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In a naphtha distillation process, the natural objective is to perform an entire process maximization
of the production rate while meeting required product qualities by searching for an optimal operating
condition by manipulating the operating variables. The objective of this paper includes performing an
energy process optimization. Not only is an adequate production rate met with the required product
qualities but the operating cost is also minimized through a data mining approach. The study of the
aphtha distillation Decision 
upport System Data mining 
ost optimization

influence of all process attributes in the defined Energy Efficient Indicator (EEI) allows the construction of
a multivariate linear model to aid human experts in the recovery of energy losses. A canonical discriminant
function carried out the data prediction step. The quality of the Decision Support System framework is
illustrated by a case study considering a real database. Also, a commercial software supported by this
mining framework is presented.
. Introduction and bibliographical review

The goal of simulating the performance of an expert is to help
uman workers solve real-world problems by expertise, a specific
omain of knowledge (Shiau, 2011). There are diverse problems
hich need to be solved in the real world. Thus, the use of an expert

ystem (or a similar artificial intelligence framework) becomes pro-
ific in many fields (Liao, 2005). One of the complex problems for the
ontrol in which a computational intelligent approach is amenable
s a crude oil distillation unit. In a crude distillation process, the first
bjective is to perform an entire process optimization including
igh production rate with a required product quality by search-

ng for an optimal operating condition of the operating variables
Frenkel, 2011; Ouattara et al., 2012). In the previous decade, there
as considerable research concerning the optimization of crude
istillation processes (Ghashghaee & Karimzadeh, 2011). In Seo,
h, and Lee (2000), the optimal feed location on both the main
olumn and stabilizer is obtained by solving rigorous “a priori”

odels and mixed integer nonlinear programming. The sensitivity

o small variations in feed composition is studied in Dave, Dabhiya,
atyadev, Ganguly, and Saraf (2003). Julka et al. propose in a two-
art paper (Julka, Karimi, & Srinivasan, 2002; Julka, Srinivasan,

∗ Corresponding author. Tel.: +34 954 552836; fax: +34 954 552833.
E-mail address: fbiscarri@us.es (F. Biscarri).
& Karimi, 2002) a unified framework for modeling, monitoring
and management of supply chain from crude selection and pur-
chase to crude refining. In addition to analytical non-linear models,
computational intelligence techniques such as neural networks
(Gueddar & Dua, 2012; Liau, Yang, & Tsai, 2004) and genetic algo-
rithms (Motlaghi, Jalali, & Ahmadabadi, 2008) are used for the same
purpose. Alhajree, Zahedi, Manan, and Zadeh (2011) cite several
Artificial Neural Network research studies for the control of pro-
cesses in petrochemicals and refineries. From cited papers, most of
the nonlinear controllers require the feedback of state information
for effective control and close monitoring of a process. In practice,
however, the complete online information about the present state
of the industrial process is rarely available. If the real-world values
are not provided to the algorithm on time, the control algorithm
becomes formally invalid. In practice, it recovers from the situa-
tion, at the price of reduced quality control (i.e., worse product), so
such situations should be avoided (Metzger & Polakow, 2011).

The scope of this present study is concerned with a part of the
crude oil distillation called the platforming unit. It is made up of
two subunits: the catalytic reforming or reaction unit and the dis-
tillation unit or train distillation. Most of the cited references are
focused on optimizing the production rate of the distillation unit
(Iranshahi, Bahmanpour, Paymooni, Rahimpour, & Shariati, 2011;

Meidanshahi, Bahmanpour, Iranshahi, & Rahimpour, 2011), but if
the focus is the heat recovery, 80% of the energy consumption (67%
of the energy invoicing tasks) corresponds to the fuel consumption
in the boilers of the previous task (the reaction unit).

dx.doi.org/10.1016/j.compchemeng.2012.04.005
http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
mailto:fbiscarri@us.es
dx.doi.org/10.1016/j.compchemeng.2012.04.005
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At present, research is not only focused in the rise of the produc-
ion rate but also in making customized products (Frenkel, 2011)
nd in the improvement of product quality (Rahimpour, Vakili,
ourazadi, Iranshahi, & Paymooni, 2011). In this sense, classic appli-
ations of linear control theories on the distillation unit are widely
vailable in the literature (Jabbar & Alatiqi, 1997). Also nonlinear
tate estimation research (Jana, Samanta, & Ganguly, 2009) and
ptimal planning strategy research (Kuo & Chang, 2008) are avail-
ble. The main objective of these papers was to remove impurities
n the distillate (i.e., C+

5 in the debutanizer column) and maintain
he minimum possible amount of product (butane) in the bottom
esidual fuel oil to maximize the yield of the product.

The energy management (de Lima & Schaeffer, 2011; Kansha,
ishimoto, & Tsutsumi, 2011) and the energy efficiency (Chiwewe &
ancke, 2011) become important problems. The objective is to per-

orm a complete plant energy process optimization, including an
dequate production rate with the required product quality while
inimizing operating costs (fuel consumption in boilers) through
data mining approach. Several research endeavors have treated

onsumption analysis as a knowledge discovery problem using
ntelligence techniques (Li, Bowers, & Schnier, 2010). Both forms of
earning, supervised and unsupervised, have been adopted in these
tudies (Hippert, Pedreira, & Souza, 2001; Metaxiotis, Kagiannas,
skounis, & Psarras, 2003). In Hippert et al. (2001), the unsuper-
ised learning based on the SOM algorithm for the three tasks,
amely classification, filtering and identification of customer load
attern, is proposed. The intelligent control algorithms applied to
he control of combustion processes have produced satisfactory
esults and show a great potential for growth. Previous research
as shown that boiler efficiency can be optimized with data-mining
pproaches (Miyayama et al., 1991; Ogilvie, Swidenbank, & Hogg,
998). In Kusiak and Song (2006), the authors proposed an opti-
ization with clustering-derived centroids. In Song and Kusiak

2007), the authors develop a data mining approach for optimiz-
ng the combustion efficiency of an electric-utility boiler subject to
ndustrial operating constraints. The latest cited papers offer inter-
sting researches about single boilers. These studies encourage the
uthors of the current paper to offer a mining approach to opti-
ize the efficiency of a complete distillation plant, regarding the

perating and economical constraints.
Since close monitoring of the process is, in practice, rarely avail-

ble, only information collected in a historical database and the
ata mining software tools were used. The expert’s performance is
idden in the collected dataset. This valuable knowledge feeds the
roposed Decision Support System (DSS) framework. The global
lant control model does not need to be reconfigured. The expert’s

nformation can simply be extracted.
The questions that emerge are: is it possible to extract expert

nformation from the limited amount of data collected in the his-
orical database, searching in past data optimal cost operating
onditions? And, is it possible to improve energy efficiency result
y the estimation of new operating condition with a DSS soft-
are tool? The feasibility and benefits of the proposed framework

re demonstrated with a real case study reported. The proposed
ramework-based pilot commercial software is also presented.

The paper is organized as follows: in Section 2, the refin-
ry platforming unit process is described. In Section 3, the data
ining-based DSS framework is presented. It is divided into four

ubsections: the nature of the data set, the data preprocessing
cleaning and filtering), the data transformation and discretization
nd finally, the data reduction and prediction. In Section 4, a solu-

ion to increase the plant energy efficiency is proposed. Section 5
llustrates the quality of the framework by a case study consider-
ng a real database. In Section 6, a framework-based commercial
oftware is presented. Section 7 outlines future directions and con-
luding remarks.
Fig. 1. Process flow diagram of the catalytic reforming plant.

2. The refinery platforming unit process

Refineries are composed of several operating units that are used
to separate fractions, improve the quality of these fractions and
increase the production of higher valued products like gasoline, jet
fuel, diesel oil and home heating oil. The function of the refinery is
to separate the crude oil into many kinds of petroleum products.
This paper pays special attention to the Platforming Unit. This unit
is constituted of two basic units: the catalytic reforming or reaction
unit and the distillation unit or train distillation.

The conventional catalytic naphtha reforming process has been
described in previous studies (Iranshahi, Rahimpour, & Asgari,
2010; Rahimpour, Iranshahi, & Bahmanpour, 2010). The process
consists of three adiabatic reactors containing inter stage heaters
to increase the reaction rates. The main idea of the process is to con-
vert paraffins and naphthenes into aromatics (Fig. 1). The feed to
the naphtha reformer is a crude oil fraction from the refinery crude
unit with a boiling range between 100 ◦C and 180 ◦C. This process
is adiabatically carried out at high temperatures, building up gaso-
line with a high octane number, LPG, hydrogen, fuel gas and coke,
in three reformers. The coke deposits on the spent catalyst surface
causing its deactivation. To recover its activation, the catalyst with
coke is regenerated after a certain running time.

In the first reactor, the major reactions such as dehydrogena-
tion of naphthenes are endothermic and very fast, causing a very
sharp temperature drop. For this reason, this process is designed
using a set of multiple reactors. Heaters between the reactors allow
an adequate reaction temperature level to maintain the catalyst
operation.

The effluent from the last reactor (PPV7, Fig. 1) is cooled partly
by heat exchange with the reactor charge. The stream then enters
the product separator and some of the light hydrocarbons are pro-
duced. The separator liquid product is pumped into the distillation
unit. The function of the distillation unit is to separate the input

product and to produce the aromatic fraction, i.e., benzene, toluene,
C8− and C9− aromatics.
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Fig. 2. Process flow dia

This process is performed in three different distillation columns
Fig. 2). The separator liquid and a stream (called ‘aromatic LPG’)
rom the external platforming unit, feed off the first column, the
ebutanizer column. This column has coupled and strong nonlin-
ar dynamics. To maintain the product specifications, a tightening
rocess control is required, which is really a challenging task for
ontrol engineers (Jana, 2010). This column splits the input into
wo basic products: butane, to the top of the column and a high
ydrocarbon flow, also called ‘platformer’, to the bottom of the
olumn. Platformer feeds off the debenzenizer, the second distil-
ation unit. Its goal is to obtain a light aromatic flow free of the high
ydrocarbon. This stream is fed off the third distillation column
hat produces benzene and toluene. Benzene and toluene are the
mportant products to the plant. The products are sent to the Mor-
hylane Unit. The bottom product is sent to the second column and
he top product to the third column, which are stored up or sent to
he other units of the refinery.

As the platforming unit is one of the critical and important unit
perations for the petroleum industry, the goal is to achieve a well-
ontrolled and stable system, high production rate and product
uality as well as low operating cost for the economic considera-
ion. For this reason, attention has been paid to this unit to improve
roduct rate, efficiency and quality assurance in petroleum indus-
ry in recent years.

. The data mining-based DSS framework

Knowledge Discovery in Databases (KDD) is the process of iden-
ifying valid, new, useful and understandable patterns for large
atasets. Data mining is the mathematical core of the KDD process,

nvolving the inferring algorithms that explore the data, develop
athematical models and discover significant patterns-which are

he essence of useful knowledge (Maimon & Rokach, 2010).

The data mining task can be specified in the form of a data mining

uery, which is the input to the data mining system. A data mining
uery is defined in terms of the following primitives (Han & Kamber,
001).
of the distillation unit.

• Task-relevant data. This is the database portion to be investigated
in particular, the reaction zone. Attributes of interest (relevant
attributes) to be considered in the mining process are defined in
Appendix A.

• The kinds of knowledge to be mined. The data mining function to
be performed is the classification of the operation features that
belong to the EEI. The associations between the feature vector
(operation plant features) and the predictor variable (the EEI) can
be specified.

• Background knowledge. The knowledge about the domain to be
mined is included in the historical database. This knowledge is
useful for guiding the knowledge discovery process, in order to
find the pattern of data. A new operating point, which is similar
to a past operating point included in the historical database and
can verify the quality of data constraint, would be found.

• Presentation and visualization of discovered patterns. Finally, the
complete DSS is automatized through a practical software.

3.1. The nature of the data set

Appendix A describes the set of hourly available measurements:
temperatures measured in the input and the output of the reactors,
the fuel gas heaters’ consumption, the platforming naphtha input
flow, the product separator pressure that is controlled by the recy-
cle gas density and the room temperature. Also, the temperature
increase between the three reactors is available.

The frequency of the operation features is hourly, but the quality
of the product is only analyzed once a day. The length of the sample
of data is from January 2009 to May 2010; from January 2009 to
January 2010 for training data, and the rest for validation subset.
So, the full valid sample contains 12,149 records and the training
sample 9402 records.

3.2. Data preprocessing: data cleaning and filtering
Real-world databases are highly susceptible to noisy, missing
and inconsistent data. Data cleaning can be applied to correct incon-
sistencies (Buzzi-Ferraris, 2011; Buzzi-Ferraris & Manenti, 2011).
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presents a histogram showing the data distribution of EEIREACTION
Fig. 3. Naphtha flow vs. date.

hey are not clear outliers and spurious data, but the plant was
artially stopped for five days during the period of study. This data
ould be removed from the sample. Fig. 3 shows clearly days whose

nput naphtha flow suffered a fall. These days (120 records) are
lassified as outliers and they are deleted from the training sample.

On the other hand, the quality of data is analyzed only once a day
ut not every day. The quality control of the plant limits the level of

mpurities in the distillate by two rules. The failure to comply with
hese rules set the “inconsistent days”:

In the bottom of the debutanizer column, the percentage of ben-
zene (C+

5 components) must be less than 1%.
In the bottom of the debenzenizer column, the percentage of
toluene must be less than 10%

Based on this first control objective, the sample is filtered. All
ata between the day before and the day after an “inconsistent
ay” are filtered. For example, a simple case is illustrated. Fig. 4
hows the percentage of toluene in the bottom of the debenzenizer
olumn. The fourth, fifth and eighth July are outliers. The day before
his range (third July) and the day after (ninth July) are also filtered.

ote that no information is available of quality between fifth and
ighth July. Then, all data between third July and ninth July (both
ncluded) are removed from the sample.

Fig. 4. Percentage of toluene afte
So, due to an excessive percentage of toluene, the “% toluene
filter” deletes the 125 days from the training sample. At this point,
there are valid 6482 records in the sample data.

The same procedure is applied in the case of the percentage of
benzene in the bottom of the debutanizer column (Fig. 5). The added
“% benzene filter” deleted 17 new days from the sample. The final
training sample has reduced from 9402 to 6074 records due to the
imposed quality restrictions. It is a strong but typical reduction in
industrial process mining approach.

3.3. Data transformation and discretization

The data would be transformed or consolidated into a form
appropriate for mining energy efficiency. Thus, new attributes are
constructed and added for the given set of the operating plant fea-
tures. The study of the influence of all process attributes in the
Energy Efficient Indicator (EEI) allows one to identify the most
influent attributes (attributes of interest) and the construction of
a multivariate linear model to aid human expert to recover the
energy losses. So, the EEI in the reaction zone on the plant measures
the total reaction zone consumption with respect to the plant input
flow. It is defined as follows:

EEIREACTION =

5∑

i=3

CSMFGPPHi

PTFINFLOW
(1)

Discretization techniques will be used to reduce the number of
values for a given continuous attribute, particularly the EEI. Interval
levels can then be used to replace actual data values in the classifica-
tion mining process. Reducing the number of values for an attribute
is especially beneficial if classification mining is to be applied to the
preprocessed data. Concept hierarchies for numeric attributes can
be constructed automatically based on data distribution analysis.
In this sense, the analysis of the histogram is used. Partitioning
rules defines the ranges of values. For instance, the standard devi-
ation (�) of the histogram splits the data distribution of EEIREACTION
into five (using the ±2� range) disjoint subsets or buckets. Fig. 6
and partitions.
From now on the new discrete variable, EEIREACTION−SDBIN,

replaces the continuous variable for classification purposes.

r the debenzenizer column.
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Fig. 5. Percentage of benze

peration plant states are now classified according to
heir EEIREACTION−SDBIN value: very high and high con-
umption (EEIREACTION−SDBIN = {2, 1}), normal consumption
EEIREACTION−SDBIN = {0}) or low and very low consumption
EEIREACTION−SDBIN = {−1, − 2}). The mining objective becomes

ore specific after the data discretization step: the present opera-
ion point (state of the plant) is to be headed for an “optimal zone”,
efined by a minimum EEIREACTION−SDBIN zone.

.4. Data reduction and prediction

Once the EEI is discretized, a discriminant analysis technique
s used to predict this categorical response variable. Unlike gen-
ralized linear models, it assumes that the independent variables
ollow a multivariate normal distribution. The procedure attempts
o determine several discriminant functions (linear combinations
f the independent variables) that discriminate among the groups
efined by the response variable.

Discriminant analysis is different from other techniques such as
actor analysis, in that it is not an interdependence technique: an

ttribute relevance analysis that differentiates independent vari-
bles from dependent variables (also called criterion variables)
ust be made prior to use. Then, the first step is to measure the

elevance of attributes. An automatic method should be introduced

Fig. 6. Histogram of EEIREACTION .
er the debutanizer column.

to perform attribute relevance analysis in order to filter statistically
irrelevant or weak relevant attributes, and retain or even rank the
most relevant attributes for the descriptive mining task at hand.
There have been many studies in machine learning, statistics, fuzzy
and rough set theories, and so on, on attribute relevance analysis
(Gong, Huang, & Chen, 2008). The general idea behind attribute rel-
evance analysis is to compute some measurements that are used to
quantify the relevance of an attribute with respect to a given class
or concept. Such measurements include information gain, uncer-
tainty and correlation. In this sense, the p-value based Pearson
chi-square tests for independence of the target and the predictor
without indicating the strength or direction of any existing rela-
tionship is suitable for the framework purposes. From the list of
predictors (Appendix A), eight attributes are selected (Table 1).

After inputs are selected, a canonical discriminant analysis
separates the five classes of EEIREACTION−SDBIN through a linear com-
bination of selected attributes. SPSS Modeler (originally, Statistical
Package for the Social Sciences, since 1968) is used as the data
mining tool for analysis. It is a data mining software tool by SPSS
Inc., an IBM company. The data processing in SPSS Modeler is done
through the use of nodes which are then connected together to
form a stream frame. Designed to support CRISP-DM (Cross Indus-
try Standard Process for Data Mining), which is de facto the standard
for implementing data mining as a business process, Modeler’s
open architecture utilizes existing integrated investments to enable
rapid predictive modeling and high Return On Investment (ROI)
deployment. The processing time varies greatly depending on the
size of the sample. This could take anywhere from a few minutes
(hundreds of fields, hundreds of records) to several hours (a few

million of data). In the case study that covers 74 fields and 25,400
records, the data mining processing time is reduced to a few sec-
onds, using a standard PC.

Table 1
Attribute selection.

Rank Attribute Value

1 CSMFGPPH3 1.0
2 CSMFGPPH5 1.0
3 PTFINFLOW 1.0
4 CSMFGPPH4 1.0
5 P PPV88 1.0
6 TPROOM 1.0
7 DENRECGAS 1.0
8 TPRPPV567 0.99
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Fig. 7. Canonical discriminant functions.

The result offers a good classification, by means of which the
rst two canonical functions (named Function1 and Function2).
he 92.9% of original grouped cases are classified correctly (92.8%
f cross-validated grouped cases classified correctly). Function1
overs 96.8% of the variance. Function2 covers an additional 1.5%.
ig. 7 shows the canonical discriminant functions. Extreme groups,
− 1, − 2} and {1, 2}, do not overlap. The model evaluation is first
erformed using ten-fold cross validation in the training sample.
ater, a new validation by means of the testing sample is done. This
ind of evaluation was selected to train the algorithms using the
ntire testing data set and obtaining a more precise model. This
ill increase the computational effort but improves the model’s

apacity for generating different data sets. The evaluation is per-
ormed by splitting the initial sample in 10 sub-samples in order
o fill consumption range. The model is trained using 9/10 of the
ata set and tested with the 1/10 left. This is performed 10 times
n different training sets and finally the ten estimated errors are
veraged to yield an overall error estimate.

Using the normalized variables, the discriminant analysis also
ffers a structure matrix that allows building the discriminant func-
ions from discriminating variables, without using the canonical
orm. From now on, the N prefix indicates a normalized attribute.
able 2 shows the final form of Function1 and Function2. The vari-
bles are ordered by the absolute size of correlation within function.
Using the normalized variables, and by weighing up the high
ercentage of variance covered by Function1, the plant energy effi-
iency will be improved by means of the new attribute defined in

able 2
iscriminant functions with normalized attributes.

Attribute Function1 Function2

N CSMFGPPH5 0.280 −0.036
N CSMFGPPH3 0.270 0.722
N PTFINFLOW −0.266 0.642
N P PPV88 −0.213 0.589
N DENRECGAS 0.009 0.237
N CSMFGPPH4 0.160 0.227
N TPROOM 0.160 −0.262
N TPRPPV567 0.013 −0.104
Fig. 8. Function F vs. EEI.

(2).

F = 0.28 ∗ N CSMFGPPH5 + 0.27 ∗ N CSMFGPPH3

− 0.27 ∗ N PTFINFLOW − 0.213 ∗ N P PPV8

+ 0.009 ∗ N DENRECGAS + 0.160 ∗ N CSMFGPPH4

+ 0.160 ∗ N TPROOM + 0.013 ∗ N TPRPPV567 (2)

Fig. 8 shows the strong correlation between F and the energy
efficiency indicator. The low negative values of F guarantee low
consumption with respect to the platforming input flow. Thus (2),
in order to improve the energy efficiency from a given operating
point, the plant operator should increase PTFINFLOW or P PPV8, or
decrease the value of the other selected attributes. Is it possible,
in practice, to move the operating point in this sense? It depends
on the present plant operation constraints between attributes, but
the historical database, with the help of the discriminant function
F, suggests some possible ways, as one can see in the following
section. In Fig. 8, also the regression line of the training sample
is drawn as follows: $EEIREACTION = 38.658 + 9.177 * F. The regression
model summary results in an R2 = 0.832. The Pearson correlation
between the dependent variable and the predictor is 0.912. The
95% confidence interval for coefficients are (38.597;38.719) and
(0.093;9.261).

Data mining with large data set is a particularly hard problem to
be solved for many observers. For example, it is not possible to use
the arithmetic mean, since it is very efficient but at the same time
fully nonrobust (masking and swamping problems arise). More-
over, it is not possible to use the median or the trimmed mean or
other methods, since it is computationally hard to order very large
sets of data like the industrial ones are considered in this work.
The proposed model of $EEIREACTION and the use of an efficient data
mining tool overcomes difficulties and offers a practical approach.

4. A possible solution to increase the energy efficiency

Once the industrial process is characterized and the indepen-
dent attributes are selected, the predictive model links EEIREACTION
and attributes. There are several ways to derive the new infor-
mation from the data. For example, a new predictive supervised
classification model should be trained using the plant database;

function F and the selected attributes as input. The supervised clas-
sification model output would be “a priori” estimated for training
purposes: a set of “suggested” new optimal operation points would
be established. Once the model is trained and validated, its output
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Table 3
Case study.

CSMFGPPH50 = 328.77 CSMFGPPH30 = 1051.72
PTFINFLOW0 = 41.39 P PPV80 = 14.23
Fig. 9. Sub-sample A.

ould offer a “suggested” new operation point in order to improve
he energy efficiency. The new value of EEIREACTION will drop. The
roblem is the real knowledge of the “a priori” supervised classi-
cation model output. In the aromatic distillation process, there
re some different possible solutions: the industrial process con-
traints are added to the economical constraints, usually “a priori”
nknown (Robertson, Palazoglu, & Romagnoli, 2011). For example,
ometimes the production rate of some subproduct (benzene, for
xample) would be fixed. Sometimes, the price of some subproduct
aries and several operation changes are suggested. This particular
rocedure advises a human expert validation phase. At that point in
he mining process, the semiautomated mining framework offers a
lear decision aid system, but it is risky to adopt a fully automated
ystem. At present, the suggested approach would be tested, in this
ense, after the human expert validation phase. Section 5 illustrates
practical application of the method.

The authors propose a simple but visual, practical and effective
ethod to aid the human expert to improve efficiency. It is based on

he distance between the regression line and the plant operation
oint. It takes the plant operation constraint between attributes

nto account. The following steps describe the method.

The source data are the training sample of data, the classification
function F and the regression line (named $EEIREACTION) shown in
Fig. 8. The collection of the selected attributes, plus calculated
F and $EEIREACTION, is used to define the learning environment:
A|A = {a0, . . ., an, F,$EEIREACTION}. Instances of the learning envi-
ronment, em, are defined using values taken by vector E = {e0, . . .,
em}.
A function that measures the minimum absolute value of the
distance between each EEIREACTION value and each point of the
estimated regression line would be established as shown below:

Distancee = min|EEIREACTIONe − $EEIREACTIONj∈E
| (3)

where Distancee is the distance value of each individual state e.
From a given original plant operation point (state e), with a
certain value of variables (F = F0; Distance = Distance0), two sub-
samples of data are selected. The sub-sample A1 should verify
the following conditions: DistanceA1 ≤ Distance0 and FA1 between
F0 * (1 − Fpercent/100) and F0. Fpercent is the allowed percentage
of change in F. The sub-sample A2 should verify: FA2 < F0 and
DistanceA2 < Distancethreshold, with Distancethreshold is a fixed limit
of variable Distance. Joining A1 and A2 sub-samples, a possible
theoretical way (sub-sample A) to “move” the original opera-

tion point to a new point of less EEIREACTION value is obtained.
The objective is to move step by step the operation point toward
the correct direction but with “small” (possible in practice) vari-
ations of the attributes. Fig. 9 shows an example of this process,
DENRECGAS0 = 0.38 CSMFGPPH40 = 790.39
TPROOM0 = 24.65 TPRPPV5670 = 102.79

with F0 = 1.069, Distance0 = 3.97. The threshold values are fixed as
Fpercent = 5% and Distancethreshold = 0.5.

• The last item is the most important task. The real industrial
process imposes clear constraints to the attribute values. Let’s
suppose that the initial room temperature is N TPROOM = 24.6 ◦C.
If this attribute decreases, the energy efficiency rises (2), but it
is not very realistic to suggest much variation in N TPROOM. In
the same sense, the input naphtha flow (N PTFINFLOW) variation
range is very limited in practice. Once the industrial process con-
straints are known, the operator must filter the sub-sample A. The
reason for including constraint in the last step is simply because
constraints are very changeable and it is difficult to establish its
“a priori”. It would be better if, first, the model is established and,
then, the constraints filter the model. In this sense, the human
expert must choose between several different options, knowing
the present operation point and the present economic and the
industrial constraints.

The correspondence in the past for the current conditions and
the analogy between the current situation and certain previous
conditions are two fundamental pillars of the proposed method-
ology.

In our battery test, we have found that given the dispersion of
the set sample, it is possible to reach a significant improvement
in the energy efficiency in all the operation points registered in the
plant. It is because the environment conditions of the plant have not
changed from the past and, therefore, the analogy between a previ-
ous and a current operation point is possible. The current condition
(exactly values of all operation variables) is not probably found in
the past, but the evolution of operation variables to a minimum EEI
(the F vs. EEI, Fig. 8) is the same. Thus, an average rise in the energy
efficiency is reached after the simulation of the full testing sample.

5. A case study

For a simple case study, a real operation state characterized by
the attributes is shown in Table 3. This state is situated in the right-
hand upper corner of a Fig. 9.

The calculated attributes are: EEIREACTION0 = 52.45, F0 = 1.07,
Distance0 = 3.97. The thresholds are fixed as Fpercent = 5% and
Distancethreshold = 0.5.

The room temperature is one of the most relevant attributes for
the EEIREACTION evolution from a given operation point. Low temper-
atures help the plant efficiency. But, what is the EEIREACTION limit,
with regards to a given range of N TPROOM variation? From the
proposed framework, just filter Sub-sample A. Fig. 10 shows the
Sub-sample A with N TPROOM > =22 ◦C. Two degrees from the ini-
tial point (N TPROOM0 = 24.65 ◦C) limit the theoretical optimum to
EEIREACTION ≈ 38. Nevertheless, there is still much more room for
improvement. From the point of the view of this range of tem-
perature, from EEIREACTION0 = 52, the efficiency can improve to a
significant (52− 38) * 100/52 = 27 %.

The influence in the optimization process of the input naphtha
flow variation range is in practice quantitatively different from the

room temperature influence. Once the sub-sample is filtered by the
room temperature, a new input flow filter reduces the points in the
sub-sample A (the suggested future states), but not too much the
optimal EEIREACTION range. Suppose that the input naphtha flow only



c
v
v
n
t
n
F
p
s
a
e
r

C

Fig. 10. Temperature influence.

ould be increased from 41.39 just to let’s say 45. It is a real possible
ariation range. Fig. 11 shows this new filter effect, added to the pre-
ious one. The problem is that successive filters highly reduce the
umber of suggested new operation points. In this case, the original
raining sample is not too large. In Fig. 11, for example, there are
ot any optimal future plant states in the range F = (44.12 ; 43.24).
ollowing the thread of this case, an automated procedure could
resent difficulties to move from one state to another. The only

olutions are to increase the size of the training sample or estimate
new operation point not belonging to the real database. The expert
ngineering plant knowledge must be used to fill this gap. In future
esearch, after the systematization of the human expert knowledge

Fig. 12. Screen of costs from the co
ourtesy of ALIATIS.
Fig. 11. Temperature and input flow influence.

about economical constraint (i.e., as a rule set or an expert sys-
tem) an automated procedure would lead the entire consumption
optimization process.

6. Commercial application

The implementation of the approach proposed in this paper

is the core of a pilot software developed by an engineering
software company (ALIATIS). By means of an Oracle BI inter-
active Dashboard, the mining framework is updated from the
enterprise database, helping experts to search for a new optimal

mmercial mining-based DSS.
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peration point from the present one. This application uses a
ateway in the sense of central access points to field-level data.
t has become apparent in recent years that a direct connec-
ion to field-level networks causes security problems. Several
uthors recommend gateways as an appropriate means to cope
ith such security problems and to implement access control

Cheminod, Pironti, & Sisto, 2011).
The first screen of the commercial application shows the present

tate of the plant and the optimum efficiency point calculated
rom the constraint-based operator’s knowledge. It also includes
he present proposed saving cost and the DSS save report, through
n energy efficiency operation screen (Fig. 12). Differences between
he present and the optimal point allows one to calculate the energy
avings easily (daily, weekly and yearly savings could be presented).
his cost information is shown for the entire plant and also for
very part (heaters) of the plant. The evolution of attributes and
he savings from the heaters are displayed by graphics and tables.
n the example that presents Fig. 12, a daily savings of 1369D /h to
61D /h as well as the step by step sequence to follow are shown. A
imulation of the full testing sample indicates a rise in the energy
fficiency between 35% and 45%.

. Conclusion

This paper discusses the main attributes of an aromatic distilla-
ion unit in petrochemical industries to suggest a practical way for
onsumption optimization. A biographical review has been made,
nd a new framework is presented to find relevant knowledge
bout the particular characteristics of the distillation process and
o describe the main features available.

The authors present an innovative data mining framework
hat uses the historical plant database to make the most of the
xpert knowledge. Every operation points used are points recorded
n a historical database that presents an optimization program
f the plant features, but not in the consumption optimization
ense.

The mining process creates a characterization of the plant
peration points based on the most relevant attributes previ-
usly selected. This classification can be used in two ways: to
ssign new points to existing classes (very high, high, low or very
ow EEIREACTION−SDBIN value) and to move the present operation
oint.

The main contribution of this paper is to suggest how to move
rom the present operation point to a close historical point that
ould improve energy efficiency. Both points, present and proposed
oints, carry out the industrial objective: high production rate with
equired product quality. The second one searches an optimal con-
umption as well. The human expert would choose between several
ptimal points once the industrial and economical constraints are
xed. This mining process optimization could be repeated just to
chieve the minimum value of the energy efficiency indicator (EEI).
n this sense, as a new contribution of this paper, the real industrial
rocess constraints to the attribute values are considered “a pos-
eriori”. The model highlights the special importance of the use of
eal constraints.

The quality of this framework is illustrated by a case study that
ses a real database. The framework presented in this paper is now

n the testing phase. The previous results obtained were satisfac-
ory considering the limitation of the available database. A rise in
he energy efficiency from 35% to 45% is significantly improved

rom the previous company process. Also, the required product
uality is maintained. As previously stated, as future research
he human expert knowledge will be collected into an artificial
ntelligence-based expert system in order to fully automatize the

ining framework.
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Appendix A. Main attributes in the catalytic reforming

WAIPTF (◦C): The variable that measures the catalyst deterioration.
TPRIN PPPV7 (◦C): The input PPV7 reactor’s temperature.
TPROUT PPV6 (◦C): The output PPV6 reactor’s temperature.
TPROUT PPV5 (◦C): The output PPV5 reactor’s temperature.
TPRIN PPV7 (◦C): The input PPV7 reactor’s temperature.
TPRIN PPV6 (◦C): The input PPV6 reactor’s temperature.
TPRIN PPV5 (◦C): The input PPV5 reactor’s temperature.
CSMFGPPH3 (m3/h): The fuel gas PPH3 heater’s consumption.
CSMFGPPH4 (m3/h): The fuel gas PPH4 heater’s consumption.
CSMFGPPH5 (m3/h): The fuel gas PPH5 heater’s consumption.
PTFINFLOW (m3/h): The platforming input flow.
P PPV8 (bar): The PPV8 product separator pressure.
TPROOM (◦C): The room temperature.
DENRECGAS (kg/(Nm3)): The recycle gas density. This variable
maintains P PPV8 brought under control.
TPRPPV567 (◦C): The temperature increase between the three reac-
tors.
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