 6 LF‖zm
1 − zm

2 ‖‖u
m
1 − um

2 ‖

6 LF‖zm
1 − zm

2 ‖W‖u
m
1 − um

2 ‖W .

By all above inequalities, we obtain

2λ1µ1‖um
1 − um

2 ‖
2
W 6 (c1 + 2αµ0ε

− α+2
2 c3 + LF)‖zm

1 − zm
2 ‖W‖u

m
1 − um

2 ‖W . (6.1.16)

The continuity of the mapping T : z 7→ u in Km follows from (6.1.16). Therefore, by Schauder’s
fixed point theorem, there exists zm ∈ Km such that T (zm) = zm, which means that (6.1.8) holds true
for every m. Next, we pass to the limit on the solutions and conclude the existence of a stationary
solution u to (6.1.5). Put vm = um in (6.1.8), then

2µ1(Aum, um) + n(um, um, um) = (F(um), um) + 〈g, um〉.
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Thanks to some standard computations, we find that

(2λ1µ1 − LF)‖um‖W 6 ‖g‖∗,

which gives a uniform bound of um in W (namely, ‖um‖W 6 (2λ1µ1 − LF)−1‖g‖∗). We can extract
a weakly convergent subsequence (relabeled the same) um ⇀ u in W, by the compact injections
((H2(O))2 ⊂ (H1

0(O))2 ⊂ (L2(O))2), we have ‖um − u‖(H1
0 (O))2 → 0 and ‖um − u‖(L2(O))2 → 0.

To proceed, we fix any w j ∈ Wm. Since we have a subsequence of equations (6.1.8) for every m
greater than j, it is clear that we can pass to the limit on every term to obtain

2µ1(Au,w j) + b(u, u,w j) + n(u, u,w j) = (F(u),w j) + 〈g,w j〉. (6.1.17)

The first term is obtained by the weak convergence um ⇀ u in W. In fact,

2µ1(Aum,w j) = 2µ1(
∂ei j(um)
∂xk

,
∂ei j(w j)
∂xk

) ⇀ 2µ1(
∂ei j(u)
∂xk

,
∂ei j(w j)
∂xk

) = 2µ1(Au,w j) as m→ ∞.

The trilinear term

b(um, um,w j) − b(u, u,w j) = −b(um − u,w j, um) − b(u,w j, um − u)
6 c4‖um − u‖(L4(O))2‖w j‖(H1

0 (O))2‖um‖(L4(O))2 + c5‖u‖(L4(O))2‖w j‖(H1
0 (O))2‖um − u‖(L4(O)2

6 c6‖um − u‖1/2(L2(O))2‖u
m − u‖1/2

(H1
0 (O))2‖w j‖(H1

0 (O))2‖um‖(L2(O))2‖um‖
1/2
(H1

0 (O))2

+ c7‖u‖(L2(O))2‖u‖1/2
(H1

0 (O))2‖w j‖(H1
0 (O))2‖um − u‖1/2(L2(O))2‖u

m − u‖1/2
(H1

0 (O))2 → 0.

The nonlinear term

n(um, um,w j) − n(u, u,w j) = 〈N(um) − N(u),w j〉

6 |〈N(um) − N(u),w j〉|

6 c8‖um − u‖(H1
0 (O))2‖w j‖(H1

0 (O))2 → 0.

And the delay term

(F(um) − F(u),w j) 6 LF‖um − u‖(L2(O))2‖w j‖(L2(O))2 → 0.

Thus, (6.1.17) holds true for every w j ∈ Wm. Since the set of linear combinations of w1,w2, · · · ,wm, · · ·
is dense in W, we deduce that (6.1.5) is satisfied at least by u∗ = u.

(b) Regularity. From (a) we know that

2µ1Au + B(u) + N(u) = F(u) + g, (6.1.18)

which must be understood in the sense ofD′. Now taking the inner product of (6.1.18) with u gives

2µ1(Au, u) + (N(u), u) = (F(u), u) + (g, u).
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By standard calculations,
‖u‖W 6 (2λ1µ1 − LF)−1‖g‖. (6.1.19)

From (6.1.18), we have

2µ1‖Au‖ 6 ‖B(u, u)‖ + ‖N(u)‖ + ‖F(u)‖ + ‖g‖.

Notice that

‖B(u, u)‖ 6 c9‖u‖‖u‖(H1
0 (O))2 6 c10‖u‖2W ,

and

‖N(u)‖ = 2µ0(
∫
O

(ε + |∇u|2)−α|∆u|2dx)1/2

6 2µ0ε
−α/2‖∆u‖

6 2µ0ε
−α/2c11‖u‖W .

Hence,

2µ1‖Au‖ 6 c10‖u‖2W + 2µ0ε
−α/2c11‖u‖W + LF‖u‖W + ‖ f ‖

6
(
c10(2λ1µ1 − LF)−1‖ f ‖ + (2µ0ε

−α/2c11 + 2λ1µ1)
)

(2λ1µ1 − LF)−1‖ f ‖,

which implies u ∈ D(A).
(c) Uniqueness. Let u1, u2 be two stationary solutions of (6.1.5), and v = u1 − u2, then

2µ1(A(u1 − u2), u1 − u2) + b(u1, u1, v) − b(u2, u2, v) + n(u1, u1, v) − n(u2, u2, v) = (F(u1) − F(u2), v).

Note that n(u1, u1, v) − n(u2, u2, v) > 0, and

|b(u1, u1, v) − b(u2, u2, v)| = |b(v, u2, v)|
6 C0(O)‖v‖2W‖u2‖W

6 C0(O)(2λ1µ1 − LF)−1‖g‖∗‖u1 − u2‖
2
W ,

(F(u1) − F(u2), v) 6 LF‖u1 − u2‖
2
W ,

whence

2λ1µ1‖u1 − u2‖
2
W 6

(
LF + C0(O)(2λ1µ1 − LF)−1‖g‖∗

)
‖u1 − u2‖

2
W ,

and therefore [
(2λ1µ1 − LF) −C0(O)(2λ1µ1 − LF)−1‖g‖∗

]
‖u1 − u2‖

2
W 6 0.

Since (2λ1µ1 − LF)2 −C0(O)‖g‖∗ > 0,

‖u1 − u2‖
2
W = 0.

This completes the proof. �
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6.2 Local asymptotic behavior
In this section, as it was mentioned previously, we will use four approaches to analyze the long time
behavior of solutions. They are: the classical Lyapunov function method, the Lyapunov-Razumikhin
type argument, the construction of Lyapunov functionals approach, and a Gronwall-like lemma tech-
nique.

It is worth pointing out that the first method requires a differentiability assumption on the delay
term, which can be relaxed by a Razumikhin method approach but at the price of more continuity
with respect to time t for the operators in the problem, in addition to the fact that we have to work
with strong solutions instead of weak ones. However, a better stability result can be obtained by
constructing appropriate Lyapunov functionals as long as one can find the appropriate ones, which is
not a straightforward task. In the end, a Gronwall-like lemma technique is exploited for the stability
analysis by only assuming measurability on the delay term. This scheme has already been used in the
analysis of stability properties for the stationary solutions of 2D Navier-Stokes equations with delay
(see [21] for more details).

6.2.1 Exponential stability: Lyapunov function
Now we will show that under appropriate conditions, our model has a unique stationary solution, u∞,
and every weak solution of (6.0.1) converges to u∞ exponentially fast as t → +∞.

Theorem 6.2.1. Suppose that f (t, ut) = F(u(t − ρ(t))) with ρ ∈ C1(R+; [0, h]) such that ρ′(t) 6 ρ∗ < 1
for all t > 0. Assume that there exists l1 = l1(O) > 0, such that if g ∈ (L2(O))2 and 2λ1µ1 > LF and, in
addition,

4λ1µ1 >
(2 − ρ∗)LF

1 − ρ∗
+

l1

2λ1µ1 − LF
‖g‖. (6.2.1)

Then, there is a unique stationary solution u∞ of (6.1.5) and every solution of (6.0.1) converges to u∞
exponentially as t → +∞. More precisely, there exist two positive constant C and λ, such that for all
u0 ∈ H and φ ∈ L2(−h, 0; W), the solution u of (6.0.1) with g(t) ≡ g satisfies

‖u(t) − u∞‖2 6 Ce−λt(‖u0 − u∞‖2 + ‖φ − u∞‖2L2(−h,0;W)), (6.2.2)

for all t > 0.

Proof. Let u be solution of (6.0.1) for g(t) ≡ g, and u∞ ∈ D(A) be a stationary solution to (6.0.1).
Denote w(t) = u(t) − u∞, since that

dw(t)
dt

+ 2µ1Aw + B(u(t)) − B(u∞) + N(u(t)) − N(u∞) = F(u(t − ρ(t))) − F(u∞).

Fix λ > 0, by standard computations

d
dt

eλt‖w(t)‖2 6 (λ − 4λ1µ1 + LF)eλt‖w(t)‖2W + 2eλt|b(w,w, u∞)| + LFeλt‖w(t − ρ(t))‖2. (6.2.3)
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Notice that

|b(w,w, u∞)| 6 l0‖w‖(L4(O))2‖∇w‖(L4(O))2‖u∞‖ 6 l1‖w‖2W‖u∞‖W .

On the other hand,

2µ1(Au∞, u∞) + (N(u∞), u∞) = (F(u∞), u∞) + (g, u∞),

which implies, arguing as in (6.1.18)-(6.1.19)

‖u∞‖W 6 (2λ1µ1 − LF)−1‖g‖,

and
d
dt

eλt‖w(t)‖2 6
(
λ − 4λ1µ1 + LF + l1(2λ1µ1 − LF)−1‖g‖

)
eλt‖w(t)‖2W + LFeλt‖w(t − ρ(t))‖2.

Denote by r(t) = t − ρ(t). Then the function r(·) is strictly increasing in [0,+∞), and there exists
a µ > 0 such that r−1(t) 6 t + µ for all t > −ρ(0). Thus, by performing the change of variable
η = s − ρ(s) = r(s) in the integral containing the delay, we obtain

eλt‖w(t)‖2 6 ‖w(0)‖2 +
(
λ − 4λ1µ1 + LF + l1(2λ1µ1 − LF)−1‖g‖

) ∫ t

0
eλs‖w(s)‖2Wds

+

∫ t−ρ(t)

−ρ(0)
eλr−1(η)‖w(η)‖2

1
r′(r−1(η))

dη

6 ‖w(0)‖2 +
(
λ − 4λ1µ1 + LF + l1(2λ1µ1 − LF)−1‖g‖

) ∫ t

0
eλs‖w(s)‖2Wds

+
eλµ

1 − ρ∗

∫ t

0
eλη‖w(η)‖2dη +

eλµ

1 − ρ∗

∫ 0

−h
eλη‖w(η)‖2dη

6 ‖w(0)‖2 +

(
λ − 4λ1µ1 + LF + l1(2λ1µ1 − LF)−1‖ f ‖ +

eλµ

1 − ρ∗

) ∫ t

0
eλs‖w(s)‖2Wds

+
eλµ

1 − ρ∗

∫ 0

−h
eλη‖w(η)‖2dη.

(6.2.4)

Since (6.2.1) is satisfied, then there exists λ > 0, small enough, such that

λ − 4λ1µ1 + LF + l1(2λ1µ1 − LF)−1‖g‖ +
eλµ

1 − ρ∗
> 0,

which combines with (6.2.4), we conclude that for this λ > 0,

eλt‖w(t)‖2 6 ‖w(0)‖2 +
eλµ

1 − ρ∗

∫ 0

−h
eλη‖w(η)‖2dη,

which implies (6.2.2).
The uniqueness of u∞ follows from the fact that if û∞ is another stationary solution of (6.1.5), then

u ≡ û∞ is a solution of (6.0.1) with u0 = û∞ and φ = û∞, then applying (6.2.2) and letting t → +∞,
one deduces ‖û∞ − u∞‖2 6 0. The proof is therefore completed.

�
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6.2.2 Exponential stability: A Lyapunov-Razumikhin approach
In the previous part we established the exponential convergence of weak solutions of problem (6.0.1)
to the unique stationary solution when the variable delay term is continuously differentiable. And
we will relax this condition by a Razumihkin method. Only the continuity with respect to time t of
operators in this model and the solutions is required, but we need to work with strong solution rather
than the weak ones.

Theorem 6.2.2. Suppose that g satisfies (H1) − (H3), and for each ξ ∈ C([−h, 0]; W), the mapping
t ∈ [0,+∞) 7→ g(t, ξ) ∈ (L2(O))2 is continuous. Assume that 2λ1µ1 > LF and g ∈ (L2(O))2, and there
exists a unique stationary solution u∞ of (6.1.5) such that for some λ > 0 it holds

− 2µ1(A(φ(0) − u∞), φ(0) − u∞) − (B(φ(0)) − B(u∞), φ(0) − u∞) − (N(φ(0)) − N(u∞), φ(0) − u∞)

+ ( f (t, φ) − f (t, u∞), φ(0) − u∞) < −λ‖φ(0) − u∞‖2,
(6.2.5)

whenever φ ∈ C([−h, 0]; H) with φ(0) ∈ W satisfies

‖φ − u∞‖2C([−h,0];H) 6 eλh‖φ(0) − u∞‖2.

Then, the strong solution u(t; φ) of (6.0.1) converges exponentially to the unique stationary solution
u∞ as follows

‖u(t; φ) − u∞‖2 6 e−λt‖φ − u∞‖2C([−h,0];H). (6.2.6)

Proof. If (6.2.6) does not hold true, then there exists an initial datum φ ∈ C([−h, 0]; H) with φ(0) ∈ W
such that

‖u(t; φ) − u∞‖2 > e−λt‖φ − u∞‖2C([−h,0];H),

for some values of t.
Denote

σ = inf
{
t : ‖u(t; φ) − u∞‖2 > e−λt‖φ − u∞‖2C([−h,0];H)

}
.

Thus for 0 6 t 6 σ,

eλt‖u(t; φ) − u∞‖2 6 eλσ‖u(σ; φ) − u∞‖2 = ‖φ − u∞‖2C([−h,0];H).

On the other hand, for any t ∈ [σ,σ + ε], there exists tk ↘ σ such that

eλtk‖u(tk; φ) − u∞‖2 > eλσ‖u(σ; φ) − u∞‖2. (6.2.7)

However,

eλ(σ+θ)‖u(σ + θ; φ) − u∞‖2 6 eλσ‖u(σ; φ) − u∞‖2, θ ∈ [−h, 0],

from which we deduce that

‖uσ − u∞‖2C([−h,0];H) 6 eλh‖u(σ; φ) − u∞‖2 = eλh‖uσ(0) − u∞‖2,
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which means that

− 2µ1(A(uσ(0) − u∞), uσ(0) − u∞) − (B(uσ(0)) − B(u∞), uσ(0) − u∞) − (N(uσ(0)) − N(u∞), uσ(0) − u∞)

+ ( f (t, uσ) − f (t, u∞), uσ(0) − u∞) < −λ‖uσ(0) − u∞‖2.

As u(·; φ) ∈ C([−h,+∞); W), by the continuity concerning the operators of the problem, there exists
ε∗ > 0 such that for all ε ∈ (0, ε∗] and t ∈ [σ,σ + ε],

− 2µ1(A(u(t; φ) − u∞), u(t; φ) − u∞) − (B(u(t; φ)) − B(u∞), u(t; φ) − u∞) − (N(u(t; φ)) − N(u∞), u(t; φ) − u∞)

+ ( f (t, ut(·; φ)) − f (t, u∞), u(t; φ) − u∞) 6 −λ‖u(t; φ) − u∞‖2.

Thus, denoting by w(t) = u(t; φ) − u∞,

dw(t)
dt

+ 2µ1Aw + B(u) − B(u∞) + N(u) − N(u∞) = f (t, ut) − f (t, u∞).

Take inner product of above equation with w,

1
2

d
dt
‖w(t)‖2 + 2µ1(Aw,w) + (B(u) − B(u∞),w) + (N(u) − N(u∞),w) = ( f (t, ut) − f (t, u∞),w)

for all t ∈ [σ,σ + ε], and integrate over [σ,σ + ε],

eλ(σ+ε)‖w(σ + ε; φ)‖2 − eλσ‖u(σ; φ) − u∞‖2

= λ

∫ σ+ε

σ

eλt‖w(t; φ)‖2dt − 4µ1

∫ σ+ε

σ

eλt(Aw,w)dt − 2
∫ σ+ε

σ

eλt(B(u) − B(u∞),w)dt

− 2
∫ σ+ε

σ

eλt(N(u) − N(u∞),w)dt + 2
∫ σ+ε

σ

eλt( f (t, ut) − f (t, u∞),w)dt 6 0,

which contradicts (6.2.7). �

The following corollary provides a sufficient condition which implies (6.2.5) but easier to verify.

Corollary 6.2.3. Suppose that f satisfies (H1) − (H3), and for all ξ ∈ C([−h, 0]; W) the mapping
t ∈ [0,+∞) 7→ f (t, ξ) ∈ (L2(O))2 is continuous. Assume that 2λ1µ1 > LF and g ∈ (L2(O))2 so that
there exists stationary solution u∞ of (6.1.5). Assume also that there exists a constant l1 > 0 such that
if

2λ1µ1 > LF + l1(2λ1µ1 − LF)−1‖ f ‖, (6.2.8)

then the stationary solution u∞ of (6.1.5) is unique, and for all φ ∈ C([−h, 0]; H) with φ(0) ∈ W, the
stationary solution to (6.0.1) corresponding to this datum, u(t; φ), satisfies

‖u(t; φ) − u∞‖2 6 e−λt‖φ − u∞‖2C([−h,0];H), for all t > 0.
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Proof. Let φ ∈ C([−h, 0]; H) with φ(0) ∈ W be such that

‖φ − u∞‖2C([−h,0];H) 6 eλh‖φ(0) − u∞‖2,

where λ > 0 is a constant to be chosen later on. Then

− 2µ1(A(φ(0) − u∞), φ(0) − u∞) − 〈B(φ(0)) − B(u∞), φ(0) − u∞〉
− 〈N(φ(0)) − N(u∞), φ(0) − u∞〉 + ( f (t, φ) − f (t, u∞), φ(0) − u∞)

6 −2λ1µ1‖φ(0) − u∞‖2W − b(φ(0) − u∞, u∞, φ(0) − u∞) + LF‖φ − u∞‖‖φ(0) − u∞‖

6 −2λ1µ1‖φ(0) − u∞‖2W + LFeλh‖φ(0) − u∞‖2W − b(φ(0) − u∞, u∞, φ(0) − u∞)

6 −2λ1µ1‖φ(0) − u∞‖2W + LFeλh‖φ(0) − u∞‖2W + l1(2λ1µ1 − LF)−1‖ f ‖‖φ(0) − u∞‖2W
=

(
−2λ1µ1 + LFeλh + l1(2λ1µ1 − LF)−1‖ f ‖

)
‖φ(0) − u∞‖2W .

(6.2.9)

If (6.2.8) is satisfied, there exists λ > 0 such that

λ − 2λ1µ1 + LFeλh + l1(2λ1µ1 − LF)−1‖ f ‖ 6 0,

and for this fixed λ, we can obtain from (6.2.9) that

− 2µ1(A(φ(0) − u∞), φ(0) − u∞) − 〈B(φ(0)) − B(u∞), φ(0) − u∞〉
− 〈N(φ(0)) − N(u∞), φ(0) − u∞〉 + ( f (t, φ) − f (t, u∞), φ(0) − u∞)

6 −λ‖φ(0) − u∞‖2W 6 −λ‖φ(0) − u∞‖2.

�

6.2.3 Exponential stability: Constructing of Lyapunov functionals

Our interest in this subsection is to analyze the exponential stability of solutions to problem (6.0.1)
by constructing some Lyapunov functionals, a method which was proposed by V. Kolmanovskii and
L. Shaikhet and has been extensively used in functional differential equations, in difference equations
with discrete time or with continuous time (see [109, 108] for more details and references).

Let Ã : W → W ′; f1(t, ·) : C([−h, 0]; H) → W ′; f2(t, ·) : C([−h, 0]; W) → W ′ be three families of
nonlinear operators defined for t > 0 satisfying Ã(t, 0) = 0, f1(t, 0) = 0, f2(t, 0) = 0.

Consider the equation
du
dt

= Ã(t, u(t)) + f1(t, ut) + f2(t, ut), t > 0,

u(s) = ψ(s), s ∈ [−h, 0].
(6.2.10)

Denote by u(·;ψ) the solution to (6.2.10) corresponding to the initial value ψ. Now we recall a theorem
which will be crucial in our stability investigation.
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Theorem 6.2.4. (See [40]) Assume that there exists a functional V(·, ·) : R × CH 7−→ [0,+∞) such
that the following conditions hold for some positive numbers δ1, δ2 and λ:

V(t, ut) > δ1eλt‖u(t)‖2, t > 0

V(0, u0) 6 δ2‖ψ‖
2
CH
,

d
dt

V(t, ut) 6 0, t > 0,

for any ψ ∈ CH such that u(·;ψ) ∈ C([−h,+∞); H). Then the trivial solution of (6.2.10) is exponen-
tially stable.

Notice that this theorem implies that the stability analysis of Eq. (6.2.10) can be reduced to the
construction of appropriate Lyapunov functionals.

To this end, consider the following evolution equation

du
dt

= Ã(t, u(t)) + F(u(t − ρ(t))), (6.2.11)

where Ã(t, ·), F : W → W ′ are proper partial differential operators (see conditions below), which is a
particular case of Eq.(6.2.10). And we are going to study exponential stability to problem (6.2.11).

Theorem 6.2.5. (See [21]) Suppose that the operators in (6.2.11) satisfy

〈Ã(t, u), u〉 6 −γ‖u‖2W , γ > 0
F : W → W ′, ‖F(u)‖∗ 6 β‖u‖W , u ∈ W,
ρ(t) ∈ [0, h], ρ′(t) 6 ρ∗ < 1.

Then the trivial solution of Eq.(6.2.11) is exponentially stable provided

γ >
β√

1 − ρ∗
.

Here we apply this method directly to our case, but only give a sketchy proof. We construct
a Lyapunov functional V for our model Eq.(6.1.5) with g(t) ≡ 0 in the form V = V1 + V2, where
V1(t, ut) = eλt‖u(t)‖2, and we obtain

d
dt

V1(t, ut) = λeλt‖u(t)‖2 + 2eλt(−2µ1Au(t) − B(u(t)) − N(u(t)), u(t)) + 2eλt(F(u(t − ρ(t))), u(t))

6 λeλt‖u(t)‖2 − 4λ1µ1eλt‖u(t)‖2W + 2LFeλt‖u(t − ρ(t))‖W · ‖u(t)‖W

6 (λ − 4λ1µ1 +
LF

ε
)eλt‖u(t)‖2W + εLFeλt‖u(t − ρ(t))‖2W .

Set

V2(t, ut) =
εLF

1 − ρ∗

∫ t

t−ρ(t)
eλ(s+h)‖u(s)‖2Wds.
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Then

d
dt

V2(t, ut) =
εLF

1 − ρ∗
eλ(t+h)‖u(t)‖2W −

εLF

1 − ρ∗
(1 − ρ′)eλ(t−ρ(t)+h)‖u(t − ρ(t))‖2W

6
εLFeλh

1 − ρ∗
eλt‖u(t)‖2W − εLFeλt‖u(t − ρ(t))‖2W .

Hence, differentiating V = V1 + V2

d
dt

V(t, ut) =
d
dt

V1(t, ut) +
d
dt

V2(t, ut) 6 −(4λ1µ1 −
LF

ε
− λ −

εLFeλh

1 − ρ∗
)eλt‖u(t)‖2W .

Choosing ε =
√

1 − ρ∗, we have

d
dt

V(t, ut) 6 −(4λ1µ1 −
LF√

1 − ρ∗
− λ −

LFeλh√
1 − ρ∗

)eλt‖u(t)‖2W

= −(4λ1µ1 −
2LF√
1 − ρ∗

− λ −
LF(eλh − 1)√

1 − ρ∗
)eλt‖u(t)‖2W .

(6.2.12)

Denoting now

h(λ) = λ +
LF(eλh − 1)√

1 − ρ∗
, h(0) = 0,

there exists λ > 0 small enough such that

2(2λ1µ1 −
LF√

1 − ρ∗
) > h(λ).

Then it follows directly from (6.2.12) that d
dt V(t, ut) 6 0, and the Lyapunov functional V(t, ut) =

eλt‖u(t)‖2 + εLF
1−ρ∗

∫ t

t−ρ(t)
eλ(s+h)‖u(s)‖2Wds satisfies the conditions in Theorem 6.2.4, which implies that

the trivial solution of Eq.(6.1.5) is exponentially stable.

Remark 6.2.6. (a) Here F : W → W ′ is a Lipschitz continuous operator with Lipschitz constant
LF > 0 and F(0) = 0. If G : H → H with Lipschitz constant L f with L f > LF , then F : W → W ′ is
Lipschitz , and from 2λ1µ1 >

L f√
1−ρ∗

, we obtain that 2λ1µ1 >
LF√
1−ρ∗

.

(b) Although applying this method, we also need the differentiability of variable delay function, the
stability result that we obtained is better than the first case, in which 2λ1µ1 >

(2−ρ∗)LF
2(1−ρ∗)

is required, but
here we only need 2λ1µ1 >

LF√
1−ρ∗

, which means we have more choice for µ1.

6.2.4 Exponential stability: A Gronwall-like Lemma
Now we study the stability of stationary solutions to Eq.(6.1.5) via a Gronwall-like lemma. For
convenience, we will consider Eq.(6.1.5) with g(t) ≡ 0 and f (t, φ) = F(φ(−ρ(t))), for φ ∈ CH, where
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G : H → H is Lipschitz continuous with Lipschitz constant L f > 0 and F(0) = 0. For the delay term
ρ we only assume that it is measurable and bounded, i.e., ρ : [0,+∞) → [0, h]. Compared with the
ones required in the three previous approaches, this is the weakest assumption. But we still can prove
the exponential stability of steady-state solutions.

Lemma 6.2.7. ([45]) Let y(·) : [−h,+∞) → [0,+∞) be a function. Assume that there exist positive
numbers γ, α1, α2 such that the following inequality holds:

y(t) 6

α1e−γt + α2

∫ t

0
e−γ(t−s) sup

θ∈[−h,0]
y(s + θ)ds, t > 0,

α1e−γt, t ∈ [−h, 0].

Then,

y(t) 6 α1e−µt, for all t > −h,

where µ ∈ (0, γ) is given by the unique root of the equation α2
γ−µ

eµh = 1 in this interval.

Theorem 6.2.8. Suppose that g(t) ≡ 0 and f (t, ut) = F(u(t − ρ(t))), where F : H → H is Lipschitz
constant L f > 0 and satisfies F(0) = 0. Assume that ρ : [0,+∞) 7→ [0, h] is a measurable function.
Then the zero solution of (6.0.1) is exponentially stable provided

4λ1µ1 > L f .

Proof. Let us first choose a positive constant λ > 0 such that

λ − 4λ1µ1 + L f > 0.

Notice that the weak solution u(·) to model (6.0.1) corresponding to the initial datum φ satisfies

eλt‖u(t)‖2 = ‖φ(0)‖2 + λ

∫ t

0
eλs‖u(s)‖2ds − 4µ1

∫ t

0
eλs(Au(s), u(s))ds

− 2
∫ t

0
eλs〈N(u(s)), u(s)〉ds + 2

∫ t

0
eλs(F(u(s − ρ(s))), u(s))ds

6 ‖φ(0)‖2 + λ

∫ t

0
eλs‖u(s)‖2ds − 4λ1µ1

∫ t

0
eλs‖u(s)‖2ds

+ 2L f

∫ t

0
eλs‖u(s − ρ(s))‖‖u(s)‖ds

6 ‖φ(0)‖2 + λ

∫ t

0
eλs‖u(s)‖2ds − 4λ1µ1

∫ t

0
eλs‖u(s)‖2ds

+ L f

∫ t

0
eλs‖u(s)‖2ds + L f

∫ t

0
eλs‖u(s − ρ(s))‖2ds

6 ‖φ(0)‖2 + (λ − 4λ1µ1 + L f )
∫ t

0
eλs‖u(s)‖2ds + L f

∫ t

0
eλs‖u(s − ρ(s))‖2ds

6 ‖φ‖2C([−h,0];H) + (λ − 4λ1µ1 + 2L f )
∫ t

0
eλs sup

θ∈[−h,0]
‖u(s + θ)‖2ds.
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Hence, from the Lemma 6.2.7, we know that the unique zero solution to Eq.(6.0.1) is exponentially
stable.

�

Remark 6.2.9. In this Chapter we have exhibited several methods to analyze the exponential stability
of incompressible non-Newtonian fluids when some hereditary properties are taken into account in
the forcing term of the model, and our analysis has been carried out when the delays are bounded.

In the case of constant delays, the autonomous theory of global attractor may provide an appropri-
ate framework to study the problem. But for more general delay terms, such as variable or distributed
delays, the problem becomes non-autonomous and it is necessary to consider a non-autonomous
framework for the global asymptotic behavior of the model. Several options, for instance, the the-
ories of skew-product and uniform attractor are available, but we would like to emphasize that the
theory of pullback attractors may allow more general non-autonomous terms in the models. In this
respect, the existence of pullback attractor of an incompressible non-Newtonian fluid with bounded
delay has been established in Chapter 5 (see also [118]).

Although many other aspects on this model have already been investigated (see [7, 12, 15, 177,
180, 181] and the references therein), there are still many interesting problems related to incom-
pressible non-Newtonian fluids that need to be studied in future. For instance, what are the effects
that some environmental noise may produce in the phenomenon, which will then become a stochastic
non-Newtonian fluid. Amongst the many topics that we could analyze within the field of stochas-
tic non-Newtonian with delay (bounded or unbounded), we could wonder about the existence and
uniqueness of solutions, in particular the stationary one, their stability properties, and the existence
and structure of random attractors as well. We plan to work on this problems in future.



Appendix A

Some useful lemmas

In this Appendix we recall and prove some useful results from functional analysis.
The following key lemmas have been cited in Section 2 of [15] with appropriate references:

Lemma A.1.1. If u ∈ H1
0(O), then

‖u‖L4(O) 6 21/4‖u‖1/2
L2(O)‖∇u‖1/2

L2(O).

Lemma A.1.2. If u ∈ W, then there exists a positive constants c0, depending only on O, such that

‖∇u‖L4(O) 6 c0‖u‖
1/2
H1(O)‖u‖

1/2
H2(O).

Lemma A.1.3. There exist two positive constants c1 and c2 which depend only on O such that

c1‖u‖2W 6 a(u, u) 6 c2‖u‖2W , ∀u ∈ W.

Lemma A.1.4. (Gronwall’s Lemma, see [[88], p. 9]) Let x, y,Ψ be real continuous functions defined
in [a, b], y(t) > 0 for t ∈ [a, b]. We suppose that on [a, b] we have the inequality

x(t) 6 Ψ(t) +

∫ t

a
y(s)x(s)ds. (A.1.1)

Then

x(t) 6 Ψ(t) +

∫ t

a
y(s)Ψ(s) exp

[∫ t

s
y(u)du

]
ds. (A.1.2)

in [a, b]. Particularly, if Ψ is differentiable, then from (A.1.1) if follows that

x(t) 6 Ψ(a) exp
(∫ t

a
y(u)du

)
+

∫ t

a
exp

(∫ t

s
y(u)du

)
Ψ′(s)ds, (A.1.3)

for all t ∈ [a, b].
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Lemma A.1.5. (Uniform Gronwall’s Lemma [103]) Let t ∈ R be given arbitrarily. Let g, h and y
be three positive locally integrable functions on (−∞, t] such that y′ is locally integrable on (−∞, t] ,
which satisfy that

dy
dt
6 gy + h for s 6 t,

and ∫ t

t−1
g(s)ds 6 a1,

∫ t

t−1
h(s)ds 6 a2,

∫ t

t−1
y(s)ds 6 a3, ∀s 6 t,

where a1, a2 and a3 are positive constants. Then

y(t) 6 (a2 + a3)ea1 , ∀s 6 t.

Lemma A.1.6. (Young’s inequality.) Let a, b > 0. Then for every p, q satisfying 1 < p, q < ∞,
1
p + 1

q = 1, it holds

a · b 6 ε
ap

p
+ ε−

q
p
bq

q
for all ε > 0.

Lemma A.1.7. (Gagliado-Nirenberg)(see [136]) Suppose that O ⊂ Rn is a bounded domain with
smooth boundary. Let u ∈ Lq(O) and its derivatives of order m, Dmu belong to Lr(O), where 1 6
q, r 6 ∞. Then for the derivatives D ju, 0 6 j < m, there holds

‖D ju‖Lp 6 c‖u‖σWm,r‖u‖1−σLq , (A.1.4)

where
1
p

=
j
n

+ σ(
1
r
−

m
n

) + (1 − σ)
1
q
,

for all σ in the interval
j

m
6 σ < 1.

Here the constant c depends only on n,m, j, q, r and σ.

The following lemmas will be also useful in this thesis, and readers are referred to [77] for details.

Lemma A.1.8. Let φ be a non-negative, absolutely continuous function on Rτ, τ ∈ R, which satisfies
for some ε > 0 and 0 6 σ < 1 the differential inequality

d
dt
φ + εφ 6 Λ + m1(t)φ(t)σ + m2(t) t ∈ Rτ,

where Λ > 0, and m1 and m2 are non-negative locally summable functions on Rτ. Then

φ(t) 6
1

1 − σ
[φ(τ)e−ε(t−τ) +

Λ

ε
] + [

∫ t

τ

m1(y)e−ε(1−σ)(t−y)dy]
1

1−σ +
1

1 − σ

∫ t

τ

m2(y)e−ε(t−y)dy,

for any t ∈ Rτ.
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Lemma A.1.9. let m ∈ T p
b (R, X) for some τ ∈ R. Then, for every ε > 0,∫ t

τ

m(y)e−ε(t−τ)dy 6 c(ε)‖m‖T p
b (R,X),

Lemma A.1.10. (See [138]). Let µ ∈ C1(R+) ∩ L1(R+) be a non-negative function, such that if
µ(s0) = 0 for some s0 ∈ R

+, then µ(s) = 0 for every s > s0. Let B0, B, B1 be three Banach spaces,
where B0, B1 are reflexive, such that

B0 ↪→ B ↪→ B1,

where the first injection is compact. Let C ⊂ L2
µ(R

+; B) satisfy

(i) C is bounded in L2
µ(R

+; B0) ∩ H1
µ(R+; B1),

(ii) supη∈C ‖η(s)‖2B 6 h(s), ∀s ∈ R+, for some h(s) ∈ L1
µ(R

+).

Then C is relatively compact in L2
µ(R

+; B).
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