
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Efficient and Accurate Statistical Analog Yield
Optimization and Variation-Aware Circuit Sizing

based on Computational Intelligence Techniques

Bo Liu, Francisco V. Fernández and Georges Gielen, Fellow, IEEE

1

 Index Terms—Yield optimization, variation-aware analog
sizing, ordinal optimization, differential evolution

I. INTRODUCTION

 Abstract—In nanometer CMOS technologies, worst-case
design methods and response-surface-based yield
optimization methods face challenges in accuracy. Monte-
Carlo (MC) simulation is general and accurate for yield
estimation, but its efficiency is not high enough to make MC-
based analog yield optimization, which requires many yield
estimations, practical. In this paper, techniques inspired by
computational intelligence are used to speed up yield
optimization without sacrificing accuracy. A new sampling-
based yield optimization approach, which determines the
device sizes to optimize yield, is presented, called the Ordinal
Optimization (OO)-based Random-Scale Differential
Evolution (ORDE) algorithm. By proposing a two-stage
estimation flow and introducing the OO technique in the first
stage, sufficient samples are allocated to promising solutions,
and repeated MC simulations of non-critical solutions are
avoided. By the proposed evolutionary algorithm that uses
Differential Evolution for global search and a random-scale
mutation operator for fine tunings, the convergence speed of
the yield optimization can be enhanced significantly. With
the same accuracy, the resulting ORDE algorithm can
achieve approximately a tenfold improvement in
computational effort compared to an improved MC-based
yield optimization algorithm integrating the infeasible
sampling and Latin-hypercube sampling techniques.
Furthermore, ORDE is extended from plain yield
optimization to process-variation-aware single-objective
circuit sizing.

ndustrial analog integrated circuit design not only calls
for fully optimized nominal design solutions, but also

requires high robustness and yield in the light of varying

Manuscript received Jan.21, 2010; revised May 29 and Sept. 22, 2010.
This research was supported by a special bilateral agreement scholarship
of Katholieke Universiteit Leuven, Belgium and Tsinghua University, P.
R. China, and by the TIC-2532 Project, funded by Consejeria de
Innovación, Ciencia y Empresa, Junta de Andalucia, Spain. This paper
was recommended by Associate Editor Peng Li.
Georges Gielen and Bo Liu are with the ESAT-MICAS, Katholieke
Universiteit Leuven, Leuven, Belgium. (e-mail: {Georges.Gielen,
Bo.Liu} @esat.kuleuven.be, liu_bo765@yahoo.com.cn). Francisco
Fernández is with IMSE, CSIC and University of Sevilla, Sevilla, Spain.
(e-mail: Francisco.Fernandez@imse-cnm.csic.es).

supply voltage and temperature conditions, as well as
inter-die and intra-die process variations [1-3]. Especially
in nanometer CMOS technologies, random and systematic
process variations have a large influence on the quality
and yield of the manufactured analog circuits. As a
consequence, in the high-performance analog and mixed-
signal design flows, the designer needs guidelines and
tools to deal with these factors impacting circuit yield and
performances in an integrated manner in order to avoid
costly re-design iterations [4].

Candidate
solutions

Optimization
engine

Performance +
yield analysis

Robust design
Circuit Netlist

Technology
File

MC, response surface,
corner, worst-case

Fig. 1. General flow of yield optimization methods

Yield optimization includes system-level hierarchical

optimization [5] and building-block-level yield
optimization [6-7]. At the building block level, there exist
parametric yield optimization [6-8] and layout-related
yield optimization [9-11], e.g. critical area yield analysis
[9]. This paper focuses on parametric yield optimization
at the building-block level.

The yield optimization flow is summarized in Fig. 1. In
the optimization loop, the candidate circuit parameters are
generated by the optimization engine; the performances
and yield are analyzed and fed back to the optimization
engine for the next iteration. Yield analysis is a critical
point in the yield optimization flow. Among the factors
that impact yield, statistical inter-die and intra-die process
variations play a vital role [8]. Previous yield optimization
methods include device model corner-based methods
[3,12], performance-specific worst-case design (PSWCD)
methods [6,7], response-surface-based methods [2,15] and
Monte-Carlo (MC)-based methods.
 Device model corner-based methods [3,12] use the

same slow/fast parameter sets to decide the worst-case
parameters for all circuits for a given technology. They

I

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

are efficient due to the limited number of simulations
needed. But their drawback is that the worst‐case
performance values are pessimistic as the corners
correspond to the tails of the joint probability density
function of the parameters, resulting in considerable
over-design. Also, the slow/fast values obtained for a
single performance, e.g. delay, and the worst-case
process parameters for other performances may be
different. Secondly, the actual yield may be low if the
intra-die variations are ignored. If the intra-die
variations were considered, the number of simulations
would be extremely large. The limitations of device
model corner-based methods for robust analog sizing
are discussed in [1,13].

 The PSWCD methods [6-7,13-14] represent an
important progress in robust sizing of analog ICs.
Instead of using the same slow/fast parameter sets for
all the circuits, the PSWCD methods decide on the
worst-case parameters for specific performances of
each circuit and nominal design. Determining the
performance-specific worst-case parameters is critical
for this kind of method. Although the search for the
WC point typically uses some nonlinear optimization
formulation, most PSWCD methods [13] linearize the
performances at the worst-case point, which can
introduce inherent errors. Some PSWCD methods
build a response surface between the inter-die
parameters and the performances [14] (RSM
PSWCD). The inter-die parameters are independent of
the design parameters, but intra-die variations have
correlations to the design parameters. Hence, intra-die
variations cannot be considered in these methods. If
considering intra-variations, the total number of the
process variation variables increases significantly with
the number of the devices. While some PSWCD
methods calculate an approximate estimation of the
yield, others do not calculate yield. Instead, they
calculate a range of the process parameters for a given
yield, in which the specifications are met. In this case,
the estimated yield is not available explicitly and the
method has to be run repeatedly with different target
values (e.g. yield>95%-99%) to know the best yield
that can be achieved.

 In response-surface-based methods, first macro-models
over the yield and the designable and process
parameters are established through regression methods
and these are subsequently used to estimate the yield in
the sizing process. Macro-models can be classified into
white-box models and black-box models. A white-box
model analytically expresses the yield as a function of
the design and process parameters. Some additional
parameters are used for regression purposes. Black-
box models, on the other hand, do not consider
analytical expressions of the yield, but construct a
regression model according to the input (i.e. design

points, process parameters) and the output (i.e. yield)
data. Accurate yield-aware performance macro-models
can make a sizing tool explore design alternatives with
little computational cost. However, response-surface-
based methods suffer from the trade-off between the
accuracy and the complexity of the model, as well as
the accuracy and the number of samples (CPU time) to
create the model.

 MC-based methods have the advantages of generality
and high accuracy [16], so they are the most reliable
and commonly used technique for yield estimation.
Nevertheless, a large number of simulations are
needed for MC analysis, therefore preventing its use
within an iterative yield optimization loop (Fig. 1).
Some speed enhancement techniques for MC
simulations based on Design of Experiments (DOE)
techniques have been proposed, such as the Latin
Hypercube Sampling (LHS) method [17,18] or the
Quasi-Monte-Carlo (QMC) method [19,20], to replace
Primitive Monte-Carlo (PMC) simulation. These speed
improvements are very significant, but our experiments
show that the computational load is still too large for
yield optimization if only using DOE methods in real
practice (see section IV).

Currently, PSWCD methods and response-surface-
based methods are the most popular approaches in the
repeated iterations within yield optimization loops, while
some form of Monte-Carlo yield estimation is most
popular in design verification.
 Therefore, in this paper we address the efficiency of
MC-based yield optimization by proposing a different (but
complementary) approach exploiting techniques from
computational intelligence: while keeping high accuracy,
we dramatically increase the efficiency of yield
optimization by (1) optimally allocating the computing
budget to candidate solutions in order to avoid non-critical
MC simulations; and (2) enhancing the convergence speed
of the search strategy by means of a random-scale (RS)
mutation operator in combination with the differential
evolution (DE) algorithm to decrease the amount of
expensive MC simulations.

Based on the above ideas, we then present the Ordinal
Optimization (OO)-based Random-Scale Differential
Evolution (ORDE) algorithm for analog yield
optimization. The method aims to:

• be general enough to be applied to any analog circuit
in any technology process and for any distribution of
the process parameters;

• simultaneously handle inter-die and intra-die variations
in nanometer technologies;

• provide highly accurate results comparable to Monte-
Carlo analysis;

• use an order of magnitude less computational effort
compared with the improved MC-based method

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

integrating the infeasible pruning and Latin Hypercube
sampling techniques (Section III (A)) and as such
making the computational time of accurate yield
optimization practical.

The remainder of the paper is organized as follows.
Section II reviews basic concepts of yield optimization.
Section III introduces the components and the general
framework of ORDE. Section IV tests ORDE on practical
examples. Comparisons with response-surface-based
methods are also performed. In Section V, the ORDE
algorithm is extended from plain yield optimization to
process-variation-aware single-objective analog sizing,
which optimizes a target design objective (e.g. power)
subject to a minimum yield requirement. The concluding
remarks are presented in Section VI.

II. BASICS OF YIELD OPTIMIZATION

The aim of yield optimization is to find a circuit design
point *d that has a maximum yield, considering the
manufacturing and environmental variations [8]. In the
following, we will elaborate the design space D, process
parameter space S with distribution pdf(s), environmental
parameter space Θ and specifications P.

The design space D is the search space of the circuit
design points, d, which can be transistor widths and
lengths, resistances, capacitances and bias voltages and
currents. Each one has an upper and lower bound, which
is determined by the technological process or the user’s
setup. The process parameter space S is the space of
statistical parameters reflecting the process fluctuations,
e.g. oxide thickness oxT and threshold voltage thV . Process
parameter variations can be inter-die or intra-die. For an
accurate model, both types should be considered. The
environmental variables Θ include temperature and
power supply voltage. The specifications P are the
requirements set by the designer, which can be classified
into performance constraints (e.g. DC gain > 70dB) and
functional constraints (e.g. transistors must work in the
saturation region).

The yield optimization problem can be formulated as to
find a design point *d that maximizes yield (in the case of
plain yield optimization) [13]:

* { } arg max ()

d D

d Y d
∈

= (1.1)

or that minimizes some function f (e.g. power, area)
subject to a minimum yield requirement y (in the case of
yield-aware sizing) [17]:

*

 arg min{ (, ,)} ,

. . ()
d D

d f d s s S

s t Y d y

θ θ
∈

= ∈ ∈Θ

≥
 (1.2)

Yield is defined as the percentage of manufactured
circuits that meet all the specifications considering
process and environmental variations. Hence, yield can be
formulated as:

() { (, ,) | ()}Y d E YS d s pdf sθ= (2)

where E is the expected value. (, ,)YS d s θ is equal to 1 if
the performance of d meets all the specifications
considering s (process fluctuation) and θ (environmental
variation); otherwise, (, ,)YS d s θ is equal to 0. In most
analog circuits, circuit performances change
monotonically with the environmental variables θ . Then,
the impact of environmental variations can be handled by
simulations at the extreme values of the environmental
variables. For instance, if the power supply may
experience some variations, e.g, 10%, the largest
degradation is obtained by simulating at the extreme
values: (1 10%)± × nominal value. Process variations, on
the other hand, are much more complex: directly
simulating the extreme values (classical worst-case
analysis [1]) may cause serious over-design. This work
therefore focuses on the impact of statistical process
variations (space S) in yield optimization.

III. THE ORDE ALGORITHM
A. The Use of Infeasible Pruning and DOE in ORDE
 To satisfy the first three goals (be general enough, able
to handle both inter-die and intra-die variations, high
accuracy) from Section I, MC analysis is selected. The
speed enhancement technique, DOE, for MC-based yield
estimation is used. The DOE method implemented in
ORDE is LHS. However, the key contributions of ORDE
are not related to a particular sampling mechanism,
therefore, other speed acceleration methods like the
recently proposed QMC [19,20] can be integrated. In the
yield optimization process, some candidate solutions will
appear that cannot satisfy the specifications even for
nominal values of process parameters. Their yield values
will be too low to become a useful candidate solution.
Hence, there is not much sense in applying the MC-based
yield estimation to these solutions. In ORDE, we call them
infeasible solutions and assign them a zero yield value.
Their violation of constraints is calculated, and the
constrained optimization algorithm will minimize the
constraint violations and move the search space to feasible
solutions (i.e. design points that satisfy the specifications
for nominal process parameters). This technique is named
“infeasible pruning” in this paper. The selected feasible
solutions are handled by ordinal optimization, which is
described below.

B. Basics of ORDE

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

 Many recent analog circuit sizing and yield
optimization methodologies are based on evolutionary
computation (EC), which relies on the evolution of a set
of candidate solutions, commonly called population, along
a set of iterations, commonly called generations [19]. The
computational effort at each iteration and the necessary
number of iterations are two key factors that affect the
speed of the yield optimization. We solve these two
problems by optimally allocating the computing budget to
each candidate in the population (reducing the
computational effort at each iteration) and by improving
the search mechanism (decreasing the necessary number
of iterations, and, hence, decreasing the number of
expensive MC simulations). Therefore, the total
computational effort can be reduced considerably. In this
paper, we use two computational intelligence techniques
to implement these two key ideas.

Infeasible
Solution Filter

OO for Non-critical
Solution

Avoid MC simulation
of infeasible

solutions

Reduce number of
MC simulations of

non-critical solutions

 Latin Hypercube Sampling
 (Make MC simulation more effective)

Population Full MC Simulation
for Critical Solution

Stage 1 Stage 2

Obtain accurate final
result

Fig. 2. Two-stage yield estimation flow

RSDE
(Emphasize DE)

RSDE (emphasize
selection-based

constraint handling)

RSDE
(Emphasize RS)

Focus the search to
feasible solution space

Optimize yield
globally

Optimize yield
locally

Phase 1 Phase 2 Phase 3

Fig. 3. Yield optimization flow

 Our yield estimation flow is depicted in Fig. 2. In order
to optimally allocate the computing budget at each
iteration, instead of assigning the same number of MC
simulations to feasible solutions, the yield estimation
process is divided into two stages. In the first stage, the
fitness ranking of the candidate solutions and a reasonably
accurate yield estimation result for good (critical)
solutions are important. For medium or bad (non-critical)
candidate solutions, their ranking is important, but
accurate yield estimation is not. The reason is that the
function of the yield estimation for non-critical candidates
is to guide the selection operator in the EC algorithm, but
the candidates themselves are likely not to be selected as
the final result or even not enter the second stage of the
yield optimization flow. Hence, the computational efforts
spent on feasible but non-optimal candidate solutions can
be strongly reduced. On the other hand, the estimations
for these non-critical candidates cannot be too inaccurate
either. After all, correct selection of candidate solutions in

the yield optimization algorithm is necessary. In the first
stage, the yield optimization problem is therefore
formulated as an ordinal optimization problem, aimed at
identifying critical candidate solutions by allocating a
sufficient number of samples to the MC simulation of
these solutions, while reasonably few samples are
allocated to non-critical solutions [22]. Notice that this
approach is intended to assign a different number of MC
simulations to the yield estimations of the different
candidates. This is different, and compatible, with the
efficient sampling addressed with any DOE technique. In
the second stage of the ORDE method, an accurate result
is highly important, so the number of simulations within
each yield estimation is increased in the second stage to
obtain an accurate yield value.

Another key technique of ORDE is to decrease the
necessary number of iterations of the optimization flow
shown in Fig. 3. Instead of using conventional EC
algorithms, we design a selection-based random-scale
differential evolution (DE) algorithm (RSDE), which is a
combination of three different techniques. Each technique
plays a significant role in each phase. The first phase
emphasizes a selection-based method to focus the search
into the feasible solution space, defined by the nominal
values of the process parameters. We use the DE
framework [23] (a powerful and fast global optimization
algorithm) for global search (emphasized in the second
phase) and a random-scale operator for fine tunings
(emphasized in the third phase).

In the following, the basic components of ORDE will
be introduced first, and the general framework will then
be presented.

C. Introducing Ordinal Optimization into Yield
Optimization
 Ordinal optimization (OO) has emerged as an efficient
technique for simulation and optimization, especially for
problems where the computation of the simulation models
is time consuming [22]. OO is based on two basic tenets:
(a) Obtaining the “order” of a set of candidates is easier
than estimating an accurate “value” of each candidate.
The convergence rate of ordinal optimization is
exponential. This means that the probability that the
observed best solution is among the true best solutions

grows as ()nO e α−
 where α is a positive real number and

n is the number of simulations [22]. In contrast, the
convergence rate of methods aimed at estimating the right
value instead of the order, e.g. the direct Monte Carlo

method, is at most 1()nO [24]. (b) An accurate
estimation is very costly but a satisfactory value can be
obtained much easier.
 Therefore, OO fits the objectives of the first stage of
yield estimation of ORDE (see Fig. 2) quite well. In the

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

first stage, a bunch of good designs are selected through
evolution and sent to the second stage. The requirement is
a correct selection with a reasonably accurate yield
estimation and with the smallest computational effort.
According to OO, a large portion of the simulations
should be conducted with those critical solutions in order
to reduce the estimator variance. On the other hand,
limited computational effort should be spent on non-
critical solutions that have little effect on identifying the
good solutions, even if they have large variances. This
leads to the core problem in ordinal optimization:
allocating the computing budget, which can be formulated
as follows. Given a pre-defined computing budget, how
should it be distributed among the candidate designs?
 Consider the yield evaluation function. For a single
simulation (e.g. a sample of process parameters), we
define (,)YS d s =1 if all the circuit specifications are met,
and (,)YS d s =0 otherwise. Because the MC simulation
determines the yield as the ratio of the number of
functional chips to all fabricated chips, the mean value of

(,)YS d s , corresponds to the yield value, ()Y d . Let us
consider a total computing budget equal to T simulations.
In ORDE, T is determined by the number of feasible
solutions (i.e. solutions that meet the performance
constraints for nominal values of the process parameters)
at each generation. Here, we set T = 1

ave
sim M× , where

1M is the number of feasible solutions and
ave

sim is the
average budget for each candidate set by the user. The
budget allocation problem consists in determining the
number of simulations

1 2 1, ,, Mn n n of the M1 candidate

solutions such that
2 11 Mn n n T+ + = . For this problem,

several algorithms have been reported in the specialized
literature [25,26]. An asymptotic solution to this optimal
computing budget allocation problem is proposed in [25]:

1 2 2 1 / 2

1,
(/)

M

b b i ii i b
n nσ σ

= ≠
= ∑ (3)

, 2

,

/
/ () , , {1, 2, , 1},

/
i b i

i j
j b j

n n i j M i j b
σ δ

σ δ
= ∈ ≠ ≠

where b is the best design of the M1 candidate solutions
(represented by the highest estimated yield value based on
the available samples for each candidate). For each
candidate solution, some samples are allocated. For each
sample, the corresponding (,)YS d s can be computed (0 or
1). By these (,)YS d s , we can calculate their mean

(estimated yield, ()Y d) and 2 2 2

1 2 1
, , ,

M
σ σ σ , which are the

finite variances of the M1 solutions, respectively. They
measure the accuracy of the estimation. Parameter

, () ()b i b iY d Y dδ = − represents the deviations of the

estimated yield value of each design solution with respect
to that of the best design. The interpretation of (3) is quite
intuitive. If ,b iδ is large, the estimated yield value of

design i is bad, and according to 2,

,

/
/ ()

/
i b i

i j

j b j

n n
σ δ

σ δ
= , in

becomes small, i.e., we should not allocate many
simulations to this design. However if iσ is large, it
means that the accuracy of the yield estimation is low, and
we should allocate more simulations to this design to
obtain a better yield estimate. Therefore, the quotient

,/i b iσ δ represents a trade-off between the yield value of
design i and the accuracy of its estimation. Therefore, an
OO-based yield analysis algorithm can be designed as
follows:

Algorithm 1. Ordinal optimization for analog yield analysis

Step 0: Let k =0, and perform 0n simulations for each

feasible design, i.e.
0
, 1, 2, ..., 1.k

in n i M= =

Step 1: If 1

1

M k

ii
n T

=
≥∑ , stop the OO for yield analysis.

Step 2: Consider ∆ additional simulations (refer to [22]
for the selection of the ∆ and 0n values) and
compute the new budget allocation

1 , 1, 2, ..., 1k

i i Mn + = by eqn. (3). If 1
max

k
in n+ ≥ , then

1
max

k
in n+ = .

Step 3: Perform additional 1max{0, }k k

i in n+ − simulations

for design id , 1, 2, ..., 1i M= . Let 1k k= + and go
to step 1.

Parameter 0n is the initial number of simulations for each
candidate solution, selected to provide a very rough idea
of the yield. More simulations are allocated according to
the quality of the candidate later on. Parameter maxn is the
upper limit of the number of simulations for any
candidate. The value of maxn must call for a balance
between the accuracy and the efficiency.

Fig. 4. The function of OO in a typical population

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

A typical population from example 2, described in
section IV later on, is selected to show the benefits of OO
(see Fig. 4): candidates with a yield value larger than 70%
correspond to 31% of the population, and are assigned
56% of the simulations. Candidates with a yield value
smaller than 40% correspond to 33% of the population,
and are only assigned 12% of the simulations. The total
number of simulations is 10.2% of those of the infeasible
pruning (IP)+LHS method applied to the same candidate
designs, because repeated MC simulations of non-critical
solutions are avoided.

The above technique is used until the yield converges
close to the desired value. For example, if the desired
target yield is 99%, the threshold value between the first
and the second stage can be 97%. Candidates with an
estimated yield larger than the threshold value enter the
second stage. In this stage, all the candidates are assigned
the specified maximum number (maxn) of samples to
guarantee the accuracy of the final result, while other
candidates in the population still remain in the first stage
and still use the estimation method described previously.
Note that the two stages are therefore not separated in
time, but rather use different yield estimation methods.

The threshold value must be properly selected. A too
low threshold value may cause low efficiency, as OO
would stop when the yield values of the selected points
are not promising enough (e.g. a 50% yield threshold for a
requirement of 90% yield) and shifts the yield estimation
and selection tasks to the second stage, which is more
CPU expensive. A too high threshold value (e.g. a
threshold equal to the yield requirement) may cause low
accuracy. The reason is that in most cases the points
selected by OO are promising (it can compare the
candidates and do the selection correctly) but the
estimated yield values are not sufficiently accurate for the
final result. Assigning the threshold to be two percentage
points below the required target yield represents an
appropriate trade-off between efficiency and accuracy.

D. Brief Introduction to the DE Algorithm

In addition to introducing OO to decrease the
computational effort at each iteration, decreasing the
necessary number of iterations is another key objective.
The DE algorithm [23] is selected as the global search
engine. The DE algorithm outperforms many EC
algorithms in terms of solution quality and convergence
speed [23]. DE uses a simple differential operator to
create new candidate solutions and a one-to-one
competition scheme to greedily select new candidates.

The i-th candidate solution in the Q-dimensional search
space at generation t can be represented as

 ,1 ,2 ,() [, , ,]i i i Qi t d d dd =  (4)

At each generation t, the mutation and crossover operators
are applied to the candidate solutions, and a new
population arises. Then, selection takes place, and the
corresponding candidate solutions from both populations
compete to comprise the next generation. The operators
are now explained in detail.

For each target candidate solution, according to the
mutation operator, a mutant vector is built:

,1(1) [(1), ,iiV t v t+ = +  , (1)]i Qv t + (5)
It is generated by adding the weighted difference between
a given number of candidate solutions randomly selected
from the previous population to another candidate
solution. In ORDE, the latter one is selected to be the best
individual in the current population. The mutation
operation is therefore described by the following equation:

 1 2(1) () (() ())best r riV t d t F d t d t+ = + − (6)

where indices 1r and 2r (1 2, {1, 2, , }r r M∈ ) are randomly
chosen and mutually different, and also different from the
current index i. Parameter (0, 2]F ∈ is a constant called
the scaling factor, which controls the amplification of the
differential variation 1 2() ()r rd t d t− . The population size
M must be at least 4, so that the mutation can be applied.
The base vector to be perturbed, ()best td , is the best
member of the current population, so that the best
information can be shared among the population.

After the mutation phase, the crossover operator is
applied to increase the diversity of the population. Thus,
for each target candidate solution, a trial vector is
generated as follows:

 ,1 ,(1) 1[(1), , ()]i i i QU t tu t u+ = ++  (7)

,
,

,

(1), ((,)) (),
(1)

(), , (8)

i j
i j

i j

v t if rand i j CR or j randn i
u t

d t otherwise

+ ≤ =
+ =





where 1, 2, , j Q=  and (,)rand i j is an independent
random number uniformly distributed in the range [0,1].
Parameter randn(i) is a randomly chosen index from the
set {1, 2, , }Q . Parameter [0,1]CR∈ is a constant
called the crossover parameter, which controls the
diversity of the population.

Following the crossover operation, the selection
operation decides whether the trial vector (1)iU t + will
be a member of the population of the next generation t+1
or not. For a minimization problem, (1)iU t + is compared

to the initial target candidate solution ()id t by the

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

following one-to-one-based greedy selection criterion:

(1), ((1)) (()),
(1)

(),
i i i

i
i

U t if f U t f d t
d t

d t otherwise

+ + <
+ =





 (9)

where the function f is the objective function, i.e. the
function to be minimized or maximized. In this paper, the
objective function is the yield in the case of standard yield
optimization and some circuit performance in the case of
yield-aware sizing. The candidate solution, (1)i td + ,
becomes the candidate solution of the new population.
Then, the next iteration begins.

E. Random-Scale Operator for Combined Global and
Local Search

 Although DE is a very powerful and fast global
optimization algorithm, it is not so efficient in local tuning
to reach the exact optimal solution (other global
optimization algorithms, e.g. genetic algorithms, also have
the same problem). But local tuning is emphasized in the
fine-tuning phase (phase 3 in Fig. 3). Usually, in this
phase, there are many candidates which are assigned the
maximum number of simulations (maxn) to estimate the
yield, which is expensive, but otherwise the accuracy
would degrade very significantly. Moreover, the global
optimization mechanism must be maintained even in this
phase, because otherwise the yield optimization has a high
risk to be stuck at a premature solution. We therefore
propose a combined global and local search mechanism,
whose purpose is to enhance the convergence speed while
at the same time maintaining the accuracy.

In the EC field, enhancing the local search ability is
often achieved by memetic algorithms [27]. In addition to
the global optimization engine, memetic algorithms use a
population-based strategy coupled with individual search
heuristics capable of performing local refinements. Local
search methods can be classified into derivative-based
methods (e.g. Quasi-Newton method [28]) and derivative-
free methods (e.g. Hill Climbing method [29]). In
derivative-based methods, calculating the required
derivatives, e.g. Hessian matrix, often consumes numerous
function evaluations when the number of design variables
is large, especially when the derivatives cannot be
expressed analytically. Normally, for medium-scale
problems (10-20 design variables), derivative-free
methods also need more than 20-30 iterations for each
candidate, and each iteration needs maxn simulations. As
this number has to be multiplied by the size of the
population, this procedure becomes very expensive.
Hence, for yield optimization, a cheaper method is
necessary.

Instead of performing a separate global and local

search, our proposed approach is to combine global search
and local search into a unified procedure. In eqn. (6), the
scaling factor F is a constant for all the candidate
solutions. If F is small, the whole evolution process will
be slow; if F is large, it is difficult to perform effective
local fine-tunings. To solve the problem, a natural idea is
to randomize F in eqn. (6) to each differential variation.
By randomizing F, the differences of vectors can be
amplified stochastically, and the diversity of the
population is retained. This introduces two advantages:
(1) The algorithm has a lower probability of providing
premature solutions because of the reasonable diversity;
(2) The vicinity of the mutant vector that the standard DE
can explore, is investigated by the randomized
amplification of the differential variation 1 2() ()r rd t d t− .
In a standard DE search process, the candidates may get
stuck in a region and make the evolution quite slow when
the global optimization point is nearly reached (but the
diversity is also maintained). This is called “stagnation”
[30]. Fig. 5 shows the effect of randomizing F. It can be
seen that a cloud of potential points centered around the
mutant vector with constant scaling factor F1 have the
potential to be investigated.

di

d j

Base vector

Muta
nt

ve
cto

r (F
1)

Difference
vector x

random F

Samples for
different F values

Fig. 5. Mutant vectors obtained by the random-scale operator

In our method, as scaling factor we use a vector F̂
composed of Gaussian-distributed random variables with
mean value µ and variance σ : ,

ˆ (,),i jF norm µ σ=
,1, 2, Mi =  1, 2,j Q=  . A Gaussian distribution is

selected based on the following two considerations: (1) As
the purpose of the random scaling factor is to search the
vicinity of the mutant vectors by the constant F, it should
not be far from it. By using a Gaussian distribution, 68%
of the generated samples in F̂ are within 1 σ . (2) It
should have the ability to escape from the “stagnation”. A
Gaussian distribution can also provide 5% of F̂ values
out of 2 σ . We have also tried uniform and Cauchy
distributions for the scaling factor using benchmark
problems in the EC field and found that the Gaussian-
distributed F̂ results in the best average objective
function value. For each variable in the search space, the

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

scaling factor ,î jF of each differential variation

1 2() ()r rd t d t− is different. Eqn. (6) is therefore changed
to:

1 2
ˆ(1) () (() ())best r ri iV t d t F d t d t+ = + − (10)

By the proposed combined global and local search

mechanism, the necessary number of iterations of the yield
optimization algorithm decreases significantly (see
example 2 in Section IV).

F. Other Components

Besides the two key ideas described above, we use the
selection method in [31] to handle the optimization
constraints. They include both circuit performance
constraints (e.g. gain larger than 80dB) and functional
constraints (e.g. transistors must work in the saturation
region). The advantages of this selection method and its
combination with the DE algorithm for analog sizing have
been shown in [32].

G. The General Framework of ORDE

Based on the above components, the overall ORDE
algorithm for analog yield optimization can now be
constructed. The detailed flow diagram is shown in Fig. 6.

Initialization

Select Base
Vector

DE Mutation
with random F

DE Crossover

Selection

Convergence?

Output

No

Yes

Feasible?

Constraint
violation=0,

Yield=0,
Calculate
constraint
violation

YesNo

Update
Population

Use OO to
calculate

yield

Stage 1

Use Nmax
simulation to

calculate yield

Yes. Stage 2No

i=0

i=i+1i=M?

No

Yes

Reach
Threshold?

Fig. 6. Flow diagram of ORDE

The ORDE algorithm consists of the following steps.

Algorithm 2. The ORDE algorithm for analog yield optimization

Step 0: Initialize parameters 0n , T, ∆ , maxn and the DE
algorithm parameters (e.g. the population size M, the
crossover rate CR). Initialize the population by randomly
selecting values of the design variables d within the
allowed ranges.
Step 1: Update the current best candidate. If no candidate

meets the specifications for nominal process parameters,
the best candidate is the one with the smallest constraint
violation. Otherwise, the best candidate is the feasible
candidate with the largest estimated yield.
Step 2: Perform the mutation operation according to eqn.
(10) to obtain each candidate solution’s mutant
counterpart.
Step 3: Perform the crossover operation between each
candidate solution and its corresponding mutant
counterpart according to eqn. (8) to obtain each
individual’s trial individual.
Step 4: Check the feasibility of the trial individual. For
feasible solutions, go to step 5.1; for infeasible solutions,
go to step 5.2.
Step 5.1: Set constraint violations equal to 0, and use the
OO technique described in Algorithm 1 to calculate the
yield. If the estimated yield is higher than the threshold
value, add additional samples to perform the full MC
simulation. Go to step 6.
Step 5.2: Set yield equal to 0, and calculate the constraint
violations. No yield is estimated in this step. Go to step 6.
Step 6: Perform selection between each candidate solution
and its corresponding trial counterpart according to the
rules in [31]: if both of them are not feasible, select the
one with smaller constraint violation; if one is feasible and
the other is infeasible, select the feasible one; if both are
feasible, select the one with higher yield.
Step 8: If the stopping criterion is met (e.g. a convergence
criterion or a maximum number of generations), then
output bestd and its objective function value; otherwise go
to Step 1.

IV. EXPERIMENTAL RESULTS AND COMPARISONS

 In this section, the ORDE algorithm is demonstrated by
two practical analog circuits in 0.35 mµ and 90nm CMOS
technologies, respectively. To highlight the effects of the
two key contributions of ORDE, it will be compared with
a reference method that combines the DE optimization
engine, the selection-based constraint handling
mechanism, infeasible pruning and LHS techniques. In the
DE search engine, the population size is 50 and the
crossover rate is 0.8. Except for ORDE, the DE scaling
factor F in the other experiments is 0.8, which is a
common setting [23]. In the random-scale search operator,
we choose a Gaussian distribution with µ =0.75 and
σ =0.25. The optimization process stops when the
reported yield reaches 99%, or when the yield does not
increase for 20 consecutive generations. If parameter 0n is
set to a too low value, the yield estimates are too
inaccurate, even for the application of eqn. (3). If it is too
high, the advantages of OO are lost. A value between 5
and 20 is recommended in [22]. We use 0n =15 in ORDE.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Parameter
ave

sim is set to 35 in all experiments. It may
seem that 35 simulations are too few to get an acceptable
accuracy. However, there are 3 considerations that must
be taken into account. (1) LHS sampling is used. It has
been reported that LHS gets a comparable accuracy to
primitive Monte-Carlo simulation (PMC) in circuit yield
analysis with just 20%-25% the number of samples of
PMC [34]. (2) Parameter

ave
sim is just an average number

of simulations of different candidates. By using OO, the
MC simulations are optimally allocated according to the
solution qualities, so promising candidate solutions are
assigned much more than 35 simulations. According to
experiments, some promising candidates are assigned
more than 160 LHS simulations. (3) We do not need a
very accurate result in the first stage, as the purpose of this
stage is correct selection and getting a reasonably accurate
yield estimation for promising points. The examples have
been run on a PC with 4GB RAM and Linux operating
system, in the MATLAB environment. Synopsys HSPICE
electrical simulator is used as the circuit performance
evaluator. The key techniques in this paper, i.e. the OO
for yield optimization and the random-scale operator, are
analyzed by statistical results here. The abilities of the DE
optimization kernel for analog sizing compared with some
other EC algorithms have been reported in [32], and will
not be compared here.

A. Experimental Method
There are several aspects that have to be considered

when designing the experiments. Firstly, the number of
MC simulations for each feasible candidate should be
decided. There is not much sense in comparing the
efficiency without a good accuracy. The number of MC
simulations in the second stage is the main factor that
influences the accuracy of the final result. The accuracy of
the yield estimates is related to the number of samples
according to [1]:

2

2

(1)
MC

Y Y k
n

Y
γ−

≈
∆

 (11)

where Y is the yield value and Y∆ is the confidence
interval, e.g. if the yield estimate is 90%, and Y∆ =1%,
then the confidence interval is 89%-91%. Parameter kγ

reflects the confidence level, e.g. 1.645kγ = ± denotes a
90% confidence level. From eqn. (11), the necessary
number of MC simulations can be calculated. However,
this corresponds to the primitive MC simulation.
According to [34,35], LHS sampling requires 20%-25%
the number of samples compared with PMC to get a
comparable accuracy. Fig. 7 shows the estimated number
of LHS simulations needed for a confidence level of 90%,
95%, and 99% respectively when Y∆ =1%. The number

of LHS simulations is estimated as 20% of the necessary
number of PMC samples. It can be seen that even for a
99% confidence level, for a yield larger than 96%, 500
LHS points are sufficient. For a 90% confidence level,
500 LHS points are even sufficient for a yield larger than
90%. In all the experiments, the threshold to use 500 LHS
simulations is 97%, so 500 LHS samples are enough for
the required accuracy.

Fig. 7. Necessary numbers of LHS simulations

 Secondly, the estimated yield result is influenced by the
number of samples. Two experiments using 50 and 500
MC simulations for each feasible candidate can report a
solution with “100% yield”, but the true yield value can be
quite different. To reflect the real accuracy, we calculate
the yield estimated by 50,000 LHS MC simulations at the
same design point. From eqn. (11), we can calculate that
with 99% confidence level and Y∆ =0.1%, the
corresponding yield value of 50,000 LHS simulations is
96%. The results we test are all higher than 96%. Hence,
an estimation result from 50,000 LHS simulations is a
very reliable approximation of the real yield value for use
as a reference result.

 Thirdly, the method to measure the efficiency should be
decided. The performance of evolutionary algorithms
(EA) is affected by the random numbers used in the
evolution operators. The CPU times and the yield results
have differences between different runs. To address the
stochasticity of the results of the evolution process, all
experiments are therefore executed 10 times with different
random numbers and the results are analyzed and
compared statistically showing typical, best and worst
performance. In this way, the comparison in terms of
accuracy and efficiency is reliable.

B. Test Example 1
The ORDE algorithm is first tested on a fully

differential folded-cascode amplifier, shown in Fig. 8,
implemented in a 0.35 mµ CMOS process with 3.3V

power supply. The specifications are gain 0A 70dB≥ ,
gain-bandwidt GBW 40MHz≥ , phase margin

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

PM 60≥  , output swing OS 4.6V≥ and 1power mW≤ .
There are 13 design variables. The transistor width has a
range of 1 mµ to 600 mµ ; the transistor length has a range
of 0.35 mµ to 5 mµ ; the biasing current has a range of
10 Aµ to 200 Aµ . The total number of the process
variation variables is 80, including 15 transistors× 4 intra-
die variables / transistor = 60 intra-die variables
(mismatch) and 20 inter-die variables. Statistical
information of the process variables has been extracted
from the technology information provided by the foundry.

Experiments with the infeasible pruning (IP) +LHS
method have been performed using 300 and 500 LHS MC
simulations for each feasible candidate. The results of the
yield estimate provided by a 50,000 MC simulation
analysis at the same final design point and the total
number of simulations are analyzed. The statistical results
of 10 independent runs are shown in Table 1, Table 2 and
Fig. 9.

M1
M10

 M5

M4

 M8

Vss

ibp

 CL
Vip M2

Von

Vin

 Mbp

 M7

M9

Vop

M11 M12

Mbn

 M3

Vdd

Fig. 8. Fully differential folded-cascode amplifier

Table 1. The yield results (using 50,000 MC simulations) of the
solutions obtained by different methods (example 1)

methods best worst average variance
300 simulations

(IP + LHS)
98.5% 96.2% 96.8% 0.008%

500 simulations
(IP + LHS)

98.7% 96.6% 97.5% 0.007%

ORDE 99.1% 97.3% 98.5% 0.004%

Table 2. Total number of simulations (example 1)
methods best worst average

300 simulations
(IP + LHS)

181500 986100 464570

500 simulation
(IP + LHS)

357500 3591500 1824520

ORDE 25376 439984 150540

From the inspection of Table 1, the experiment with
500 IP +LHS MC simulations is selected as a benchmark
to compare with ORDE. From Fig.9, we can see that the
deviations of ORDE from the accurate yield estimate
obtained by 50,000 LHS samples are much better than the
other methods and the computational cost is much lower.
With respect to the number of simulations, shown in Table
2, ORDE costs only 8.25% of the simulations of the

infeasible pruning (IP)+LHS method with comparable
accuracy. Moreover, in many runs of 300 or 500
simulations with standard DE, the final reported results do
not reach the yield requirement, 99%, while 90% of the
reported results of ORDE reach 99%. It can be concluded
that the random-scale search operator enhances the search
ability of DE. The average cost of CPU time of ORDE for
this example is about 3 to 4 minutes.

Fig. 9. Comparisons of average yield estimate deviation and number of
simulations for different methods for example 1: ORDE clearly has
good accuracy and small number of simulations

In the following, a more complex example will be
tested and the contribution of OO and the random-scale
search operator will be investigated separately.

C. Test Example 2

The ORDE algorithm is now tested on a two-stage fully
differential folded-cascode amplifier with common-mode
feedback (CMFB), shown in Fig. 10. The circuit is
designed in a 90nm CMOS process with 1.2V power
supply. The specifications are 0A 60dB≥ ,

GBW 45MHz≥ , PM 60≥  , OS 1.9V≥ ,

power 2.5mW≤ and 250 marea µ≤ . There exist 21
design variables. The transistor width has a range of
0.12 mµ to 800 mµ ; the transistor length has a range of
0.1 mµ to 20 mµ ; the compensation capacitance has a
range of 0.1pF to 50pF; the biasing current has a range of
0.05mA to 50mA. All transistors must be in the saturation
region. The total number of process variation variables for
this technology is 143, including 24 transistors× 4 intra-
die variables / transistor = 96 intra-die variables and 47
inter-die variables. Statistical information of the process
variables was extracted from the technology information
provided by the foundry.

Experiments with 300 and 500 simulations for each
feasible candidate by the reference IP+LHS method have
been done. We separately study the improvement
provided by the introduced OO technique and the
improvement provided by the random-scale operator. The
results of the yield estimation provided by a 50,000 MC
simulation analysis at the same final design point and the

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

total number of simulations are analyzed. The statistical
results of 10 independent runs are shown in Table 3,
Table 4 and Fig. 11.

Vss

Vdd

Fig. 10. Two-stage fully differential folded-cascode amplifier

Table 3. The yield results (using 50,000 MC simulations) of the
solutions obtained by different methods (example 2)

methods best worst average variance
300 simulations

(IP + LHS)
99.0% 97.9% 98.3% 0.002%

500 simulations
(IP + LHS)

99.3% 98.2% 98.9% 0.002%

OO+IP+LHS 99.7% 98.1% 98.9% 0.003%
ORDE 99.6% 98.3% 98.9% 0.002%

Table 4. Total number of simulations (example 2)

methods best worst average
300 simulations

(IP + LHS)
115500 546900 264130

500 simulations
(IP + LHS)

172500 688000 418730

OO+IP+LHS 39828 140537 90209
ORDE 16335 100795 47421

Fig. 11. Comparisons of average yield estimate deviation and number of
simulations for different methods for example 2: ORDE clearly has
good accuracy and small number of simulations

 From the best, worst and average yield values in Table
3, it can be seen that the accuracy with 300 simulations is
obviously lower than with 500 simulations. To assess the
separate contribution of ordinal optimization (OO) and the
random-scale differential evolution operator, two

experiments are conducted. The first one only includes
OO as well as the IP and LHS techniques. The second
experiment corresponds to the use of ORDE (OO and
RSDE combined). For statistical characterization, 10 runs
of each experiment are performed.

 From Fig.11, we can see that the deviations of ORDE
from the target value are very close to that of using 500
simulations and the computational cost is much lower.
With respect to the number of simulations, shown in Table
4, ORDE costs only 11.32% of the number of simulations
of the IP+LHS method with comparable accuracy. These
results come from the contribution of both the OO and the
random-scale operator. Without the random-scale
operator, as can be seen from the result of the
OO+IP+LHS method, it spends 21.54% of the simulations
of the IP+LHS method. The average CPU time of ORDE
for this example is 25 minutes. It can therefore be
concluded that ORDE improves the CPU time by an order
of magnitude for the same accuracy compared to the
improved MC-based method integrating the infeasible
pruning and Latin Hypercube sampling techniques.

D. Comparisons to RSM Methods
 The advantages and drawbacks of the PSWCD methods
have been discussed in Section I. Here, we experimentally
compare ORDE with response-surface-based methods.

Fig. 12. Result of using NN to approximate yield

In response-surface-based methods, the data obtained

from expensive MC simulations at a number of design
points is used to generate a regression model able to
predict the yield in other design points much cheaper than
with a MC simulation, be it at the price of a loss of
accuracy. Hence, there exist two trade-offs. The first one
is the balance between the accuracy and the complexity of
the model. In deep-submicron or nanometer technologies,
a sufficiently accurate white-box model may be very
complex and makes the regression computationally
intractable [8]. The second trade-off is the balance
between the accuracy and the number of samples needed
to build the model. If sufficient accuracy is required,

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

sufficient and well distributed training data must be
provided. But the computational cost also increases
sharply as the density of the samples increases. In the
following, we will show the trade-off between accuracy
and computational cost of generating the training data
using a black-box model.

To assess the loss of accuracy we use the example 1 in
Section IV.B and consider a response-surface method
based on neural networks (NN), often considered as a
powerful regressor [36]. Here, we will use a Backward
Propagation NN [36] with 20 neurons in the hidden layer
and the Levenberg-Marquardt algorithm [37-38] for
training it to approximate the yield. For the source of the
training data, we use the data generated during a typical
execution of ORDE. It has to be noticed that using these
sampling data favors the macro-model as these training
data are more significant (because of the key techniques in
ORDE, which make the sampling to be more effective)
than randomly selected MC simulations, or even those
selected by applying only IP and DOE techniques. We
will consider the data generated up to a given iteration of
ORDE as training data (design parameters as input, and
yield values as output), and use the data (yield value) of
subsequent iterations as test data to assess the accuracy of
the macro-model. At every iteration, we use the data from
all previous iterations to train the NN and use this to
predict the yield values of the current iteration. The error
between the predicted yield values and the real yield
values obtained by MC simulations is then calculated and
plotted in Fig. 12. The Y axis shows the root-mean-square
(RMS) error of the yield predictions. The X axis shows
the ratio of the computation time to generate the training
data for the NN (by ORDE) to the total computational
time of ORDE up to a given iteration. It can be seen that
in the beginning the error decreases sharply, but then is
levels off. Even when all the data from ORDE are used to
train the NN, the RMS error is still 8.06%, while ORDE
can provide an error less than 1%. Therefore, response-
surface-based methods have difficulties in achieving a
sufficient accuracy.

V. ENHANCING ORDE FOR SINGLE OBJECTIVE

VARIATION-AWARE SIZING
 As can be seen from the previous experiments, the

ORDE algorithm meets the goals (be general enough, able
to handle both inter-die and intra-die variations, very high
accuracy) with significant enhancement on efficiency to
make the CPU time practical for yield optimization. On
the other hand, in real practice, if the yield requirement
can be met, the designers sometimes want to further
optimize some objective function (e.g. power or area)
while maintaining the target yield, which is shown in eqn.
(1.2). To achieve this, we present an extended version of
ORDE for single-objective variation-aware sizing.

A. ORDE-based single-objective variation-aware sizing
In single-objective variation-aware sizing, both the

objective function f (e.g. power) and the constraint (yield
Y) must be considered simultaneously. Hence, we first
look at the differences between them. Yield is not a
stochastic variable, but we have some uncertainties on its
estimation. If we perform an infinite number of MC
simulations, yield would have an exact value. The
objective function, or specification, is different. If we
perform an infinite number of MC simulations, power
would still have a probability distribution function, but
with an accurate mean and an accurate variance caused by
the process variations. Therefore, for yield, we use its
expected value to describe it. For the objective function,
we use the 3σ value to guarantee the reliability of the
expected objective function value, where σ is extracted
from the samples.

The main idea of extending ORDE from plain yield
optimization to single-objective variation-aware sizing is
to add an outer selection procedure considering the
objective function value and the yield as constraint. The
detailed selection rules are now as follows: for each
candidate solution and its corresponding trial counterpart,
(1) if none of them are feasible for nominal process
parameters, select the one with the smaller constraint
violation;
(2) if one is feasible and the other is infeasible for nominal
process parameters, select the feasible one;
(3) if both are feasible for nominal process parameters,
 (3.1) if both of them violate the yield constraint, select

the one with the smaller yield constraint violation;
 (3.2) if one satisfies the yield constraint and the other

does not, select the feasible one;
(3.3) if both of them satisfy the yield constraint, select
the one with the smaller ()() 3 f df d σ+ (f is the objective

function to be minimized, f is the mean value).
Using the above selection rule to replace the original

selection rule in ORDE, the extended ORDE for single-
objective variation-aware sizing can be implemented. We
can roughly divide the algorithm into two phases: the
yield satisfaction phase and the objective function
optimization phase. If we handle the single-objective
variation-aware sizing problem as a new task, the yield
satisfaction phase will be run first. However, we already
have the candidates that satisfy the yield constraint as the
plain yield optimization is done first to check if the yield
requirement can be met. In this method, we use the last
population in the plain yield optimization as the initial
population of the extended ORDE to prevent the yield
satisfaction phase from running two times.

B. Example

Here we use the example 2 from section IV with the

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

specifications of 0A 60dB≥ , GBW 45MHz≥ ,

PM 60≥  , OS 1.9V≥ , power 2.5mW≤ ,

250 marea µ≤ and settling time 25 sµ≤ with 1% error
band (this specification needs transient simulation). The
yield specification is 99% and the power is the target
design objective to be minimized. Five tests with different
random seeds are performed. For plain yield optimization
without optimizing the power consumption, ORDE
satisfies the yield specification, 99%, at a power of
2.38mW. We then use the extended ORDE to minimize
power while maintaining yield larger than 99%. The
average power value now becomes 1.63mW. The average
CPU time is 8919s.

VI. CONCLUSIONS

In this paper, the ORDE algorithm has been proposed
for efficient yield optimization of analog integrated
circuits, considering both inter-die and intra-die process
variations. The method is general. ORDE can provide
very accurate results with far less computational cost (an
order of magnitude smaller) than the MC-based method
using infeasible pruning and Latin Hypercube sampling
techniques. This improved efficiency makes statistical
yield optimization useful in practice. This is achieved by
using techniques from computational intelligence, which
are as follows: (1) ORDE uses a two-stage yield
estimation process with ordinal optimization in the first
stage, which determines the simulation effort for each
candidate solution “intelligently”; (2) the proposed
random-scale operator maintains the diversity and
performs combined global and local search, thus
enhancing the convergence speed of the search engine; (3)
the use of Design of Experiment techniques, infeasible
pruning and the selection-based constraint-handling
technique also contribute positively to ORDE.
Furthermore, ORDE is extended from plain yield
optimization to process-variation-aware single-objective
analog sizing which has been shown to give good results.
Therefore, ORDE and its extended version are both
reliable and efficient methods for analog circuit yield
optimization, especially for new nanometer technologies
with large variability. Moreover, ORDE is based on
evolutionary computation and statistical sampling
methods, which are very well suited for parallel
computation.

ACKNOWLEDGMENT

We sincerely thank Mr. Brecht Machiels, ESAT-
MICAS, Katholieke Universiteit Leuven, for valuable
discussions.

REFERENCES
[1] H. Graeb, 2007. “Analog Design Centering and Sizing”, Springer.
[2] G. Gielen, et al., 2007. “Automated Synthesis of Complex Analog

Circuits”, Proc. of 18th European Conf. on Circuit Theory and
Design, pp. 20-23.

[3] K. S. Eshbaugh, 1992. “Generation of Correlated Parameters for
Statistical Circuit Simulation”, IEEE TCAD, pp. 1198-1206.

[4] M. Buhler, et al., 2006. “DATE 2006 Special Session: DFM/DFY
Design for Manufacturability and Yield - influence of process
variations in digital, analog and mixed-signal circuit design” Proc.
of DATE. pp. 387-392.

[5] G. Yu et al., 2008. “Yield-aware Hierarchical Optimization of
Large Analog Integrated Circuits”, Proc. of ICCAD, pp. 79-84.

[6] F. Schenkel, et al., 2001. “Mismatch Analysis and Direct Yield
Optimization by Spec-Wise Linearization and Feasibility-Guided
Search”, Proc. of DAC, pp. 858-863.

[7] T. Mukherjee, et al., 2000. “Efficient Handling of Operating
Range and Manufacturing Line Variations in Analog Cell
Synthesis”, IEEE TCAD. pp. 825-839.

[8] T. McConaghy, 2008. “Variation-aware Structural Synthesis and
Knowledge Extraction of Analog Circuits”, Katholieke
Universiteit Leuven, Press. (Doctoral thesis)

[9] P. Khademsameni et al., 2002. “Manufacturability Analysis of
Analog CMOS ICs through Examination of Multiple Layout
Solutions”, 17th IEEE International Symposium on Defect and
Fault Tolerance in VLSI Systems, pp. 3-11.

[10] Y. Xu et al., 2009. “Regular Analog/RF Integrated Circuits Design
Using Optimization With Recourse Including Ellipsoidal
Uncertainty”, IEEE TCAD, pp. 326-637.

[11] J. Chen et al., “Placement Optimization for Yield Improvement of
Switched-Capacitor Analog Integrated Circuits”, IEEE TCAD, pp.
313-318.

[12] M. Barros et al., 2010. “Analog Circuits Optimization Based on
Evolutionary Computation Techniques”, Integration, the VLSI
Journal, pp. 136-155.

[13] R. Schwencker, et al., 2002. “Analog Circuit Sizing using
Adaptive Worst-case Parameters Sets”, Proc. of DATE. pp. 581-
585.

[14] M. Sengupta et al., 2005. “Application-specific Worst Case
Corners Using Response Surfaces and Statistical Models”, IEEE
TCAD, pp. 1372-1380.

[15] S. Basu, et al., 2009. “Variation-Aware Macromodeling and
Synthesis of Analog Circuits using Spline Center and Range
Method and Dynamically Reduced Design Space”, Proc. of 22nd
International Conf. on VLSI Design, pp. 433-438.

[16] A. Mutlu, et al., 2003. “Concurrent Optimization of Process
Dependent Variations in Different Circuit Performance Measures”,
Proc. of the 2003 International Symposium on Circuits and
Systems, pp. 692-695.

[17] S. Tiwary, et al., 2006. “Generation of Yield-Aware Pareto
Surfaces for Hierarchical Circuit Design Space Exploration”,
Proc. of DAC, pp. 31-36.

[18] M. Stein, 1987. “Large Sample Properties of Simulations Using
Latin Hypercube Sampling,” Technometrics, pp. 143-151.

[19] A. Singhee, et al., 2008. “Practical, fast Monte Carlo statistical
static timing analysis: Why and how”, Proc. of ICCAD, pp. 190-
195.

[20] A. Singhee, et al., 2009. Novel Algorithms for Fast Statistical
Analysis of Scaled Circuits, Springer.

[21] R. Rutenbar et al., 2002. Computer-aided Design of Analog
Integrated Circuits and Systems, John Wiley & Sons, Inc. New
York.

[22] Y. Ho et al., 2007. Ordinal optimization. Soft optimization for
hard problems. Springer.

[23] K. Price et al., 2005. Differential Evolution. A Practical Approach
to Global Optimization. Springer, Berlin, Heidelberg, New York.

[24] H. Niederreiter, 1992. “Random Number Generation and

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Quasi‐Monte Carlo Methods” Philadelphia: SIAM.
[25] C.H. Chen, et al., 2000. “Simulation Budget Allocation for Further

Enhancing the Efficiency of Ordinal Optimization”, Discrete
Event Dynamic Systems: Theory and Applications, pp. 251-270.

[26] C. Chen et al., 2000. Computing Efforts Allocation for Ordinal
Optimization and Discrete Event Simulation. IEEE Trans. on
Automatic Control, Vol. 45, No. 5, pp. 960-964.

[27] P. Moscato, 1989. On Evolution, Search, Optimization, Genetic
Algorithms and Martial Arts: Towards Memetic Algorithms.
Technical Report 158–79, Caltech Concurrent Computation
Program, California Institute of Technology.

[28] J. Nocedal. 1980. “Updating Quasi-newton Matrices with Limited
Storage”, Mathematics of Computation, vol 35, pp. 773-782.

[29] S. Russell, et al., 2003. Artificial Intelligence: A Modern
Approach (2nd edition), Prentice Hall, pp. 111-114.

[30] J. Lampinen et al, 2000. “On Stagnation of the Differential
Evolution Algorithm”, Proc. of 6th International Mendel Conf. on
Soft Computing, pp. 76-83.

[31] K. Deb, 2000. “An Efficient Constraint Handling Method for
Genetic Algorithm”, Computer Methods in Applied Mechanics
and Engineering, pp. 311-338.

[32] B. Liu et al., 2009. “A Memetic Approach to the Automatic
Design of High Performance Analog Integrated Circuits”, ACM
Trans. on Design Automation of Electronics Systems, 14(3),
Article 42.

[33] L. Zielinski et al., 2006. “Yield Enhancement by Means of
Evolutionary Computation Techniques”, ISCAS, pp. 4631-4634.

[34] J. Swidzinski et al., 1999. “A Novel Approach to Efficient Yield
Estimation for Microwave Integrated Circuits”, 42nd Midwest
Symposium on Circuits and Systems, pp. 367-370.

[35] J. Swidzinski et al., 2000. “Nonlinear Statistical Modeling and
Yield Estimation Technique for Use in Monte Carlo Simulations”,
IEEE Trans. on Microwave Theory and Techniques, pp. 2316-
2324.

[36] PD Wasserman, 1988. Neural Computing: Theory and Practice.
New York: Van Nostrand Reinhold.

[37] K. Levenberg, 1944. “A Method for the Solution of Certain
Problems in Least Squares”, Quart. Appl. Math. , pp. 164-168.

[38] D. Marquardt, 1963. “An Algorithm for Least-Squares Estimation
of Nonlinear Parameters”, SIAM J. Appl. Math. , pp. 431-441.

 Bo Liu was born in Beijing, P. R. China, on
September 23, 1984. He received the B.S.
degree in electronic engineering from Tsinghua
University, P. R. China, in 2008. Since 2008,
he is a Ph. D. candidate and is working as a
research assistant at the MICAS laboratories of
the Katholieke Universiteit Leuven, Belgium,
under the supervision of Prof. Dr. Georges
Gielen. His research interests lie in design
automation methodologies of analog and RF
integrated circuits, evolutionary computation,
machine learning and fuzzy logic. He has

authored or coauthored more than 20 papers in international journals
and conference proceedings. He is a reviewer in artificial intelligence
and analog design automation fields, such as IEEE Transactions on
Evolutionary Computation, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, Information Sciences
(Elsevier) and Integration, the VLSI Journal (Elsevier). He is also a book
reviewer of Elsevier and Bentham Science Publishers.

Francisco. V. Fernández got the Physics-
Electronics degree from the University of
Seville, Spain, in 1988 and his Ph. D. degree
in 1992. In 1993, he worked as a postdoctoral
research fellow at Katholieke Universiteit
Leuven (Belgium). From 1995 to 2009, he
was an Associate Professor at the Dept. of
Electronics and Electromagnetism of
University of Seville, where he was promoted
to full professor in 2009. He is also a
researcher at IMSE-CNM (CSIC and

University of Seville). His research interests lie in the design and design
methodologies of analog and mixed-signal circuits. Dr. Fernández has
authored or edited three books and has co-authored more than 100
papers in international journals and conferences. Dr. Fernández is
currently the Editor-in-Chief of Integration, the VLSI Journal (Elsevier).
He regularly serves at the Program Committee of several international
conferences. He has also participated as researcher or main researcher in
several National and European R&D projects.

 Georges G.E. Gielen received his M.Sc. and
Ph.D. degrees in Electrical Engineering from
the Katholieke Universiteit Leuven, Belgium,
in 1986 and 1990, respectively. In 1990, he
was appointed as a postdoctoral research
assistant and visiting lecturer at the department
of Electrical Engineering and Computer
Science of the University of California,
Berkeley. From 1991 to 1993, he was a
postdoctoral research assistant of the Belgian
National Fund of Scientific Research at the

ESAT laboratory of the Katholieke Universiteit Leuven. In 1993, he was
appointed assistant professor at the Katholieke Universiteit Leuven,
where he was promoted to full professor in 2000.

His research interests are in the design of analog and mixed-signal
integrated circuits, and especially in analog and mixed-signal CAD tools
and design automation (modeling, simulation and symbolic analysis,
analog synthesis, analog layout generation, analog and mixed-signal
testing). He is coordinator or partner of several (industrial) research
projects in this area. He has authored or coauthored two books and more
than 300 papers in edited books, international journals and conference
proceedings. He regularly is a member of the Program Committees of
international conferences (DAC, ICCAD, ISCAS, DATE, CICC, etc.),
and served as General Chair of the DATE conference in 2006 and of the
ICCAD conference in 2007. He serves regularly as member of editorial
boards of international journals (IEEE Transactions on Circuits and
Systems, Springer international journal on Analog Integrated Circuits
and Signal Processing, Elsevier Integration). He received the 1995 Best
Paper Award in the John Wiley international journal on Circuit Theory
and Applications, and was the 1997 Laureate of the Belgian Royal
Academy on Sciences, Literature and Arts in the discipline of
Engineering. He received the 2000 Alcatel Award from the Belgian
National Fund of Scientific Research for his innovative research in
telecommunications, and won the DATE 2004 Best Paper Award. He is
a Fellow of the IEEE, served as elected member of the Board of
Governors of the IEEE Circuits And Systems (CAS) society and as
chairman of the IEEE Benelux CAS chapter. He served as the President
of the IEEE Circuits And Systems (CAS) Society in 2005.

	0F Abstract—In nanometer CMOS technologies, worst-case design methods and response-surface-based yield optimization methods face challenges in accuracy. Monte-Carlo (MC) simulation is general and accurate for yield estimation, but its efficiency is ...
	A. Experimental Method
	B. Test Example 1
	C. Test Example 2

