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The energy efficiency of industrial plants is an important issue in any type of business but particularly in
the chemical industry. Not only is it important in order to reduce costs, but also it is necessary even more
as a means of reducing the amount of fuel that gets wasted, thereby improving productivity, ensuring
better product quality, and generally increasing profits. This article describes a decision system devel-
oped for optimizing the energy efficiency of a petrochemical plant. The system has been developed after
a data mining process of the parameters registered in the past. The designed system carries out an opti-
mization process of the energy efficiency of the plant based on a combined algorithm that uses the fol-
lowing for obtaining a solution: On the one hand, the energy efficiency of the operation points occurred in
the past and, on the other hand, a module of two neural networks to obtain new interpolated operation
points. Besides, the work includes a previous discriminant analysis of the variables of the plant in order to
select the parameters most important in the plant and to study the behavior of the energy efficiency
index. This study also helped ensure an optimal training of the neural networks. The robustness of the
system as well as its satisfactory results in the testing process (an average rise in the energy efficiency
of around 7%, reaching, in some cases, up to 45%) have encouraged a consulting company (ALIATIS) to
implement and to integrate the decision system as a pilot software in an SCADA.
1. Introduction

The applications of expert systems are rapidly increasing in the
industry. Such applications are very effective in situations when
the domain expert is not available (Shiau, 2011). There are diverse
problems which need to be solved in the real world and they are
difficult to solve by the expert at the moment of carrying out his
work. Thus, the expert systems, and specifically the decision sys-
tems, become prolific in many fields (Liao, 2005). On the other
hand, data mining (Köksala, Batmazb, & Testikc, 2011), or the step
of extracting knowledge from the databases, is a discipline inti-
mately related to expert system and which makes it possible to ex-
tract the necessary knowledge to design them.

In chemical industry, one of the complex problems for the con-
trol of which a computational intelligent approach is amenable, is a
crude oil distillation unit. In a crude distillation process, the first
objective is to perform an entire process optimization including
high production rate with a required product quality by searching
an optimal operating condition of the operating variables. In the
previous decade, there was considerable research concerning the
optimization of crude distillation process. In Seo, Oh, and Lee
(2000), the optimal feed location on both the main column and sta-
bilizer is obtained by solving rigorous ‘‘a priori’’ models and mixed
integer nonlinear programming. The sensitivity to small variations
in feed composition is studied in Dave, Dabhiya, Satyadev, Ganguly,
and Saraf (2003). Julka et al. propose in a two-part paper (Julka,
Karimi, & Srinivasan, 2002; Julka, Srinivasan, & Karimi, 2002) a uni-
fied framework for modeling, monitoring and management of sup-
ply chain from crude selection and purchase to crude refining. In
addition to analytical non-linear models, computational intelli-
gence techniques such as neural networks (Liau, Yang, & Tsai,
2004) and genetic algorithms (Motlaghi, Jalali, & Ahmadabadi,
2008) are used for the same purpose. In particular, neural networks
have been used for modeling and estimation of processes in petro-
chemical and refineries (Falla et al., 2006; Shirvani, Zahedi, & Bashiri,
2010; Zahedi, Parvizian & Rahimi, 2010).

The scope of present study is concerned with a part of the crude
oil distillation called the platforming unit. It is constituted of two
subunits: the catalytic reforming or reaction unit and the distilla-
tion unit or train distillation. The decision system is focused on
optimizing the production rate of the distillation unit which is
the most important zone of the platforming unit since it is the
one that concentrates the consumption of the plant.

At present, research is not focused only in the rise of the pro-
duction rate (Jarullah, Mujtaba, & Wood, 2011; Meidanshahi,
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Bahmanpour, Iranshahi, & Rahimpour, 2011) but also in the
improvement of product quality (Iranshahi, Bahmanpour, Paymo-
oni, Rahimpour, & Shariati, 2011; Rahimpour, Vakili, Paymooni,
Iranshahi, & Paymooni, 2011). In this sense, classical applications
of linear control theories on the distillation unit are widely avail-
able in the literature (Jabbar & Alatiqi, 1997). Also nonlinear state
estimation research (Jana, Samanta, & Ganguly, 2009) and optimal
planning strategy research (Kuo & Chang, 2008) are available. The
main objective of these papers was to remove impurities in the dis-
tillate (i.e., Cþ5 in the debutanizer column) and maintain the mini-
mum possible amount of product (butane) in the bottom residual
fuel oil to maximize the yield of the product.

The aim of our work is to perform a plant energy process opti-
mization, including an adequate production rate with the required
product quality but minimizing operating cost (fuel consumption
in boilers) through a data mining approach. Several research
endeavors have treated consumption analysis as a knowledge dis-
covery problem using intelligence techniques (Li, Bowers, & Sch-
nier, 2010). In De Silva, Yu, Alahakoon, and Holmes (2011), the
authors proposed an interesting Incremental Summarization and
Pattern Characterization (ISPC) framework for data mining, intelli-
gent analysis and prediction of energy consumption based on elec-
tricity meter readings. Both forms of learning, supervised and
unsupervised, have been adopted in these studies (Hippert, Pedre-
ira, & Souza, 2001; Metaxiotis, Kagiannas, Askounis, & Psarras,
2003). In Hippert et al. (2001), the unsupervised learning based
on the SOM algorithm for the three tasks, namely classification, fil-
tering and identification, of customer load pattern is proposed.
Clustering has also been successful in industry applications of data
stream mining, such as in Iglesias, Angelov, Ledezma, and Sanchis
(2011). The intelligent control algorithms applied to the control of
combustion processes have produced satisfactory results and show
a great potential for growth. Previous research has shown that boi-
ler efficiency can be optimized with data-mining approaches
(Miyayama et al., 1991 and Ogilvie, Swidenbank, & Hogg, 1998).
In Kusiak and Song (2006), authors proposed an optimization with
clustering-derived centroids. In Song and Kusiak (2007), authors
develop a data mining approach for optimizing the combustion
efficiency of an electric-utility boiler subject to industrial operating
constraints. Latest cited papers offer interesting researches about
single boilers. These studies encouraged the authors of the current
paper to offer a mining approach to optimize the efficiency of a
complete distillation plant, minimizing the operating and econom-
ical constraints.

Due to a close monitoring in real-time of the process is, in prac-
tice, rarely available, only information collected into an historical
database and the data mining software tools were used. The ex-
pert’s performance is hidden in the collected dataset. This valuable
knowledge feeds the proposed decision support system frame-
work. It is not necessary that the global plant control model be rec-
onfigured; the expert’s information can simply be extracted. The
question that emerges is: Is it possible to extract expert informa-
tion from the limited amount of data collected in the historical
database, searching in past data optimal cost operating conditions?
And is it possible to improve energy efficiency by the estimation of
new operating condition with a decision system software tool? In
this work, we present a decision system, designed through a data
mining process, based on an algorithm which integrates a module
of neural networks. Besides, a pilot commercial software with the
system already integrated is also presented.
Fig. 1. Flow diagram of the distillation unit.
2. The refinery platforming unit process

Refineries are composed of several operating units that are used
to separate fractions, improve the quality of these fractions and in-
crease the production of higher valued products like gasoline, jet
fuel, diesel oil and home heating oil. The function of the refinery
is to separate the crude oil into many kinds of petroleum products.
This paper pays special attention to platforming unit. This unit is
constituted of two basic units: The catalytic reforming or reaction
unit and the distillation unit or train distillation.

The catalytic reforming of naphtha is an important refining pro-
cess that seeks to improve the octane number of gasoline due to a
conversion to paraffins and naphthenes in aromatics. The feed to
the naphtha reformer is a crude oil fraction from the refinery crude
unit with a boiling range between 100 and 180 �C. This process is
adiabatically carried out at high temperatures, building up gasoline
with a high octane number, LPG, in three reformers: hydrogen, fuel
gas and coke. The coke deposits on the spent catalyst surface caus-
ing its deactivation. To recover its activation, the catalyst with coke
is regenerated after certain running time.

In the first reactor, the major reactions such as dehydrogenation
of naphthenes are endothermic and very fast, causing a very sharp
temperature drop. For this reason, this process is designed using a
set of multiple reactors. Heaters between the reactors allow an
adequate reaction temperature level to maintain the catalyst
operation.

This process is performed in two different distillation columns
(Fig. 1). The separator liquid and a stream, called aromatic LPG
from the external platforming unit, feed off the first column, the
debutanizer column. This column fractionates the input into two
basic products: butane, to the top of the column and a high hydro-
carbon flow, also called platformer, to the bottom of the column.
Platformer feeds off the debenzenizer, the second distillation unit.
Its goal is to obtain a light aromatic flow to the top free to the high
hydrocarbon. This stream is fed off the third distillation column
that produces benzene and toluene. Benzene and toluene are the
important products to the plant. The products are sent to the Mor-
phylane Unit are stored up or sent to the other units of the refinery.



Table 1
Attribute selection.

Variable Importance

PTFINFLOW 1.0
DEBINFLOW 1.0
TPRDLTPPV567 1.0
CSMFGPPH6 1.0
RELRFWDBT 1.0
CSMSTMPRSDES 1.0
GASDESFLOW 1.0
FLWLPGLIQ 1.0
RELRFWDBC 1.0
TPROOM 1.0
PRSOPEDBC 0.99

Fig. 2. Trend between Function1 and EEI.
As the platforming unit is one of the critical and important unit
operations for the petroleum industry, the goal is to achieve a well-
controlled and stable system, high production rate and product
quality as well as low operating cost for the economic consider-
ation. For this reason, the attention has been paid to this unit to
improve product rate, efficiency and quality assurance in petro-
leum industry in recent years.

3. Data preprocessing and discriminant analysis

Any data mining process requires data preprocessing where the
data are analyzed, filtered, and formatted (Maimon & Rokach, 2010
and Han & Kamber, 2001). Thus, with regard to the typology of the
data recording of the plant, the frequency of the register is hourly,
but the quality of the product is analyzed only once a day. The time
interval of the samples of data that we had was from January 2009
to May 2010. So, the total sample contained 12149 records corre-
sponding to the set of variables of the plant in an hourly register.

In the first step of preprocessing, 120 outliers corresponding to
the days where the plant did not have a usual operation were fil-
tered and deleted from the training sample. Besides, the resulting
sample was filtered on the basis of a quality requirement. Con-
cretely, the limit of the level of impurities in the distillate needs
to satisfy two rules:

- The percentage of benzene (Cþ5 components) should be less than
1% at the bottom of the debutanizer column. From the sample,
this requirement deleted the entries corresponding to 17 days.

- The percentage of toluene should be less than 10% at the bottom
of the debenzenizer column. From the sample, this requirement
deleted 125 days.

Under these conditions, 2747 registers were filtered. Thus, after
the total preprocessing, the sample was reduced from 12149 to
9282 records.

In order to carry out the data preprocessing as well as for devel-
oping the models, we used SPSS Modeler (by SPSS Inc., an IBM
company). This software is very powerful and extended in the field
of data mining. The data processing in SPSS Modeler is done
through the use of nodes that are connected together to form a
stream frame. Besides, the software includes libraries of artificial
intelligence tools (such as neural networks or bayesian networks).

Once the preprocessing is carried out, first of all, we generate a
discriminant analysis (Han & Kamber, 2001; Maimon & Rokach,
2010). This type of analysis is used for classification and prediction.
The procedure tries to predict, on the basis of one or more predic-
tor, or independent variables, whether an individual or any other
subject can be placed in a particular category of a categorical-
dependent variable. Our aim with this analysis was to study the
influence of the variables of the zone in the energy efficiency grade
as well as to quantify the importance of each of these variables.

Before applying the discriminant analysis, we filtered among all
the variables of the zone those more important ones that would be
used as input parameters of the analysis. For this purpose, we gen-
erated the p-value-based Pearson chi-square tests for independence
of the target and the predictor without indicating the strength or
direction of any existing relationship, and this is suitable for frame-
work purposes. As result of this test, we selected the variables of the
zone with highest grade of importance (>0.9). Thus, from the list of
variables of the zone (Appendix), eleven attributes were selected
(Table 1) to carry out the discriminant analysis.

On the other hand, an objective of the optimization model,
which was an indicator of the energy efficient, was generated
and added to each register of the sample. Thus, the Energy Efficient
Indicator (EEI) was built as the measure of the distillation zone
consumption (whose consumption is closely related to the total
consumption of the plant, as it is the most important zone of the
plant and it uses all the variables from the reaction zone) with re-
gard to the plant input flow. It was defined as follows:

EEI ¼ ðCSMFGPPH6 � 0:7 � 0:667þ CSMSTMPRSDES

� 0:026Þ=PTFINFLOWÞ ð1Þ

This indicator quantifies the consumption of the debenzenizer and
the debutanizer. It calculates the cost (in Euros) of the debutanizer
(Fuel Gas) and debenzenizer (Vapor on Average) consumption. It is
as follows:

Fuel Gas Density: 0.7 kg/m3

Calorific Fuel Gas: 8.98 kW/m3

Fuel Gas Cost: 667 euros/ton
Vapor on Average Cost: 26 euros/ton

Once the inputs are selected, a canonical discriminant analysis
carries out a discretization and so separates the five classes of EEI
through a linear combination of selected attributes. The model eval-
uation is performed first using ten-fold cross validation in the train-
ing sample. Later, a new validation by means of the testing sample is
done. This kind of evaluation was selected to train the algorithms
using the entire testing data set and obtain a more precise model.
This will not only increase the computational effort but also im-
proves the model’s capacity for generating different data sets. The
evaluation is performed by splitting the initial sample into 10
sub-samples in order to fill the consumption range. The model is
trained using 9/10 of the data set and tested with the 1/10 left. This
is performed 10 times on different training sets, and finally, the 10
estimated errors are averaged to yield an overall error estimate.

The result of the discriminant analysis is two canonical func-
tions (named Function1 and Function2). Function1 covers 90.8%
of the variance, and Function2 covers an additional 9.2%. So, and



Table 2
Controllability of the variables of the zone.

Variable Controllability

PTFINFLOW Not controllable
DEBINFLOW Not controllable
CSMFGPPH5 Controllable
CSMSTMPRSDES Controllable
CSMFGPPH6 Controllable
CSMFGPPH3 Controllable
TPROOM Not controllable
DSDGASRCL Not controllable
TPRDLTPPV567 Not controllable
FLWLPGLIQ Controllable
PRSOPEDBC Controllable
RELRFWDBT Controllable
CSMFGPPH4 Controllable
GASDESFLOW Controllable
RELRFWDBC Controllable
PRSSEPSEPPPV8 Controllable
in view of this difference in percentage, we would use only Func-
tion1 as a guide of EEI. Fig. 2 shows the trend existing between
Function1 and the EEI.

Using the normalized variables, the discriminant analysis also
offers a structure matrix that allows building the discriminant
functions from discriminating variables, without using the canon-
ical form. From now on, the N_prefix indicates a normalized attri-
bute. Variables are ordered by the absolute value of their
importance within Function1. Using the normalized variables,
and by weighing up the high percentage of variance covered by
Function1, the plant energy efficiency will be improved by means
of the new attribute defined in (2).

F ¼ N PTFINFLOW � ð�0:343Þ þ N CSMSTMPRSDES � ð0:081Þ
þ N CSMFGPPH6 � ð�0:072Þ þ N CSMFGPPH3 � ð0:03Þ
þ N TPROOM � ð0:064Þ þ N DSDGASRCL � ð0:062Þ
þ N FLWLPGLIQ � ð�0:054Þ þN PRSOPEDBC � ð0:023Þ
þ N RELRFWDBT � ð0:09Þ þN CSMFGPPH4 � ð�0:05Þ
þ N GASDESFLOW � ð�0:196Þ þ N RELRFWDBC

� ð�0:055Þ þ N PRSSEPSEPPPV8 � ð�0:236Þ ð2Þ

Thus, this function marks the way that follows the operating points
registered for the plant. As observed in Fig. 2, low values of F (specif-
ically below�0.6) guarantee, in a high percentage, low consumption
(an EEI that is between 4.8 and 6.2) with regard to the platforming
input flow. This resulting function F would be used as a guide and
an input parameter in the optimization algorithm based on neural
networks (Han & Kamber, 2001; Maimon & Rokach, 2010).

4. Decision system to optimize the plant

The solution that was chosen to perform the optimization algo-
rithm was based on a combined decision system of searching for a
path for optimizing the energy index in the plant. Thus, the model
combines a search based on the historical data of the working envi-
ronment of the plant, and an artificial neural network module for
additional interpolations of new work environments. We chose
this solution taking advantage of the real data we had at the plant,
with the objective that our model reached a realistic smooth way
from a working point with high EEI to another point with an opti-
mized EEI. Thus, the design of the decision system consisted of an
algorithm (or calculus followed for the optimization of a specific
operation point), a neural network module (which consists of
two interconnected networks), and a graphical environment (with
which to visualize the results of the optimization process).

4.1. Algorithmic

The steps carried out in the system for energy optimization are
as follows:

1. Reading and storage of historical variables registered in the dis-
tillation unit.

2. Selection of the working point of the plant that is necessary to
optimize (Each working point implies a set of values in the vari-
ables and, therefore, certain conditions of work at the plant).

3. Distinction between variables that plant operators can control
and those variables that cannot be controlled. The list of vari-
ables with their controllability is indicated in Table 2.

4. Selection from the sample those operation points whose envi-
ronmental conditions satisfy those of the point selected for
optimization. Thus, this process filters those registers whose
values are out of a maximum percentage in which the values
of the variables can be moved in each one of the iterations.
These conditions that result in percentages would be configured
by the operator based on their knowledge of the variables of the
plant. In this regard, we distinguished between the conditions
of the not controllable variables (those conditions for the start-
ing point of work that one wants to optimize and which shall
not be violated throughout the optimization process from that
point) and the conditions set for the controllable variables
(valid for the point that is currently being processed).

5. Activation of the optimization process. This step is carried out
by a loop that in each iteration searches for a point (from the
set of points of the sample) which meets the environmental
conditions marked (described in step 4 of the algorithm) that
has the lowest energy. Thus, each one of these iterations
improves the energy conditions since the previous point and
shows the operator of the plant how (that new values must
be set for the controllable variables of the plant) to carry out
that improvement.

6. At the time it is not possible to improve the EEI of the current
point, meeting the conditions of iteration, the previous loop
stop. At this point, it is possible to use a neural network module
to improve the energy index. This module generates, by means
an interpolation process, a new estimated working point, fulfill-
ing the conditions set for improving the EEI variables at that
point (This improvement consists of a little shift of both the
EEI as the function F looking for better energy efficiency for that
operation point).

7. Once a new point is generated by the neural network module,
the operator can shoot again the optimization process to search,
from this new estimated point generated by interpolation, for
historical points that improve the energy index to meet the con-
ditions for the variables configured. Thus, points 5 and 6 can be
executed by the user iteratively, until that operator of the plan
reaches the desired improvement in the EEI.

4.2. Neural network module

The structure of the neural network module for the distillation
zone consists of two networks that are applied sequentially. The
inputs and outputs of these networks are as follows:

– The first network has seven inputs: the set of uncontrollable
variables (N_DSDGASRCL, N_PTFINFLOW, N_DEBINFLOW,
N_TPROOM, and N_TPRDLTPPV567) and the parameters EEI
and FUNCTION1. The outputs of the network are the five most
important parameters implied in function F (with greater
weight in this function): N_GASDESFLOW, N_CSMFGPPH6,
N_CSMSTMPRSDES, and N_PRSSEPSEPPPV8 N_RELRFWDBT.



Fig. 3. Structure of the neural network module of the distillation zone.
– The second network has 12 inputs: the set of uncontrollable
variables (N_DSDGASRCL, N_PTFINFLOW, N_DEBINFLOW,
N_TPROOM, and N_TPRDLTPPV567), EEI and function F as well
as the variables used as outputs in the previous network:
N_GASDESFLOW, N_CSMFGPPH6, N_CSMSTMPRSDES, N_REL-
RFWDBT and N_PRSSEPSEPPPV8. The outputs of this network
are the 6 parameters of less importance in FUNCTION1:
N_CSMFGPPH3, N_CSMFGPPH4, N_CSMFGPPH5, N_REL-
RFWDBC, N_PRSOPEDBC and FLWLPGLIQ.

The scheme of this neural networks module is shown in Fig. 3.
It is possible to observe both two neural networks that are ap-

plied consecutively (since the outputs of the first network are used
as inputs of the second one). A scheme of two neural networks
working in serial was designed in order to give greater importance
and to get a better adjustment in the first network (that predict the
most important input parameters of the EEI).

On the other hand, the structures of the neural networks were
typical of a backpropagation network, and they had a single hidden
layer with 12 neurons in the first network and 15 neurons in the
second one. These structures were optimal in order to avoid over-
training as well as overfitting, and they were reached after testing
numerous different structures. For the training process, we used
Fig. 4. Graphical environment de
80% of the operation points as training patterns and 20% as valida-
tion patterns. The results obtained in these trainings were, respec-
tively, 96.5% and 96.05%.

4.3. Graphical environment

In order to test the model of optimization of the plant, we devel-
oped a graphical environment that works on Microsoft Windows,
which makes it possible to visualize the results of the decision sys-
tem described in Section 4.1. This environment is shown in Fig. 4.

The environment as well as the algorithm of the combined sys-
tem was programmed in C++ (extracting from IBM Modeler the
code relative to the different models generated) with the objective
of programming it as a software pilot and making easier its final
integration in an SCADA.

This environment includes the following working areas in the
main window:

– A graph that one can observe, for each of the various operating
points of the historic, its EEI (Energy_Index) and function F.

– The value of different parameters for the current operating
points (distinguishing between controllable and uncontrollable
variables), as well as the configuration of the coefficient or rate
of change for each iteration of the loop. In the screen of Fig. 4,
these coefficients were configured by the operator of the plant
inside a typical range.

– The configuration of the ratio of improvement for the module
based on neural networks (on the X-axis corresponding to Func-
tion1 offset and on the Y-axis corresponding to EEI and a ratio
by which these values are multiplied).

– A historic text showing the evolution of different variables
along the process of iterations of the algorithm that optimize
the energy efficiency.

– A set of buttons that carry out the execution and test the com-
bined model for a particular operating point.

5. Results

The objective of our work was to optimize the energy consump-
tion of the plant (quantified as EEI) for any operation point in
which the plant could operate. Thus, in order to validate and quan-
tify the results, an additional algorithm for measuring the improve-
ment was obtained in our model in each one of the operating
veloped to test the system.



Fig. 5. SCADA environment by ALIATIS with the system integrated.
points of the past. The aim of this algorithm was to calculate the
improvement in the EEI for every operation point of the plant reg-
istered in the past.

This measurement algorithm (which could be fired by means of
the button ‘overall improvement’ in the graphical environment)
carries out the following steps:

1. For each operating point of the historical:
1.1. Execution of the optimization algorithm (described in

Section 4.1).
1.2. Fire of the module of neural networks.
1.3. New execution of the optimization algorithm (once added

to the list of operation points, the point is generated with
the module of neural networks).

1.4. Calculation of the percentage of improvement in the EEI
for that point.

2. Calculation and register (in the historic box) of the improve-
ment of the average of the percentages of all points.

Thus, once calculated with the previous algorithm, for the
improvement that had been obtained in the system for each one
of the operation points registered for the plant, the average
improvement of energy efficiency reached was 6.33%. This result
is very good taking into account that a lot of operating points were
in the range of [5,6] in their EEI and, therefore, the scope of
improvement was less. Thus, once analyzed the results, we could
observe as the improvement for those operating points with EEI
higher than 7 were 9.85% (some operating points reached an
improvement of 45%). Besides, these results largely depend on
the chosen adjust of the percentages of variation permitted for
the controllable and not controllable variables (which have been
percentages quite restrictive for our tests).

Having validated the results of the developed system, this was
implemented and integrated in an SCADA by an engineering soft-
ware company (ALIATIS). Thus, the commercial application shows
in real time the present state of EEI of the plant as well as the opti-
mum EEI calculated from the designed system. In the SCADA, the
operator is informed of how this optimum EEI could be reached
(by means of the regulation of the parameters that they can con-
trol). Thus, this application also includes the present proposed sav-
ing cost and the decision system save report, by an EEI operation
screen. The results obtained once they carried out the simulation
in the SCADA environment with the system since they were inte-
grated are shown in Fig. 5 (the company is in Spain and, for this
reason, the environment is a Spanish one). In these results, an aver-
age difference of 15% between the evolution of EEI once the system
is integrated (marked in the graphic as ‘real’) and the evolution of
EEI without the system (marked in the graphic as ‘base’) is ob-
served. Besides, the cost information can be shown for the entire
plant and also for every part (heaters) of the plant. Thus, the evo-
lution of attributes and the savings from the heaters are displayed
in diverse graphics and tables.

6. Conclusions

The present work describes the design and development of a
combined decision system based on a module of neural networks
for the optimization of the consumption of a petrochemical plant.



The algorithm, which is based on the system, uses the information
relative to the parameters registered for the plant help with a neu-
ral network module for optimizing its future operation points.
Thus, this algorithm helps the operator to take decisions to im-
prove the energy efficiency of the plant.

On the other hand, a bibliographical revision of works with the
same objective has been carried out. We have checked, as the use
of the neural network is not everything that should be extended in
the chemical industry for our particular purpose. This kind of neu-
ral structure is demonstrated as having an excellent behavior in a
similar type of interpolation problems when it counts with histor-
ical data of the plant and a great number of input variables.

The system implements a kernel based on two backpropagation
neural networks. The main contribution of our work is how to
combine the historic data of a plant with a neural network struc-
ture for generating new interpolated operation points and so to
generate a decision system for the operator. There are two advan-
tages of this model:

– It is a system generated on real conditions of operation. Thus,
the use of an interpolation algorithm as neural networks is only
for linking the operation point in the present with operation
points that had already happened in the past. This fact ensures
results that are not only theoretical but also eminently
practical.

– It is system that can be constantly improved. This is due to the
fact that the new conditions and operation points can be used to
train and adjust the neural networks.

Besides, the work presented in this article has been imple-
mented and integrated in an SCADA by a consulting company.
Thus, the results obtained so far are considered satisfactory taking
into account the limitation of the available data for the plant. In
fact, the system attains an average improvement of around 15%
for the plant, which is very significant from the previous company
process. Besides, these results will be improvable in the future by
means of a refinement of the developed neural networks.

Appendix A. Main attributes in the catalytic reforming

PTFINFLOW (m3/h): The platforming input flow.
DEBINFLOW (m3/h): The debenzenizer input flow.
WAIPTF (�C): The variable that measures the catalyst
deterioration.
TPROUT_PPV5 (�C): The output PPV5 reactor’s temperature.
TPROUT_PPV6 (�C): The output PPV6 reactor’s temperature.
TPRIPPPV7 (�C): The input PPV7 reactor’s temperature.
TPRIPPV5 (�C): The input PPV5 reactor’s temperature.
TPRIPPV6 (�C): The input PPV6 reactor’s temperature.
TPRIPPV7 (�C): The input PPV7 reactor’s temperature.
GASDESFLOW (Nm3/h): Gas fraction of the desbutanizer’s top
flow.
FLWLPGLIQ (m3/h): Liquid fraction of the desbutanizer’s top
flow.
CSMSTMPRSDES: Medium pressure steam consumption in the
desbenzenizer’s reboiler.
CSMFGPPH3 (m3/h): The fuel gas PPH3 heater’s consumption.
CSMFGPPH4 (m3/h): The fuel gas PPH4 heater’s consumption.
CSMFGPPH5 (m3/h): The fuel gas PPH5 heater’s consumption.
CSMFGPPH6 (m3/h): The fuel gas PPH6 heater’s consumption.
PRSSEPSEPPPPV8 (bar): The PPV8 product separator pressure.
RELRFWDBT: Reflux ratio: Total of desbutanizer’s top stream/
liquid return to the column.
RELRFWDBC: Reflux ratio: Total of desbenzenizer’s top stream/
liquid return to the column.
PRSOPEDBC (bar): Debenzenizer’s pressure operation.
DSDGASRCL (Kg/(N �m3)): The recycle gas density. This vari-
able maintains P PPV 8 brought under control.
TPRDLTPPV567 (�C): The temperature increase between the
three reactors.
TPROOM (�C): The room temperature.
References

Dave, D. J., Dabhiya, M. Z., Satyadev, S. V. K., Ganguly, S., & Saraf, D. N. (2003). Online
tuning of a steady state crude distillation unit model for real time applications.
Journal of Process Control 13(3), pp. 267–282.

De Silva, D., Yu, X., Alahakoon, D., & Holmes, G. (2011). A data mining framework for
electricity consumption analysis from meter data. IEEE Transactions on Industrial
Informatics, 7(3), 399–407.

Falla, F., Larini, C., Leroux, G., Quina, F., Moro, L., & Nascimento, C. (2006).
Characterization of crude petroleum by NIR. Journal of Petroleum Science and
Engineering, 51(1-2), 127–137.

Han, J., & Kamber, M. (Eds.), 2001. Data Mining. Concepts and Techniques, 1st ed.
Morgan Kaufmann.

Hippert, H., Pedreira, C., & Souza, R. (2001). Neural networks for short-term load
forecasting: A review and evaluation. IEEE Transactions on Power Systems, 16(1),
44–55.

Iglesias, J., Angelov, P., Ledezma, A., & Sanchis, A. (2011). Creating evolving user
behavior profiles automatically. IEEE Transactions on Knowledge and Data
Engineering, 9(99), 1.

Iranshahi, D., Bahmanpour, A. M., Paymooni, K., Rahimpour, M. R., & Shariati, A.
(2011). Simultaneous hydrogen and aromatics enhancement by obtaining
optimum temperature profile and hydrogen removal in naphtha reforming
process; a novel theoretical study. International Journal of Hydrogen Energy,
36(14), 8316–8326.

Jabbar, N. A., & Alatiqi, I. (1997). Inferential-feedforward control of petroleum
fractionators: A PNA approach. Computational Chemical Engineering, 21,
255–262.

Jana, A. K., Samanta, A. N., & Ganguly, S. (2009). Nonlinear state estimation and
control of a refinery debutanizer column. Computers & Chemical Engineering,
33(9), 1484–1490.

Jarullah, A. T., Mujtaba, I. M., & Wood, A. S. (2011). Enhancement of productivity of
distillate fractions by crude oil hydro-treatment: Development of kinetic model
for the hydro-treating process. Computer Aided Chemical, 29, 261–265.

Julka, N., Srinivasan, R., & Karimi, I. (2002). Agent-based supply chain
management1: Framework. Computers & Chemical Engineering, 26(12),
1755–1769.

Julka, N., Karimi, I., & Srinivasan, R. (2002). Agent-based supply chain
management2: A refinery application. Computers & Chemical Engineering,
26(12), 1771–1781.

Köksala, G., Batmazb, I., & Testikc, M. C. (2011). A review of data mining applications
for quality improvement in manufacturing industry. Expert Systems with
Applications, 38(10), 13448–13467.

Kuo, T. H., & Chang, C. T. (2008). Optimal planning strategy for the supply chains of
light aromatic compounds in petrochemical industries. Computers & Chemical
Engineering, 32(6), 1147–1166.

Kusiak, A., & Song, Z. (2006). Combustion efficiency optimization and virtual
testing: A data-mining approach. IEEE Transactions on Industrial Informatics,
2(3), 176–184.

Li, X., Bowers, C., & Schnier, T. (2010). Classification of energy consumption in
buildings with outlier detection. IEEE Transactions on Industrial Electronics,
57(11), 3639–3644.

Liao, S. H. (2005). Expert system methodologies and applications–a decade review
from 1995 to 2004. Expert Systems with Applications, 28(1), 93–103.

Liau, L. C., Yang, T. C., & Tsai, M. T. (2004). Expert system of a crude oil distillation
unit for process optimization using neural networks. Expert Systems with
Applications, 26(2), 247–255.

Maimon, O., & Rokach, L. (Eds.), (2010). Data Mining and Knowledge Discovery
Handbook, 2nd ed. Springer, US.

Meidanshahi, V., Bahmanpour, A. M., Iranshahi, D., & Rahimpour, M. R. (2011).
Theoretical investigation of aromatics production enhancement in thermal
coupling of naphtha reforming and hydrodealkylation of toluene. Chemical
Engineering & Processing, 50(9), 893–903.

Metaxiotis, K., Kagiannas, A., Askounis, D., & Psarras, J. (2003). Artificial intelligence
in short term electric load forecasting: A state-of-the-art survey for the
researcher. Energy Conversion and Management, 44(9), 1525–1534.

Miyayama, T., Tanaka, S., Miyatake, T., Umeki. T, Miyamoto, Y., Nishino, K. & Harada
E. (1991). A combustion control support expert system for a coal-fired boiler. In
Proceedings of the international conference on industrial electronics, control and
instrumentation IECON’91, 1991, Vol. 2, pp. 1513–1516.

Motlaghi, S., Jalali, F., & Ahmadabadi, M. N. (2008). An expert system design for a
crude oil distillation column with the neural networks model and the process
optimization using genetic algorithm framework. Expert Systems with
Applications, 35(4), 1540–1545.

Ogilvie, T., Swidenbank, E., & Hogg, B. (1998). Use of data mining techniques in the
performance monitoring and optimisation of a thermal power plant. Knowledge
Discovery and Data Mining (1998/434). In IEE Colloquium on 7/1-7/4.



Rahimpour, M. R., Vakili, R., Paymooni, K., Iranshahi, D., & Paymooni, K. (2011). A novel
integrated, thermally coupled fluidized bed configuration for catalytic naphtha
reforming to enhance. International Journal of Hydrogen Energy, 36, 2979–2991.

Seo, J. W., Oh, M., & Lee, T. H. (2000). Design optimization of a crude oil distillation
process. Chemical Engineering & Technology, 23(2), 157–164.

Shiau, W. L. (2011). A profile of information systems research published in expert
systems with applications from 1995 to 2008. Expert Systems with Applications,
38(4), 3999–4005.
Shirvani, Y., Zahedi, G., & Bashiri, M. (2010). Estimation of sour natural gas water
content. Journal of Petroleum Science and Engineering, 73, 156–160.

Song, Z., & Kusiak, A. (2007). Constraint-based control of boiler efficiency: A data-
mining approach. IEEE Transactions on Industrial Informatics, 3(1), 73–83.

Zahedi, G., Parvizian, F., & Rahimi, M. R. (2010). An expert model for estimation of
distillation sieve tray efficiency based on artificial neural network approach.
Journal of Applied Sciences, 10(12), 1076–1082.


	Decision system based on neural networks to optimize the energy efficiency  of a petrochemical plant
	1 Introduction
	2 The refinery platforming unit process
	3 Data preprocessing and discriminant analysis
	4 Decision system to optimize the plant
	4.1 Algorithmic
	4.2 Neural network module
	4.3 Graphical environment

	5 Results
	6 Conclusions
	Appendix A Main attributes in the catalytic reforming
	References




