
 1

Abstract—This paper describes two computer aided design

(CAD) tools for automatic synthesis of fuzzy logic-based

inference systems. The tools share a common architecture for

efficient hardware implementation of fuzzy modules, but are

based on two different design strategies. One of them is focused

on the generation of standard VHDL code, which can be later

implemented on a reconfigurable device (FPGA) or as an

application specific integrated circuit (ASIC). The other one uses

the Matlab/Simulink environment and tools for development of

digital signal processing (DSP) systems on Xilinx´s FPGAs. Both

tools are included in the last version of Xfuzzy, a specific

environment for designing complex fuzzy systems, and they

provide interfaces to commercial VHDL synthesis and

verification tools, as well as to conventional FPGA development

environments. As demonstrated by the included design example,

the proposed development strategies speed up the stages of

description, synthesis, and functional verification of embedded

fuzzy inference systems.

Index Terms—CAD tools, Fuzzy inference systems, FPGAs,

Hardware implementation.

I. INTRODUCTION

UZZY logic provides an adequate tool to deal with the

uncertainty and imprecision typical of the reasoning system

used by the human brain [1]. In particular, the capability of

fuzzy systems to capture the knowledge of human experts and

translate it into robust control strategies by means of IF-THEN

rules similar to those employed in natural language (without

the need of mathematical models) has motivated a considerable

increase in the number of control applications using techniques

based on fuzzy inference in the last years [2]-[4]. Many

different approaches for hardware implementation of fuzzy

M. Brox is with the Department of Computer Architecture, University of

Córdoba, Córdoba, Spain (phone: +34 957212224; e-mail: mbrox@uco.es).

S. Sánchez-Solano is with the Instituto de Microelectrónica de Sevilla

(IMSE-CNM-CSIC), Seville, Spain (e-mail: santiago@imse-cnm.csic.es).

E. del Toro is with the Microelectronics Research Center (CIME-CUJAE),

Havana, Cuba (e-mail: ernesto@electrica.cujae.edu.cu).

P. Brox is with the Instituto de Microelectrónica de Sevilla (IMSE-CNM-

CSIC), Seville, Spain (e-mail: brox@imse-cnm.csic.es).

F. J. Moreno-Velo is with the Department of Applied Physics and

Electrical Engineering, University of Huelva, Huelva, Spain (email:

francisco.moreno@dti.uhu.es).

systems by means of ASICs or FPGAs have been also

proposed in the literature [5]-[7].

 The recent improvements in FPGA technologies has led to

important advances in programmable logic devices, which

allow the implementation of a complete system on a

programmable chip (SoPC) [8]-[10]. In addition to the

classical VHDL-based design flow [11]-[13], FPGA

manufactures have recently developed different design tools,

such as System Generator from Xilinx (XSG) [14], to ease the

implementation of digital signal processing (DSP) algorithms

on FPGAs [15]-[17]. Hardware implementation of fuzzy

inference systems is currently demanded by different

applications of industrial control, robotics or consumer

electronics [18]-[25]. However, regarding the application of

computational intelligence paradigms, to benefit from these

technological advances, it is necessary the development of

powerful CAD tools that allow automating the different design

stages of a fuzzy inference system and translating its high-

level description into an efficient hardware implementation.

The use of adequate CAD tools reduces the development cycle

of new products and makes them more competitive in market

terms.

The huge success of fuzzy logic in the last decade of the

past century caused the development of many tools dedicated

to the design of fuzzy inference systems. Most of these tools

were focused on the acquisition of knowledge, i.e., the

creation of fuzzy systems from a data set, the tuning of system

parameters using learning algorithms, and the comparison of

different fuzzy operators and inference approaches [26]-[29].

Many of the initially available commercial software (such as

TIL Shell from Togai InfraLogic, FIDE from Aptronix, and

FuzzyTECH from Inform) allowed generating optimized code

for the different families of microcontrollers existing in that

epoch. Different proposals for automatic synthesis of fuzzy

systems using specific hardware based on analog and digital

design techniques were also presented in those years [30]-[33].

Digital approaches were usually based on the generation of

general-purpose or specific VHDL code. More recently, a

great number of different proposals use the facilities included

in the Matlab/Simulink environment for the design and

hardware implementation of fuzzy systems on reconfigurable

devices [34]-[38].

An interesting CAD tool that offers facilities for the whole

development cycle of a fuzzy system is the Xfuzzy

environment [39]. Two hardware synthesis tools currently

integrated into Xfuzzy are described in the paper. One of them

employs a revised strategy based on VHDL, which generates

code that can be synthesized and implemented on ASICs or

CAD Tools for Hardware Implementation of

Embedded Fuzzy Systems on FPGAs

María Brox, Santiago Sánchez-Solano, Ernesto del Toro, Piedad Brox, and Francisco J. Moreno-Velo

F

 2

FPGAs. The other one provides FPGA implementations based

on XSG. It takes the advantages of flexibility and ease of

configuration offered by Matlab.

The structure of the paper is the following. Both design

strategies are based on an efficient hardware architecture for

fuzzy systems, which is described in Section II. The first

synthesis tool, as well as the VHDL cell library supporting it,

is detailed in Section III. The second tool and its associated

cell library developed in Simulink are presented in Section IV.

Section V illustrates a design example where a hierarchical

fuzzy system has been generated from a set of numerical data

by means of the identification facilities provided by Xfuzzy.

The design flow and the supporting tools associated to both

design strategies are detailed in this section. Finally, Section

VI summarizes the main conclusions of this work.

II. ACTIVE-RULE BASED ARCHITECTURE FOR FUZZY SYSTEMS

From an implementation point of view, a fuzzy system is

composed by three stages: fuzzification, inference, and

defuzzification. The fuzzification stage is in charge of

accepting the inputs to the inference system and evaluating the

similarity degree between these inputs and the membership

functions associated to the linguistic labels used in the rule

antecedents. The inference engine evaluates the different rules

in the knowledge base. The activation degree of each rule is

calculated from the activation degree of its antecedents and

according to the interpretation of the different connectives in

use. Finally, the conclusions of the different rules are

combined and the defuzzification stage is used to provide the

output of the inference system. The implementation scheme

followed by both automatic synthesis tools is based on the

architecture shown in Fig. 1. This architecture allows efficient

implementations of digital fuzzy systems in terms of use of

resources and inference speed. Its main characteristics are the

limitation of the overlapping degree of input membership

functions, a processing strategy that evaluates only the active

rules, and the use of simplified defuzzification methods [5],

[22].

The block diagram of this architecture illustrates the three

stages needed for the calculation of fuzzy inference based on

Mamdani’s model. In the fuzzification stage, the membership

functions circuits (MFC) provide as many pairs “label,

activation degree” (Li, i) for each input value as overlapping

degree has been fixed for the system. The different

combinations of these labels will determine the possible rules

that are activated. In the following stage, the inference process

is carried out by sequentially processing the active rules by

means of an active-rule selection circuit composed by a

counter-controlled multiplexer array. In each clock cycle, the

membership degrees (μi) from rule antecedents are combined

within the connective-antecedent operator circuit to calculate

the activation degree of the rule (hi), while the antecedent

labels address the rule memory location containing the

parameters that define its corresponding consequent. The

number and meaning of these parameters depend on the

defuzzification method that is being employed [5] (ci, wi, for

Mamdani’s systems, and ai, bi, ci, for Takagi-Sugeno’s

systems). In the defuzzification stage, a crisp output value is

obtained by processing the rule consequents with its different

activation degrees, according to the selected defuzzification

method. This stage is carried out in two processes, one that is

in charge of the accumulation tasks and another that performs

the division (if required), according to (1) for Mamdani’s or

(2) for first-order Takagi-Sugeno’s systems. For Fuzzy Mean

(where wi = 1) and Takagi-Sugeno methods, the division

operation can be avoided when ∑ (this condition is

always fulfilled for 2-input inference systems using triangular

membership functions with an overlapping degree equal to

two and the product operator as antecedent connective).

 ̅
∑

∑
 (1)

 ̅
∑

∑
 (2)

A control block in charge of controlling the operation of the

rest of blocks has been also included in the diagram.

Regarding timing considerations, a different pipeline stage

may be introduced for each of the three stages in the

architecture shown in Fig. 1. The minimum number of clock

cycles required to perform the tasks associated with these

pipeline stages will be the greatest of: the maximum number

of membership functions, the number of active rules, and the

number of bits of the output. As an exception, systems that use

specific defuzzification methods where the division process

can be avoided require fewer pipeline cycles, since they only

perform the accumulation process in the last stage. In this

case, the number of clock cycles required for the system

operation will only be the greatest of the maximum number of

membership functions and the number of active rules.

This architecture is characterized by being highly

configurable due to the availability of different circuit

realizations for the blocks in Fig. 1 [22]. MFCs can be

implemented using either memory- or arithmetic-based

approaches. Memory-based MFCs employ memory blocks to

store the labels and membership degrees corresponding to

each point of the input universe of discourse, thus allowing the

use of fuzzy sets with unrestricted shapes. Alternatively,

arithmetic-based MFCs employ arithmetic circuits to generate

families of membership functions with triangular shapes

(except the first and the last functions which can be of type

"Z" and "S", respectively). An antecedent memory block for

Fig. 1. Architecture for a Mamdani’s type fuzzy system

with a processing strategy based on active rules

 3

each input stores, in this case, the values of “point, slope” (,
) defining their associated membership functions. Using

these values, the membership degree corresponding to a given

input is calculated by an arithmetic block that performs the

following operation when :

 (3)

The designer can also choose between two options (product

or minimum) for the connective used in the knowledge base of

the inference system. Finally, depending on the kind of fuzzy

module being implemented, different defuzzifier blocks can be

selected: FuzzyMean, WeightedFuzzyMean, or first-order

Takagi-Sugeno, for interpolators; and MaxLabel, for decision-

making systems.

Regarding arithmetic considerations, fixed-point arithmetic

is used by both design strategies. Input and output signals are

normalized in the interval [0, 1]. The user can select the word-

lengths of input and output signals, membership degrees,

slopes, and defuzzification weight factors (wi) using the

graphical interfaces described in the following sections. The

position of the binary point of slope values is automatically

calculated in order to achieve the higher precision possible for

the selected word-lengths. Results of internal operations are

truncated according to the number of bits used by the output

signals. Finally, when division is required, a serial non-

restoring algorithm that only requires addition, subtraction and

shifts operators is performed.

III. HARDWARE SYNTHESIS WITH XFVHDL

In order to automate the design process with the proposed

architecture, the VHDL-based technique has required the

generation of a library of configurable and synthesizable

blocks described in VHDL language. The blocks of this

library implement the components of the architecture

discussed in the previous section. Different blocks have been

designed for the generation of membership functions, the

sequential processing of active rules, the calculation of the

rule activation degree, the storage of consequents for the

rulebases, the development of tasks of accumulation and

division for different defuzzification methods, and the

generation of control signals. The library also contains a set of

crisp blocks that implement general purpose arithmetic, such

as addition, subtraction, multiplication or division functions,

and logic operations, as a selector.

Building a fuzzy system with this library implies choosing

and interconnecting the adequate elements, as well as

assigning values to their parameters. VHDL descriptions of

library components are parameterized by "generic" VHDL

statements (generic parameters that are fixed when the

component is placed), which facilitates the design process

automation. VHDL descriptions of these blocks verify the

restrictions imposed by the main synthesis tools, so they can

be used as input to ASIC and FPGA design environments in

order to allow rapid development of prototypes built to

validate new ideas or evaluate possible solutions.

In order to speed up the design process based in this

strategy, a new version of the xfvhdl synthesis tool has been

recently incorporated into the Xfuzzy environment. This tool

allows translating the high-level description of a fuzzy system

written in XFL3 (the specification language shared by all the

tools in Xfuzzy) into a VHDL description that can be

synthesized and implemented on a programmable device or an

application specific integrated circuit. The Graphical User

Interface (GUI) of the new version of xfvhdl is shown in Fig.

2. The middle left area represents the knowledge base,

structured as a pull-down menu with components grouped

Fig. 2. Graphical User Interface of xfvhdl

 4

under the categories “RuleBases” and “CrispBlocks”. When a

particular rulebase is selected, the middle right area allows

defining parameters related to the dimension of the system.

This area also shows information about membership functions

and fuzzy rules extracted from the XFL3 specification. The

user can select the implementation option for the antecedents:

arithmetic- or memory-based. FPGA development tools

usually allow selecting the type of memory used in the

implementation stage. For this reason, the user can also choose

the kind of memory (RAM, ROM or logical block) that will be

used in MFC and rule memory blocks.

When all the architectural options have been selected and

the parameters related to the bus sizes have been defined, the

fuzzy system components are identified by green marks closed

to them. Then it is possible to generate the output files by

pressing the button “Generate VHDL code”. Basically, this

action generates a VHDL description of the fuzzy system and

a testbench, also described in VHDL, that allows verifying the

functionality of the system. The VHDL file is based on the

interconnection of the library blocks that have been described

in the previous section. At the beginning of this file a package

of constants is introduced. These constants are automatically

calculated from the values extracted from the knowledge base

and the parameters related to the bus sizes that are introduced

by the user. When the interconnection of library blocks is

performed, the generic parameters of each block are connected

to the constants defined in the package. This file also contains

tables of values with information about antecedents, rules, and

consequents. Library blocks used for the defuzzification

method and the antecedents’ connective are extracted directly

from the XFL3 specification. However, other library

components, as well as the VHDL description style included

in the code, depend on the architectural options that the user

has selected. Specifically, if the memory type chosen for the

antecedents and rules memories is logical block, the

description generated for both memories is performed by

means of a CASE statement and, in the case of FPGA

implementation, CLBs of the programmable device are

configured as logic blocks. When the selected option is ROM

memory, if the user selects the corresponding option, the

synthesis tool can extract the ROM memory to implement

these descriptions. Finally, if the selected option is RAM

memory, CLBs of the programmable device are configured as

distributed RAM memory or embedded RAM memory blocks

(BRAMs) can also be used for the implementation of

antecedents and rules memories without consuming additional

resources of the FPGA. If the system is hierarchical, a VHDL

description and a testbench file are generated for each

rulebase, which allows checking the control surface obtained

for each one of them (as those shown in Fig. 6 of Section V).

A structural VHDL description of the hierarchical system is

also obtained, with a testbench that allows verifying the

corresponding input-output behavior. All the testbench files

include the instantiation of the fuzzy system, a process that

provides a periodical clock signal, and another process to

generate the initial reset signal and a sweep of the input

signals used in the simulation of the system.

IV. HARDWARE SYNTHESIS WITH XFSG

The second design technique included in Xfuzzy is based on

XSG. The Xilinx’s tool for the development of DSP systems

on FPGAs is integrated into the Matlab environment. It

includes a Simulink library (Xilinx Blockset) that provides

basic building blocks for digital systems design, as well as the

software required to translate Simulink models using these

blocks to HDL descriptions that can be implemented on

FPGAs. Using this design tool, a new library named XfuzzyLib

has been generated to accelerate the synthesis of fuzzy

systems designed with Xfuzzy. This library includes different

blocks to implement each of the stages of the active-rule based

architecture for fuzzy inference systems described in Section

II. Fig. 3a shows the Simulink library browser utility

illustrating the fuzzy components grouped by functionalities.

With the help of XfuzzyLib, building a fuzzy inference

Fig. 3. a) Access to XfuzzyLib components through the Simulink Library Browser b) Simulink model of a 2-input

1-output FLC that uses product as connective and first-order Takagi-Sugeno as defuzzification method

(a) (b)

 5

system requires choosing, interconnecting, and defining the

parameters of the needed blocks. Modules in Xilinx Blockset

library admit a set of parameters to define their functionality,

the size, and the employed arithmetic. Similarly, once the

block diagram of a new component in XfuzzyLib library has

been defined, that element can be encapsulated as a subsystem

and a mask can be added to identify its parameters. When the

subsystem is instanced in a hierarchical level, parameters can

be assigned using numerical values or by means of Matlab

variables. Numerical values of these variables can be later

defined using the Matlab command window or an “.m” file.

System functionality can be verified at any design stage using

the facilities from Simulink to generate excitation signals and

to capture and display output data.

In addition to the basic building blocks, XfuzzyLib also

includes elements describing basic fuzzy logic controllers

(FLCs) that differ in the number of inputs, the connective used

to calculate rule activation degrees, and the defuzzification

method. Current version of XfuzzyLib incorporates 1-, 2-, and

3-input FLCs using minimum and product as connectives and

FuzzyMean, WeightedFuzzyMean, first-order Takagi-Sugeno,

and MaxLabel defuzzification methods. When a user needs to

develop a fuzzy system tailored to a specific application, these

FLCs can be employed or a new architecture can be created by

interconnecting basic building blocks. Also it is possible the

hierarchical combination of FLCs to define complex fuzzy

systems. The block diagram of a 2-input FLC that uses

product as connective and first-order Takagi-Sugeno as

defuzzification method is shown in Fig. 3b.

Just like basic building blocks from XfuzzyLib, blocks

describing FLC architectures are fully parametrizable, making

it possible to adapt its functionality according to the

requirement of a particular application by defining the

appropriated parameters. Basically there are two types of

parameters: those related to the dimension of the inference

system, such as the bus size for inputs, outputs and

membership degrees, and other related to the knowledge base

of the system, such as the membership functions and the

rulebase. In order to facilitate its use to the designer, these

parameters correspond to variables and data structures, which

can take numeric values using the Simulink graphical interface

or an “.m” file. At this design level it is also possible to use

the facilities from Matlab environment to verify the

functionality of the inference system. Specifically, it results

interesting the use of signal sources to explore the universe of

discourse of input variables, data acquisition blocks that allow

observing the temporal evolution of the system output, and

data storage elements that facilitate the graphical

representation of control surfaces.

The xfsg tool, recently incorporated into Xfuzzy, is able to

generate the files required to automate this design flow. The

Graphical User Interface of this tool is similar to the interface

provided by xfvhdl shown in Fig. 2. Once all the components

have been configured, xfsg generates an “.mdl” file containing

a Simulink model of the fuzzy system, and an “.m” file with

the parameters that define the size and functionality of its

components. The generated model includes a “System

Generator” block that eases the system implementation by

translating the model to different kinds of netlists and

generating the bitstream file for the FPGA. XSG is also able to

include the appropriated interfaces to co-simulate the

hardware implementation of the controller in combination

with a mathematical model of the plant under control.

V. APPLICATION EXAMPLE

 The above described synthesis tools have been applied to

the implementation of a fuzzy system that solves the problem

of double integrator, which represents a typical problem in

control engineering [40]. The design methodology shown in

this section combines the use of specific tools for development

of fuzzy systems from the Xfuzzy environment, VHDL

synthesis tools, and modeling and simulation tools from

Matlab and ModelSim. The development of the fuzzy control

system with the synthesis tools provided by Xfuzzy will be

carried out at the different stages illustrated in Fig. 4.

The first stage of the design flow of a fuzzy controller is

carried out using the tools included in the Xfuzzy design

environment [41]. A fuzzy inference module is described in

Xfuzzy by means of a XFL3 specification, which combines

fuzzy rulebases and crisp blocks (to perform inference tasks

and to implement arithmetic and logic blocks, respectively).

Knowledge rulebases can be directly defined by an expert

operator (xfedit) or they can be extracted from numerical data

using identification algorithms (xfdm). For a better

performance, the membership functions as well as the

rulebases can be simplified (xfsp). System parameters can be

then adjusted by supervised learning tools (xfsl). Functional

verification is carried out by two tools included in Xfuzzy

(xplot and xfsim). The first one allows analyzing the input-

output relation of the system. The second one allows

simulating its closed-loop behavior in combination with a

Java-codified model of the plant. Fig. 5a shows graphically the

description of the controller in Xfuzzy. This fuzzy system has

been generated by using the identification tool xfdm with the

help of a set of numerical data. The system uses two

rulesbases and a crisp block that performs the arithmetic

operation of subtraction. Once validated the XFL3

specification with xfplot and xfsim (Fig. 6a and 7c,

respectively), the synthesis tools presented in this paper are

able to generate the files required to start the second design

stage.

In this second stage, xfvhdl describes the system by a

VHDL code that combines different blocks of the VHDL

library. The testbench file provided by this synthesis tool

allows performing a functional verification of the VHDL

description with the ModelSim simulation environment (Fig.

6b). On the other hand, the equivalent system description as a

Simulink model provided by xfsg is shown in Fig. 5b. The

system functionality can be verified at this design phase using

the simulation and graphical facilities provided by Simulink

and Matlab (Fig. 6c). The similarity between the control

surfaces provided by both synthesis tools compared with the

graph obtained with the Xfuzzy environment (Fig. 6) validates

the hardware implementation provided by both design

techniques.

As shown in Fig. 4, the design flows for both techniques are

different. However, both flows can converge because

Simulink allows developing a model where the VHDL code

 6

generated by xfvhdl can be included in a Black Box block

provided by the Xilinx Blockset library, which allows

performing an HDL co-simulation where System Generator

connects to the ModelSim or ISIM simulators.

 Finally, Simulink also allows carrying out a closed-loop

functional verification of any of the implementations

described above, combining the co-simulation of a software

model of the plant described in Matlab and the hardware

controller implementation on an FPGA.

The hardware implementation of this controller using

arithmetic techniques for antecedents and ROM memory of

distributed type (with twelve bits for input and output

precision in all the rules bases) consumes 185 Slices with

xfvhdl and 259 with xfsg (approximately 3% and 4%,

respectively, of the Slice resources available in a Spartan 3A

FPGA from Xilinx). The controller also employs, for both

techniques, 4 of the 20 hardware multipliers available in the

FPGA. As it has been described above, different options can be

selected for the antecedents and type of memory used in the

implementation of the controller. As an example, Tables I and

II contain FPGA resource utilization using xfvhdl with different

implementation options. Table I shows the results after

Fig. 4. Fuzzy systems design flow using the hardware synthesis tools provided by Xfuzzy

XfuzzyLib

blockset

SysGen

.mdl .m

Java

Xfsim

Simulink

 Xfedit

Description

Xfdm

Identification

Xfsl

Learning
XFL

Simulation

ModelSim

HW/SW Co-simulation

Plant model

Plant model

Xfplot

Control
surface

Synthesis tools

Xfvhdl

Architecture
options

Bus size Xfsg Bus size

Architecture based on

active rules

Division of the
functionality into

blocks

VHDL library

blocks

Simulink
model

ISE

.bit

FPGA

Synthesis

Implementation

.m

Testbench

VHDL

Verification

FPGA ASIC

VHDL commercial

synthesis tools Simulink

Netlist

FPGA
Netlist

ASIC

Layout

Xfsp

Simplification

 VHDL

description

of the fuzzy

system

 7

implementing the controller with the option of memory storage

for antecedents and ROM memory of block type. Table II

includes the results obtained using the arithmetic option for

antecedents and logic block as type of implementation

memory. Both tables detail implementation data relative to the

two rulebases and the crisp block of the controller.

Implementation results of the VHDL library blocks used in the

synthesis of each rulebase are also shown.

 Controllers for the double integrator problem implemented

with both synthesis tools are able to operate with the 50 MHz

clock available at the FPGA development board, which means

a control cycle of 120 ns for the controllers considered in this

work. Using hardware co-simulation it is possible to evaluate

the behavior of the fuzzy controller in a real scenario. As

demonstrates the closed-loop simulation shown in Fig. 7, the

performance of a 12-bit controller implemented on the FPGA

Fig. 5. a) Xfuzzy graphical representation of the double integrator. b) Simulink model of double integrator generated by xfsg

(a) (b)

Fig. 6. Control surfaces generated by: a) Xfuzzy. b) ModelSim. c) Matlab/Simulink

(a) (b) (c)

TABLE I

IMPLEMENTATION RESULTS (SPARTAN 3A, 12 BITS) USING MEMORY FOR

ANTECEDENTS AND ROM MEMORY OF BLOCK TYPE

TABLE II

IMPLEMENTATION RESULTS (SPARTAN 3A, 12 BITS) USING ARITHMETIC

OPTION FOR ANTECEDENTS AND LOGIC BLOCK AS TYPE OF MEMORY

Module

Slices

BRAM

MULT8X18

Module

Slices

BRAM

MULT8X18

Double Integrator 8/95 0/14 0/2 Double Integrator 8/193 0/0 0/4

+First rulebase 0/40 0/7 0/1 +First rulebase 0/95 0/0 0/2

++Control 7/7 0/0 0/0 ++Control 7/7 0/0 0/0

++Antecedent mem. 2/2 7/7 0/0 ++Arithmetic 47/47 0/0 1/1

++Rule memory 5/5 0/0 0/0 ++Antecedent mem. 10/10 0/0 0/0

++Rule selector 8/8 0/0 0/0 ++Rule memory 5/5 0/0 0/0

++Defuzzifier 18/18 0/0 1/1 ++Rule selector 8/8 0/0 0/0

+Crisp block 14/14 0/0 0/0 ++Defuzzifier 18/18 0/0 1/1

+Second rulebase 0/33 0/7 0/1 +Crisp block 14/14 0/0 0/0

++Control 7/7 0/0 0/0 +Second rulebase 0/76 0/0 0/2

++Antecedent mem. 1/1 7/7 0/0 ++Control 7/7 0/0 0/0

++Rule selector 7/7 0/0 0/0 ++Arithmetic 41/41 0/0 1/1

++Defuzzifier 18/18 0/0 1/1 ++Antecedent mem. 3/3 0/0 0/0

 ++Rule selector 7/7 0/0 0/0

 ++Defuzzifier 18/18 0/0 1/1

 8

board and interacting with a high-level model of the plant

(Fig. 7b) is similar to that obtained by the full-precision

models used by xfsim (Fig. 7c). A quantitative analysis shows

a mean error of 0.007 between both results with a standard

deviation of 0.004.

VI. CONCLUSIONS

Two design strategies for the automatic synthesis of fuzzy

inference systems have been presented in this paper. They

demonstrate that the availability of a design flow, supported

by the use of parameterized cell libraries and CAD tools,

considerably speeds up the hardware implementation of fuzzy

systems, facilitating the exploration of the design space for a

given application. One of the described tools is focused to

hardware implementations of fuzzy systems on Xilinx’s

FPGAs, while the other one provides synthesizable VHDL

code for ASICs and FPGAs. Compared to previous releases of

hardware synthesis tools included in Xfuzzy [41] [42], the tools

described in this paper provide an improved functionality of

most of the components included in the VHDL and Simulink

libraries, such as the generation of families of membership

functions of type “sh_triangular” (where the first and last

functions are Z- and S-shaped, respectively), as well as new

operators that implement arithmetic and logical crisp

functions, and a new defuzzification block for first-order

Takagi-Sugeno’s systems. Both design libraries have been

also revised in order to increase their operational speed and

reduce the resource consumption. Additionally, improved

graphical interfaces that consider the new features of the tools

have been completely integrated into the Xfuzzy environment.

Finally, the most important advantage of the new release is the

possibility of direct implementation of hierarchical fuzzy

systems. As demonstrated by their application to an FPGA

design example, the choice between the two design strategies

proposed in this paper allows obtaining an adequate tradeoff

between “high system performance” (usually reached by the

VHDL based option) and “short design time” (provided by the

XSG approach).

ACKNOWLEDGMENT

This work was partially funded by Spanish Ministerio de

Economía y Competitividad under the Project TEC2011-

24319 and by Junta de Andalucía under the Project P08-TIC-

03674 (both with support from FEDER), and by the European

Community through the MOBY-DIC Project FP7-INFSO-

ICT-248858 (www.mobydic-project.eu). P. Brox is supported

under the post-doctoral program “Juan de la Cierva” from the

Spanish Government.

REFERENCES

[1] L. A. Zadeh, “Outline of a new approach to the analysis of complex

systems and decision processes”, IEEE Transactions on Systems, Man,

and Cybernetics, vol. SMC-3, no. 1, January 1973, pp. 28-44.

[2] T. J. Ross, Fuzzy Logic with Engineering Applications, 2nd ed.

Hoboken, NJ: Wiley, 2004.

[3] J. Jarris, Fuzzy logic applications in engineering science, Springer

Verlag, 2006.

[4] R.-E. Precup and H. Hellendoorn, “A survey on industrial applications

of fuzzy control”, Computers in Industry, vol. 62, no. 3, April 2011, pp.

213-226.

[5] I. Baturone, A. Barriga, S. Sánchez-Solano, C. J. Jiménez, and D. López,

Microelectronic Design of Fuzzy Logic-Based Systems, CRC Press,

2000.

[6] K. Basterretxea and I. del Campo, Electronic hardware for fuzzy

computation, in A. Laurent and M-J. Lessot, editors, Scalable Fuzzy

Algorithms for Data Management and Analysis: Methods and Design,

Information Science Reference, 2009.

[7] A. H. Zavala and O. C. Nieto, “Fuzzy Hardware: A Retrospective and

Analysis”, IEEE Transactions on Fuzzy Systems, vol. 20, no. 4, August

2012, pp.623-635.

[8] J. J. Rodriguez-Andina, M. J. Moure, and M. D. Valdes, “Features,

Design Tools, and Application Domains of FPGAs”, IEEE Transactions

on Industrial Electronics, vol. 54, no. 4, August 2007, pp. 1810-1823.

[9] E. Monmasson, L. Idkhajine, M. N. Cirstea, I. Bahri, A. Tisan, and M.

W. Naouar, “FPGAs in Industrial Control Applications”, IEEE

Transactions on Industrial Informatics, vol. 7, no. 2, May 2011, pp. 224-

243.

Fig. 7. a) Closed-loop hardware co-simulation. b) Results of the closed-loop verification. c) Results of the closed-loop verification obtained with xfsim

(a) (c)

(b)

http://www.mobydic-project.eu/

 9

[10] N. Sulaiman, Z.A. Obaid, M.H. Marhaban, and M. N. Hamidon, “Design

and Implementation of FPGA –Based Systems – A Review”, Australian

Journal of Basic and Applied Sciences, vol. 3, no. 4, 2009, pp. 3575-

3596.

[11] M. McKenna and B.M. Wilamowski, “Implementing a fuzzy system on

a field programmable gate array”, in Proc. Int. Joint Conf. on Neural

Networks, July 2001, pp. 189-194.

[12] D. N. Oliveira, A. P. de Souza Braga, and O. da Mota Almeida, “Fuzzy

Logic Controller Implementation on an FPGA using VHDL”, in Proc.

Fuzzy Information Processing Society (NAFIPS), 2010 Annual Meeting

of the North American, July 2010, pp. 1-6.

[13] G. Sakthivel, T. S. Anandhi, and S. P. Natarajan, “Real Time

Implementation of a Fuzzy Logic Controller on FPGA Using VHDL for

DC Motor Speed Control”, International Journal of Engineering Science

and Technology, vol. 2, no. 9, 2010, pp. 4511-4519.

[14] System Generator for DSP User Guide, v10.1, Xilinx Inc., 2008.

Available: http://www.xilinx.com.
[15] M. Bahoura and H. Ezzaidi, “FPGA-implementation of a sequential

adaptive noise canceller using Xilinx System Generator”, in Proc. Int.

Conf. on Microelectronics, December 2009, pp. 213-216.

[16] A. Toledo, P. Navarro, F. Soto, J. Suardíaz, and C. Fernández,

“Experiences on developing computer vision hardware algorithms using

Xilinx system generator”, Microprocessors and Microsystems, Special

Issue on FPGAs: Case Studies in Computer Vision and Image

Processing, vol. 29, issues 8-9, November 2005, pp. 411-419.

[17] R. Sepúlveda, O. Montiel, G. Lizágarra, and O. Castillo, “Modeling and

Simulation of the Defuzzification Stage of a Type-2 Fuzzy Controller

using the Xilinx System Generator and Simulink”, Evolutionary Design

of Intelligent Systems, vol. 257, Springer-Verlag, 2009, pp. 309-325.

[18] Y. Kung, C. Huang, and M. Tsai, “FPGA Realization of an Adaptive

Fuzzy Controller for PMLSM Drive”, IEEE Transactions on Industrial

Electronics, vol.56, no.8, August 2009, pp. 2923-2932.

[19] F. Taeed, Z. Salam, and S. M. Ayob, “FPGA Implementation of a

Single-Input Fuzzy Logic Controller for Boost Converter with the

Absence of an External Analog-to-Digital Converter”, IEEE

Transactions on Industrial Electronics, vol. 59, no. 2, February 2012,

pp. 1208-1217.

[20] C. Huang, W. Wang, and C. Chiu, “Design and Implementation of

Fuzzy Control on a Two-Wheel Inverted Pendulum”, IEEE Transactions

on Industrial Electronics, vol.58, no.7, July 2011, pp. 2988-3001.

[21] H. Huang and C. Tsai, “FPGA Implementation of an Embedded Robust
Adaptive Controller for Autonomous Omnidirectional Mobile
Platform”, IEEE Transactions on Industrial Electronics, vol.56, no.5,
May 2009, pp. 1604-1616.

[22] S. Sánchez-Solano, A. Cabrera, I. Baturone, F.J. Moreno-Velo, and M.
Brox, “FPGA Implementation of Embedded Fuzzy Controllers for
Robotic Applications”, IEEE Transactions on Industrial Electronics,
vol. 54, no. 4, August 2007, pp.1937-1945.

[23] Y. Fu, H. Li, and M. E. Kaye, “Hardware/Software Codesign for a
Fuzzy Autonomous Road-Following System”, IEEE Transactions on
Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol.
40, no. 6, November 2010, pp. 690-696.

[24] C.-F. Juang and J.-S. Chen, “Water bath temperature control by a
recurrent fuzzy controller and its FPGA implementation”, IEEE
Transactions on Industrial Electronics, vol. 53, no. 3, June 2006, pp.
941-949.

[25] G. Louverdis and I. Andreadis, “Design and Implementation of a Fuzzy
Hardware Structure for Morphological Color Image Processing”, IEEE
Transactions on Circuits and Systems for Video Technology, vol.13, no.
3, March 2003, pp.277-288.

[26] C. Kavka, M. Crespo, W. Geng, and F. Zhong, “A Fuzzy Controller

Development Tool based on Evolutionary Techniques”, in Proc. of the

1999 Congress on Evolutionary Computation, July 1999, pp. 2145-2150.

[27] J.M. Alonso, L. Magdalena, and S. Guillaume, “KBCT: a knowledge

extraction and representation tool for fuzzy logic based systems”, in

Proc. IEEE Int. Conf. on Fuzzy Systems, vol.2, July 2004, pp. 989-994.

[28] E. Moreira and A. Sousa, “FEUP Fuzzy Tool II Improved tool for

education and embedded control”, in Proc. CISTI'2010 - 5ª Conferencia

Ibérica de Sistemas y Tecnologías de Información, June 2010, pp. 1-6.

[29] S. Guillaumea and B. Charnomordicb, “Learning interpretable fuzzy

inference systems with FisPro”, Information Sciences, Special Issue on

Interpretable Fuzzy Systems, vol. 181, no. 20, October 2011, pp. 4409-

4427.

[30] T. Hollstein, S. K. Halgamuge, and M. Glesner, “Computer-Aided

Design of Fuzzy Systems Based on Generic VHDL Specifications”,

IEEE Transactions on Fuzzy Systems, vol. 4, no. 4, November 1996, pp.

403-417.

[31] R. G. Carvajal, A. Torralba, and L. G. Franquelo, “AFAN: a tool for the

automatic synthesis of neural and fuzzy controllers with architecture

optimization”, in Proc. International Symposium on Circuits and

Systems, June 1997, vol. 1, pp. 637-640.

[32] M. Re, M. Salmeri, and G. Cardarilli, “A CAD environment for fuzzy

systems hw/sw mapping”, in Proc. International Symposium on Circuits

and Systems, May 2000, pp. 221-224.

[33] D. Kim and In-Hyun Cho, “FADIS: An Integrated Development

Environment for Automatic Design and Implementation of FLC”, in

Proc. 1997 Annual Meeting of the North American Fuzzy Information

Processing Society, September 1997, pp. 33-39.

[34] A. Bakhti and L. Benbaouche, “Simulink-DSP Co-Design of a Fuzzy

Logic Controller”, Industrial Electronics Society Annual Conference,

vol.1, November 2006, pp. 4587-4592.

[35] I. H. Altas and A.M. Sharaf, “A Generalized Direct Approach for

Designing Fuzzy Logic Controllers in Matlab/Simulink GUI

Environment”, International Journal of Information Technology and

Intelligent Computing, Int. J. IT&IC, no.4 vol.1, 2007.

[36] M. Shahrieel, S. Najib, E. Chee, I. Azmira, and Mohd Hendra,

“Comparison of Fuzzy Control Rules using MATLAB Toolbox and

Simulink for DC Induction Motor-Speed Control”, in Proc. 2009

International Conference of Soft Computing and Pattern Recognition,

December 2009, pp. 711-715.

[37] ChanghuaLu and J. Zhang, “Design and Simulation of a Fuzzy-PID

Composite Parameters' Controller with MATLAB”, in Proc. 2010

International Conference on Computer Design and Applications

(ICCDA 2010), June 2010, pp. 308-311.

[38] O. Kobyrynka, Y. Stekh, and O. Markelov, “Comparison analysis of

methods implemented in MATHLAB for fuzzy logic algorithms”, in

Proc. 2011 CAD Systems and Microelectronics, February 2011, pp. 239-

240.

[39] Xfuzzy: Fuzzy Logic Design Tools, IMSE-CNM, CSIC. Available:

http://www.imse-cnm.csic.es/Xfuzzy

[40] I. Baturone, M. C. Martínez-Rodríguez, P. Brox, A. Gersnoviez, and S.
Sánchez-Solano, “Digital Implementation of Hierarchical Piecewise-
Affine Controllers”, in Proc. 20th International Symposium on
Industrial Electronics (ISIE 2011), June 2011, pp.1497-1502.

[41] I. Baturone, F. J. Moreno-Velo, S. Sánchez-Solano, A. Barriga, P. Brox,
A. Gersnoviez, and M. Brox, “Using Xfuzzy Environment for the Whole
Design of Fuzzy Systems”, in Proc. IEEE International Conference on
Fuzzy Systems (FUZZ-IEEE 2007), July 2007, pp. 517-522.

[42] S. Sánchez-Solano, M. Brox, E. del Toro, P. Brox, and I. Baturone,
“Model-Based Design Methodology for Rapid Development of Fuzzy
Controllers on FPGAs”, IEEE Transactions on Industrial Informatics,
vol. PP, no. 99, 2012, p. 1.

María Brox received the B.Sc. degree (with honors)

in physics from the University of Córdoba, Córdoba,

Spain, in 2004, and the M.Sc. degree in

microelectronics from the University of Seville,

Seville, Spain, in 2008.

From 2005 to 2007, she held a postgraduate

fellowship from the Spanish Government with the

Instituto de Microelectrónica de Sevilla (IMSE-

CNM-CSIC), Seville, Spain. She is currently an

Assistant Professor with the Department of

Computer Architecture, University of Córdoba, Córdoba, Spain. Her research

area is the development of automatic CAD tools for the design of embedded

fuzzy controllers on FPGAs.

http://www.xilinx.com/
http://www.imse-cnm.csic.es/Xfuzzy

 10

Santiago Sánchez-Solano received the B.Sc. (with

honors) and Ph.D. degrees from the University of

Seville, Seville, Spain, in 1980 and 1990,

respectively, both in physics.

After six years as a System Analyst with the

Computer Center, University of Seville, Spain, he

joined the Instituto de Microelectrónica de Sevilla

(IMSE-CNM-CSIC), Seville, where he is currently a

Scientific Researcher. He is the coauthor of two

books and 150 scientific papers and has participated

in 25 research projects funded by different organisms, acting in seven of them

as lead researcher. His research interests include very large scale integration

design, computer-aided-design tools for microelectronic design, and hardware

implementation of neuro-fuzzy systems.

Ernesto del Toro received the B.Sc. degree in

automation engineering and M.Sc. degree in

electronics from the Instituto Superior Politécnico

J.A.E. of Havana (CUJAE), Havana, Cuba, in 2004

and 2007, respectively.

He held a MAEC-AECID PhD scholarship from

the Spanish Government in the Instituto de

Microelectrónica de Sevilla (IMSE-CNM-CSIC),

Seville, Spain, from 2008 to 2011. Currently, he is a

Professor of electronics and a Research Assistant

with the Microelectronics Research Center (CIME-CUJAE), Havana, Cuba.

His research interests include embedded computing, hardware/software

codesign and algorithm acceleration.

Piedad Brox received the B.Sc. degree from the

University of Córdoba, Córdoba, Spain, in 2002, and

the Ph.D. degree (with honors) from the University

of Seville, Seville, Spain, in 2009, both in physics.

Since 2002, she has been with the Instituto de

Microelectrónica de Sevilla (IMSE-CNM-CSIC),

Seville, Spain, or with the University of Seville.

Currently, she is a Postdoctoral Researcher under the

“Juan de la Cierva” program funded by the Spanish

Government. Her research areas include the design

and implementation of neuro-fuzzy systems and its application in image

processing, and digital implementation of embedded controllers.

Francisco J. Moreno-Velo received the B.Sc.

degree in physics and the B.Sc. and Ph.D. degrees in

computer science from the University of Seville,

Seville, Spain, in 1995, 1996 and 2003, respectively.

From 1996 to 1999, he was an Assistant Professor

with the Department of Applied Physics and

Electrical Engineering, University of Huelva,

Huelva, Spain. From 2000 to 2003, he was a

Postgraduated Research Fellow at the Instituto de

Microelectrónica de Sevilla (IMSE-CNM-CSIC),

Seville. Currently, he is an Associate Professor with the Department of

Information Technologies, University of Huelva. His current research interests

include fuzzy systems, softcomputing techniques, development of computer-

aided design tools for fuzzy systems, and compiler design.

