
Ranking efficient DMUs using cooperative game

theory

M.A. Hinojosa

Dpto. de Economı́a, Métodos Cuantitativos e Historia Económica,
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Universidad Pablo de Olavide, Seville, Spain. dborrero@us.es

A.M. Mármol
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Abstract: The problem of ranking Decision Making Units (DMUs) in Data Envelopment Anal-

ysis (DEA) has been widely studied in the literature. Some of the proposed approaches use

cooperative game theory as a tool to perform the ranking. In this paper, we use the Shapley

value of two different cooperative games in which the players are the efficient DMUs and the

characteristic function represents the increase in the discriminant power of DEA contributed

by each efficient DMU. The idea is that if the efficient DMUs are not included in the modi-

fied reference sample then the efficiency score of some inefficient DMUs would be higher. The

characteristic function represents, therefore, the change in the efficiency scores of the inefficient

DMUs that occurs when a given coalition of efficient units is dropped from the sample. Alter-

natively, the characteristic function of the cooperative game can be defined as the change in the

efficiency scores of the inefficient DMUs that occurs when a given coalition of efficient DMUs

are the only efficient DMUs that are included in the sample. Since the two cooperative games

proposed are dual games, their corresponding Shapley value coincide and thus lead to the same

ranking. The more an efficient DMU impacts the shape of the efficient frontier, the higher the
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increase in the efficiency scores of the inefficient DMUs its removal brings about and, hence, the

higher its contribution to the overall discriminant power of the method. The proposed approach

is illustrated on a number of datasets from the literature and compared with existing methods.

Keywords: Efficiency assessment; Data Envelopment Analysis; Ranking efficient DMUs; Co-

operative games; Shapley value.

1 Introduction

Data Envelopment Analysis (DEA) is a well-known non-parametric methodology to assess the

relative efficiency of a sample of homogeneous Decision Making Units (DMUs) on the basis of the

data about the input consumption and the output production. DEA models typically assign a

normalized efficiency score to each DMU in order to distinguish between efficient and inefficient

units. The efficient units are assigned the score 1, whereas the inefficient units obtain a score

which reflects their degree of inefficiency. The ranking is, therefore, incomplete since the efficient

DMUs cannot be discriminated in these terms. This is a permanent issue in DEA, and one that

has received a lot of attention on the part of researchers along the years.

This paper begins with a thorough literature review in order to clarify the different efforts

that have been made to overcome this limitation of the methodology. Next, a proposal in

which the problem of ranking efficient DMUs in DEA is approached from a cooperative game

perspective is presented. The idea underlying our approach is that the efficient DMUs are the

ones that define the efficient frontier, and if some of them were not present, then the inefficient

DMUs would increase their efficiency scores, and some of them could even appear to be efficient.

However, some of the efficient DMUs may contribute to the definition of the efficient frontier

more than others. That is to say, the contribution to the discriminant power of the efficient

DMUs with respect to the correct assessment of the inefficient DMUs is not uniform.

The contribution of an efficient DMU can be measured by the reduction in the efficiency score

of the inefficient DMUs that occurs when this efficient unit is included in the reference sample.

In this sense, an important DMU is one that, whenever it is included in the sample, significant

inefficiencies are uncovered, i.e. the efficiency scores of the inefficient DMUs decrease by a large

amount. However, in the end, the efficient frontier is collectively determined by the whole set of

efficient DMUs. Thus the idea of measuring the effect of the inclusion of a DMU in the sample

can be extended to the inclusion of the different subsets of efficient DMUs. Therefore, crediting

each of the efficient DMUs for their contribution to the overall discriminant power can be seen

as a cooperative game. In this game, not only the individual contribution of a DMU, but also
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the contributions of all the groups which include it, are taken into account to determine the

importance of this unit.

The ideas and concepts of cooperative game theory have been previously used in relation to

DEA methodology as is described in the literature review section. In particular, in the present

paper we rely on a well-known solution concept, the Shapley value (Shapley, 1953), which takes

into account the average marginal contribution of a player to the worth of all coalitions in which

it may participate.

The structure of this paper as follows. In Section 2, different DEA ranking and cooperative

game DEA approaches are reviewed. Section 3 contains some preliminaries and an introductory

example. The formalization of the approach proposed to rank the efficient DMUs is presented in

Section 4. Section 5 reports some numerical examples on different datasets from the literature.

Finally. the last section summarizes and concludes.

2 Literature review

There are two strands of DEA research that are relevant to this paper. One corresponds to

the extensive literature in ranking DMUs using DEA. The other is the use of cooperative game

theory in DEA. As regards the literature on ranking DMUs in DEA, several reviews exist, such

as Adler et al. (2002), Jahanshahloo et al. (2008), and Hosseinzadeh Lofti et al. (2013). In

general, four major categories of approaches can be distinguished. One category corresponds

to methods based on cross-efficiency (XE). This type of methods uses Constant Returns to

Scale (CRS) multiplier DEA formulations, and compute XE scores that assess the efficiency

of each DMU by using not only the optimal multipliers computed for that DMU, but also

those computed for every other DMU. Since alternative optimal multipliers can exist, many

different alternative secondary goals have been proposed, e.g. aggressive/benevolent/neutral,

best DMU rank, min/max deviation from ideal efficiency point, etc. Table 1 lists a number

of representative methods in this category without intending to be exhaustive. In this type of

methods a conventional DEA model (e.g. Charnes et al. 1978) is first solved to compute the

efficiency of each DMU, which is then imposed as a constraint in the secondary goal DEA model.

With these methods all the DMUs are ranked and not only the efficient DMUs. It may even

occur that an efficient DMU is ranked below an inefficient one.

A second important category of DEA ranking methods is formed by those based on the

computation of a Common Set of Weights (CSW) for all the DMUs, which can then be used to

rank all DMUs. This type of methods also uses multiplier DEA formulations although they can
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Reference Remarks

Doyle and Green (1994) Secondary goals (aggressive/benevolent formulation)

Liang et al. (2008a)

Secondary goals (min total deviation from ideal ef-

ficiency point, min maximum deviation, min mean

absolute deviation)

Liang et al. (2008b) Nash equilibrium of XE game

Wu et al. (2009b)
Secondary goal (best rank); mixed-integer non-linear

program

Wang and Chin (2010a) Secondary goal (neutral formulation)

Wang and Chin (2010b)

Secondary goals (max total deviation from ideal ef-

ficiency point, max sum of square deviations from

ideal efficiency point, max minimum deviation from

ideal efficiency point)

Wang et al. (2011b)

Secondary goals (min distance from ideal DMU, max

distance from anti-ideal DMU, max distance between

ideal and anti-ideal DMUs, max relative closeness)

Örkcü and Bal (2011)
XE+Goal Programming (preemptive/non preemp-

tive)

Jahanshahloo et al. (2011) XE+TOPSIS

Wu et al. (2011, 2012b) XE aggregation using entropy-based weights

Contreras (2012) Secondary goal (enhanced best rank)

Wu et al. (2012a) Weight-balanced XE

Alcaraz et al. (2013)
Compute ranking intervals; mixed-integer non-linear

program

Table 1: Some XE DEA ranking methods

assume either CRS or Variable Returns to Scale (VRS). Different criteria can be used to choose

the CSW, e.g. compromise programming, regression analysis, deviation from weight profiles of

efficient DMUs, etc. Table 2 lists a number of representative methods in this category.

A third major category of DEA ranking methods are those based on super-efficiency (SE).

Such methods generally use envelopment DEA models and the key feature of this approach is

that the DMU being ranked is dropped from the set of DMUs that define the technology. This

can lead, in the case of extreme efficient DMUs, to SE scores larger than unity which can be used

to rank those DMUs. Since for inefficient units these SE scores coincide with the conventional

efficiency scores, the method is applied only to rank the efficient DMUs. Different metrics can

be used to measure the distance of an efficient DMU to the corresponding SE frontier (obtained

when the DMU is dropped from the set of DMUs that define the technology), e.g. radial,

slacks-based measure, L1 norm, Tchebycheff norm, etc. Table 3 lists a number of representative
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Reference Remarks

Despotis (2002)
Min convex combination of max and sum of

deviations w.r.t. DEA efficiencies

Kao and Hung (2005)
Compromise programming using ideal effi-

ciency vector

Liu and Peng (2008) Common Weights Analysis (CWA) method

Chen et al. (2009)
Augmented Tchebycheff method using ideal

efficiency vector

Wang et al. (2011a) Regression analysis (min sum of square errors)

Ramón et al. (2012)
Min deviation from weight profiles of efficient

DMUs (using l1/ l2/ l∞ norm)

Sun et al. (2013)
Max efficiency subject to efficiency of

ideal/anti-ideal DMU equal to unity

Amirteimoori et al. (2014)
Ranking index based on ratio of weighted sum

of positive input and output differences

Ramazani-Tarkhorani et al. (2014)
Improved CWA method using lexicographic

optimization

Carrillo and Jorge (2016)
Min sum of distances to ideal aggregated

input-output point (using l1/ l∞ norm)

Ruiz and Sirvent (2016)

Min sum of distances to closest targets in com-

mon best practice frontier; compute ranking

intervals

Table 2: Some CSW DEA ranking methods

methods of this category.

There is another group of DEA ranking methods that are based on the concept of cross-

influence (XI). Similarly as in SE, a certain DMU is dropped from the set of DMUs that define

the technology, but this time the emphasis is on the effect on all the DMUs, instead of on the

effect on the SE score of that DMU. These methods generally use envelopment formulations and,

in some cases, not only is a given DMU dropped from the sample that defines the technology,

but a second DMU may also be dropped to measure and compare the corresponding effects on

the efficiency scores of the DMUs or on some virtual DMU. This feature is important for the

present research because, in our approach, subsets of efficient DMUs are dropped so that the

cardinality of these subsets goes from one (i.e. dropping a single efficient unit) to as many as

the number of efficient DMUs, and we will be interested in measuring the effect on the efficiency

scores of the inefficient DMUs. Therefore, the proposed approach can be placed in this category.

Table 4 lists a number of XI methods.
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Reference Remarks

Andersen and Petersen (1993)
Radial, input or output-oriented model; infeasi-

bility issues for VRS

Mehrabian et al. (1999) Input-oriented Tchebycheff norm model

Tone (2001)
Slacks-based (Super SBM); input, output and

non-oriented variants

Chen (2004)
Input-oriented; tackles infeasibility issues of VRS

radial model

Jahanshahloo et al. (2004) Non-oriented l1 norm model

Wu and Yan (2010) Linearized l1 norm model

Rezai Balf et al. (2012) Non-oriented Tecbycheff norm model

Jablonsky (2012) Super SBM+extended Goal Programming

Table 3: Some SE DEA ranking methods

Reference Remarks

Jahanshahloo et al. (2007)
Average influence of Strong-efficient (SE)

DMUs on the rest

Du et al. (2010)

Impact of efficient DMUs on the inefficient

DMUs plus impact of efficient DMUs on

the impact of the other efficient DMUs

Shetty and Pakkala (2010)

Virtual DMU (average of inefficient

DMUs); impact of efficient DMUs on the

virtual DMU

Chen and Deng (2011)

Weighted measures of cross-dependence

efficiency for efficient and for inefficient

DMU

Hosseinzadeh Lofti et al. (2011)

Efficiency of aggregate DMU (sum of in-

puts and outputs of the rest of efficient

DMUs); radial multiplier formulation

Izadikhah and Farzipoor Saen (2015)

Virtual DMU (average of inefficient

DMUs); influence of efficient DMUs on the

virtual DMU plus influence on the impact

of other efficient DMUs on the virtual

DMU

Table 4: Some XI DEA ranking methods

Finally, in addition to the major four categories mentioned above, Table 5 lists some of these

other DEA ranking methods, e.g. based on Nash Bargaining games, cross-dominance relation-
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ships, optimistic/pessimistic efficiencies, TOPSIS, etc. Especially relevant in this category is

the recent paper by Li et al. (2016) which have opened an interesting new research venue by

applying Transferable Utility (TU) cooperative games to ranking efficient DMUs in DEA.

Li et al. (2016) have proposed a TU cooperative game approach in which in the reduced DEA

models to be solved, a certain subset of efficient DMUs is dropped from the sample. In their

method the characteristic function measures the effect of removing these efficient units from the

sample on the super-efficiency scores of the efficient units. In the present paper, a different TU

cooperative game approach is proposed. In our proposal, the characteristic function measures

the effect of including a subset of efficient DMUs’ effect on the efficiency scores of the inefficient

DMUs. The idea is that when the efficient DMUs are not present in the reference sample (do

not cooperate), then the inefficient DMUs are overrated with some of them possibly passing as

efficient. As more and more efficient DMUs cooperate, and are added in the reference sample,

the efficiency scores assigned to the inefficient DMUs decrease and get closer to their original

efficiency score which is the score computed when all efficient DMUs (the grand coalition), are

considered. Therefore, the characteristic function of the TU cooperative game proposed in this

paper measures the increase in the discrimination power of DEA associated to each subset of

efficient DMUs that agree to cooperate and join the reference sample.

Reference Remarks

Torgersen et al. (1996)
Importance of efficient DMUs as benchmarks

for inefficient DMUs

Wang et al. (2007)
Geometric average of optimistic and pes-

imistic efficiencies

Wu et al. (2009a) Nash Bargaining game using efficiency and XE

Salo and Punkka (2011)
Compute ranking intervals and dominance re-

lationships

Hosseinzadeh Lofti et al. (2011)
TOPSIS integration of ranking results from

different methods

Jahantighi et al. (2013)
TOPSIS integration of ranking results from

different methods

Wang and Li (2014)
Improved Nash Bargaining game using effi-

ciency and min XE

Oukil and Amin (2015) Maximum cross-appreciation

Li et al. (2016)
Use Shapley value of super-efficiency TU co-

operative game

Table 5: Some other DEA ranking methods

As regards cooperative games approaches in DEA that are not related to the ranking of
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DMUs, the reader is referred to Lozano et al. (2016), where a number of TU games approaches,

as well as Nash Bargaining games approaches are reviewed (see also Lozano et al. (2015), and

Hinojosa et al. (2016)). Among the papers reviewed in Lozano et al. (2015) that apply TU

games and, in particular, the Shapley value, the one that is more relevant to this research is Li

and Liang (2010), which proposes a cooperative game in which the players are the input and

output variables and the grand coalition is the total set that includes all the inputs and outputs.

Measuring the marginal contribution of each input and output to the efficiency change ratio

of the DMUs, the importance of the different variables can be determined. Therefore, in such

an approach, the reduced DEA model that is solved for each coalition drops certain subsets of

input and output variables but the whole set of DMUs is always used.

3 Preliminaries and introductory example

A cooperative game in characteristic function form is a pair (N, v), where N is a finite set, the

set of players, and the characteristic function, v, is a function, v : 2N −→ IR, with v(∅) = 0.

A subset S of N is called a coalition. The number v(S) can be regarded as the worth of the

coalition S in the game v.

A cooperative game is monotonic if v(S) ≥ v(T ), whenever S ⊇ T .

The dual game vd of a cooperative game v is defined by vd(S) = v(N) − v(N \ S), for all

S ∈ 2N . Note that (vd)d = v for every game v.

A function f which assigns to every cooperative game, v, a (possibly empty) subset, f(v),

of IRn is called a solution concept. If for each cooperative game, v, f(v) is a singleton, then f

is called a value. A value, f , is said self-dual if f(v) = f(vd).

A well-known value from cooperative TU game theory is the Shapley value. The Shapley

value, ϕ(v), of v is defined, for each k ∈ N , by

ϕk(v) =
∑

S⊆N\{k}

s!(n− s− 1)!

n!
(v(S ∪ {k})− v(S)) , (1)

where n is the cardinality of N and s is the cardinality of S.

It is well-known that the Shapley value is a self-dual value (see Kalai and Samet (1987)).

Moreover, the Shapley value, ϕ, is the unique solution concept which satisfies the following four

appealing properties:

EFF (Efficiency): For each cooperative TU game, v,
∑

k∈N ϕk(v) = v(N).
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NPP (Null Player Property): For each cooperative TU game, v, and each null player1, k ∈ N ,

ϕk(v) = 0.

SYM (Symmetry): For each cooperative TU game, v, and each pair k, l ∈ N of symmetric2

players, ϕk(v) = ϕl(v).

ADD (Additivity): For each pair of cooperative TU games, v and w, ϕ(v + w) = ϕ(v) + ϕ(w).

EFF requires that ϕ allocates the total worth of the grand coalition, v(N), among the players.

NPP means that the players that contribute zero to every coalition, should receive nothing.

SYM asks ϕ to treat equal players equally. Finally, ADD is an useful property which will play

and important role in the application of the present paper, as shown below.

In our approach a TU cooperative game will be defined and the Shapley value will be adopted

as the solution concept in order to derive a ranking of the efficient units in a DEA model. For the

sake of simplicity we present our analysis for the standard input-oriented CCR model (Charnes

et al. (1978)), however, the procedure presented in this paper can be applied independently of

the specific DEA model used to asses the efficiency of the DMUs.

The CCR DEA model is defined as follows. Suppose there are m independent DMUs,

j ∈ M = {1, 2, . . . ,m}, each of them consumes k different inputs, i ∈ I = {1, 2, . . . , k}, in

quantities xij , to generate h different outputs in quantities yrj (r ∈ H = {1, 2, . . . , h}).

The efficiency of a given DMU, j0 ∈M , can be computed as follows:

Ej0(M) = min θj0

s.t.
∑

j∈M λjxij ≤ θj0xij0 ∀i ∈ I∑
j∈M λjyrj ≥ yrj0 ∀r ∈ H

λj ≥ 0 ∀j ∈M
θj0 free

(2)

DMU j0 ∈ M is efficient if Ej0(M) = 1 and the deviation variables in the reformulated model

1A player k ∈ N is a null player if, for each S ⊂ N , v(S ∪ k) = v(S).
2Two players, k and l, are symmetric if, for each coalition S ⊆ N \ {k, l}, v(S ∪ {k}) = v(S ∪ {l}).
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below, s−ij0 , i ∈ I, and s+
rj0

, r ∈ H, are both zero:

min θj0 − ε
(∑

i∈I s
−
ij0

+
∑

r∈H s+
rj0

)
s.t.

∑
j∈M λjxij = θj0xij0 − s−ij0 ∀i ∈ I∑
j∈M λjyrj = yrj0 + s+

rj0
∀r ∈ H

λj ≥ 0 ∀j ∈M
s−ij0 ≥ 0 ∀i ∈ I
s+
rj0
≥ 0 ∀r ∈ H

θj0 free,

(3)

where ε is a non-archimedian constant.

Denote by N the set of efficient DMUs.

For each T ⊆ M , let Ej0(T ) be the efficiency score of the DMU j0 ∈ T when the sample

of DMUs under study are the DMUs in T . Such an efficiency score is assessed by using the

standard input-oriented CCR model specified in (2).

We analyze how cooperative game theory can be used to discriminate between efficient

DMUs. The idea is to rank the efficient DMUs according to the results obtained by applying a

solution concept to the appropriate cooperative transferable utility (TU) game. Our proposal

is to use the Shapley value as a solution concept that can properly assign an score representing

the importance of the DMUs in this setting .

Li et al.(2016) precede us in modeling the situation as a TU game and in using the Shapley

value as a tool to rank the efficient DMUs. In their model, as in ours, the set of agents (players)

is the set of efficient DMUs, N and the characteristic function measures, for each coalition,

S ⊂ N , the super-efficiency of the efficient DMUs in S.

Formally, the game defined by Li et al. (2016) is a cooperative TU game, (N, v), where the

characteristic function, for each S ⊆ N , is

v(S) =
∑
k∈S

(Ek(M \ S)− 1). (4)

Example 1: Consider the dataset with m = 6 independent DMUs (M = {A,B,C,D,E, F})
shown in Table 6. It corresponds to a two-input (I = {1, 2}), single constant output (H = {1})
scenario.

Figure 1 plots the dataset specified in Table 6. Note that DMUs A, B, C and D are efficient,

while E and F are inefficient. Therefore the set of efficient DMUs is N = {A,B,C,D}. The

efficiency scores, Ej(M), of the two inefficient DMUs are shown in Table 6, and their efficient
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DMUs Inputs Output Efficiency score

j = 1, 2, . . . , 6 x1j x2j yj Ej(M)

A 1 8 1 1.00

B 2 4 1 1.00

C 4 2 1 1.00

D 8 1 1 1.00

E 5 5 1 0.60

F 3 10 1 0.5̂4

Table 6: Dataset and efficiency scores

projections are labeled E0 and F 0 in Figure 1. The input consumption of E0 and F 0 are,

respectively, (3.0, 3.0) and (1.6̂3, 5.4̂5).
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F 0

E0

x1j

x2j

Figure 1. Original efficient frontier and inefficient DMUs projections.

For instance, for the coalition of efficient DMUs, S = {B,C}, the super-efficiency of B and

C is computed assuming that they are not included in the reference sample. This is shown in

Figure 2. Note that the efficient frontier defined by the corresponding modified reference sample

is defined by DMUs A and D. In Li et al. (2016) approach, only the DMUs in S are projected

on this modified efficient frontier. Such projections are labeled B1 and C1 in Figure 2. The

input consumption of B1 and C1 are, respectively, (3, 6) and (6, 3). Taking into account that

the observed input consumption of these DMUs are (2, 4) and (4, 2), respectively, the super-

efficiency scores of B and C are EB(M \ S) = 1.5 and EC(M \ S) = 1.5. Therefore, the
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characteristic value of coalition S in the cooperative game in Li et al. (2016) is obtained as

v(S) = (EB(M \ S)− 1) + (EC(M \ S)− 1) = (1.5− 1) + (1.5− 1) = 1.

1

10

0 2 3 4 5 6 7 8 9 10

9

8

7

6

5

4

3

2

0

1

A

B

C

D

E

F

B1

C1

x1j

x2j

Figure 2. Li et al. (2016) modified efficient frontier and efficient DMUs projections for

S = {B,C}.

Table 7 shows the value of the characteristic function for each possible coalition of efficient

DMUs. The Shapley value of the game and the ranking of the efficient DMUs is shown in Table

8.

S v(S) S v(S) S v(S)

{A} 1 {A,C} 1.25 {A,B,C} 3.5̂3

{B} 0.25 {A,D} 2 {A,B,D} 3.7

{C} 0.25 {B,C} 1 {A,C,D} 4

{D} 1 {B,D} 1.25 {B,C,D} 6.0̂9

{A,B} 2.7 {C,D} 4 {A,B,C,D} 8.4̂

Table 7: Characteristic function of Li et al. (2016) approach
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Efficient Li et al. (2016)

DMUs Shapley value Ranking

A 1.6246633 4

B 1.90496633 3

C 2.221633 2

D 2.69318182 1

Table 8: Li et al. (2016) ranking of efficient DMUs

4 A proposal for ranking the efficient DMUs

The approach that is proposed in this paper also defines a cooperative TU game where the players

are the efficient DMUs. The modified reference sample in this case includes the inefficient units

and the efficient units in coalition S. We concentrate on the efficiency score of the inefficient

DMUs in M \N , that is, the DMUs that are projected on the modified efficient frontier are the

inefficient units.

Note that for each inefficient DMU, j0 ∈M \N , and each subset of efficient DMUs, S ⊆ N ,

the inequality Ej0(M \N) ≥ Ej0((M \N) ∪ S)) holds. Therefore, if only the efficient DMUs in

S ∈ N are added to the set of inefficient DMUs, M \N , then the efficiency score of an specific

inefficient DMU, j0 ∈M \N , decreases by an amount equal to Ej0(M \N)−Ej0((M \N)∪S).

In our framework, from the perspective of any inefficient DMU, j ∈M \N , the worth of any

coalition of efficient DMUs, S ⊂ N , can be computed by the difference Ej(M \ N) − Ej((M \
N) ∪ S), which is the reduction on the efficiency score that DMU j suffers when the DMUs

in coalition S cooperate by joining the set of inefficient DMUs, M \ N , to form the reference

sample.

Therefore, for each inefficient DMU, j ∈ M \N , a cooperative TU game vj can be defined,

where the efficient DMUs are considered the set of players, and the characteristic function is

such that vj(∅) = 0 and, for each nonempty coalition S ⊆ N ,

vj(S) = Ej(M \N)− Ej((M \N) ∪ S).

Alternatively, a different approach could have been adopted for the definition of the cooper-

ative TU game from the point of view of each inefficient DMU (j ∈ M \ N). Thus, the worth

of any coalition of efficient DMUs, S ⊂ N , could alternatively be measured by the difference

13



Ej(M \ S) − Ej(M), which is the increment on the efficiency score that DMU j enjoys when

the DMUs in coalition S leave the whole reference sample, M . Hence, analogously, for each

inefficient DMU j ∈M \N , a different cooperative TU game can be defined where the efficient

DMUs are also considered the set of players, and the corresponding characteristic function is

such that v∗j (∅) = 0 and, for each nonempty coalition S ⊆ N ,

v∗j (S) = Ej(M \ S)− Ej(M).

Notice that, for each inefficient DMU, j ∈M \N , both games, vj and v∗j , are monotonic.

Interestingly, it turns out also that vj and v∗j are dual games, since

vdj (S) = vj(N)− vj(N \ S) =

= (Ej(M \N)− Ej(M \N ∪N))− (Ej(M \N)− Ej(M \N ∪N \ S)) =

= (Ej(M \N)− Ej(M))− (Ej(M \N)− Ej(M \ S)) =

= Ej(M \ S)− Ej(M) = v∗j (S).

Then, since the Shapley value is a self-dual value, then the Shapley value of either (N, vj) or

(N, v∗j ) can be used as a reference in order to rank the efficient DMUs in N under a specific

inefficient DMU (j) point of view. The ranking obtained is the same because ϕ(vj) = ϕ(v∗j ).

Nevertheless, the ranking of the efficient DMUs should not be seen under the perspective of

a single inefficient DMU, but all the inefficient DMUs should be considered as a whole. Thus,

our proposal is to introduce the cooperative TU game v corresponding to the sum of the games

specified above, that is, for each coalition S ⊆ N :

v(S) =
∑

j∈M\N

vj(S) =
∑

j∈M\N

(Ej(M \N)− Ej((M \N) ∪ S)) (5)

Moreover, we can also consider the game v∗, defined as

v∗(S) =
∑

j∈M\N

v∗j (S) =
∑

j∈M\N

(Ej(M \ S)− Ej(M)). (6)

Since v and v∗ are also dual games, then the Shapley value of either (N, v) or (N, v∗) can

equivalently be used to discriminate between the different efficient DMUs. The ranking obtained

by using any of the two games is the same.

It is worth pointing out that the efficiency scores of all the efficient DMUs that are included

in the sample is always unity and hence the change in their efficiency scores is always zero,
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independently of which other efficient DMUs are considered. This is why the characteristic

functions are defined as the change in the efficiency scores of the inefficient DMUs, because

those of the efficient DMUs included in the sample are zero.

Approaching DEA ranking as a cooperative game makes sense because in DEA the Produc-

tion Possibility Set is inferred collectively from the sample. Thus, it can be thought as the result

of a cooperative endeavor of the DMUs. The cooperative aim of the DMUs is implicit in their

providing the data about their input consumption and output production. If the DMUs did not

want to cooperate in the benchmarking they just need to keep the information private. The

grand coalition is formed by design, i.e. because we are interested in computing the true effi-

ciencies and that requires including all the efficient DMUs in the sample. Since the aim of DEA

efficiency assessment is to identify the best practices and the corresponding efficient frontier and

as the inefficient DMUs contribute nothing in that regard they are not invited to participate in

the game. The game is played only between the efficient DMUs, which are the ones that shape

the efficient frontier.

As in any TU cooperative game, the proposed approach considers that there exists a com-

modity which stores utility and which can be transferred among the players. The characteristic

function value of the grand coalition represents the total inefficiency uncovered by DEA. Thus,

the implicit commodity used in this case is the corresponding benchmark credit, i.e. the credit

for contributing to uncovering the total inefficiency present in the observations. It is clear that,

since the efficient frontier is defined by the efficient DMUs, these are the DMUs that deserve

the credit. It is not obvious, however, how to distribute that credit among the efficient DMUs.

That is what the proposed solution (namely, the Shapley value) does. The credit allocation

obtained with the Shapley value is used to rank the efficient DMUs. Moreover, the property of

additivity, which is inherent to the Shapley value as a cooperative game theory solution, is key

to aggregate the effects of all inefficient DMUs.

Regarding the intuition that the two proposed cooperative games give the same Shapley

value, note that the two cooperative games proposed and their corresponding Shapley values

aim at measuring the contribution of each efficient DMU as regards its influence in shaping the

efficient frontier. That influence is related to the geometry of the efficient frontier in the vicinity

of that efficient DMU. Hence, it is not surprising that its computation is not affected by whether

we study the sensitivity of the efficient frontier in one direction (gradually removing the efficient

DMUs until only the inefficient ones are present) or the other (starting with only the inefficient

DMUs and gradually adding the efficient ones).

Moreover, the two proposed approaches are, in terms of the computation of their corre-

sponding Shapley value, totally equivalent. There are no differences either in terms of the way
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the characteristic function is computed: in both cases it refers to the change in the efficiency

scores of all the DMUs in the modified reference sample, which coincides with the change in the

efficiency scores of the inefficient DMUs since the efficient DMUs do not change their status and

thus maintain their unity efficiency scores.

The computation of the Shapley value for a small number of players is rather simple. For

a large number of players the computational burden associated to the Shapley value is high.

Experiments carried out with TUGlabExtended (Mirás and Sánchez, 2008), a free MATLAB

package, indicate that the Shapley value of games of up to 15 players can be solved in around 15

minutes. For a larger number of players approximate estimation methods should be used (see

for instance Castro et al. (2009)).

Example 1 (continued): For the empty coalition, S = ∅ the reference sample considered in

the proposed approach consists of just the inefficient DMUs in M \ N = {E,F}. In this case,

shown in Figure 3, both DMUs appear to be efficient. The more efficient DMUs belong to the

coalition S, the more the modified efficient frontier approximates the true efficient frontier, and

the modified efficiency scores approximate the true efficiency scores.

1
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Figure 3. Modified efficient frontier when S = ∅.

For the coalition S = {B,C} the reference sample consists of the inefficient DMUs in M\N =

{E,F} plus the efficient DMUs in the coalition. Thus, the modified efficient frontier is defined

by the DMUs in S, as shown in Figure 4.
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Figure 4. Modified efficient frontier and inefficient DMUs projections in our approach for

S = {B,C}.

The interpretation is that DMUs A and D outside coalition S do not cooperate in joining the

reference sample. The corresponding projections on the modified efficient frontier are labeled

E2 and F 2 in Figure 3. The input consumption of E2 and F 2 are, respectively, (3.0, 3.0) and

(2.0, 6.6̂). Note that, in the case of the inefficient DMU E, the projection is the same as E0 in

Figure 1, and therefore the modified efficiency score is the same, that is 0.6. However, for the

inefficient DMU F, the modified efficiency score is 0.6̂, and therefore has decrease with respect

to the unity efficiency score computed in the case of S = ∅. Therefore, in our approach, the

characteristic value of coalition S in the cooperative game is (1−0.6)+(1−0.6̂) = 0.4+0.3̂ = 0.73̂.

Table 9 shows the value of the charateristic function of each possible coalition of efficient

DMUs and Table 10 shows the Shapley value in our game and the ranking of efficient DMUs.

S v(S) v∗(S) S v(S) v∗(S) S v(S) v∗(S)

{A} 0.2857 0.1̂2 {A,C} 0.7083̂ 0.18̂7 {A,B,C} 0.854̂5 0.854̂5

{B} 0.53̂ 0.1462̂1 {A,D} 0.4077 0.1̂2 {A,B,D} 0.7̂8 0.6101

{C} 0.24̂ 0.06̂ {B,C} 0.73̂ 0.44684̂5 {A,C,D} 0.7083̂ 0.32121

{D} 0 0 {B,D} 0.6̂ 0.1462̂1 {B,C,D} 0.73̂ 0.5688

{A,B} 0.654̂5 0.610̂1 {C,D} 0.24̂ 0.2 {A,B,C,D} 0.854̂5 0.854̂5

Table 9: Characteristic functions for both games
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Efficient Our approach

DMUs Shapley value Ranking

A 0.24332088 2

B 0.38152642 1

C 0.19730925 3

D 0.03238889 4

Table 10: Our ranking of efficient DMUs

Summarizing, while Li et al. (2016) rank the efficient DMUs based on how these efficient

DMUs increase their super-efficiency when they are removed from the reference sample, dis-

regarding the effect on the inefficient units, the approach proposed in this paper focuses on

the inefficient units, and measures the reduction in their efficiency scores that occurs as more

and more efficient DMUs cooperate and join the reference sample. In other words, while the

approach in Li et al. (2016) comes from and is inspired by the super-efficiency concept, the

approach proposed in this paper is based on the concept of the increase in the discriminant

power of DEA contributed by each efficient DMU.

Example 2 (Illustrative dataset from Li et al. (2016)): The dataset corresponds to

m = 8 independent DMUs (M = {A,B,C,D,E, F,G,H}), which use two inputs (I = {1, 2}) to

produce two outputs (H = {1, 2}), as shown in Table 11.

DMUs Inputs Outputs Efficiency score

j = 1, 2, . . . , 8 x1j x2j y1j y2j Ej(M)

A 2 7 3 1 1

B 2 12 4 1 1

C 5 5 2 1 1

D 10 4 2 1 1

E 3 6 1 1 1

F 10 6 1 1 0.75

G 4 12 2.5 1 0.5625

H 5 11 3.5 1 0.733108

Table 11: Dataset and efficiency scores

DMUs A, B, C, D and E are efficient, whereas DMUs F, G and H are inefficient. According

to our proposal, Table 12 shows the value of the characteristic function of each possible coalition

of efficient DMUs.
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S v(S) v∗(S) S v(S) v∗(S) S v(S) v∗(S)

{∅} 0 0

{A} 0.677576 0.309749 {B,D} 0.350917 0.092649 {A,D,E} 0.930198 0.461832

{B} 0.1 0 {B,E} 0.25 0.005682 {B,C,D} 0.575893 0.259316

{C} 0.166667 0.024194 {C,D} 0.25 0.259316 {B,C,E} 0.56131 0.056446

{D} 0.103448 0.092649 {C,E} 0.166667 0.056446 {B,D,E} 0.595954 0.098331

{E} 0 0.005682 {D,E} 0.225806 0.098331 {C,D,E} 0.25 0.276816

{A,B} 0.677576 0.704392 {A,B,C} 0.856061 0.728586 {A,B,C,D} 0.94871 0.954392

{A,C} 0.856061 0.358438 {A,B,D} 0.897946 0.787725 {A,B,C,E} 0.861743 0.850944

{A,D} 0.897946 0.393082 {A,B,E} 0.695076 0.704392 {A,B,D,E} 0.930198 0.787725

{A,E} 0.695076 0.378499 {A,C,D} 0.94871 0.704392 {A,C,D,E} 0.954392 0.854392

{B,C} 0.49256 0.024194 {A,C,E} 0.861743 0.603475 {B,C,D,E} 0.644643 0.276816

{A,B,C,D,E} 0.954392 0.954392

Table 12: Characteristic functions for both games

Table 13 shows the Shapley value and the ranking according to our approach compared with

that in Li et al. (2016).

Efficient Li et al. (2016) Our approach

DMUs Shapley value Ranking Shapley value Ranking

A 2.1517 1 0.53601263 1

B 1.5705 2 0.11725638 4

C 0.7827 3 0.12878097 3

D 0.6753 4 0.13878705 2

E 0.3881 5 0.03355497 5

Spearman rank correlation coefficient: 0.6

Table 13: Ranking of the efficient DMUs

5 Numerical Illustrations

In this section we will illustrate the proposed approach by using different datasets from the

literature. In what follows, our results are compared with those obtained by some of the different

approaches reviewed in Section 2. We provide the Spearman rank correlation coefficient in each

case. For all the examples we have chosen to use the game denoted by v for computing the
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Shapley value.

Real-world dataset from Li et al. (2016)

Table 14 shows a the real-world dataset corresponding to 14 Chinese city commercial banks in

2012. For each bank, three inputs (Fixed assets, Employee’s pay and General expenses) and two

outputs (Profit and Loans) are considered.

DMUs
Banks

Inputs Outputs Efficiency score

j = 1, . . . , 14 Fixed Employee’s General Profit Loans Ej(M)

assets pay expenses

1 Jiujiang 775,310 283,893 644,280 2,193,085 26,392,924 1

2 Chengdu 1,120,795 679,087 1,674,877 3,262,998 91,799,733 0.853694

3 Baotou 5,086,018 420,404 2,867,703 2,845,104 57,320,923 0.441529

4 Hangzhou 1,114,333 1,239,207 3,187,168 4,474,572 148,341,428 0.973852

5 Huishang 1,178,797 1,155,569 2,433,518 5,680,038 159,941,475 1

6 Harbin 5,810,688 332,044 2,466,586 3,789,997 85,298,079 0.715444

7 Jiangsu 3,203,353 2,864,359 6,617,403 9,625,877 342,827,271 0.817987

8 ZHHR 150,570 207,802 877,996 636,046 21,152,061 1

9 Tianjin 1,267,597 296,940 1,820,934 3,298,603 118,767,291 1

10 Chongqing 1,015,688 142,024 1,577,106 2,518,447 75,256,873 1

11 Dalian 1,154,635 619,940 2,327,875 2,253,330 98,880,747 0.773406

12 Hankou 1,088,335 95,372 1,221,129 2,414,775 57,757,208 1

13 Nanjing 2,172,992 635,475 2,721,211 4,980,404 121,962,186 0.827474

14 Ningbo 2,397,820 624,031 3,529,395 5,098,041 142,564,629 0.768847

Table 14: Dataset and efficiency scores

Table 15 shows the ranking of the six efficient DMUs (1, 5, 8, 9, 10 and 12) in our approach

and in the Li et al. (2016) approach.
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Efficient Li et al. (2016) Our approach

DMUs Shapley value Ranking Shapley value Ranking

1 0.6335 4 0.11618148 3

5 0.5525 5 0.13473162 2

8 0.0453 6 0.02417655 6

9 0.8168 3 0.05180832 5

10 1.2692 2 0.14934275 1

12 1.4497 1 0.05388128 4

Spearman rank correlation coefficient: 0.314

Table 15: Ranking of the efficient DMUs

As we can see, although both Li et al. (2016) and the proposed approach use Shapley value,

the corresponding rankings differ because their respective cooperative TU games are different.

The one in Li et al. (2016) is based on the super-efficiency of the efficient DMUs while the

approach proposed in this paper is based on the contribution of the efficient DMUs to the

increase in the discriminant power of DEA.

Dataset from Jahanshahloo et al. (2011)

Jahanshahloo et al. approach (2011) is based on cross-efficiency (see Table 1). Table 16 shows

the dataset considered and the efficiency scores.

DMUs Inputs Output Efficiency score

j = 1, 2, . . . , 6 x1j x2j yj Ej(M)

1 13 1 1 1

2 6 3 1 1

3 2 6 1 1

4 1 10 1 1

5 9 5 1 0.638

6 4 8 1 0.682

Table 16: Dataset and efficiency scores.

Jahanshahloo et al. model obtain different rankings by considering different optimal weights.

Table 17 shows two of this rankings and one of them coincides with the ranking obtained in our

approach.
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Eficcient Jahanshahloo et al. (2011) Our approach

DMUs Rank 1 Rank 2 Shapley value Rank

1 4 3 0.0723 3

2 2 1 0.3023 1

3 1 2 0.2743 2

4 3 4 0.0310 4

Spearman rank correlation coefficients: 0.6 and 1, respectively

Table 17: Ranking of the efficient DMUs

Dataset from Chen (2004)

Chen’s method is also based on super-efficiency (see Table 3). The following dataset corre-

sponds to 20 Japanese companies. For each company three inputs (asset, equity and number of

employees) and one output (revenue) are considered.

Efficiency scores in Chen’s method are assessed by the BCC model. Therefore there are five

efficient companies (DMUs 1, 2, 6, 8 and 18). Table 18 shows the dataset and both the rankings

obtained by Chen (2014) and those obtained in our approach based on the BCC model.
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Table 18: Dataset, efficiency scores and ranking of the efficient DMUs
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Illustrative dataset from Chen and Deng (2011)

The method used in Chen and Deng (2001) is also based on the concept of cross-influence (see

Table 4). In this case the data corresponds to 8 DMUs where two inputs and two outputs are

considered. Five DMUs (DMUs A, B, C, D and F) are efficient basing on the BCC model used

by Chen and Deng (2011).

Table 19 shows the dataset and the results obtained by our approach compared with that in

Chen and Deng (2011).

DMUs Inputs Outputs Efficiency score Chen and Deng (2011) Our approach

j = 1, . . . , 6 x1j x2j y1j y2j Ej(M) Rank Shapley value Rank

A 2 12 4 1 1 3 0.15312117 2

B 2 8 3 1 1 1 0.26838633 1

C 5 5 2 1 1 4 0.13876517 3

D 10 4 2 1 1 2 0.12971967 4

E 10 6 1 1 0.750

F 3.5 6.5 1 1 1 5 0.02591667 5

G 4 12 2.5 1 0.625

H 5 11 3.5 1 0.909

Spearman rank correlation coefficient: 0.7

Table 19: Dataset, efficiency scores and ranking of the efficient DMUs

6 Final remaks

In this paper a new method for ranking efficient DMUs in DEA has been proposed. It is

based on a well-known concept solution of cooperative game theory, namely the Shapley value,

applied to any of a pair of dual cooperative TU games. The players of both TU games are

the efficient DMUs and their characteristic functions measure the worth of a coalition in terms

of the amount of inefficiency uncovered by the inclusion of the corresponding efficient DMUs

in the reference sample. Thus, for the grand coalition, the initial DEA efficient frontier is

formed and the inefficient DMUs are projected onto it. In contrast, if the efficient DMUs do

not cooperate, then the inefficient DMUs are projected onto a modified efficient frontier thus

overestimating their efficiency score. As the efficient DMUs cooperate and join the reference

sample, the modified efficiency scores become lower and closer to the initial efficiency scores.

This increase in the discriminant power gained with the cooperation is what the characteristic

functions of the proposed TU games take into account.
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Although the proposed approach has been formulated for a certain (radial, input-oriented,

CRS) DEA model, it can also be applied independently of the specific DEA model used to assess

the efficiency of the DMUs. The proposed approach has been tested on a number of datasets from

the literature and compared with the results of other methods with which sometimes coincide

but others differ. This is not unusual. As reviewed in Section 2, there are many different DEA

ranking methods and they generally differ for a specific dataset. It is the rationale of each

method what supports its validity and, in the case of the approach proposed in this paper, the

rationale is based on the solid theoretical foundation of cooperative game theory. Particularly,

it is founded on the idea that the participation of each of the efficient DMUs contribute to a

certain extent to define the DEA efficient frontier and hence it should be accordingly credited.

As topics for further research, we may consider the possibility of using other TU game solu-

tion concepts, such as the nucleolus. The possibility of using other non-coalitional cooperative

game approaches, such as Nash bargaining, may also be investigated.
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