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Abstract—This paper describes two computer aided design 

(CAD) tools for automatic synthesis of fuzzy logic-based 

inference systems. The tools share a common architecture for 

efficient hardware implementation of fuzzy modules, but are 

based on two different design strategies. One of them is focused 

on the generation of standard VHDL code, which can be later 

implemented on a reconfigurable device (FPGA) or as an 

application specific integrated circuit (ASIC). The other one uses 

the Matlab/Simulink environment and tools for development of 

digital signal processing (DSP) systems on Xilinx´s FPGAs. Both 

tools are included in the last version of Xfuzzy, a specific 

environment for designing complex fuzzy systems, and they 

provide interfaces to commercial VHDL synthesis and 

verification tools, as well as to conventional FPGA development 

environments. As demonstrated by the included design example, 

the proposed development strategies speed up the stages of 

description, synthesis, and functional verification of embedded 

fuzzy inference systems. 

 
Index Terms—CAD tools, Fuzzy inference systems, FPGAs, 

Hardware implementation.  

 

I. INTRODUCTION 

UZZY logic provides an adequate tool to deal with the 

uncertainty and imprecision typical of the reasoning system 

used by the human brain [1]. In particular, the capability of 

fuzzy systems to capture the knowledge of human experts and 

translate it into robust control strategies by means of IF-THEN 

rules similar to those employed in natural language (without 

the need of mathematical models) has motivated a considerable 

increase in the number of control applications using techniques 

based on fuzzy inference in the last years [2]-[4]. Many 

different approaches for hardware implementation of fuzzy 
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systems by means of ASICs or FPGAs have been also 

proposed in the literature [5]-[7]. 

 The recent improvements in FPGA technologies has led to 

important advances in programmable logic devices, which 

allow the implementation of a complete system on a 

programmable chip (SoPC) [8]-[10]. In addition to the 

classical VHDL-based design flow [11]-[13], FPGA 

manufactures have recently developed different design tools, 

such as System Generator from Xilinx (XSG) [14], to ease the 

implementation of digital signal processing (DSP) algorithms 

on FPGAs [15]-[17]. Hardware implementation of fuzzy 

inference systems is currently demanded by different 

applications of industrial control, robotics or consumer 

electronics [18]-[25]. However, regarding the application of 

computational intelligence paradigms, to benefit from these 

technological advances, it is necessary the development of 

powerful CAD tools that allow automating the different design 

stages of a fuzzy inference system and translating its high-

level description into an efficient hardware implementation. 

The use of adequate CAD tools reduces the development cycle 

of new products and makes them more competitive in market 

terms.  

The huge success of fuzzy logic in the last decade of the 

past century caused the development of many tools dedicated 

to the design of fuzzy inference systems. Most of these tools 

were focused on the acquisition of knowledge, i.e., the 

creation of fuzzy systems from a data set, the tuning of system 

parameters using learning algorithms, and the comparison of 

different fuzzy operators and inference approaches [26]-[29]. 

Many of the initially available commercial software (such as 

TIL Shell from Togai InfraLogic, FIDE from Aptronix, and 

FuzzyTECH from Inform) allowed generating optimized code 

for the different families of microcontrollers existing in that 

epoch. Different proposals for automatic synthesis of fuzzy 

systems using specific hardware based on analog and digital 

design techniques were also presented in those years [30]-[33]. 

Digital approaches were usually based on the generation of 

general-purpose or specific VHDL code. More recently, a 

great number of different proposals use the facilities included 

in the Matlab/Simulink environment for the design and 

hardware implementation of fuzzy systems on reconfigurable 

devices [34]-[38].  

An interesting CAD tool that offers facilities for the whole 

development cycle of a fuzzy system is the Xfuzzy 

environment [39]. Two hardware synthesis tools currently 

integrated into Xfuzzy are described in the paper. One of them 

employs a revised strategy based on VHDL, which generates 

code that can be synthesized and implemented on ASICs or 
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FPGAs. The other one provides FPGA implementations based 

on XSG. It takes the advantages of flexibility and ease of 

configuration offered by Matlab. 

The structure of the paper is the following. Both design 

strategies are based on an efficient hardware architecture for 

fuzzy systems, which is described in Section II. The first 

synthesis tool, as well as the VHDL cell library supporting it, 

is detailed in Section III. The second tool and its associated 

cell library developed in Simulink are presented in Section IV. 

Section V illustrates a design example where a hierarchical 

fuzzy system has been generated from a set of numerical data 

by means of the identification facilities provided by Xfuzzy. 

The design flow and the supporting tools associated to both 

design strategies are detailed in this section. Finally, Section 

VI summarizes the main conclusions of this work.  

 

II. ACTIVE-RULE BASED ARCHITECTURE FOR FUZZY SYSTEMS 

From an implementation point of view, a fuzzy system is 

composed by three stages: fuzzification, inference, and 

defuzzification. The fuzzification stage is in charge of 

accepting the inputs to the inference system and evaluating the 

similarity degree between these inputs and the membership 

functions associated to the linguistic labels used in the rule 

antecedents. The inference engine evaluates the different rules 

in the knowledge base. The activation degree of each rule is 

calculated from the activation degree of its antecedents and 

according to the interpretation of the different connectives in 

use. Finally, the conclusions of the different rules are 

combined and the defuzzification stage is used to provide the 

output of the inference system. The implementation scheme 

followed by both automatic synthesis tools is based on the 

architecture shown in Fig. 1. This architecture allows efficient 

implementations of digital fuzzy systems in terms of use of 

resources and inference speed. Its main characteristics are the 

limitation of the overlapping degree of input membership 

functions, a processing strategy that evaluates only the active 

rules, and the use of simplified defuzzification methods [5], 

[22].  

The block diagram of this architecture illustrates the three 

stages needed for the calculation of fuzzy inference based on 

Mamdani’s model. In the fuzzification stage, the membership 

functions circuits (MFC) provide as many pairs “label, 

activation degree” (Li, i) for each input value as overlapping 

degree has been fixed for the system. The different 

combinations of these labels will determine the possible rules 

that are activated. In the following stage, the inference process 

is carried out by sequentially processing the active rules by 

means of an active-rule selection circuit composed by a 

counter-controlled multiplexer array. In each clock cycle, the 

membership degrees (μi) from rule antecedents are combined 

within the connective-antecedent operator circuit to calculate 

the activation degree of the rule (hi), while the antecedent 

labels address the rule memory location containing the 

parameters that define its corresponding consequent. The 

number and meaning of these parameters depend on the 

defuzzification method that is being employed [5] (ci, wi, for 

Mamdani’s systems, and ai, bi, ci, for Takagi-Sugeno’s 

systems). In the defuzzification stage, a crisp output value is 

obtained by processing the rule consequents with its different 

activation degrees, according to the selected defuzzification 

method. This stage is carried out in two processes, one that is 

in charge of the accumulation tasks and another that performs 

the division (if required), according to (1) for Mamdani’s or 

(2) for first-order Takagi-Sugeno’s systems. For Fuzzy Mean 

(where wi = 1) and Takagi-Sugeno methods, the division 

operation can be avoided when ∑     (this condition is 

always fulfilled for 2-input inference systems using triangular 

membership functions with an overlapping degree equal to 

two and the product operator as antecedent connective). 

 

 ̅  
∑           

∑       
 (1) 

      ̅    
∑                     

∑    
          (2) 

 

A control block in charge of controlling the operation of the 

rest of blocks has been also included in the diagram. 

Regarding timing considerations, a different pipeline stage 

may be introduced for each of the three stages in the 

architecture shown in Fig. 1. The minimum number of clock 

cycles required to perform the tasks associated with these 

pipeline stages will be the greatest of: the maximum number 

of membership functions, the number of active rules, and the 

number of bits of the output. As an exception, systems that use 

specific defuzzification methods where the division process 

can be avoided require fewer pipeline cycles, since they only 

perform the accumulation process in the last stage. In this 

case, the number of clock cycles required for the system 

operation will only be the greatest of the maximum number of 

membership functions and the number of active rules. 

This architecture is characterized by being highly 

configurable due to the availability of different circuit 

realizations for the blocks in Fig. 1 [22]. MFCs can be 

implemented using either memory- or arithmetic-based 

approaches. Memory-based MFCs employ memory blocks to 

store the labels and membership degrees corresponding to 

each point of the input universe of discourse, thus allowing the 

use of fuzzy sets with unrestricted shapes. Alternatively, 

arithmetic-based MFCs employ arithmetic circuits to generate 

families of membership functions with triangular shapes 

(except the first and the last functions which can be of type 

"Z" and "S", respectively). An antecedent memory block for 

Fig. 1.  Architecture for a Mamdani’s type fuzzy system 

with a processing strategy based on active rules 
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each input stores, in this case, the values of “point, slope” (  , 
  ) defining their associated membership functions. Using 

these values, the membership degree corresponding to a given 

input is calculated by an arithmetic block that performs the 

following operation when          : 

 


 
                 (3) 

The designer can also choose between two options (product 

or minimum) for the connective used in the knowledge base of 

the inference system. Finally, depending on the kind of fuzzy 

module being implemented, different defuzzifier blocks can be 

selected: FuzzyMean, WeightedFuzzyMean, or first-order 

Takagi-Sugeno, for interpolators; and MaxLabel, for decision-

making systems. 

Regarding arithmetic considerations, fixed-point arithmetic 

is used by both design strategies. Input and output signals are 

normalized in the interval [0, 1]. The user can select the word-

lengths of input and output signals, membership degrees, 

slopes, and defuzzification weight factors (wi) using the 

graphical interfaces described in the following sections. The 

position of the binary point of slope values is automatically 

calculated in order to achieve the higher precision possible for 

the selected word-lengths. Results of internal operations are 

truncated according to the number of bits used by the output 

signals. Finally, when division is required, a serial non-

restoring algorithm that only requires addition, subtraction and 

shifts operators is performed. 

 

III. HARDWARE SYNTHESIS WITH XFVHDL 

In order to automate the design process with the proposed 

architecture, the VHDL-based technique has required the 

generation of a library of configurable and synthesizable 

blocks described in VHDL language. The blocks of this 

library implement the components of the architecture 

discussed in the previous section. Different blocks have been 

designed for the generation of membership functions, the 

sequential processing of active rules, the calculation of the 

rule activation degree, the storage of consequents for the 

rulebases, the development of tasks of accumulation and 

division for different defuzzification methods, and the 

generation of control signals. The library also contains a set of 

crisp blocks that implement general purpose arithmetic, such 

as addition, subtraction, multiplication or division functions, 

and logic operations, as a selector.  

Building a fuzzy system with this library implies choosing 

and interconnecting the adequate elements, as well as 

assigning values to their parameters. VHDL descriptions of 

library components are parameterized by "generic" VHDL 

statements (generic parameters that are fixed when the 

component is placed), which facilitates the design process 

automation. VHDL descriptions of these blocks verify the 

restrictions imposed by the main synthesis tools, so they can 

be used as input to ASIC and FPGA design environments in 

order to allow rapid development of prototypes built to 

validate new ideas or evaluate possible solutions.  

In order to speed up the design process based in this 

strategy, a new version of the xfvhdl synthesis tool has been 

recently incorporated into the Xfuzzy environment. This tool 

allows translating the high-level description of a fuzzy system 

written in XFL3 (the specification language shared by all the 

tools in Xfuzzy) into a VHDL description that can be 

synthesized and implemented on a programmable device or an 

application specific integrated circuit. The Graphical User 

Interface (GUI) of the new version of xfvhdl is shown in Fig. 

2. The middle left area represents the knowledge base, 

structured as a pull-down menu with components grouped 

Fig. 2.  Graphical User Interface of xfvhdl 
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under the categories “RuleBases” and “CrispBlocks”. When a 

particular rulebase is selected, the middle right area allows 

defining parameters related to the dimension of the system. 

This area also shows information about membership functions 

and fuzzy rules extracted from the XFL3 specification. The 

user can select the implementation option for the antecedents: 

arithmetic- or memory-based. FPGA development tools 

usually allow selecting the type of memory used in the 

implementation stage. For this reason, the user can also choose 

the kind of memory (RAM, ROM or logical block) that will be 

used in MFC and rule memory blocks. 

When all the architectural options have been selected and 

the parameters related to the bus sizes have been defined, the 

fuzzy system components are identified by green marks closed 

to them. Then it is possible to generate the output files by 

pressing the button “Generate VHDL code”. Basically, this 

action generates a VHDL description of the fuzzy system and 

a testbench, also described in VHDL, that allows verifying the 

functionality of the system. The VHDL file is based on the 

interconnection of the library blocks that have been described 

in the previous section. At the beginning of this file a package 

of constants is introduced. These constants are automatically 

calculated from the values extracted from the knowledge base 

and the parameters related to the bus sizes that are introduced 

by the user. When the interconnection of library blocks is 

performed, the generic parameters of each block are connected 

to the constants defined in the package. This file also contains 

tables of values with information about antecedents, rules, and 

consequents. Library blocks used for the defuzzification 

method and the antecedents’ connective are extracted directly 

from the XFL3 specification. However, other library 

components, as well as the VHDL description style included 

in the code, depend on the architectural options that the user 

has selected. Specifically, if the memory type chosen for the 

antecedents and rules memories is logical block, the 

description generated for both memories is performed by 

means of a CASE statement and, in the case of FPGA 

implementation, CLBs of the programmable device are 

configured as logic blocks. When the selected option is ROM 

memory, if the user selects the corresponding option, the 

synthesis tool can extract the ROM memory to implement 

these descriptions. Finally, if the selected option is RAM 

memory, CLBs of the programmable device are configured as 

distributed RAM memory or embedded RAM memory blocks 

(BRAMs) can also be used for the implementation of 

antecedents and rules memories without consuming additional 

resources of the FPGA. If the system is hierarchical, a VHDL 

description and a testbench file are generated for each 

rulebase, which allows checking the control surface obtained 

for each one of them (as those shown in Fig. 6 of Section V). 

A structural VHDL description of the hierarchical system is 

also obtained, with a testbench that allows verifying the 

corresponding input-output behavior. All the testbench files 

include the instantiation of the fuzzy system, a process that 

provides a periodical clock signal, and another process to 

generate the initial reset signal and a sweep of the input 

signals used in the simulation of the system. 

 

IV. HARDWARE SYNTHESIS WITH XFSG 

The second design technique included in Xfuzzy is based on 

XSG. The Xilinx’s tool for the development of DSP systems 

on FPGAs is integrated into the Matlab environment. It 

includes a Simulink library (Xilinx Blockset) that provides 

basic building blocks for digital systems design, as well as the 

software required to translate Simulink models using these 

blocks to HDL descriptions that can be implemented on 

FPGAs. Using this design tool, a new library named XfuzzyLib 

has been generated to accelerate the synthesis of fuzzy 

systems designed with Xfuzzy. This library includes different 

blocks to implement each of the stages of the active-rule based 

architecture for fuzzy inference systems described in Section 

II. Fig. 3a shows the Simulink library browser utility 

illustrating the fuzzy components grouped by functionalities.  

With the help of XfuzzyLib, building a fuzzy inference 

Fig. 3.  a) Access to XfuzzyLib components through the Simulink Library Browser b) Simulink model of a 2-input 

1-output FLC that uses product as connective and first-order Takagi-Sugeno as defuzzification method 

(a) (b) 
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system requires choosing, interconnecting, and defining the 

parameters of the needed blocks. Modules in Xilinx Blockset 

library admit a set of parameters to define their functionality, 

the size, and the employed arithmetic. Similarly, once the 

block diagram of a new component in XfuzzyLib library has 

been defined, that element can be encapsulated as a subsystem 

and a mask can be added to identify its parameters. When the 

subsystem is instanced in a hierarchical level, parameters can 

be assigned using numerical values or by means of Matlab 

variables. Numerical values of these variables can be later 

defined using the Matlab command window or an “.m” file. 

System functionality can be verified at any design stage using 

the facilities from Simulink to generate excitation signals and 

to capture and display output data.  

In addition to the basic building blocks, XfuzzyLib also 

includes elements describing basic fuzzy logic controllers 

(FLCs) that differ in the number of inputs, the connective used 

to calculate rule activation degrees, and the defuzzification 

method. Current version of XfuzzyLib incorporates 1-, 2-, and 

3-input FLCs using minimum and product as connectives and 

FuzzyMean, WeightedFuzzyMean, first-order Takagi-Sugeno, 

and MaxLabel defuzzification methods. When a user needs to 

develop a fuzzy system tailored to a specific application, these 

FLCs can be employed or a new architecture can be created by 

interconnecting basic building blocks. Also it is possible the 

hierarchical combination of FLCs to define complex fuzzy 

systems. The block diagram of a 2-input FLC that uses 

product as connective and first-order Takagi-Sugeno as 

defuzzification method is shown in Fig. 3b.  

Just like basic building blocks from XfuzzyLib, blocks 

describing FLC architectures are fully parametrizable, making 

it possible to adapt its functionality according to the 

requirement of a particular application by defining the 

appropriated parameters. Basically there are two types of 

parameters: those related to the dimension of the inference 

system, such as the bus size for inputs, outputs and 

membership degrees, and other related to the knowledge base 

of the system, such as the membership functions and the 

rulebase. In order to facilitate its use to the designer, these 

parameters correspond to variables and data structures, which 

can take numeric values using the Simulink graphical interface 

or an “.m” file. At this design level it is also possible to use 

the facilities from Matlab environment to verify the 

functionality of the inference system. Specifically, it results 

interesting the use of signal sources to explore the universe of 

discourse of input variables, data acquisition blocks that allow 

observing the temporal evolution of the system output, and 

data storage elements that facilitate the graphical 

representation of control surfaces.  

The xfsg tool, recently incorporated into Xfuzzy, is able to 

generate the files required to automate this design flow. The 

Graphical User Interface of this tool is similar to the interface 

provided by xfvhdl shown in Fig. 2. Once all the components 

have been configured, xfsg generates an “.mdl” file containing 

a Simulink model of the fuzzy system, and an “.m” file with 

the parameters that define the size and functionality of its 

components. The generated model includes a “System 

Generator” block that eases the system implementation by 

translating the model to different kinds of netlists and 

generating the bitstream file for the FPGA. XSG is also able to 

include the appropriated interfaces to co-simulate the 

hardware implementation of the controller in combination 

with a mathematical model of the plant under control.  

 

V. APPLICATION EXAMPLE 

 The above described synthesis tools have been applied to 

the implementation of a fuzzy system that solves the problem 

of double integrator, which represents a typical problem in 

control engineering [40]. The design methodology shown in 

this section combines the use of specific tools for development 

of fuzzy systems from the Xfuzzy environment, VHDL 

synthesis tools, and modeling and simulation tools from 

Matlab and ModelSim. The development of the fuzzy control 

system with the synthesis tools provided by Xfuzzy will be 

carried out at the different stages illustrated in Fig. 4.  

The first stage of the design flow of a fuzzy controller is 

carried out using the tools included in the Xfuzzy design 

environment [41]. A fuzzy inference module is described in 

Xfuzzy by means of a XFL3 specification, which combines 

fuzzy rulebases and crisp blocks (to perform inference tasks 

and to implement arithmetic and logic blocks, respectively). 

Knowledge rulebases can be directly defined by an expert 

operator (xfedit) or they can be extracted from numerical data 

using identification algorithms (xfdm). For a better 

performance, the membership functions as well as the 

rulebases can be simplified (xfsp). System parameters can be 

then adjusted by supervised learning tools (xfsl). Functional 

verification is carried out by two tools included in Xfuzzy 

(xplot and xfsim). The first one allows analyzing the input-

output relation of the system. The second one allows 

simulating its closed-loop behavior in combination with a 

Java-codified model of the plant. Fig. 5a shows graphically the 

description of the controller in Xfuzzy. This fuzzy system has 

been generated by using the identification tool xfdm with the 

help of a set of numerical data. The system uses two 

rulesbases and a crisp block that performs the arithmetic 

operation of subtraction. Once validated the XFL3 

specification with xfplot and xfsim (Fig. 6a and 7c, 

respectively), the synthesis tools presented in this paper are 

able to generate the files required to start the second design 

stage.   

In this second stage, xfvhdl describes the system by a 

VHDL code that combines different blocks of the VHDL 

library. The testbench file provided by this synthesis tool 

allows performing a functional verification of the VHDL 

description with the ModelSim simulation environment (Fig. 

6b). On the other hand, the equivalent system description as a 

Simulink model provided by xfsg is shown in Fig. 5b.  The 

system functionality can be verified at this design phase using 

the simulation and graphical facilities provided by Simulink 

and Matlab (Fig. 6c). The similarity between the control 

surfaces provided by both synthesis tools compared with the 

graph obtained with the Xfuzzy environment (Fig. 6) validates 

the hardware implementation provided by both design 

techniques.  

As shown in Fig. 4, the design flows for both techniques are 

different. However, both flows can converge because 

Simulink allows developing a model where the VHDL code 
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generated by xfvhdl can be included in a Black Box block 

provided by the Xilinx Blockset library, which allows 

performing an HDL co-simulation where System Generator 

connects to the ModelSim or ISIM simulators. 

 Finally, Simulink also allows carrying out a closed-loop 

functional verification of any of the implementations 

described above, combining the co-simulation of a software 

model of the plant described in Matlab and the hardware 

controller implementation on an FPGA. 

The hardware implementation of this controller using 

arithmetic techniques for antecedents and ROM memory of 

distributed type (with twelve bits for input and output 

precision in all the rules bases) consumes 185 Slices with 

xfvhdl and 259 with xfsg (approximately 3% and 4%, 

respectively, of the Slice resources available in a Spartan 3A 

FPGA from Xilinx). The controller also employs, for both 

techniques, 4 of the 20 hardware multipliers available in the 

FPGA. As it has been described above, different options can be 

selected for the antecedents and type of memory used in the 

implementation of the controller. As an example, Tables I and 

II contain FPGA resource utilization using xfvhdl with different 

implementation options. Table I shows the results after 

Fig. 4.  Fuzzy systems design flow using the hardware synthesis tools provided by Xfuzzy 
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implementing the controller with the option of memory storage 

for antecedents and ROM memory of block type. Table II 

includes the results obtained using the arithmetic option for 

antecedents and logic block as type of implementation 

memory. Both tables detail implementation data relative to the 

two rulebases and the crisp block of the controller. 

Implementation results of the VHDL library blocks used in the 

synthesis of each rulebase are also shown.  

 Controllers for the double integrator problem implemented 

with both synthesis tools are able to operate with the 50 MHz 

clock available at the FPGA development board, which means 

a control cycle of 120 ns for the controllers considered in this 

work. Using hardware co-simulation it is possible to evaluate 

the behavior of the fuzzy controller in a real scenario. As 

demonstrates the closed-loop simulation shown in Fig. 7, the 

performance of a 12-bit controller implemented on the FPGA 

Fig. 5.  a) Xfuzzy graphical representation of the double integrator. b) Simulink model of double integrator generated by xfsg 

(a) (b) 

Fig. 6.  Control surfaces generated by: a) Xfuzzy. b) ModelSim. c) Matlab/Simulink 

(a) (b) (c) 

 

TABLE I 

IMPLEMENTATION RESULTS (SPARTAN 3A, 12 BITS) USING MEMORY FOR 

ANTECEDENTS AND ROM MEMORY OF BLOCK TYPE 

  

TABLE II 

IMPLEMENTATION RESULTS (SPARTAN 3A, 12 BITS) USING ARITHMETIC 

OPTION FOR ANTECEDENTS AND LOGIC BLOCK AS TYPE OF MEMORY 
 

Module 

 

Slices 
 

BRAM 
 

MULT8X18  
 

Module 
 

Slices 
 

BRAM 
 

MULT8X18 

Double Integrator 8/95 0/14 0/2  Double Integrator 8/193 0/0 0/4 

+First rulebase 0/40 0/7 0/1  +First rulebase 0/95 0/0 0/2 

++Control 7/7 0/0 0/0  ++Control 7/7 0/0 0/0 

++Antecedent mem. 2/2 7/7 0/0  ++Arithmetic 47/47 0/0 1/1 

++Rule memory 5/5 0/0 0/0  ++Antecedent mem. 10/10 0/0 0/0 

++Rule selector 8/8 0/0 0/0  ++Rule memory 5/5 0/0 0/0 

++Defuzzifier 18/18 0/0 1/1  ++Rule selector 8/8 0/0 0/0 

+Crisp block 14/14 0/0 0/0  ++Defuzzifier 18/18 0/0 1/1 

+Second rulebase 0/33 0/7 0/1  +Crisp block 14/14 0/0 0/0 

++Control 7/7 0/0 0/0  +Second rulebase 0/76 0/0 0/2 

++Antecedent mem. 1/1 7/7 0/0  ++Control 7/7 0/0 0/0 

++Rule selector 7/7 0/0 0/0  ++Arithmetic 41/41 0/0 1/1 

++Defuzzifier 18/18 0/0 1/1  ++Antecedent mem. 3/3 0/0 0/0 

     ++Rule selector 7/7 0/0 0/0 

     ++Defuzzifier 18/18 0/0 1/1 
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board and interacting with a high-level model of the plant 

(Fig. 7b) is similar to that obtained by the full-precision 

models used by xfsim (Fig. 7c). A quantitative analysis shows 

a mean error of 0.007 between both results with a standard 

deviation of 0.004. 

VI. CONCLUSIONS 

Two design strategies for the automatic synthesis of fuzzy 

inference systems have been presented in this paper. They 

demonstrate that the availability of a design flow, supported 

by the use of parameterized cell libraries and CAD tools, 

considerably speeds up the hardware implementation of fuzzy 

systems, facilitating the exploration of the design space for a 

given application. One of the described tools is focused to 

hardware implementations of fuzzy systems on Xilinx’s 

FPGAs, while the other one provides synthesizable VHDL 

code for ASICs and FPGAs. Compared to previous releases of 

hardware synthesis tools included in Xfuzzy [41] [42], the tools 

described in this paper provide an improved functionality of 

most of the components included in the VHDL and Simulink 

libraries, such as the generation of families of membership 

functions of type “sh_triangular” (where the first and last 

functions are Z- and S-shaped, respectively), as well as new 

operators that implement arithmetic and logical crisp 

functions, and a new defuzzification block for first-order 

Takagi-Sugeno’s systems. Both design libraries have been 

also revised in order to increase their operational speed and 

reduce the resource consumption. Additionally, improved 

graphical interfaces that consider the new features of the tools 

have been completely integrated into the Xfuzzy environment. 

Finally, the most important advantage of the new release is the 

possibility of direct implementation of hierarchical fuzzy 

systems. As demonstrated by their application to an FPGA 

design example, the choice between the two design strategies 

proposed in this paper allows obtaining an adequate tradeoff 

between “high system performance” (usually reached by the 

VHDL based option) and “short design time” (provided by the 

XSG approach). 

ACKNOWLEDGMENT 

This work was partially funded by Spanish Ministerio de 

Economía y Competitividad under the Project TEC2011-

24319 and by Junta de Andalucía under the Project P08-TIC-

03674 (both with support from FEDER), and by the European 

Community through the MOBY-DIC Project FP7-INFSO-

ICT-248858 (www.mobydic-project.eu). P. Brox is supported 

under the post-doctoral program “Juan de la Cierva” from the 

Spanish Government. 

REFERENCES 

[1] L. A. Zadeh, “Outline of a new approach to the analysis of complex 

systems and decision processes”, IEEE Transactions on Systems, Man, 

and Cybernetics, vol. SMC-3, no. 1, January 1973, pp. 28-44. 

[2] T. J. Ross, Fuzzy Logic with Engineering Applications, 2nd ed. 

Hoboken, NJ: Wiley, 2004. 

[3] J. Jarris, Fuzzy logic applications in engineering science, Springer 

Verlag, 2006. 

[4] R.-E. Precup and H. Hellendoorn, “A survey on industrial applications 

of fuzzy control”, Computers in Industry, vol. 62, no. 3, April 2011, pp. 

213-226. 

[5] I. Baturone, A. Barriga, S. Sánchez-Solano, C. J. Jiménez, and D. López, 

Microelectronic Design of Fuzzy Logic-Based Systems, CRC Press, 

2000. 

[6] K. Basterretxea and I. del Campo, Electronic hardware for fuzzy 

computation, in A. Laurent and M-J. Lessot, editors, Scalable Fuzzy 

Algorithms for Data Management and Analysis: Methods and Design, 

Information Science Reference, 2009. 

[7] A. H. Zavala and O. C. Nieto, “Fuzzy Hardware: A Retrospective and 

Analysis”, IEEE Transactions on Fuzzy Systems, vol. 20, no. 4, August 

2012, pp.623-635. 

[8] J. J. Rodriguez-Andina, M. J. Moure, and M. D. Valdes, “Features, 

Design Tools, and Application Domains of FPGAs”, IEEE Transactions 

on Industrial Electronics, vol. 54, no. 4, August 2007, pp. 1810-1823. 

[9] E. Monmasson, L. Idkhajine, M. N. Cirstea, I. Bahri, A. Tisan, and M. 

W. Naouar, “FPGAs in Industrial Control Applications”, IEEE 

Transactions on Industrial Informatics, vol. 7, no. 2, May 2011, pp. 224-

243. 

Fig. 7.  a) Closed-loop hardware co-simulation. b) Results of the closed-loop verification. c) Results of the closed-loop verification obtained with xfsim 

(a) (c) 

(b) 

http://www.mobydic-project.eu/


 9 

[10] N. Sulaiman, Z.A. Obaid, M.H. Marhaban, and M. N. Hamidon, “Design 

and Implementation of FPGA –Based Systems – A Review”, Australian 

Journal of Basic and Applied Sciences, vol. 3, no. 4, 2009, pp. 3575-

3596.  

[11] M. McKenna and B.M. Wilamowski, “Implementing a fuzzy system on 

a field programmable gate array”, in Proc. Int. Joint Conf. on Neural 

Networks, July 2001, pp. 189-194. 

[12] D. N. Oliveira, A. P. de Souza Braga, and O. da Mota Almeida, “Fuzzy 

Logic Controller Implementation on an FPGA using VHDL”, in Proc. 

Fuzzy Information Processing Society (NAFIPS), 2010 Annual Meeting 

of the North American, July 2010, pp. 1-6. 

[13] G. Sakthivel, T. S. Anandhi, and S. P. Natarajan, “Real Time 

Implementation of a Fuzzy Logic Controller on FPGA Using VHDL for 

DC Motor Speed Control”, International Journal of Engineering Science 

and Technology, vol. 2, no. 9, 2010, pp. 4511-4519. 

[14] System Generator for DSP User Guide, v10.1, Xilinx Inc., 2008. 

Available: http://www.xilinx.com. 
[15] M. Bahoura and H. Ezzaidi, “FPGA-implementation of a sequential 

adaptive noise canceller using Xilinx System Generator”, in Proc. Int. 

Conf. on Microelectronics, December 2009, pp. 213-216. 

[16] A. Toledo, P. Navarro, F. Soto, J. Suardíaz, and C. Fernández, 

“Experiences on developing computer vision hardware algorithms using 

Xilinx system generator”, Microprocessors and Microsystems, Special 

Issue on FPGAs: Case Studies in Computer Vision and Image 

Processing, vol. 29, issues 8-9, November 2005, pp. 411-419. 

[17]  R. Sepúlveda, O. Montiel, G. Lizágarra, and O. Castillo, “Modeling and 

Simulation of the Defuzzification Stage of a Type-2 Fuzzy Controller 

using the Xilinx System Generator and Simulink”, Evolutionary Design 

of Intelligent Systems, vol. 257, Springer-Verlag, 2009, pp. 309-325. 

[18] Y. Kung, C. Huang, and M. Tsai, “FPGA Realization of an Adaptive 

Fuzzy Controller for PMLSM Drive”, IEEE Transactions on Industrial 

Electronics, vol.56, no.8, August 2009, pp. 2923-2932. 

[19] F. Taeed, Z. Salam, and S. M. Ayob, “FPGA Implementation of a 

Single-Input Fuzzy Logic Controller for Boost Converter with the 

Absence of an External Analog-to-Digital Converter”, IEEE 

Transactions on Industrial Electronics, vol. 59, no. 2, February 2012, 

pp. 1208-1217.  

[20] C. Huang, W. Wang, and C. Chiu, “Design and Implementation of 

Fuzzy Control on a Two-Wheel Inverted Pendulum”, IEEE Transactions 

on Industrial Electronics, vol.58, no.7, July 2011, pp. 2988-3001. 

[21] H. Huang and C. Tsai, “FPGA Implementation of an Embedded Robust 
Adaptive Controller for Autonomous Omnidirectional Mobile 
Platform”, IEEE Transactions on Industrial Electronics, vol.56, no.5, 
May 2009, pp. 1604-1616. 

[22] S. Sánchez-Solano, A. Cabrera, I. Baturone, F.J. Moreno-Velo, and M. 
Brox, “FPGA Implementation of Embedded Fuzzy Controllers for 
Robotic Applications”, IEEE Transactions on Industrial Electronics, 
vol. 54, no. 4, August 2007, pp.1937-1945. 

[23] Y. Fu, H. Li, and M. E. Kaye, “Hardware/Software Codesign for a 
Fuzzy Autonomous Road-Following System”, IEEE Transactions on 
Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol. 
40, no. 6, November 2010, pp. 690-696. 

[24] C.-F. Juang and J.-S. Chen, “Water bath temperature control by a 
recurrent fuzzy controller and its FPGA implementation”, IEEE 
Transactions on Industrial Electronics, vol. 53, no. 3, June 2006, pp. 
941-949. 

[25] G. Louverdis and I. Andreadis,  “Design and Implementation of a Fuzzy 
Hardware Structure for Morphological Color Image Processing”, IEEE 
Transactions on Circuits and Systems for Video Technology, vol.13, no. 
3, March 2003, pp.277-288. 

[26] C. Kavka, M. Crespo, W. Geng, and F. Zhong, “A Fuzzy Controller 

Development Tool based on Evolutionary Techniques”, in Proc. of the 

1999 Congress on Evolutionary Computation, July 1999, pp. 2145-2150. 

[27] J.M. Alonso, L. Magdalena, and S. Guillaume, “KBCT: a knowledge 

extraction and representation tool for fuzzy logic based systems”, in 

Proc. IEEE Int. Conf. on Fuzzy Systems, vol.2, July 2004, pp. 989-994. 

[28] E. Moreira and A. Sousa, “FEUP Fuzzy Tool II Improved tool for 

education and embedded control”, in Proc. CISTI'2010 - 5ª Conferencia 

Ibérica de Sistemas y Tecnologías de Información, June 2010, pp. 1-6. 

[29] S. Guillaumea and B. Charnomordicb, “Learning interpretable fuzzy 

inference systems with FisPro”, Information Sciences, Special Issue on 

Interpretable Fuzzy Systems, vol. 181, no. 20, October 2011, pp. 4409-

4427. 

[30] T. Hollstein, S. K. Halgamuge, and M. Glesner, “Computer-Aided 

Design of Fuzzy Systems Based on Generic VHDL Specifications”, 

IEEE Transactions on Fuzzy Systems, vol. 4, no. 4, November 1996, pp. 

403-417. 

[31] R. G. Carvajal, A. Torralba, and L. G. Franquelo, “AFAN: a tool for the 

automatic synthesis of neural and fuzzy controllers with architecture 

optimization”, in Proc. International Symposium on Circuits and 

Systems, June 1997, vol. 1, pp. 637-640. 

[32] M. Re, M. Salmeri, and G. Cardarilli, “A CAD environment for fuzzy 

systems hw/sw mapping”, in Proc. International Symposium on Circuits 

and Systems, May 2000, pp. 221-224. 

[33] D. Kim and In-Hyun Cho, “FADIS: An Integrated Development 

Environment for Automatic Design and Implementation of FLC”, in 

Proc. 1997 Annual Meeting of the North American Fuzzy Information 

Processing Society, September 1997, pp. 33-39. 

[34] A. Bakhti and L. Benbaouche, “Simulink-DSP Co-Design of a Fuzzy 

Logic Controller”, Industrial Electronics Society Annual Conference, 

vol.1, November 2006, pp. 4587-4592. 

[35] I. H. Altas and A.M. Sharaf, “A Generalized Direct Approach for 

Designing Fuzzy Logic Controllers in Matlab/Simulink GUI 

Environment”, International Journal of Information Technology and 

Intelligent Computing, Int. J. IT&IC, no.4 vol.1, 2007. 

[36] M. Shahrieel, S. Najib, E. Chee, I. Azmira, and Mohd Hendra, 

“Comparison of Fuzzy Control Rules using MATLAB Toolbox and 

Simulink for DC Induction Motor-Speed Control”, in Proc. 2009 

International Conference of Soft Computing and Pattern Recognition, 

December 2009, pp. 711-715.  

[37] ChanghuaLu and J. Zhang, “Design and Simulation of a Fuzzy-PID 

Composite Parameters' Controller with MATLAB”, in Proc. 2010 

International Conference on Computer Design and Applications 

(ICCDA 2010), June 2010, pp. 308-311. 

[38]  O. Kobyrynka, Y. Stekh, and O. Markelov, “Comparison analysis of 

methods implemented in MATHLAB for fuzzy logic algorithms”, in 

Proc. 2011 CAD Systems and Microelectronics, February 2011, pp. 239-

240. 

[39] Xfuzzy: Fuzzy Logic Design Tools, IMSE-CNM, CSIC. Available: 

http://www.imse-cnm.csic.es/Xfuzzy  

[40] I. Baturone, M. C. Martínez-Rodríguez, P. Brox, A. Gersnoviez, and S. 
Sánchez-Solano, “Digital Implementation of Hierarchical Piecewise-
Affine Controllers”, in Proc.  20th International Symposium on 
Industrial Electronics (ISIE 2011), June 2011, pp.1497-1502. 

[41] I. Baturone, F. J. Moreno-Velo, S. Sánchez-Solano, A. Barriga, P. Brox, 
A. Gersnoviez, and M. Brox, “Using Xfuzzy Environment for the Whole 
Design of Fuzzy Systems”, in Proc. IEEE International Conference on 
Fuzzy Systems (FUZZ-IEEE 2007), July 2007, pp. 517-522. 

[42] S. Sánchez-Solano, M. Brox, E. del Toro, P. Brox, and I. Baturone, 
“Model-Based Design Methodology for Rapid Development of Fuzzy 
Controllers on FPGAs”, IEEE Transactions on Industrial Informatics, 
vol. PP, no. 99, 2012, p. 1. 

 

 

María Brox received the B.Sc. degree (with honors) 

in physics from the University of Córdoba, Córdoba, 

Spain, in 2004, and the M.Sc. degree in 

microelectronics from the University of Seville, 

Seville, Spain, in 2008. 

From 2005 to 2007, she held a postgraduate 

fellowship from the Spanish Government with the 

Instituto de Microelectrónica de Sevilla (IMSE-

CNM-CSIC), Seville, Spain. She is currently an 

Assistant Professor with the Department of 

Computer Architecture, University of Córdoba, Córdoba, Spain. Her research 

area is the development of automatic CAD tools for the design of embedded 

fuzzy controllers on FPGAs. 

http://www.xilinx.com/
http://www.imse-cnm.csic.es/Xfuzzy


 10 

 

 

Santiago Sánchez-Solano received the B.Sc. (with 

honors) and Ph.D. degrees from the University of 

Seville, Seville, Spain, in 1980 and 1990, 

respectively, both in physics. 

After six years as a System Analyst with the 

Computer Center, University of Seville, Spain, he 

joined the Instituto de Microelectrónica de Sevilla 

(IMSE-CNM-CSIC), Seville, where he is currently a 

Scientific Researcher. He is the coauthor of two 

books and 150 scientific papers and has participated 

in 25 research projects funded by different organisms, acting in seven of them 

as lead researcher. His research interests include very large scale integration 

design, computer-aided-design tools for microelectronic design, and hardware 

implementation of neuro-fuzzy systems. 

 

 

 

Ernesto del Toro received the B.Sc. degree in 

automation engineering and M.Sc. degree in 

electronics from the Instituto Superior Politécnico 

J.A.E. of Havana (CUJAE), Havana, Cuba, in 2004 

and 2007, respectively. 

He held a MAEC-AECID PhD scholarship from 

the Spanish Government in the Instituto de 

Microelectrónica de Sevilla (IMSE-CNM-CSIC), 

Seville, Spain, from 2008 to 2011. Currently, he is a 

Professor of electronics and a Research Assistant 

with the Microelectronics Research Center (CIME-CUJAE), Havana, Cuba. 

His research interests include embedded computing, hardware/software 

codesign and algorithm acceleration. 

 

 

 

 

 

Piedad Brox received the B.Sc. degree from the 

University of Córdoba, Córdoba, Spain, in 2002, and 

the Ph.D. degree (with honors) from the University 

of Seville, Seville, Spain, in 2009, both in physics. 

Since 2002, she has been with the Instituto de 

Microelectrónica de Sevilla (IMSE-CNM-CSIC), 

Seville, Spain, or with the University of Seville. 

Currently, she is a Postdoctoral Researcher under the 

“Juan de la Cierva” program funded by the Spanish 

Government. Her research areas include the design 

and implementation of neuro-fuzzy systems and its application in image 

processing, and digital implementation of embedded controllers. 

 

 

 

 

 

Francisco J. Moreno-Velo received the B.Sc. 

degree in physics and the B.Sc. and Ph.D. degrees in 

computer science from the University of Seville, 

Seville, Spain, in 1995, 1996 and 2003, respectively. 

From 1996 to 1999, he was an Assistant Professor 

with the Department of Applied Physics and 

Electrical Engineering, University of Huelva, 

Huelva, Spain. From 2000 to 2003, he was a 

Postgraduated Research Fellow at the Instituto de 

Microelectrónica de Sevilla (IMSE-CNM-CSIC), 

Seville. Currently, he is an Associate Professor with the Department of 

Information Technologies, University of Huelva. His current research interests 

include fuzzy systems, softcomputing techniques, development of computer-

aided design tools for fuzzy systems, and compiler design. 

 

 

 


