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Introduction.

At the beginning of this century the works of Lebesgue and other mathe-
maticians created a modern and complete theory of integration which allowed to
integrate in a fully satisfactory way a broad class of real functions with respect
to a positive measure. Among the several directions of developement of this
theory it was the work of Bochner in 1933 who created a Lebesgue type theory
in order to integrate vector valued functions with respect to a positive measure.

The study of the formally symmetric situation, namely the integration of
scalar funtions with respect to a vector mesaure, had to wait until 1955 when
Bartle, Dunford and Schwartz published their paper “Weak compactness and
vector measures”. In it, they study weakly compact operators with values in a
Banach space X and defined on the space of continuous functions over a compact
topological space K

T : C(K) −→ X .

The technique that they use for this study is to represent the action of the op-
erator as integration with respect to a measure, associated to the operator, with
values in the Banach space X. In this way they create a theory for integrat-
ing scalar functions with respect to a measure defined on a σ–algebra and with
values in a Banach space.

In the early seventies Lewis publishes his papers “Integration with respect to
vector measures” and “On integrability and summability in vector spaces”, where
he developes a theory for integrating scalar functions with respect to measures
with values in Hausdorff locally convex topological vector spaces. When we
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restrict to Banach space valued measures this theory is equivalent to the theory
of Bartle, Dunford and Schwatrz.

In 1975 Kluvánek and Knowles publish their book “Vector measures and
control systems”. In it they study the space of real functions which are inte-
grable with respect to a vector measure with values in a Hausdorff locally convex
topological vector space.

Our study will be done for measures ν defined over a σ–algebra and with
values in a Banach space X. We will consider real functions, which will allow
us to endow the space L1(ν) , of functions which are integrable with respect to
ν, with a lattice structure and so, use the tools of the theory of Banach lattices.

Our work started trying to answer an informal question of Prof. J. Diestel:
if for the space L1(ν) holds an analogue of the theorem of Talagrand on weak
sequential completeness of the space L1(µ,X), of X valued functions integrable
in the sense of Bochner with respect to a positive measure µ, when the Banach
space X is weakly sequentially complete. The answer is afirmative (Corollary
2.3).

Next we studied the general problem of relating on the one hand, the prop-
erties of the vector masure ν and the Banach space X, and, on the other hand,
the properties of the space L1(ν) of functions which are integrable with respect
to ν. In this setting certain natural questions arise: Does the Banach space X

determine the properties of L1(ν) ? If this is true: In what extend does it ocurr?
Can L1(ν) be reflexive? When is L1(ν) an AL–space? The answer, total or
partial depending on the case, to these and other questions is the content of the
memoir.

In the Preliminaries we establish the notation used through the memoir
and we recall the main concepts and results of the theory of vector measures
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and Banach lattices that we will use. We emphasize the concept of L–weakly
compact set in a Banach lattice, due to its importance in our study.

The first chapter is divided into two sections. In the first section we recall
the main known results on the theory of integration of real functions with respect
to a vector measure ν defined over a σ–algebra and with values in a Banach space
X and on the space of those functions L1(ν) . This is an order continuous Banach
lattice with a weak unit.

Our own study of the space L1(ν) starts in the second section. The first
question is the following: What spaces arise as L1 of a vector measure? We
identify this class precisely: they are the order continuous Banach lattices with
weak unit (Theorem 1.5).

We study the existence of a Banach space “universal” in the sense that every
space L1 of a vector measure can be obtained from a vector measure with values
in this “universal” space. We prove that this is possible for L1(ν) spaces which
are separable and have no atoms, with measures taking values in the space c0

(Theorem 1.20).

There is no usefull identification of the dual space of L1(ν) . Hence we study
the possibility of characterizing weak convergence in L1(ν) via weak convergence
of integrals over arbitrary sets (Theorem 1.23).

In the second chapter we study several properties of the space L1(ν) , fo-
cusing on the fact that the properties of the Banach space in which the measure
takes its values determine, in some extend, the properties of the space L1(ν) .
We obtain, among others, the following results: if the Banach space X does not
contain a subspace isomorphic to c0 neither does L1(ν) ; if X has cotype q ≥ 2
the L1(ν) also has cotype q; is X has the Schur property the L1(ν) has the
positive Schur property.
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We prove a lattice version of the theorem of Dunford–Pettis on weakly
compact operators on L1[0, 1], which allows us to prove that is X has the Schur
property and the measure ν has σ–finite variation then L1(ν) has the Dunford–
Pettis property (Theorem 2.10). We also deduce that if the measure ν has
σ–finite variation and has no atoms then L1(ν) is not reflexive (Theorem 2.11).

As we can obtain any order continuous Banach lattice with weak unit as
L1 of a certain vector measure, it follows, in particular, that we can obtain a
Hilbert space. Theorem 2.13 gives a suficient condition in order that a measure
taking values in a space of cotype 2 generates a space L1(ν) order isomorphic
to a Hilbert space.

The last part of the chapter is devoted to the study of a specific lattice
property: the subsequence splitting property, whose origins are in the thecniques
used by Kadec and Pelczynski in their study of subspaces of the spaces of Lp[0, 1].
We give suficient conditions so that the space L1(ν) has this property (Theorem
2.14).

The third chapter studies the answer to the question: When is L1(ν) an
AL–space? We prove that this ocurrs precisely when L1(ν) is isomorphic to
the space L1(|ν|) where |ν| is the variation of the measure ν, which has to be
bounded. In the quest for suficient conditions for L1(ν) being an AL–space we
prove that the domination of the variation by the semivariation is not a suficient
condition (Example 3.3) and that those conditions can not be imposed on the
Banach space X (Example 3.5).

We study measures with values in spaces with particular properties obtain-
ing suficient conditions if the values are taken in AL–space and a characterization
for measures with values in a C(K) space.

The study of the general case is done by identifying the dual of L1(ν)



Introduction xiii

with an ideal, in the lattice and algebraic sense, in L∞(|ν|) and by using the
Gelfand transform and the characters over L∞(|ν|). We find conditions in terms
of the sets of zeros of L1(ν) ∗ and of an ideal in L1(ν) ∗ associated to the set
of measures {x∗ν : x∗ ∈ X∗}. Theorem 3.16 gives a necessary and suficient
condition, in terms of the measure, in order that the space L1(ν) be given as a
finite number of spaces of the form L1(|x∗ν|).

The fourth chapter studies operators with values in L1(ν) . For this we use
the thecnique of associating to each operator a measure, with values in a space of
operators, and studying the properties of the operator via the properties of the
measure. This measure is bounded, finitely additive and, in general, countably
additive in the strong operator topology.

The study is centered in finding the properties of the operators which cor-
respond to “better” properties of the associated measure. We characterize the
operators whose associated measure is countably additive in the uniform topol-
ogy: they are the L–weakly compact operators, that map norm bounded sets
into L–weakly compact sets in L1(ν) (Theorem 4.5). For measures ν with σ–
finite variation the operators whose associated measure has bounded variation
are those that factorize with an integral operator through the space L1(|ν|)
(Theorem 4.6). In the same conditions, if we require the associated measure to
have a Bochner integrable density with respect to the variation of the measure
ν, the operator must factorize with a nuclear operator (Theorem 4.8). The fact
that the previous condition gives a characterization is closely related to the fact
that the measure ν has a strongly measurable and Pettis integrable density with
respect to its variation (Theorem 4.9).

The last part of the chapter is devoted to applying the previous results to
the problem of relating the existence of a subspace isomorphic to `∞ in the space
L(Y, X), of continuous linear operators between Y and X, with the coincidence
of this space with some ideal of operators. In our case the space Y is an arbitrary
Banach space. When X is an order continuos Banach lattice with weak unit we
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prove that if L(Y,X) does not contain `∞, then every operator is L–weakly
compact (Theorem 4.11). When X is an atomic order continuos Banach lattice
we prove that it is equivalent that every operator from Y to X is compact and
that L(Y, X) does not contain `∞ (Theorem 4.12).



Preliminaries and notation.

In this chapter we establish the notation that will be used through the
memoir and collect the main results on vector measures and Banach lattice
that we will use. The ones corresponding to the theory of vector measures are
taken from chapter I of the book by Diestel and Uhl [DU]. For the theory of
Banach lattices we have followed chapters 1.a and 1.b of volume II of the book
by Lindenstrauss and Tzafriri [LT].

A measurable space is a pair (Ω, Σ) where Ω is an abstract set and Σ is a
σ–algebra of subsets of Ω. The elements of Σ are known as measurable sets. A
partition of a measurable set A is a finite family (Ai)n

1 of disjoint measurable
sets whose union is A.

A finitely additive measure is a function ν defined over a σ–algebra and with
values in a Banach space X, that satisfies ν(∅) = 0 and if A and B are disjoint
measurable sets ν(A ∪B) = ν(A) + ν(B).

A measure is bounded if the set of its values is bounded; is strongly additive if
for every family (An) of disjoint measurable sets the series

∑
ν(An) is convergent

in X; and is countably additive is the above series converges to ν(
⋃

n An). Every
countably additive measure is strongly additive and these are bounded. If not
especified, we will always understand measure as countably additive measure.

A measure is a scalar measure if it takes its values in the field of scalars.
For us, all along the memoir, this will be the field of real numbers R. A measure
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is positive if it is scalar and its values are non negative. In all other cases we
will have a vector measure. We will consider, as usual, measures with values in
[0, +∞], that we will also call positive.

A measure space is a triplet (Ω, Σ, λ) where (Ω, Σ) is a measurable space
and λ is a positive countably additive measure defined over Σ. The measure
space is finite if λ(Ω) < +∞ and σ–finite if Ω = ∪nAn where λ(An) < +∞. A
property holds almost everywhere with respect to λ if it holds for every point of
Ω but for the points of a measurable set Z with λ(Z) = 0.

The variation of a measure ν is the smallest positive measure that dominates
the measure ν. It is denoted by |ν|. It is given by

|ν|(A) = sup

{
n∑
1

‖ν(Ai)‖ : (Ai)n
1 is a partition of A

}
.

It can take infinite values.

Let X be a Banach space. We will denote by BX the unit ball of X, that
is BX = {x ∈ X : ‖x‖ ≤ 1}. X∗ is the topological dual of X and BX∗ its unit
ball. In X we will consider the norm topology and the weak topology, denoted
by σ(X, X∗), which is the coarsest topology with respect to which the elements
of the dual space are continuous. In X∗ we will consider the norm topology,
the weak topology and the weak–∗ topology, denoted by σ(X∗, X), which is the
coarsest topology with respect to which the elements of X are continuous.

Let ν: Σ −→ X be a vector measure with values in a Banach space. The
semivariation of ν is the set function defined on Σ by

‖ν‖(A) = sup
{|x∗ν|(A) : x∗ ∈ BX∗

}
,

where |x∗ν| is the variation of the scalar measure

A ∈ Σ 7−→ x∗ν(A) ∈ R .
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The semivariation is not in general a measure. It is monotone, that is, if B ⊂ A

then ‖ν‖(B) ≤ ‖ν‖(A). We will consider the following set function defined on Σ

|||ν|||(A) = sup
{‖ν(B)‖ : B ⊂ A,B ∈ Σ

}
.

Then for every measurable set A we have

|||ν|||(A) ≤ ‖ν‖(A) ≤ 2 · |||ν|||(A).

Let ν: Σ −→ X be a vector measure. We will say that a positive measure
λ is a control measure for ν if

lim
λ(A)→0

‖ν‖(A) = 0 and lim
‖ν‖(A)→0

λ(A) = 0.

Countably additive measures have control measures. An important result of
Rybakov (see [DU, IX.2]) states that if ν is a countably additive vector measure,
then there exists x∗0 in the unit ball of X∗ such that the measure |x∗0ν| is a
control measure for ν, so it satisfies

|x∗0ν| ≤ ‖ν‖ and lim
|x∗0ν|(A)→0

‖ν‖(A) = 0.

We will say that |x∗0ν| is a Rybakov control measure for ν. The semivariation of
ν and the control measures for ν have the same null sets. A property is said to
hold almost everywhere with respect to ν if it holds for every point of Ω, but for
a set of null semivariation. Thus it is equivalent to saying that it holds almost
everywhere with respect to a control measure for ν.

A Banach lattice is a Banach space E endowed with an order relation ≤
that satisfies

1) if x, y, z ∈ E and x ≤ y then x + z ≤ y + z,

2) if x, y ∈ E and a ∈ R with a ≥ 0 then ax ≤ ay,

3) for every x, y ∈ E there exists the supremum and the infimum, with respect
to the order, of x and y,
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4) if |x| ≤ |y| then ‖x‖ ≤ ‖y‖, where |x| = sup{x,−x}, is the módulus of x.

The dual of a Banach lattice is a Banach lattice for the natural order:
x∗ ≤ y∗ if and only if x∗x ≤ y∗x for every x ∈ E with x ≥ 0.

A set A in E is bounded with respect to the order (order bounded) if there
exists x ≥ 0 such that |z| ≤ x for every z ∈ A. It is denoted by [x, y] the set
of all z such that x ≤ z ≤ y. A Banach lattice is complete with respect to the
order (order complete) if every order bounded set has supremum. Dual Banach
lattice are always order complete.

An ideal in a Banach lattice E is a linear subspace F with the property
that y ∈ F whenever |y| ≤ |x| for some x ∈ F . A band is an ideal F satisfying
that if A ⊂ F and sup A exists in E, then sup A ∈ F .

An element x > 0 in a Banach lattice is an atom if 0 ≤ z ≤ x implies
z = ax where a is a real number between 0 and 1. A Banach lattice is said to
be atomic if there exists a family {xα} of atoms that is complete, in the sense
that if inf{x, xα} = 0 for every α, then x = 0.

A linear operator T between two Banach lattices is an order ismorphism if
it is biyective and preserves the order structure

T (sup{x, y}) = sup{Tx, Ty} and T (inf{x, y}) = inf{Tx, Ty}.

An order ismorphism is always a topological isomorphism. Two Banach lattices
are said to be order isometric if there exist between them a sujective linear
isometry that preserves the order.

A crucial property is order continuity. A set A is downward directed if for
every x, y ∈ A there exist z ∈ A such that z ≤ x and z ≤ y. A Banach lattice has
norm continuous with respect to the order (order continuous) if every downward
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directed set with zero as infimum satisfies inf
{‖x‖ : x ∈ A

}
= 0. An important

characterization of this property is [LT vol. II, Proposition 1.a.8]:

A Banach lattice is order continuous if and only if every order

bounded increasing sequence is convergent.

An element e is a weak unit of E if inf{x, e} = 0 implies x = 0. It is a unit
or strong unit if ‖x‖ ≤ 1 if and only if |x| ≤ e.

A Banach function space or Köthe function space with respect to a σ–finite
measure space (Ω, Σ, λ) is [LT vol. II, Definition 1.b.17]: a Banach space E of
classes of equal almost everywhere with respect to λ real functions, which are
locally integrable and satisfy

1) If |f(ω)| ≤ |g(ω)|, f is measurable and g ∈ E, then f ∈ E and ‖f‖ ≤ ‖g‖.

2) For every A ∈ Σ of finite measure, the characteristic function χA is in E.

The Köthe dual of a Banach function space E is
{

g:S −→ R : g is measurable and fg ∈ L1(λ) for every f ∈ E
}

.

When E is order continuous, E∗ coincides with the Köthe dual [LT vol. II, p.
29]. It can also be considered the Köthe bidual of E.

Order continuous Banach lattices with weak unit can be represented as
Banach function spaces [LT vol. II, Theorem 1.b.14].

Theorem. Let E be an order continuous Banach lattice with weak unit.

Then there exists a probability space (Ω,Σ, λ), an ideal Ẽ in L1(Ω,Σ, λ) and a

lattice norm ‖ · ‖Ẽ in Ẽ such that

1) E is order isometric to (Ẽ, ‖ · ‖Ẽ).

2) Ẽ is dense in L1(Ω,Σ, λ) and L∞(Ω,Σ, λ) is dense in Ẽ.
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3) ‖f‖1 ≤ ‖f‖Ẽ ≤ 2‖f‖∞ whenever f ∈ L∞(Ω, Σ, λ).

4) The traspose of the isometry given in 1) maps E∗ onto the Banach lattice

Ẽ∗ of all measurable functions g such that

‖g‖Ẽ∗ = sup
{∫

Ω

fg d λ : ‖f‖Ẽ ≤ 1
}

< ∞.

The value of the functional given by g at f ∈ Ẽ is

∫

Ω

fg d λ.

An important concept in several parts of this memoir is that of L–weakly
compact set due to Meyer–Nieberg [M 1, Definition II.1]. A bounded set K

is L–weakly compact if for every disjoint sequence (yn) satisfying |yn| ≤ |xn|
with xn ∈ K, we have that (yn) tends to zero in norm. In order continuous
Banach lattices this concept is equivalent to almost order boundedness, that is,
for every ε > 0 there exists x ≥ 0 such that K ⊂ [−x, x] + εB where B is the
unit ball [M 1, Satz II.2]. This is the name given by Zaanen [Z, p. 501]. In order
continuous Banach function spaces this concept coincides with the concept of
bounded equi–integrabble set : a bounded set that satisfies

lim
µ(A)→0

sup
{‖f · χA‖ : f ∈ K

}
= 0.

Every L–weakly compact set is relatively weakly compact [M 1, Satz II.6].
The Banach lattices in which L–weakly compact sets coincide with relatively
weakly compact sets are those in which every infinitedimensional closed sublat-
tice contains a sublattice isomorphic to `1 [M 2, Satz 14]. Sánchez Henŕıquez in
his Doctoral Thesis proves that this last property is equivalent to the positive
Schur property : every weakly null positive sequence is convergent [Sa, Teorema
1.16].

In order continuous Banach lattices every relatively compact set is L–weakly
compact [M 1, Korollar II.4]. The Banach lattices in which L–weakly compact
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sets coincide with relatively compact sets are the order continuous and atomic
Banach lattices [M 1, Beispiele II.7] and [AS, Satz 1.1].

An operator defined on a Banach space taking values in a Banach lattice is
L–weakly compact if the image of the unit ball is an L–weakly compact set [M 2,
Definition 1 iii)]. Zaanen refers to them as semi–compact operators [Z, p. 529].

Let Xi be Banach spaces 1 ≤ i ≤ n. For 1 ≤ p < +∞ we denote by(⊕n
1 Xi

)
p

the space of n–tuples (x1, . . . , xn) with xi ∈ Xi endowed with the

norm ‖(x1, . . . , xn)‖ =
(∑n

1 ‖xi‖p
)1/p.

The theory of vector measures and its applications can be seen in [DU]. For
Banach lattices see [LT vol. II] and the books by Aliprantis and Burkinshaw
[AB], Meyer–Nieberg [M 3] and Schaefer [S].



CHAPTER 1: The space L1(ν) .

SECTION 1. In this section we present the known results on the theory
of integration of real functions with respect to a vector measure and on the space
of real functions which are integrable with respect to a vector measure, that are
relevant in our memoir.

Let (Ω, Σ) be a measurable space and let X be a Banach space. Consider a
countably additive vector measure

ν: Σ −→ X .

The following definition is due to Bartle, Dunford and Schwartz [BDS, Defi-
nition 2.5]. They consider functions with real or complex values. We will restrict
to real values, which will allow us to use the order estructure of the field of real
numbers.

Let f be a simple function with real values. There exists ai ∈ R and
measurable sets Ai, 1 ≤ i ≤ n, such that

f =
n∑
1

aiχAi .

The integral of f with respect to ν over a measurable set A is defined in the
following way ∫

A

f d ν =
n∑
1

aiν(A ∩Ai).
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It is an element of the Banach space X, which is independent of the representa-
tion given to f as a linear combination of characteristic functions.

This definition allows to define the concept of integrability of a measurable
function.

Definition 1.1. Let f : Ω −→ R be a measurable function. The function f is

integrable with respect to ν if there exists a sequence (ϕn) of simple functions

such that

a) (ϕn) converges to f almost everywhere with respect to ν.

b) The sequence

(∫

A

ϕn d ν

)
converges in norm in X, for every A ∈ Σ.

In this case the integral of f with respect to ν over A is the element of X given

by ∫

A

f d ν = lim
n

∫

A

ϕn d ν.

This definition does not depend on the sequence (ϕn). Lewis in [L 1] stud-
ied the integration of complex functions with respect to a measure with values
in a Hausdorff locally convex topological vector space. He gives the following
definition [L 1, Definition 2.1]. As we have already pointed out we will restrict
our study to real valued functions.

Definition 1.2. Let f : Ω −→ R be a measurable function. The function f is

integrable with respect to ν if

a) f is integrable with respect to the measure |x∗ν|, for every x∗ ∈ X∗.

b) For every A ∈ Σ there exists an element of X, denoted by

∫

A

f d ν, such

that 〈
x∗,

∫

A

f d ν

〉
=

∫

A

f d x∗ν, for every x∗ ∈ X∗.
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For Banach space valued measures Lewis proves, using Vitali’s convergence
Theorem, that this definition is equivalent to the one given by Bartle, Dunford
and Schwartz, [L 1, Theorem 2.4]. We will use both along the memoir.

Next we recall some of the basic properties of this integration theory, proven
by Bartle, Dunford and Schwartz [BDS, Theorem 2.6] and by Lewis [L 1, The-
orem 2.2].

Properties 1.3. The following properties hold:

1) Let f be a measurable function essentially bounded with respect to ν, then

f is integrable with respect to ν and

∥∥∥∥
∫

A

f d ν

∥∥∥∥ ≤ ‖f‖∞ · ‖ν‖(A).

2) If f is integrable with respect to ν the set function

A ∈ Σ 7−→ Φ(A) =
∫

A

f d ν ∈ X

is a countably additive measure, that is absolutely continuous with respect

to ν, that is

lim
‖ν‖(A)→0

∥∥∥∥
∫

A

f d ν

∥∥∥∥ = 0.

The semivaration of Φ is given by

‖Φ‖(A) = sup
{∫

A

|f | d |x∗ν| : x∗ ∈ BX∗

}
.
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It should be remarked that the measure Φ in the previous proposition is
absolutely continuous with respect to any control measure for ν. The integration
of essentially bounded functions with respect to ν, that appears in 1.3.1), is
known as the Bartle integral [DU, II.4].

Kluvánek and Knowles in their book [KK] consider the space of real func-
tions which are integrable with respect to a vector measure. Their study is done
for measures with values in Hausdorff locally convex topological vector spaces,
but the best properties of the space are obtained for Banach space valued mea-
sures. We will just show the results obtained for this case.

Bartle, Dunford and Schwartz observed that the set of integrable functions
with respect to a vector measure is a vector space. Kluvánek and Knowles prove
that

‖f‖ν = sup
{∫

|f | d |x∗ν| : x∗ ∈ BX∗

}

is a seminorm in this space. Identifying two functions f and g when the set on
which they differ has null semivariation

f ∼ g ⇐⇒ ‖ν‖ ({ω : f(ω) 6= g(ω)}) = 0

we obtain a normed space of classes of integrable functions with respect to ν

that it is denoted by L1(ν) . This space is Banach space for the previous norm
‖ · ‖ν [KK, II.2, Theorem IV.4.1 and Theorem IV.7.1].

The space L1(ν) is a Banach lattice when endowed with the order given by

f ≤ g ⇐⇒ f(ω) ≤ g(ω) ω /∈ Z for Z ∈ Σ, ‖ν‖(Z) = 0.

Moreover, it is an ideal of measurable functions, that is, if g is in L1(ν) and f

is a measurable function such that |f | ≤ |g| almost everywhere with respect to
ν, then f is in L1(ν) and it follows that ‖f‖ν ≤ ‖g‖ν .

Of great importance in our study is the following result [KK, Corollary
II.4.2]:
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In L1(ν) every order bounded increasing sequence is norm convergent.

It follows that L1(ν) is an order continuous Banach lattice, see Preliminar-
ies. Kluvánek and Knowles did not consider this important consequence. It will
turn out to be crucial in our study of the space L1(ν) . Next we include a proof
of this result.

Let λ be a Rybakov control measure for ν. Let (fn) be an increasing se-
quence in L1(ν) order bounded by g ∈ L1(ν) . We can assume that (fn) is non
negative. Let us define the function f(ω) = sup{fn(ω) : n ∈ N}. It is measur-
able and bounded by g ∈ L1(ν) . As L1(ν) is an ideal of measurable functions,
it follows that f ∈ L1(ν) . Let us see that (fn) converges to f in L1(ν) . The
sequence (fn) is increasing and bounded by f in L1(λ) , thus it is convergent
in L1(λ) , thanks to the Monotone Convergence Theorem. As it is increasing it
follows that it converges almost everywhere with respect to λ, so, by Egoroff’s
Theorem, the convergence is almost uniform. Let ε > 0, there exists a measur-
able set A with λ(A) < ε and there exists n0 ∈ N such that, for every n ≥ n0,
we have

‖f − fn‖ν = sup
{∫

Ω

|f − fn| d |x∗ν| : x∗ ∈ BX∗

}

≤ ε · ‖ν‖(Ω \A) + 2 · sup
{∫

A

|f | d |x∗ν| : x∗ ∈ BX∗

}
.

The claim follows as the measure with density f with respect to ν is absolutely
continuous with respect to λ. Q.E.D.

It is easy to see that L1(ν) as a Banach lattice has a weak unit: consider
the function χΩ, it is in L1(ν) . Let f ∈ L1(ν) such that inf{|f |, χΩ} = 0, it
follows that f ≡ 0. So χΩ is a weak unit of L1(ν) .

Let x∗ ∈ X∗. From Definition 1.2 it follows that L1(ν) is a linear subspace
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of L1(|x∗ν|) , and from the norm in L1(ν) it follows that the injection

L1(ν) −→ L1(|x∗ν|)

is continuous and ‖f‖L1(|x∗ν|) ≤ ‖x∗‖ · ‖f‖ν .

Let λ be a Rybakov control measure for ν. It is of the form |x∗0ν| for
x∗0 ∈ BX∗ . Then we have the following natural injections

L∞(λ) −→ L1(ν) −→ L1(λ)

which are continuous. From Theorem 1.6 it follows that they both have dense
range. As ν and λ have the same null sets and as L1(ν) is an ideal, it follows that
L1(ν) is a Banach function space with respect to the measure space (Ω,Σ, λ).

The results of Kluvánek and Knowles for countably additive measures with
values in a Banach space and the previous considerations are summarized in the
next theorem.

Theorem 1.4. Let ν: Σ −→ X be a vector measure with values in a Banach

space. The space L1(ν) is an order continuous Banach lattice with weak unit

when endowed with the norm

‖f‖ν = sup
{∫

|f | d |x∗ν| : x∗ ∈ BX∗

}

and the order

f ≤ g ⇐⇒ f(ω) ≤ g(ω) ω /∈ Z for Z ∈ Σ, ‖ν‖(Z) = 0.

L1(ν) is a Banach function space with respect to the measure space (Ω, Σ, λ)
where λ is a Rybakov control measure for ν.



14 Chapter 1

Equivalent norm 1.5. The norm of a function f ∈ L1(ν) coincides with the
semivariation of the measure with density f with respect to ν (Proposition 1.3.2).
It follows from the equivalent expression for the semivariation, see Preliminaries,
that

|||f |||ν = sup
{∥∥∥∥

∫

A

f d ν

∥∥∥∥ : A ∈ Σ
}

is a norm equivalent to ‖ · ‖ν in L1(ν) . In general it is not a lattice norm
(condition 4 in the definition of Banach lattice). We have that

|||f |||ν ≤ ‖f‖ν ≤ 2 · |||f |||ν .

Lewis proves the following result [L 2, Theorem 3.5].

Theorem 1.6. The simple functions are a dense set in L1(ν) .

It is important that the theory has a “good” theorem of dominated conver-
gence [BDS, Theorem 2.8] and [L 1, Theorem 2.2].

Theorem 1.7. Let (fn) be a sequence in L1(ν) that converges almost every-

where with respect to ν to a function f and let g ∈ L1(ν) such that |fn| ≤ g for

every n. Then f ∈ L1(ν) and (fn) converges to f in L1(ν) .

Scalar integrability 1.8. Lewis in [L 1, Definition 2.5] defines the functions
with generalized integral as those that satisfy condition a) in Definition 1.2. We
will refer to them as functions which are scalarly integrable with respect to ν. It
is easy to see that for these functions it holds that, for every A ∈ Σ

∫

A

f d ν ∈ X∗∗,

as it is a pointwise limit of integrals of simple functions. Moreover, for these
functions it follows from the Uniform Boundedness Principle that

sup
{∫

|f | d |x∗ν| : x∗ ∈ BX∗

}
< +∞.
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Lewis proves the following characterization of scalarly integrable functions
which are integrable.

Theorem 1.9. Let f be a function which is scalarly integrable with respect

to the measure ν: Σ −→ X . Consider the set function

A ∈ Σ 7−→ Φ(A) =
∫

A

f d ν ∈ X∗∗ .

Then the following conditions are equivalent

a) The function f is integrable with respect to ν.

b) Φ is a countably additive measure.

c) Φ is absolutely continuous with respect to ν, that is,

lim
‖ν‖(A)→0

∥∥∥∥
∫

A

f d ν

∥∥∥∥ = 0.

Lewis characterizes the Banach spaces X with the property that for X–
valued measures integrability and scalar integrability are equivalent as those
spaces in which every weakly unconditionally Cauchy series is unconditionally
convergent [L 1, Theorem 5.1]. Taking in account the results of Bessaga and
Pelczynski [BP], the following characterization holds.

Theorem 1.10. Let X be a Banach space. The following conditions are equiv-

alent:

a) For every measure ν with values in X, if f is a function which is scalarly

integrable with respect to ν, then f is integrable with respect to ν.

b) X does not contain a subspace isomorphic to c0.
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Integration operator 1.11. A basic tool in the study of the space L1(ν) is
the integration operator defined by

f ∈ L1(ν) 7−→ ν(f) =
∫

f d ν ∈ X ,

which is linear and continuous, satisfying ‖ν(f)‖ ≤ ‖f‖ν .

Let us consider the measure |ν| variation of the measure ν. Lewis studies
the relation between the spaces L1(|ν|) and L1(ν) [L 2, Theorem 4.1, Theorem
4.2 and Corollary 4.3].

Theorem 1.12. Let X be a Banach space, ν a measure with values in X and

|ν| its variation. Then we have

1) If f is in L1(|ν|) then f is in L1(ν) and we have ‖f‖ν ≤ ‖f‖L1(|ν|) .

2) Let f ∈ L1(ν) and let Φ be the measure with density f with respect to ν,

then f ∈ L1(|ν|) if and only if the measure Φ has bounded variation, and

in this case

|Φ|(A) =
∫

A

|f | d |ν| for every A ∈ Σ.

3) X is finitedimensional if and only if for every X–valued measure ν we have

that every function in L1(ν) is in L1(|ν|) .

It follows that when X is finitedimensional the spaces L1(ν) and L1(|ν|)
coincide and their norms are equivalent.

Observations 1.13. 1. A measure space (Ω, Σ, λ) is said to be localizable if
for every measurable set A having non null measure there exists a measurable
set B ⊆ A such that 0 < λ(B) < +∞. Let ν: Σ −→ X be a countably additive
measure. From the existence of a control measure for ν it follows, by applying
an Exhaustion Lemma [DU, Lemma III.2.4], that the variation of ν is localizable
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iff it is σ–finite. The importance of this fact in our study relays on the fact that
where the variation is not localizable the space L1(|ν|) is just the zero vector.
That is, if |ν| is not σ–finite there exist a measurable set A with |ν|(A) > 0, such
that for every measurable set B ⊂ A we have either |ν|(B) = 0 or |ν|(B) = +∞.
Thus if νA is the restiction of ν to A, then we have L1(|νA|) = ∅.

2. Consider a measure ν: Σ −→ X where X is a closed subspace of a
Banach space Y . The semivariation of ν does not change by considering that
the measure takes its values in Y . It follows from Definition 1.1 that the concept
of integrability also does not change and so neither does change the space L1(ν) .
We conclude that, in order to study the space L1(ν) , we can consider that the
measure ν takes its values in the space [ν(Σ)], the closure of the linear span of
the range of ν.

3. Kluvánek and Knowles [KK, II.7] consider the direct sum of an arbitrary
family of measures. We will use the direct sum of two measures (Ωi,Σi, νi) with
values in Banach spaces Xi, i = 1, 2, defined by

A ∈ Σ 7−→ ν1 ⊕ ν2(A) = ν1(A ∩ Ω1)⊕ ν1(A ∩ Ω2) ∈ X1 ⊕X2 ,

where Ω is the disjoint union of the spaces Ω1 and Ω2 and Σ is the σ–algebra
of sets A of Ω such that A ∩ Ωi ∈ Σi, i = 1, 2. In this situation we have
L1(ν1 ⊕ ν2) = L1(ν1) ⊕ L1(ν2) , [KK, Theorem II.7.2].

4. For finite σ–algebras the resulting space L1(ν) has finite dimension,
equal to the cardinality of the σ–algebra. Thus we will not consider this case in
our study.

Chapter IV.10 of the book by Dunford and Schwartz [DS] is devoted to
this integration theory. Besides the already mentioned authors, Debiéve [D]
and Thomas [Th] have also worked in this integration theory. Egghe [E] and
Okada [O] have studied several aspects of the space L1(ν) . Other authors have
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considered in their works the space L1(ν) : Drewnowski [Dr]; Ghoussoub and
Saab [GS]; Kalton, Turret and Uhl [KTU]. This integration theory is a particular
case of the bilinear integrals studied by Bartle [B], Brooks and Dinculeanu [BD]
and Dobrakov [Do 1 and 2].

SECTION 2. In this second section we start with our own study of the
space L1(ν) .

Dual space 1.14. The order continuity of the space L1(ν) , Theorem 1.4,
allows to represent the dual space of L1(ν) through the theory of Banach lattices.

L1(ν) is a Banach function space with respect to the measure space (Ω, Σ, λ)
where λ is a Rybakov control measure for ν. As L1(ν) is order continuous it
follows that the space L1(ν) ∗ can be represented as the Köthe dual of L1(ν) ,
see Preliminaries:

L1(ν) ∗ =
{

g: Ω −→ R : g is measurable, and gf ∈ L1(λ) for every f ∈ L1(ν)
}
,

where the action of such functions over L1(ν) is given by

f ∈ L1(ν) 7−→
∫

gf d λ ∈ R .

As the space L1(ν) contains the characteristic functions of measurable sets,
it follows that the functions of L1(ν) ∗ are in the space L1(λ) . Moreover, it
follows from the previous representation, that L1(ν) ∗ is an ideal of measurable
functions in L1(λ) , that is, if g ∈ L1(ν) ∗ and h ∈ L1(λ) such that |h| ≤ |g|,
then h ∈ L1(ν) ∗.

The following natural inclusions hold

L∞(λ) −→ L1(ν) ∗ −→ L1(λ),
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where the operators are continuous injections, that satisfy: if g ∈ L∞(λ) then
‖g‖∞ ≤ ‖g‖L1(ν) ∗ , and if g ∈ L1(ν) ∗ then ‖g‖L1(ν) ∗ ≤ ‖ν‖(Ω) · ‖g‖L1(λ) .

Especially relevant in the space L1(ν) ∗ are the functionals given by

f ∈ L1(ν) 7−→ ϕx∗(f) =
∫

f d x∗ν ∈ R ,

where x∗ ∈ X∗. We have ‖ϕx∗‖ ≤ ‖x∗‖. Consider the scalar measure x∗ν. It
is absolutely continuous with respect to λ. Thus there exists, by the Radon–
Nikodym Theorem, a function hx∗ in L1(λ) such that

x∗ν(A) =
∫

A

hx∗ d λ for every A ∈ Σ.

It follows that for every f ∈ L1(ν)

ϕx∗(f) =
∫

fhx∗ d λ,

so the functional ϕx∗ can be identified with the function hx∗ in L1(λ) .

Later on we will consider in L1(ν) ∗ the lattice ideal generated by the func-
tions {hx∗ : x∗ ∈ X∗}, that we will denote by I. That is

I =

{
h ∈ L1(ν) ∗ : there exists x∗1, . . . , x

∗
n ∈ X∗ with |h| ≤

n∑
1

|hx∗
i
|
}

.

Consider the Köthe bidual of L1(ν) :

{
g: Ω −→ R : g is measurable, and gh ∈ L1(λ) for every h ∈ L1(ν) ∗

}
.

As the functions hx∗ are in L1(ν) ∗ it follows that the Köthe bidual of L1(ν) is
included in the space of scalarly integrable functions with respect to ν. On the
other hand, if f is an scalarly integrable function with respect to ν, there exists
a sequence of simple functions that converge almost everywhere to f ; as it also
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holds that ‖f‖ν < +∞, see 1.8, it follows from [LT vol. II, p. 30] that f is in
the Köthe bidual of L1(ν) . Hence both spaces coincide.

The first problem that arises in the study of the space L1(ν) is to determine
what spaces are obtained as L1 of a vector measure. It also arises in a natural
way the question of whether the space L1(ν) can be reflexive or a Hilbert space.
The following theorem gives a complete answer to these problems, showing that
the class of spaces obtained as L1 of a vector measure coincides with the class
of order continuous Banach lattices with weak unit.

Theorem 1.15. Let E be an order continuous Banach lattice with weak unit.

There exists a vector measure ν, with values in E, such that the space L1(ν) is

order isomorphic and isometric to E.

PROOF. In these conditions, E is order isomorphic and isometric to a Banach
function space with respect to a probability space (Ω,Σ, λ), see Preliminaries.

Consider the measure

A ∈ Σ 7−→ ν(A) = χA ∈ E .

It is well defined as E is a Banach function space with respect to (Ω,Σ, λ). It
is finitely additive. Let (An) be a sequence of disjoint measurable sets. Denote
Bn = ∪n

1Ai for every n, and B = ∪∞1 Ai, they are measurable sets. The sequence
of sets (Bn) is increasing, so the sequence ν(Bn) = χBn is increasing in E. As
Bn ⊂ B for every n, it follows that ν(B) is a bound in E for ν(Bn). From the
order continuity of E we deduce that the sequence

(
ν(Bn)

)
is convergent in E,

to its supremum, that is ν(B). Thus, the measure ν is countably additive.

As E is order continuous the dual space coincides with the Köthe dual (see
Preliminaries):

E∗ =
{

g: S −→ R : g is measurable and gf ∈ L1(λ) for every f ∈ E
}

,
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where the action of these elements is given by integration with respect to λ.

Let g ∈ E∗. The measure gν is

A ∈ Σ 7−→ gν(A) =
∫

A

g d λ ∈ R .

That is, is the measure with density g with respect to λ. A function f : Ω −→ R
is scalarly integrable with respect to ν if it is integrable with respect to all
measures g dλ for every g ∈ E∗.

Let f ∈ E, it follows that f is scalarly integrable with respect to ν. Let
A ∈ Σ. The functional

g ∈ E∗ 7−→
∫

A

gf d λ =
〈
g, f · χA

〉 ∈ R ,

defines an element of E, since f · χA belongs to E, for every A ∈ Σ. It follows
that f ∈ L1(ν) and

∫

A

f d ν = f · χA for every A ∈ Σ.

On the other hand, if f ∈ L1(ν) the previous funcional defines an element
of E for every A ∈ Σ, so f ∈ E.

In fact we have an isometry between E and L1(ν) :

‖f‖ν = sup
{∫

|f | d |gν| : g ∈ BE∗

}

= sup
{∫

|f ||g| d λ : g ∈ BE∗

}

= sup
{
|〈f, g

〉| : g ∈ BE∗

}

= ‖f‖E .
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We deduce from the proof that the integration operator is the identity
operator from E to E. Q.E.D.

It follows from the previous theorem that the spaces Lp[0, 1] for 1 ≤ p <

+∞, Orlicz spaces satisfying the ∆2 condition and Banach space with an un-
conditional basis, are among the spaces of the form L1(ν) .

In order to represent the order continuous Banach lattices without a weak
unit we can use the theory of integration with respect to vector measures defined
on δ–rings, first studied by Lewis [L 2] and later developed by Masani and Niemi
[MN, 1 y 2]. Let ν be a countably additive vector measure defined over a δ–
ring. The space L1(ν) of real functions which are integrable with respect to ν

in the sense of Lewis, Definition 1.2, is a Banach space, that Masani and Niemi
denote by P1,ν [MN 2, Theorem 4.7.c)]. It is a Banach lattice when endowed
with the “almost everywhere with respect to ν” order. By using the existence
of a control measure for ν [Br, Theorem 1] it is easy to prove that L1(ν) is an
order continuous Banach lattice, in a similar way as done in the case of measures
defined over σ–algebras, see the discussion previous to Theorem 1.4. In fact we
have the following extension of Theorem 1.15.

Let E be an order continuous Banach lattice. There exists a countably

additive vector measure ν defined over a δ–ring and with values in E, such that

the space L1(ν) is order isomorphic and isometric to E.

The proof is based on the fact that as E is order continuous it can expressed
as an unconditional sum of Banach lattices Eα, which are order continuous and
have a weak unit [LT vol. II, Proposition 1.a.9]. For every Eα, in virtue of
Theorem 1.15, there exists a space Ωα, a σ–algebra Σα and a countably additive
measure να: Σα −→ Eα such that L1(να) is order isomorphic and isometric to
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Eα. Let Ω be the disjoint union of the spaces Ωα and consider the δ–ring

D =

{
A =

⋃

i∈I

Ai : I ⊂ A is finite, Ai ∈ Σi

}
.

The measure
A =

⋃

i∈I

Ai ∈ D 7−→ ν(A) =
∑

i∈I

νi(Ai) ∈ E ,

is well defined, is countably additive on D, thanks to the order continuity of E,
and it can be verified that the identity map is a biyection that preserves order
and norm between the spaces L1(ν) y E.

Let us see an example of the previous representation. If Γ is an uncountable
set, the space `1(Γ) is an order continuous Banach lattice without a weak unit.
It is obtanied as L1(ν) for the following measure ν, defined over the δ–ring D

of finite subsets of Γ,

A ∈ D 7−→ ν(A) =
∑

γ∈A

eγ ∈ `1(Γ) ,

where eγ is the characteristic function of the point γ.

We now study the posibility of obtaining spaces L1(ν) from measures taking
values in a certain fixed Banach space. We will see in Theorem 1.20 that if the
measure ν is separable and has no atoms then the space L1(ν) can be obtanied
from a measure with values in the Banach space c0. First we will study atoms
and separability in L1(ν) .

Proposition 1.16. Let f ∈ L1(ν) . Then f is an atom in L1(ν) if and only if

f is a multiple of χA, where A ∈ Σ is an atom of ν.

PROOF. Let f be an atom in L1(ν) . Suppose f is not constant where it is non
null. Then there exists a ∈ R, a > 0, such that the sets A = {ω : f(ω) ≥ a} and
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B = {ω : 0 < f(ω) < a} have both non null semivariation. Then 0 < f ·χA < f ,
but f ·χA is not a multiple of f , contradicting the fact that f is an atom in L1(ν) .
So f is a multiple of the characteristic function of the set A = {ω : f(ω) > 0}. If
A were not an atom of ν, there would exist B ⊂ A such that both B and A \B

have non null semivariation. The function f ·χB gives then a contradiction with
f being an atom in L1(ν) . A similar argument proves that if A is an atom of ν,
then χA is an atom in L1(ν) . Q.E.D.

Corollary 1.17. L1(ν) is atomic if and only if ν is purely atomic.

Given a measurable space (Ω, Σ) and a measure ν: Σ −→ X we have the
following associated pseudometric space (Σ, dν) where for A,B ∈ Σ we define
dν(A,B) = ‖ν‖(A4 B). Let λ be a control measure for ν. The space (Σ, dν)
is homeomorphic to the pseudometric space (Σ, dλ), associated to the measure
space (Ω, Σ, λ). A vector measure ν defined over Σ is said to be separable if so
is the space (Σ, dν).

Proposition 1.18. L1(ν) is separable if and only if the pseudometric space

(Σ, dν) is separable.

PROOF. Let λ be a Rybakov control measure for ν. The separability of the
space (Σ, dν) is equivalent to the separability of the space (Σ, dλ). It is well
known that the separability of (Σ, dλ) is equivalent to the separability of the
space L1(λ). Suppose that L1(ν) is separable. As the injection L1(ν) −→ L1(λ)
is continuous and has dense image, it follows that L1(λ) is separable and so
(Σ, dν) is separable. In order to prove the converse let (An) be a sequence of
measurable sets that is dense in (Σ, dν). It is easy to verify that the simple
functions with rational coeficients and supported over the sets (An) are dense
in L1(ν) . Q.E.D.

The integration operator ν:L1(ν) −→ X is continuous. If we denote by
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[ν(Σ)] the clousure of the linear span of range of ν then we have that ν: L1(ν) −→
[ν(Σ)] is continuous and has dense image, as it contains the integrals of the
simple functions. On the other hand we have seen that it is just the space
[ν(Σ)] which determines the space L1(ν) , see 1.13. Thus we have the following
proposition.

Proposition 1.19. Let ν: Σ −→ X be a vector measure such that L1(ν) is

separable. Then there exists a linear subspace Y ⊂ X, separable, with ν(Σ) ⊂ Y

such that ν: Σ −→ Y generates the same space L1(ν) .

Theorem 1.20. Let ν: Σ −→ X be a separable vector measure without

atoms. Then there exists a measure µ: Σ −→ c0 such that the space L1(µ) is

order isomorphic and isometric to L1(ν) .

PROOF. We have seen that if the measure ν is separable so is L1(ν) ; as
the simple functions are dense in L1(ν) there exists a sequence (fn) of simple
functions which is dense in L1(ν) . Let λ be a Rybakov control measure for ν.
Recall that L1(ν) ∗ can be identified with a lattice ideal in L1(λ) .

The proof will be perfomed in four steps.

FIRST STEP. There exists a sequence (hn) of simple functions which is dense
in the unit ball of L1(ν) ∗ when we consider the weak–∗ topology.

Let g be an element of the unit ball of L1(ν) ∗. There exists a sequence (ϕn)
of simple functions that converges pointwise to g satisfying |ϕn| ≤ |g|. Then we
have that for every f ∈ L1(ν)

〈
ϕn, f

〉
=

∫
ϕnf dλ converges to

∫
gf dλ =

〈
g, f

〉
.

Thus (ϕn) converges to g in the weak–∗ topology of L1(ν) ∗. As |ϕn| ≤ |g|, it
follows that ϕn is in L1(ν) ∗ and ‖ϕn‖ ≤ ‖g‖ ≤ 1. So the simpe functions with
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norm less or equal than one form a set which is weak–∗ dense in unit ball of
L1(ν) ∗.

As the space L1(ν) is separable, the unit ball of L1(ν) ∗ is metrizable for
the weak–∗ topology. It follows that the unit ball of L1(ν) ∗ is separable in
the weak–∗ topology. Thus there exists s sequence of simple functions which is
weak–∗ dense.

SECOND STEP. There exists an increasing sequence (Σn) of finite sub–σ–
algebras of Σ and there exists a sequence (gn) of simple functions satisfying

a) for every n, the functions fn and gn are measurable with respect to Σn,

b) for every n, |gn| = |hn|,

c) (gn, Σn) is a martingale difference sequence, that is, for every n the condi-
tional expectation of gn with respect to Σn−1 is null.

Set g1 = h1. Suppose already defined the functions g1, . . . , gn−1 and the
σ–algebras Σ1, . . . , Σn−2. Set

Σn−1 = σ(f1, . . . , fn−1, g1, . . . , gn−1),

the smallest σ–algebra with respect to which are measurable all the functions
f1, . . . , fn−1 and g1, . . . , gn−1. As these are simpe functions, Σn−1 is finite and
so it is generated by a finite number of atoms.

Let A be a constancy set of the simple function hn. Let B be atom of Σn−1.
In order to define gn it suffices to do so over each non empty set A∩B. Suppose
that A∩B is non empty. As the measure ν has no atoms, neither does λ. Thus,
there exists two measurable disjoint sets C1 and C2 whose union is A ∩ B and
such that λ(C1) = λ(C2).
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Define gn in A ∩B in the following way:

gn(ω) =





hn(ω) if ω ∈ C1,

−hn(ω) if ω ∈ C2.

The function gn is simple and satisfies b). To verify that c) is satisfied it
suffices to prove that if A is a set of constancy of hn and B is an atom of Σn−1,
then the integral of gn over A ∩B is null.

Let ω0 ∈ A ∩B:
∫

A∩B

gn dλ =
∫

C1

gn dλ +
∫

C2

gn dλ

=
∫

C1

hn dλ−
∫

C2

hn dλ

= hn(ω0) ·
(

λ(C1)− λ(C2)
)

= 0

THIRD STEP. The following set function is a countably additive measure:

A ∈ Σ 7−→ µ(A) =
(∫

A

gn dλ

)∞

0

∈ c0 ,

where g0 ≡ 1. We have that if f is in L1(ν) then f is in L1(µ) .

Let f be in L1(ν) . Given ε > 0 by the density of the sequence (fn) there
exists n0 ∈ N such that ‖f − fn0‖ν < ε. Then

|
∫

gnf dλ| ≤ |
∫

gn(f − fn0) dλ|+ |
∫

gnfn0 dλ|

= |〈gn, f − fn0

〉|+ |
∫

gnfn0 dλ|

≤ ε + |
∫

gnfn0 dλ|.
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For n > n0 the function fn0 is measurable with respect to Σn−1, thus, as (gn,Σn)
is a martingale difference sequence, the second integral is null. This proves that
for every function f in L1(ν)

(∫
fgn dλ

)∞

0

∈ c0. (1)

Considering f = χA for every measurable set A it follows that the measure µ is
well defined.

Let a∗ = (an) be in `1 = c∗0. As the functions (gn) are in the unit ball of
L1(ν) ∗ and the sequence (an) is summable, it follows that the series

∑
angn is

absolutely summable in L1(ν) ∗, thus absolutely summable in L1(λ) . It follows
that

a∗µ(A) =
∞∑
0

an

∫

A

gn dλ =
∫

A

( ∞∑
0

angn

)
dλ. (2)

Thus the measure a∗µ is countably additive. So the measure µ is weakly count-
ably additive, hence by the Orlicz–Pettis theorem it is countably additive.

Let f be in L1(ν) . From (2) it follows that f is integrable with respect to
the measure a∗µ. Thus f is scalarly integrable with respect to µ. From (1) it
follows that

∫
A

f dµ is in c0, for every A ∈ Σ. Hence f is in L1(µ) .

FOURTH STEP. The inclusion of L1(ν) in L1(µ) is surjective and norm pre-
serving.

Let f be in L1(µ) . Let x∗ ∈ X∗ be fixed. For every n ∈ N set fn = f ·χAn ,
where An = {ω : |f(ω)| ≤ n}. As fn is bounded, it is in L1(ν) . Let hx∗ be the
Radon–Nikodym derivative of the measure x∗ν with respect to λ, it is in the
unit ball of L1(ν) ∗. Let (hni) be a subsequence of (hn) that converges in the
weak–∗ topology to |hx∗ |.
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Then ∫
|fn| d |x∗ν| =

∫
|fn||hx∗ | dλ

= lim
i

∫
|fn|hni dλ

≤ lim
i

∫
|fn||hni | dλ

= lim
i

∫
|fn||gni

| dλ.

(3)

Let en be the n–th vector of the canonical basis of `1. The measure |e1µ|
is the measure with density g0 with respect to λ. It follows that λ is a Rybakov
control measure for µ.

The operator

f ∈ L1(µ) 7−→
∫

fgn dλ ∈ R

is the composition of the integration operator with respect to µ with en, so it is
a continuous linear functional with norm less or equal than one. It follows that

∫
|fn||gni | dλ =

〈|fn|, |gni |
〉 ≤ ‖fn‖µ ≤ ‖f‖µ. (4)

From inequalities (3) and (4) we have

∫
|fn| d|x∗ν| ≤ ‖f‖µ for every n ∈ N.

It follows that ∫
|f | d|x∗ν| ≤ ‖f‖µ.

So f is integrable with respect to the measure |x∗ν|. Thus f is scalarly integrable
with respect to ν and

sup
{∫

|f | d|x∗ν| : x∗ ∈ BX∗

}
≤ ‖f‖µ. (5)
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In order to prove that f is in L1(ν) we just have to apply the previous
procedure to the functions fn − fm, which are in L1(ν) , obtaining from (5)

‖fn − fm‖ν ≤ ‖fn − fm‖µ.

From the order continuity of L1(µ) if follows that (fn) is a convergent sequence
in L1(µ) and so (fn) is a Cauchy sequence in L1(ν) , which converges almost
everywhere with respect to λ to f . Thus f ∈ L1(ν) and from (5) we have
‖f‖ν ≤ ‖f‖µ.

On the other hand, for a∗ = (an) in the unit ball of `1 we have seen that
the measure a∗µ is the measure with density

∑
angn with respect to λ. We also

know that the function
∑

angn is in L1(ν) ∗ and has norm less or equal than
one. It follows then that∫

|f | d|a∗µ| =
∫
|f | · |

∑
angn| dλ

=
〈
|f |, |

∑
angn|

〉

≤ ‖f‖ν .

Taking supremum over the unit ball of `1 we obtain ‖f‖µ ≤ ‖f‖ν . Q.E.D.

In order to study the previous theorem in the case of purely atomic measures
we first study the space L1(ν) obtained for these measures.

Purely atomic countably additive measures can be considered to be defined
over the σ–algebra P(N) of subsets of the natural numbers. This is due to the
fact that there can only be at most a countable number of atoms of non null
measure. This follows from the fact that for every n there can only be a finite
number of atoms, Ak, such that ‖ν(Ak)‖ ≥ 1/n, if this would not be the case the
series

∑
ν(Ak) would not be convergent, contradicting that ν (∪Ak) =

∑
ν(Ak).

Thus these measures are of the form

A ∈ P(N) 7−→ ν(A) =
∑

n∈A

xn,
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where
∑

xn is a unconditionally convergent series.

Proposition 1.21. Let ν:P(N) −→ X be a countably additive measure. Let

ν(n) = xn ∈ X. Then L1(ν) is the following sequence space

{
(an) : the series

∑
anxn converges unconditionally in X

}
,

the norm being

‖(an)‖ν = sup
{∑

|anx∗xn| : x∗ ∈ BX∗
}

.

The space of scalarly integrable functions with respect to ν is

{
(an) : the series

∑
anxn is weakly unconditionally Cauchy in X

}
.

PROOF. Let x∗ ∈ X∗. Consider the measure x∗ν

A ∈ P(N) 7−→ x∗ν(A) =
∑

n∈A

x∗xn ∈ R .

Its variation is the measure

A ∈ P(N) 7−→ |x∗ν|(A) =
∑

n∈A

|x∗xn| ∈ R .

Let (an) be a real sequence. It is integrable with respect to the measure
|x∗ν| if and only if

∞∑
1

|an||x∗xn| < +∞.

It follows that (an) is scalarly integrable with respect to ν if and only if the
series

∑
anxn is weakly unconditionally Cauchy in X.
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In order to (an) be integrable with respect to ν it must be that for every
A ⊂ N the funtional

x∗ ∈ X∗ 7−→
∑

n∈A

anx∗xn ∈ R

defines an element of the space X, that is, by Orlicz–Pettis theorem, the series∑
A anxn must converge unconditinally in X. The norm in L1(ν) follows directly

from the expression of the measure |x∗ν|. Q.E.D.

From the previous proposition it follows that for measures defined over P(N)
the sequence

(
χ{n}

)
is an unconditional basis in L1(ν) . The order in L1(ν) is

the coordinatewise order. We also have ‖χ{n}‖ν = ‖ν(n)‖.

The next proposition collects several results previously seen.

Proposition 1.22. Let E be an order continuous Banach lattice with weak

unit. The following properties are equivalent:

a) E is purely atomic.

b) E is order isomorphic to L1(ν) where ν is purely atomic.

c) In E relatively compact sets and L–weakly compact sets coincide.

d) E is a Banach space with an unconditional basis.

PROOF. The equivalence between a) and b) follows from Theorem 1.15 and
Corollary 1.17. For the equivalence between a) and c) see the Preliminaries.

Let (yn) be an unconditional basis for E. E is a Banach lattice for the
coordinatewise order

∑
anyn ≤

∑
bnyn ⇐⇒ an ≤ bn for every n ∈ N,
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and the equivalent norm

∣∣∣
∣∣∣
∣∣∣
∑

anyn

∣∣∣
∣∣∣
∣∣∣
E

= sup

{∥∥∥∥∥
∑

n∈A

anyn

∥∥∥∥∥ : A ⊂ N
}

.

Let (an) be such that an > 0 for every n and such that
∑

anyn is in E.
The measure

A ∈ P(N) 7−→ ν(A) =
∑

n∈A

anyn ∈ E

is countably additive. It follows from Proposition 1.21 that L1(ν) is the following
sequence space

{
(bn) : the series

∑
bnanyn converges unconditionally in E

}
.

The operator
(bn) ∈ L1(ν) 7−→

∑
bnanyn ∈ E

is an order preserving bijection. It is an isometry when we consider in L1(ν)
the equivalent norm ||| · |||ν . Q.E.D.

From Proposition 1.22 it follows that the space c0 can be obtained as L1(ν)
from a measure ν:P(N) −→ c0 .

To obtain the space `1 we just have to consider the measure ν:P(N) −→
R ⊂ c0 definided by ν(n) = an where an > 0 for every n and (an) ∈ `1 is given.
Then

L1(ν) =
{

(bn) :
∑

|anbn| < +∞
}

and ‖(bn)‖ν =
∑

|anbn|.

Thus, the operator
(xn) ∈ `1 7−→ (xn/an) ∈ L1(ν)

is an order and norm preserving bijection.
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Consider a Banach space E with a normalized unconditional basis (yn), not
containing subspaces isomorphic to c0 or `1, that is, E is reflexive. In E we
consider the order given by the coordinates with respect to the basis (yn). Then
E is not isomorphic to L1(ν) for a measure ν:P(N) −→ c0 .

Suppose the contrary. Let T : E −→ L1(ν) be an order preserving iso-
morphism. Consider the associated integration operator ν: L1(ν) −→ c0 . For
every n let Tyn = fn ∈ L1(ν) and ν(fn) = zn ∈ c0. Then we have that the
series

∑
anyn converges unconditionally in E if and only if the series

∑
anzn

converges unconditionally in c0. The sufficiency follows from the continuity of
the operator ν ◦ T . As yn is an atom in E, fn is an atom in L1(ν) , thus it is a
multiple of χ{n} and so zn is a multiple of ν(n). The necessity follows then from
the identification of the space L1(ν) given in Proposition 1.21.

As fn is an atom in L1(ν) , it follows that ‖zn‖ = ‖fn‖ν , thus there exists
a constant C > 0 such that ‖zn‖ ≥ C for every n. As the space E has no
subspace isomorphic to `1, the basis (yn) is shrinking, thus it is weakly null. From
continuity it follows that the sequence (zn) is weakly null in c0. The Bessaga
and Pelczynski Selection Principle [LT vol. I, Proposition 1.a.12] guarantees
the existence of a subsequence (znk

) which is a basic sequence equivalent to
a block basis in c0, thus it is equivalent to the canonical basis of c0 [LT vol.
I, Proposition 2.a.1]. It follows that (znk

) is an unconditional basic sequence.
Consider the restriction of the operator ν ◦ T to the clousure in E of the linear
span of the sequence (ynk

) . It is clear from what we have seen, that it is an
isomorphism onto the clousure in c0 of the linear span of (znk

). This last space
is isomorphic to c0. Thus E has a subspace isomorphic to c0, which contradicts
our assumptions.

Let us consider again the dual space of L1(ν) . In 1.14 we have seen a
representation of the space L1(ν) ∗. It is not too usefull for our study, in that it
does not depend explicitly on the Banach space X in which the measure takes
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its values. Egghe in [E, Theorem 2.5] gives a representation of L1(ν) ∗ for the
case of measures with bounded variation as a quotient of the space L∞(|ν|, X∗);
unfortunately neither the proof nor the result are correct [O, Example 2].

With the idea of finding tools for studying the space L1(ν) ∗ and the weak
topology in L1(ν) , let us consider the following condition. Let (fα) be a net in
L1(ν) and let f ∈ L1(ν) . Consider the condition

∫

A

fα d ν converges weakly to
∫

A

f d ν in X for every A ∈ Σ. (∗)

Weak convergence in L1(ν) always implies condition (∗) due to the conti-
nuity of the integration operator and of the restriction operator f ∈ L1(ν) 7−→
f · χA ∈ L1(ν) , for every A ∈ Σ. But the condition (∗) is not equivalent to the
weak convergence of the net. This is easily seen by considering the space L1[0, 1]
obtained from the Lebesgue measure on [0,1].

We will consider condition (∗) for bounded nets. We have the following
result, where I is the ideal generated in L1(ν) ∗ by the functions {hx∗ : x∗ ∈ X∗},
see 1.14.

Theorem 1.23. Consider the following conditions:

a) L1(ν) has no complemented subspace isomorphic to the space `1.

b) The ideal I is dense in L1(ν) ∗.

c) Weak convergence in L1(ν) of bounded nets is characterized by the weak

convergence in X of the integrals over arbitrary sets, that is, if (fα) is a

bounded net in L1(ν) then

fα
w→ f in L1(ν) ⇐⇒

∫

A

fα dν
w→

∫

A

f dν in X, for every A ∈ Σ.

Then a) implies b) and b) implies c).
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PROOF. a) ⇒ b) Suppose L1(ν) has no subspace isomorphic to `1. It follows
from results of Bessaga and Pelczynski [BP, Theorem 4] that L1(ν) ∗ has no
subspace isomorphic to `∞. As L1(ν) ∗ is an order complete Banach lattice, as
it is a dual Banach lattice, it follows that it is order continuous [AB, Theorem
14.9]. In order continuous Banach lattices closed ideals are bands [M 3, Corollary
2.4.4]. As L1(ν) is order continuous it follows that the bands in L1(ν) ∗ are closed
for the weak–∗ topology [M 3, Corollary 2.4.7]. Thus the clousure of the ideal
I, which is an ideal itself, is closed in the weak–∗ toplogy of L1(ν) ∗.

On the other hand, the ideal I is total for the weak–∗ topology. To see this
let f ∈ L1(ν) be such that 〈h, f〉 = 0 for every h ∈ I. It follows that for every
x∗ ∈ X∗ and for every A ∈ Σ

∫

A

f d x∗ν =
∫

A

fhx∗ d λ =
〈
hx∗χA, f

〉
= 0.

From where we deduce that f ≡ 0, what proves our claim. From being total
it follows, as it is a linear subspace, that it is dense in L1(ν) for the weak–∗
topology.

Thus the clousure of the ideal I is weak–∗ closed and weak–∗ dense, thus it
coincides with L1(ν) ∗.

b) ⇒ c) We have to prove that condition (∗) implies weak convergence. It
suffices to prove it for f = 0. Let (fα) be a bounded net in L1(ν) such that

∫

A

fα d x∗ν−→ 0 for every x∗ ∈ X∗ and for every A ∈ Σ.

Fix x∗ ∈ X∗. By considering the Hahn decomposition of the measure x∗ν,
we deduce that the net (fα) is weakly null in L1(|x∗ν|) .

Let λ be a Rybakov control measure for ν. Let h be an element of the ideal
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I. Then there exists x∗1, . . . , x
∗
n in X∗ such that

|h| ≤
n∑
1

|hx∗
i
|.

Let µ be the measure with density |h| with respect to λ. From the previous
inequality we have the following continuous injection

[
n⊕
1

L1(|x∗i ν|)
]

1

−→ L1(µ) .

Thus the net (fα) is weakly null in L1(µ) . It follows that for every A ∈ Σ
∫

A

fα|h| d λ−→ 0.

By decomposing h in its positive and negative parts we deduce that

〈
h, fα

〉
=

∫

A

fαh d λ−→ 0. (6)

From the density of the ideal I in L1(ν) ∗ and from the boundedness of the
net (fα), it follows that (6) is satisfied for every h ∈ L1(ν) ∗, thus (fα) tends
weakly to zero in L1(ν) . Q.E.D.

It should be observed in relation with condition a) in the previous theorem
that, as L1(ν) is an order continuous Banach lattice, it follows from a result of
Tzafriri [T, Theorem 16] that whenever it contains a subspace isomorphic to `1

in fact it contains a complemented subspace isomorphic to `1. The implication a)
⇒ c) has been proved by Okada for sequences of functions [O, Corollary 16]. For
sequences of functions it follows from the Nikodym boundedness Theorem [DU,
Theorem I.3.1] that condition (∗) implies norm boundedness of the sequence.

Condition c) does not imply in general condition a). Consider the space `1

obtained from the measure with values in `1 given in the proof of Theorem 1.15,
it satisfies c) as the integration operator is the identity operator.
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If the measure ν has relatively compact range, for every f ∈ L1(ν) the
measure with density f with respect to ν has also relatively compact range. It
follows from the results of Lewis [L 3, Corollary 3.3] that, for measures with rela-
tively compact range, condition (∗) characterizes weak convergence of sequences
in L1(ν) . If in addition the space X∗ has the Radon–Nikodym property, then,
from the work of Graves and Ruess on convergence of measures, it follows that
the previous result extends to bounded nets [GR, Corollary 7.3].

The next example exhibits a measure ν for which condition (∗) does not
characterize weak convergence of sequences in L1(ν) .

Example 1.24. Let M be the σ–algebra of Lebesgue measurable sets of the
interval [0, +∞) and let m be the Lebesgue measure on the interval. Let rn

be the Rademacher functions, defined in [0,+∞) by rn(t) = sign(sin(2nπt)).
Consider the measure

A ∈M 7−→ ν(A) =
∞∑
1

1
2k

νk(A) ∈ `2 ,

where the measures νk are defined in the following way

νk(A) =




k−1︷ ︸︸ ︷
0, . . . , 0,

∫

A∩[k−1,k]

rk dm,

∫

A∩[k−1,k]

rk+1 dm, . . .


 .

Each measure νk is well defined, countably additive and satisfies

‖νk(A)‖2 ≤ ‖χA∩[k−1,k]‖L2([k−1,k]) = m(A ∩ [k − 1, k])1/2.

Thus the measure ν is well defined and countably additive. Consider in L1(ν)
the sequence (fn) where fn = 2n · χ[n−1,n]. As the function fn is supported on
the interval [n− 1, n], we have:

‖fn‖ν = ‖νn‖([n− 1, n]) ≤ 1.
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For every A ∈M we have:
∫

A

fn d ν = νn(A ∩ [n− 1, n]).

This vector, with norm less or equal than one, is in the subspace generated by the
vectors en, en+1, . . . of the canonical basis of `2, Thus the sequence (

∫
A

fn d ν)
tends weakly to zero in `2.

Let a1, . . . , aN be scalars. For every n, 1 ≤ n ≤ N , consider the set

An = {t ∈ [n− 1, n] : rN (t) = sign(an)} .

Then we have that

∫

An

rk dm =





0, si k 6= N ;

(1/2) · sign(an), si k = N .

Thus we have that νn(An) = (1/2) · sign(an) · eN . Let A = ∪N
1 An. Then

∥∥∥∥∥
N∑
1

anfn

∥∥∥∥∥
ν

≥
∥∥∥∥∥

N∑
1

an

∫

A

fn d ν

∥∥∥∥∥
2

=

∥∥∥∥∥
N∑
1

anνn(An)

∥∥∥∥∥
2

=

∥∥∥∥∥
N∑
1

an(1/2) · sign(an) · eN

∥∥∥∥∥
2

=(1/2)
N∑
1

|an|.

As the sequence (fn) is bounded, it follows from what we have previously seen
that (fn) is a sequence equivalent in L1(ν) to the canonical basis of `1. Thus
(fn) does not tend weakly to zero in L1(ν) .
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The measure ν has unbounded variation (to see this just take into account
that ν is absolutely continuous with respect to the Lebesgue measure and that
the space `2 has the Radon–Nikodym property). This is not relevant, as the
same construction can be done with values in c0 and the resulting measure has
bounded variation.



CHAPTER 2: Properties of the space L1(ν) .

In the previous chapter have seen that every space L1(ν) that is separable
and has no atoms can be obtained from a measure with values in c0. It follows
that the properties of L1(ν) do not determine, in general, the properties of the
Banach space X. On the contrary, the properties of ν and X do determine the
properties of the space L1(ν) : in what extend this occurs is the object of study
of this chapter.

The space L1(ν) is weakly compactly generated, that is, there exists a
relatively weakly compact set whose linear span is dense in L1(ν) . This result
can be deduced from the general theory of Banach lattices, as L1(ν) is order
continuous [BVL]. We include a direct proof of this result that is based on the
properties of the range of a vector measure and as such emphasizes the role of
the theory of vector measures in the study of the space L1(ν) .

Theorem 2.1. L1(ν) is weakly compactly generated.

PROOF. Consider the following set function:

A ∈ Σ 7−→ Φ(A) = χA ∈ L1(ν) .

It is clearly a finitely additive vector measure. As ‖Φ(A)‖ = ‖χA‖ν = ‖ν‖(A)
for every A ∈ Σ, and the semivariation of ν is absolutely continuous with respect
to a control measure, it follows that Φ is countably additive. Thus its range is a
relatively weakly compact set in L1(ν) [DU, Corollary I.2.7]. The linear span of
the range of Φ is the set of simple functions, which is dense in L1(ν) , Theorem
1.6, so the theorem is proved. Q.E.D.
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Let us consider the sequential completeness of the space L1(ν) for the weak
topology. For Banach lattices the property of being weakly sequentially com-
plete is equivalent to not containing a subspace isomorphic to c0 [LT vol. II,
Theorem 1.c.4]. The following theorem shows that the property of not contain-
ing subspaces isomorphic to c0 is transmited from the Banach space X to the
space L1(ν) . We include three proofs of this result, each one of them using
different techniques.

Theorem 2.2. Let X be a Banach space that has no subspace isomorphic to

c0. Then L1(ν) has no subspace isomorphic to c0.

FIRST PROOF. As L1(ν) is a Banach lattice, it does not contain a subspace
isomorphic to c0 if and only if every norm bounded increasing sequence is norm
convergent [LT vol. II, Theorem 1.c.4]. Let (fn) be a norm bounded increasing
sequence in L1(ν) . Let x∗ ∈ X∗, the sequence (fn) is norm bounded and
increasing in the space L1(|x∗ν|) . As |x∗ν| is a positive measure, the Theorem
of Beppo–Levi guarantees that (fn) is convergent in L1(|x∗ν|) to a function
fx∗ ∈ L1(|x∗ν|) . Let λ be a Rybakov control measure for ν. The above argument
shows that (fn) converges in L1(λ) to a function f ∈ L1(λ) . As the sequence
is increasing, there exists a measurable set Z with λ(Z) = 0 such that (fn(ω))
converges to f(ω) for ω 6∈ Z. As the measure ν is absolutely continuous with
respect to λ, for every x∗ ∈ X∗ we have |x∗ν|(Z) = 0. It follows that f = fx∗ in
L1(|x∗ν|) . So f ∈ L1(|x∗ν|) for every x∗ ∈ X∗. Thus the function f is scalarly
integrable.

The Banach space X has no subspace isomorphic to c0. It follows from the
characterization of Lewis, Theorem 1.10, that the functions which are scalarly
integrable with respect to ν, are in fact integrable. Hence f ∈ L1(ν) .

The sequence (fn) is increasing and is order bounded in L1(ν) by the func-
tion f . From the order continuity of L1(ν) (Theorem 1.4) it follows that (fn) is
norm convergent, in L1(ν) . Q.E.D.
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SECOND PROOF. We will proof the counterreciprocal result. Assume that
L1(ν) contains a subspace isomorphic to c0. Let (fn) be a sequence in L1(ν)
that is a basic sequence equivalent in L1(ν) to the canonical basis of c0. It
satisfies that

there exists M > 0 such that ‖fn‖ν ≥ M for every n ∈ N, (1)

and that
∑

fn is a weakly unconditionally Cauchy series in L1(ν) .

Let λ be a Rybakov control measure for ν. The injection

L1(ν) −→ L1(λ)

is continuous, thus the series
∑

fn is weakly unconditionally Cauchy in L1(λ) .
As the space L1(λ) has no subspace isomorphic to c0, due to a result of Bessaga
y Pelczynski [BP, Theorem 5] we deduce that the series

∑
fn is uncondition-

ally convergent in L1(λ) . Hence the sequence (fn) tends to zero in norm in
L1(λ) . It follows that there exists a subsequence (fnk

) that tends to zero almost
everywhere with respect to λ.

Suppose that for every measurable set A we have
∫

A

fnk
dν −→ 0.

Then the sequence (fnk
) tends to zero almost everywhere with respect to λ

and satisfies that (
∫

A
fnk

dν) tends to zero in X for every measurable set A. It
follows, from the Theorem of Egoroff and the Theorem of Vitali–Hahn–Saks [DU,
Corollary I.4.10], that (fnk

) tends to zero in norm in L1(ν) , which contradicts
(1).

Thus, there exist a measurable set A such that the sequence (
∫

A
fnk

dν)
does not tend to zero in X. We can assume, by passing to a subsequence if
necessary, that there exists a constant C > 0 such that

∥∥∥∥
∫

A

fnk
dν

∥∥∥∥ ≥ C for every k ∈ N. (2)
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As the series
∑

fn is weakly unconditionally Cauchy in L1(ν) and the map

f ∈ L1(ν) 7−→
∫

A

f dν ∈ X

is continuous, it follows that the series
∑ ∫

A
fnk

dν is weakly unconditionally
Cauchy in X and that the sequence (

∫
A

fnk
dν) tends weakly to zero in X. This

conditions, added to (2), guarantee, by the Selection Principle of Bessaga and
Pelczynski [BP, Theorem 5], that there exists a subsequence of (

∫
A

fnk
dν), in

X, that is a basic sequence equivalent to the canonical basis of c0. Q.E.D.

The previous proof shows that if L1(ν) has a subspace isomorphic to c0,
there exists a subspace of L1(ν) isomorphic to c0 on which the integration oper-
ator is an isomorphism. If (gn) is the subsequence of (fn) such that the sequence
(
∫

A
gn dν) is equivalent to the canonical basis of c0 in X, the mentioned subspace

is the clousure in L1(ν) of the linear span of the functions {gn · χA}.

THIRD PROOF. Suppose that X has no subspace isomorphic to c0. It
follows from the characterization of Lewis, Theorem 1.10, that the space of inte-
grable functions with respect to ν coincides with the space of scalarly integrable
functions. We know, 1.14, that this last space is the Köthe bidual of L1(ν) . Thus
L1(ν) coincides with its Köthe bidual. This is equivalent to L1(ν) satisfying
the Fatou property (see [LT vol. II, p. 30]), which is the following

Let (fn) be an increasing and norm bounded sequence in L1(ν) . Then
if f = sup fn we have that f is in L1(ν) and (‖fn‖ν ) converges to
‖f‖ν .

Thus L1(ν) is an order continuous Banach lattice with the Fatou property.
Let (fn) be an increasing and norm bounded sequence in L1(ν) . From Fatou’s
property it follows that f = sup fn is in L1(ν) . Hence (fn) is an increasimg
sequence which is order bounded. As L1(ν) is order continuous it follows that
(fn) is convergent. Thus, L1(ν) has no subspace isomorphic to c0. Q.E.D.
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Prof. I. Dobrakov has pointed out to the author that the following Corollary
to Theorem 2.2 can be deduced from results of J. K. Brooks and N. Dinculeanu
on bilinear integration [BD, Corollary 8.10 and Theorem 9.1].

Corollary 2.3. Let X be a weakly sequentially complete Banach space. Then

L1(ν) is weakly sequentially complete.

The reverse implication to Theorem 2.2 is not true as the following example
shows. From Theorem 1.20 it follows that there exists a measure ν with values
in c0 for which L1(ν) = L1[0, 1], space that does not contain c0. In the next
example we explicitly build a measure satisfying the above conditions and for
which the linear span of the range is dense in c0.

Example 2.4. Let M be the σ–algebra of Lebesgue measurable sets of the
interval [0,1] and let m be the Lebesgue measure on the interval. Let us consider
the measure

A ∈M 7−→ ν(A) =
(∫

A

rn dm

)
∈ c0 ,

where rn are the Rademacher functions defined by rn(t) = sign(sen(2nπt)) for
n = 0, 1, . . . . The Riemann–Lebesgue Lemma shows that ν is well defined. From
the bound ∥∥∥∥(

∫

A

rn dm)
∥∥∥∥
∞
≤ m(A) for every A ∈M

it follows that ν is countably additive, has bounded variation and |ν| ≤ m.
Considering x∗ = ek the k–th vector of the canonical basis of c∗0 = `1, we have
that x∗ν(A) =

∫
A

rk dm, so |x∗ν| ≡ m. Hence we deduce that the variation of
the measure ν is the Lebesgue measure m.

Let x∗ = (an) ∈ `1. As the sequence (an) is summable and the functions rn

bounded in L1[0, 1] we have

〈x∗, ν(A)〉 =
∑

an

∫

A

rn dm =
∫

A

(∑
anrn

)
dm. (3)
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Thus the measure x∗ν is the measure with density
∑

anrn with respect to m. Let
f : [0, 1] −→ R be a measurable function. Suppose that it is scalarly integrable
with respect to ν. For x∗ = ek we have |x∗ν| = m, so f ∈ L1[0, 1]. On the other
hand from (3) we deduce the bound |x∗ν|(A) ≤ ‖x∗‖·m(A). Thus, if f ∈ L1[0, 1]
it follows that f ∈ L1(|x∗ν|) for every x∗ ∈ X∗, so f is scalarly integrable. That
is, the space of scalarly integrable functions with respect to ν is L1[0, 1].

Let f ∈ L1(ν) . Consider the integration operator

f ∈ L1(ν) 7−→ ν(f) =
∫

f dν ∈ c0 .

Let ek ∈ `1. Then

〈
ek,

∫
f dν

〉
=

∫
f d ekν =

∫
f rk dm.

It follows that ν(f) =
∫

f dν =
(∫

f rn dm
)∞
0

. Given f scalarly integrable, in
order to have integrability we need for every measurable set A to have

∫
A

f dν ∈
c0, which is true, by the Riemann–Lebesgue Lemma, for every f ∈ L1[0, 1].
Hence L1(ν) and L1[0, 1] coincide as sets.

The norm in L1(ν) is given by the following expression

‖f‖ν = sup
{∫ 1

0

|f |
∣∣∣
∑

anrn

∣∣∣ dm : ‖(an)‖1 ≤ 1
}

.

Considering (an) = ek we deduce that ‖f‖L1[0,1] ≤ ‖f‖ν . The reverse inequality
follows from |∑ anrn| ≤ 1 for ‖(an)‖1 ≤ 1. Thus the space L1(ν) is order
isometric to L1[0, 1].

The linear span of the range of the measure ν is dense in c0. To see this
consider the sets An = {t ∈ [0, 1] : rn(t) = 1}. We have ν(An) = 1/2 · en where
en is the n–th vector of the canonical basis of c0.
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Next we study how cotype translates from the Banach space X to L1(ν) .
A Banach space has cotype q, for 2 ≤ q < +∞, if there exists a constant C > 0
such that for every n ∈ N and for any elements x1, . . . , xn in X we have

(
n∑
1

‖xi‖q

)1/q

≤ C ·
∫ 1

0

∥∥∥∥∥
n∑
1

ri(t) · xi

∥∥∥∥∥ dt,

where (rn) is the sequence of Rademacher functions on the interval [0,1]. For
Banach lattices the property of having cotype q > 2 is equivalent to satisfying
a lower q–estimate [LT vol. II, p. 88]: there exists a constant C > 0 such that
for every n ∈ N and any pairwise disjoint elements x1, . . . , xn in X we have

(
n∑
1

‖xi‖q

)1/q

≤ C ·
∥∥∥∥∥

n∑
1

xi

∥∥∥∥∥ .

For q = 2 the situation is different. In this case satisfying a lower 2–estimate
does not imply having cotype 2 [LT vol. II, Example 1.f.19]. Having cotype 2 is
equivalent to being 2–concave [LT vol. II, Theorem 1.f.16]. A Banach lattice is
q–concave if there exists a constant C > such that for every n ∈ N and for any
elements x1, . . . , xn in X we have

(
n∑
1

‖xi‖q

)1/q

≤ C ·
∥∥∥∥∥∥

(
n∑
1

|xi|q
)1/q

∥∥∥∥∥∥
.

Theorem 2.5. Let X be a Banach space with cotype q for q ≥ 2 and let ν be

a measure with values in X. Then L1(ν) has cotype q.

PROOF. Suppose that q > 2. We will see that L1(ν) satisfies a lower q–
estimate. Let f1, . . . , fn be disjoint functions in L1(ν) . Let (Ai)n

1 be disjoint
measurable sets such that each Ai is contained in the support of fi. Then

∫

∪Ai

(
n∑
1

fi) d ν =
n∑
1

∫

Ai

fi d ν.
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Denote xi =
∫

Ai
fi d ν ∈ X. Let (θi)n

1 be an arbitrary choice of signs θi = ±1.
As the functions fi are disjoint it follows that

∥∥∥∥∥
n∑
1

θi · xi

∥∥∥∥∥ ≤
∥∥∥∥∥

n∑
1

θi · fi

∥∥∥∥∥
ν

=

∥∥∥∥∥
n∑
1

fi

∥∥∥∥∥
ν

.

Averaging over all posible choices of signs we get

1
2n
·

∑

θi∈{1,−1}

∥∥∥∥∥
n∑
1

θi · xi

∥∥∥∥∥ ≤
∥∥∥∥∥

n∑
1

fi

∥∥∥∥∥
ν

. (4)

Let us consider the Rademacher functions r1, . . . , rn. The average that appears
in the first member of (4) can be written as

1
2n
·

∑

θi∈{1,−1}

∥∥∥∥∥
n∑
1

θi · xi

∥∥∥∥∥ =
∫ 1

0

∥∥∥∥∥
n∑
1

ri(t) · xi

∥∥∥∥∥ d t. (5)

As the Banach space X has cotype q there exists a positive constant C such that
(

n∑
1

‖xi‖q

)1/q

≤ C ·
∫ 1

0

∥∥∥∥∥
n∑
1

ri(t) · xi

∥∥∥∥∥ dt. (6)

From (4), (5) and (6) it follows that
(

n∑
1

∥∥∥∥
∫

Ai

fi d ν

∥∥∥∥
q
)1/q

≤ C ·
∥∥∥∥∥

n∑
1

fi

∥∥∥∥∥
ν

.

Consider the previous inequality, taking supremum over all posible choices of
sets (Ai)n

1 , and considering the equivalent norm ||| · |||ν in L1(ν) , we deduce
that (

n∑
1

‖fi‖q
ν

)1/q

≤ 2 C ·
∥∥∥∥∥

n∑
1

fi

∥∥∥∥∥
ν

.

Hence L1(ν) satisfies a lower q–estimate and thus it has cotype q.

Let q = 2. We will prove that L1(ν) has cotype 2 by showing that it is
2–concave. Let f1, . . . , fn be in L1(ν) . Set f =

(∑n
1 |fi|2

)1/2, it is in L1(ν) .
Consider the ideal generated by f in L1(ν)

I(f) =
{

g ∈ L1(ν) : ∃λ > 0, 0 ≤ |g| ≤ λf
}
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with the norm

‖g‖∞ = inf
{

λ ≥ 0 : |g| ≤ λ · f/‖f‖
}

The completion of (I(f), ‖·‖∞) is an AM–space with unit, so in virtue of a result
of Kakutani [LT vol. II, Theorem 1.b.6] is order isometric to a space C(K). As
for every function g in I(f) we have ‖g‖∞ ≤ ‖g‖ν , the inyection

j: C(K) −→ L1(ν)

has norm one and ‖f‖∞ = ‖f‖ν . Consider the composition of this injection
with the integration operator ν:L1(ν) −→ X , that is

ν ◦ j:C(K) −→ X .

As X has cotype 2, by Grothendieck’s Theorem [P, Theorem 5.14], the operator
ν ◦ j is 2–summing. Thus there exists a constant C > 0 such that for every
n ∈ N and for any functions g1, . . . , gn in C(K) we have

(
n∑
1

‖ν ◦ j(gi)‖2
)1/2

≤ C · sup





(
n∑
1

|〈µ, gi〉|2
)1/2

: µ ∈ C(K)∗, ‖µ‖ ≤ 1



 .

The supremum in the previous inequality equals ‖(∑n
1 |gi|2)1/2‖∞.

Consider measurable sets (Ai)n
1 and set gi = fi · χAi . From the previous

expression we have

(
n∑
1

∥∥∥∥
∫

Ai

fi d ν

∥∥∥∥
2
)1/2

≤C ·
∥∥∥∥∥∥

(
n∑
1

|fi · χAi |2
)1/2

∥∥∥∥∥∥
∞

≤C ·
∥∥∥∥∥∥

(
n∑
1

|fi|2
)1/2

∥∥∥∥∥∥
∞

=C ·
∥∥∥∥∥∥

(
n∑
1

|fi|2
)1/2

∥∥∥∥∥∥
ν

.



50 Chapter 2

Taking supremum over all posible choices of sets (Ai)n
1 and considering the

equivalent norm ||| · |||ν in L1(ν) it follows that

(
n∑
1

‖fi‖2ν
)1/2

≤ 2 C ·
∥∥∥∥∥∥

(
n∑
1

|fi|2
)1/2

∥∥∥∥∥∥
ν

.

Thus L1(ν) is 2–concave and so it has cotype 2. Q.E.D.

A Banach space X is said to have type p, for 1 ≤ p ≤ 2, if there exists a
constant C > 0 such that for every n ∈ N and any elements x1, . . . , xn in X we
have ∫ 1

0

∥∥∥∥∥
n∑
1

ri(t) · xi

∥∥∥∥∥ dt ≤ C ·
(

n∑
1

‖xi‖p

)1/p

.

The case p = 1 corresponds to the triangle inequality for the norm. In this case
X is said to have trivial type or to have no type. Hilbert spaces have type 2.

Type is not inherited by the space L1(ν) from the Banach space X, this is
easily seen by considering the space L1[0, 1], which has no type, obtained from
the Lebesgue measure (with values in R).

For especial Banach spaces we can obtain results on type for L1(ν) . We first
prove an auxiliary result, which has independent interest. The next proposition
shows how the properties of the integration operator are reflected in the space
L1(ν) .

Proposición 2.6. Consider the integration operator ν: L1(ν) −→ X . If ν is

compact then the space L1(ν) contains a complemented subspace isomorphic to

`1.

PROOF. Let λ be a Rybakov control measure for ν. Consider the trapose of
the integration operator ν∗:X∗ −→ L1(ν) ∗ , it is compact. Let f be in L1(ν) .
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Then
〈ν∗(x∗), f〉 = 〈x∗, ν(f)〉 =

∫
f dx∗ν =

∫
fhx∗ dλ ,

where hx∗ is the Radon–Nikodym derivative of the measure x∗ν with respect to
λ, which is an element of L1(ν) ∗. Thus the norm in L1(ν) can be written in
the following way

‖f‖ν = sup
{∫

|f ||h| dλ : h ∈ ν∗(BX∗)
}

.

Let f be in L1(ν) and let A be a measurable set. We have

‖f · χA‖ν = sup
{∫

A

|f ||h| dλ : h ∈ ν∗(BX∗)
}

= sup
{
〈|f |, |h · χA|〉 : h ∈ ν∗(BX∗)

}

≤ ‖f‖ν · sup
{
‖h · χA‖L1(ν) ∗ : h ∈ ν∗(BX∗)

}
.

(7)

Suppose L1(ν) has no complemented subspace ismorphic to `1. Then, by a result
of Bessaga and Pelczynski [BP, Theorem 4] it follows that L1(ν) ∗ has no sub-
space isomorphic to `∞. As L1(ν) ∗ is a dual Banach lattice it is order complete,
it follows that it is order continuous [AB, Theorem 14.9]. In order continuous
Banach lattices relatively compact sets are L–weakly compact and in Banach
function spaces these coincide with equi–integrable sets, see Preliminaries. As
ν∗(BX∗) is compact in L1(ν) ∗, we have

lim
λ(A)→0

sup
{
‖h · χA‖L1(ν) ∗ : h ∈ ν∗(BX∗)

}
= 0. (8)

It follows from (7) and (8) that in L1(ν) norm bounded sets are equi–integrable,
thus L–weakly compact. The infinite dimensional Banach lattices in which rel-
atively weakly compact sets are L–weakly compact are characterized by Meyer–
Nieberg, see Preliminaries, for satisfying that every infinite dimensional sublat-
tice contains a subspace isomorphic to `1. On the other hand, the unit ball
of L1(ν) being bounded is L–weakly compact and so relatively weakly com-
pact. Thus L1(ν) is reflexive, which contradicts the fact of containing subspaces
isomorphic to `1. Q.E.D.
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Theorem 2.7. Let ν: Σ −→ `p for 1 ≤ p < 2. Then the space L1(ν) does

not have type 2.

PROOF. Suppose L1(ν) has type 2. As `p has cotype 2, for 1 ≤ p < 2, it
follows from Theorem 2.5 that L1(ν) has cotype 2. From a theorem of Kwapién
[P, Theorem 3.3] it follows that L1(ν) is a Hilbert space. Consider the integration
operator ν:L1(ν) −→ `p . The operator ν is compact as it is so for its restiction
to any separable subspace, thanks to Pitt–Rosenthal’s theorem, which asserts
that every operator from `q into `p for q > p is compact. From the previous
proposition it follows that L1(ν) contains a complemented subspace isomorphic
to `1 which is a contradiction with being a Hilbert space. Q.E.D.

Dunford and Pettis proved that weakly compact operators defined over
L1[0, 1] map relatively weakly compact sets into relatively compact sets. This
property was later isolated and named as the Dunford–Pettis property for Banach
spaces by Grothendieck. Among the spaces that satisfy it are the AL–spaces
and the AM–spaces. We study suficient conditions on the measure ν and the
Banach space X in order to obtain a space L1(ν) with the Dunford–Pettis
property. Taking into account that in L1[0, 1] relatively weakly compact sets
and L–weakly compact sets coincide, the next theorem can be considered, in a
certain sense, as an extension of the theorem of Dunford and Petis.

Proposition 2.8. Let ν: Σ −→ X be a vector measure with σ–finite variation,

Y a Banach space and T :L1(ν) −→ Y a weakly compact operator. Then T

maps L–weakly compact sets into relatively compact sets.

PROOF. Let λ be a Rybakov control measure for ν. Consider the measure

A ∈ Σ 7−→ F (A) = χA ∈ L1(ν) .

It is countably additive and absolutely continuous with respect to λ. We will
see that the average range of F is locally bounded, that is, for every measurable
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set A with λ(A) > 0 there exists a measurable set B ⊂ A with λ(B) > 0 such
that the set of averages

{
F (D)
λ(D)

: D ∈ Σ, D ⊂ B

}

is bounded in L1(ν) .

The measure |ν| is σ–finite and absolutely continuous with respect to λ,
thus there exists a function h ≥ 0 locally integrable with respect to λ such that
|ν|(A) =

∫
A

h dλ for every measurable set A (both sides of the equality infinite
if one of them is). Also, as |ν| is σ–finite, there exists a partition (An) of Ω such
that |ν|(An) < +∞ for every n.

Let A be a measurable set with λ(A) > 0. There exists n ∈ N such that
λ(A ∩ An) > 0. Also there exists k ∈ N such that the set B = {ω ∈ A ∩ An :
h(ω) ≤ k} satisfies |ν|(B) > 0. Then we have

|ν|(D) =
∫

D

h dλ ≤ k · λ(D) for every measurable set D ⊂ B.

It follows that ∥∥∥∥
χD

λ(D)

∥∥∥∥
ν

=
‖ν‖(D)
λ(D)

≤ |ν|(D)
λ(D)

≤ k.

Consider the measure defined by

A ∈ Σ 7−→ G(A) = T (χA) ∈ Y .

It is countably additive and absolutely continuous with respect to λ. With
the measure G we can represent the operator T : if ϕ =

∑n
1 aiχAi is a simple

function, we have

T (ϕ) =
n∑
1

aiT (χAi) =
n∑
1

aiG(Ai) =
∫

ϕ d G.
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From the continuity of the operator T and the fact of being G absolutely con-
tinuous with respect to λ it follows, in view of Definition 1.1, that

if f ∈ L1(ν) then f ∈ L1(G) and T (f) =
∫

f dG. (9)

As G = T ◦ F and the operator T is weakly compact, it follows that the
average range of G is locally relatively weakly compact. In these conditions by
the vector Radon–Nikodym Theorem (see [DU, Theorem III.2.18]) there exists
a function g: Ω −→ Y λ–measurable and Pettis integrable with respect to λ,
such that

G(A) = Pettis–
∫

A

g dλ.

From Definition 1.2 it follows that if f is in L1(G) , then the function fg is Pettis
integrable with respect to λ and

∫
f dG = Pettis–

∫
fg dλ. (10)

From (9) and (10) we deduce that the operator T can be represented as

T (f) =
∫

fg dλ.

Let K be an L–weakly compact set in L1(ν) . Given ε > 0 there exists δ > 0
such that

if λ(A) < δ then ‖f · χA‖ν < ε for every f ∈ K. (11)

The density g is λ–measurable, thus there exists a sequence of simple functions gn

that conveges to g almost everywhere with respect to λ. By Egoroff’s Theorem
the convergence is almost uniform, thus for δ > 0 there exists a measurable set
A with λ(A) < δ such that on Ω \ A the convergence is uniform. Let n ∈ N be
such that ‖g(ω)− gn(ω)‖ < ε for every ω ∈ Ω \A.
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Then for f in K we have

Tf =T (f · χA) + T (f · χΩ\A)

=T (f · χA) +
∫

Ω\A
fgn dλ +

∫

Ω\A
f(g − gn) dλ

From (11) it follows that ‖T (f · χA)‖ < ε‖T‖. On the other hand

‖
∫

Ω\A
f(g − gn) dλ‖ ≤

∫

Ω\A
|f |‖g − gn‖ dλ ≤ ε

∫
|f | dλ ≤ ε · ‖f‖ν .

K is bounded as it is L–weakly compact, thus we have seen that for every
ε > 0 there exists a simple function ϕ: Ω −→ Y such that the distance between
the sets T (K) and {∫ fϕ dλ : f ∈ K} is less than ε. This last set is relatively
compact as, if ϕ =

∑n
1 yiχAi with yi ∈ Y , then

∫
fϕ dλ =

n∑
1

yi

∫

Ai

f dλ

and the coefficients
∫

Ai
f dλ are bounded by sup{‖f‖ν : f ∈ K}. Hence T (K)

is relatively compact in Y . Q.E.D.

A Banach space is said to have the Schur property if weak convergence of
a sequence implies its norm convergence. For Banach lattices we also consider
the positive Schur property, defined in the Preliminaries.

Proposition 2.9. Let X be a Banach space with the Schur property. Then

L1(ν) has the positive Schur property.

PROOF. We have to prove that in L1(ν) L–weakly compact sets and relatively
weakly compact sets coincide. Suppose that there exists a set M ⊂ L1(ν) that
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is relatively weakly compact but it is not L–weakly compact. Thus there exists
functions fn in M and disjoint measurable sets An such that for a certain ε > 0

‖fn · χAn‖ν ≥ ε for every n ∈ N. (12)

As {fn : n ∈ N} is a relatively weakly compact set, by the Theorem of Eberlein–
Smulian, there exists a subsequence (fnk

) which converges weakly in L1(ν) to a
function f ∈ L1(ν) . It follows that for every A ∈ Σ

∫

A

fnk
dν converges weakly in X to

∫

A

f dν.

As X is a Schur space, the previous convergence is in norm. Let µ and µk be
the measures with densities f and fnk

with respect to ν, respectively. They are
countably additive and satisfy that µk(A) converge to µ(A) in norm, for every
A ∈ Σ. By the Vitali–Hahn–Saks Theorem (see [DU, Corollary I.5.6]) it follows
that {µk} is a uniformily countably additive family. This implies that

lim
n

sup
k
‖µk‖(An) = 0,

which contradicts (12). Q.E.D.

Theorem 2.10. Let X a Banach space with the Schur property and let ν be a

measure with σ–finite variation. Then L1(ν) has the Dunford–Pettis property.

PROOF. From the previous proposition, in L1(ν) L–weakly compact sets and
relatively weakly compact set coincide. By Proposition 2.8 every weakly compact
operator defined over L1(ν) maps L–weakly compact sets into relatively compact
sets. Q.E.D.

From Proposition 2.8 it follows a result that emphasizes, once more, the
role that the measure plays in determining the space L1(ν) .
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Theorem 2.11. Let ν be a vector measure with no atoms and σ–finite varia-

tion. Then L1(ν) is not reflexive.

PROOF. Suppose by way of contradiction that L1(ν) is reflexive. Consider
the identity operator I: L1(ν) −→ L1(ν) , it is weakly compact. Let K = {f ∈
L1(ν) : |f | ≤ 1}. It is an L–weakly compact set as it is order bounded by the
function χΩ. From Proposition 2.8 it follows that K is relatively compact in
L1(ν) . Let λ be a Rybakov control measure for ν. The injection of L1(ν) into
L1(λ) is continuous, so K is relatively compact in L1(λ) .

As ν has no atoms, neither does λ. Thus in L1(λ) we can construct a
Rademacher type sequence (rn), satisfying, in particular, |rn| = 1 and ‖rn −
rm‖L1(λ) = λ(Ω). But rn ∈ K and this contradicts K being compact in L1(λ) .
Q.E.D.

We have seen that the measure ν has no atoms if and only if the space L1(ν)
has no atoms, Proposition 1.16. Thus it follows from the previous Theorem that
the spaces Lp[0, 1] for 1 < p < +∞ can only be obtained, order isomorphically,
from vector measures whose variation on every measurable set is either null or
infinite.

The condition of non existence of atoms is necessary: it is enough to consider
the measure A ∈ P(N) 7−→ ν(A) =

∑
anen ∈ `2 where (an) is a positive

sequence in `2. We have L1(ν) = `2, Proposition 1.22. The condition of σ–
finiteness of the variation is also necessary: it is enough to consider the measure
A ∈ M[0, 1] 7−→ ν(A) = χA ∈ L2[0, 1] . We have L1(ν) = L2[0, 1] and |ν|(A) is
either 0 or +∞.

Lp–spaces 2.12. Among the most important Banach lattices are the abstract
Lp–spaces, 1 ≤ p < +∞. A Banach lattice is said to be an abstract Lp–space if
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the p–th power of the norm is additive over disjoint elements, that is, for every
pair of disjoint elements x and y we have

‖x + y‖p = ‖x‖p + ‖y‖p.

These spaces are order continuous Banach lattices. In virtue of a result of
Kakutani and Bohnenblust [LT vol. II, Theorem 1.b.2] these spaces are order
isomorphic and isometric to a “concrete” Lp–space, that is: if E is an abstract
Lp–space there exists a measure space (S, σ, µ) such that E is order isomorphic
and isometric to the space Lp(S, σ, µ). When E has a weak unit, then the
measure µ can be taken to be finite.

We will study this situation for the space L1(ν) . We will see the relation of
the measure space (S, σ, µ) given by the theorem of Kakutani and Bohnenblust,
with the vector measure ν.

Suppose L1(ν) is order isomorphic to an abstract Lp–space E. That is, there
exists an isomorphism T :L1(ν) −→ E which preserves order. Let f1, . . . , fn be
disjoint functions in L1(ν) . Then, considering that the functions Tfi are disjoint
in E, which is an abstract Lp–space, it follows that

∥∥∥∥∥
n∑
1

fi

∥∥∥∥∥

p

ν

≤ ‖T−1‖p ·
∥∥∥∥∥

n∑
1

Tfi

∥∥∥∥∥

p

= ‖T−1‖p ·
(

n∑
1

‖Tfi‖p

)

≤ ‖T‖p · ‖T−1‖p ·
(

n∑
1

‖fi‖p
ν

)
.

Analogously we obtain a similar lower bound. Thus there exist two positive
constants C1 and C2 such that for any pairwise disjoint functions f1, . . . , fn in
L1(ν) we have

C1 ·
n∑
1

‖fi‖p
ν ≤

∥∥∥∥∥
n∑
1

fi

∥∥∥∥∥

p

ν

≤ C2 ·
n∑
1

‖fi‖p
ν . (13)
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Let (Ai)n
1 be a partition of Ω. Apply (13) to the functions fi = χAi

. We
have

C1 ·
n∑
1

‖ν‖(Ai)p ≤ ‖ν‖
(

n⋃
1

Ai

)p

≤ C2 ·
n∑
1

‖ν‖(Ai)p. (14)

Consider the following set function

A ∈ Σ 7−→ τ(A) = sup

{
n∑
1

‖ν‖(Ai)p : (Ai)n
1 is a partition of A

}
∈ R .

It is well defined, by (14), that is, it is finite. It is superadditive and satisfies

C1 · τ(A) ≤ ‖ν‖(A)p ≤ τ(A).

Consider now the set function

A ∈ Σ 7−→ µ(A) = inf

{
n∑
1

τ(Ai) : (Ai)n
1 is a partition of A

}
∈ R .

It is well defined and it is finite by (14) and the relation between ‖ν‖p and τ . It
is additive and satisfies

C1 · µ(A) ≤ ‖ν‖(A)p ≤ C2 · µ(A) for every A ∈ Σ. (15)

The semivariation is absolutely continuous with respect to a control mea-
sure, it follows that so is the measure µ. Hence µ is countably additive.

Consider the space Lp(Ω, Σ, µ). Let f =
∑n

1 aiχAi be a simple function
with (Ai)n

1 disjoint. Then from (13) we have

C1 ·
n∑
1

|ai|p‖ν‖(Ai)p ≤ ‖f‖p
ν ≤ C2 ·

n∑
1

|ai|p‖ν‖(Ai)p.

from (15) we have

(C1)2 ·
n∑
1

|ai|pµ(Ai) ≤ ‖f‖p
ν ≤ (C2)2 ·

n∑
1

|ai|pµ(Ai).
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Thus, over the simple functions the norms of L1(ν) and of Lp(Ω,Σ, µ) are equiv-
alent. As the simple functions are dense in both spaces, we deduce that they
are order isomorphic.

Consider now the following set function

A ∈ Σ 7−→ ‖ν‖(A)p ∈ R .

It is easy to verify that the measure µ previously builted is, in the space of real
countably additive measures defined over Σ, on the one hand a lower bound of the
set of measures that mayorize ‖ν‖(·)p, and on the other hand, an upper bound of
the set of measures that minorize ‖ν‖(·)p. When L1(ν) is an abstract Lp–space
it follows from the previous study that L1(ν) = Lp(Ω,Σ, ‖ν‖p), where in this
case ‖ν‖p is a countably additive measure. In the case p = 1 the semivariation
turns out to be additive and so it coincides with the variation of the measure.
We will study this case, that of AL–spaces, in detail in the next chapter.

The case p = +∞ corresponds to the AM–spaces, which are those Banach
lattices in which for every pair of disjoint elements x and y we have

‖x + y‖ = sup{‖x‖, ‖y‖}.

An AM–space which is order continuous is order isomorphic and isometric to
c0(Γ) for a certain set of indexes Γ [LT vol. II, Lemma 1.b.10]. The existence of
a weak unit implies that Γ is countable. It follows that if L1(ν) is an AM–space
the only posibility is c0.

It is of interest to find conditions in order to have the space L1(ν) order
ismorphic to a Hilbert space. The example of the Lebesgue measure on [0,1],with
values in R, which gives the space L1[0, 1], shows that these conditions have to
be more restrictive than being the Banach space in which the measure takes its
values a Hilbert space.
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A sequence (xn) in a Banach space is said to be 2–lacunary if there exists
a constant C > 0 such that for every sequence (αn) in `2 we have

∥∥∥∥∥
∞∑
1

αnxn

∥∥∥∥∥ ≤ C ·
( ∞∑

1

α2
n

)1/2

.

Theorem 2.13. Let X be a Banach space with cotype 2. Let ν: Σ −→ X be

a measure satisfying that for every partition (An)∞1 , the sequence

(
ν(An)
‖ν(An)‖

)

is 2–lacunary. Then L1(ν) is order isomorphic to a Hilbert space.

PROOF. From our hypothesis given any partition (An)∞1 there exists a constant
K = K(An), depending on the partition, such that for every sequence (αn) in
`2 we have ∥∥∥∥∥

∞∑
1

αn
ν(An)
‖ν(An)‖

∥∥∥∥∥ ≤ K ·
( ∞∑

1

α2
n

)1/2

. (16)

Let λ be a control measure for ν. We will see that for every A ∈ Σ with
λ(A) > 0 there exists a measurable set B ⊂ A with λ(B) > 0 such that

K(B) = sup {K(Bn) : (Bn) is a partition of B} < +∞.

Assume by way of contradiction that this is not the case. Then there exists a
measurable set A with λ(A) > 0 such that for every B ⊂ A with λ(B) > 0
we have K(B) = +∞. Let (An) be a partition of A such that λ(An) > 0. For
every n ∈ N, as K(An) = +∞, there exist a partition (An

i ) of An such that
K(An

i ) > n. That is, there exists (αn
i ) ∈ `2 such that

∥∥∥∥∥
∞∑

i=1

αn
i

ν(An
i )

‖ν(An
i )‖

∥∥∥∥∥ > n ·
( ∞∑

i=1

|αn
i |2

)1/2

.
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Thus there exists an index i(n) such that

∥∥∥∥∥∥

i(n)∑

i=1

αn
i

ν(An
i )

‖ν(An
i )‖

∥∥∥∥∥∥
> n ·




i(n)∑

i=1

|αn
i |2




1/2

.

Let us consider the partition

A1
1, A1

2, . . . , A1
i(1),

∞⋃

i(1)

A1
i , A2

1, A2
2, . . . , A2

i(2),

∞⋃

i(2)

A2
i , . . . .

It is partition of A and it is easy to see that, by its contruction, the associted
sequence is not 2–lacunary.

We are now in the conditions for applying an Exhaustion Lemma [DU,
Lemma III.2.4] to the following property (P) “ν has (P) on A if K(A) < +∞”.
It follows that there exists a partition (Bn) of Ω such that K(Bn) < +∞.

An argument similar to the previous one shows that in fact we have K =
supn K(Bn) < +∞.

From the previous discussion and from (16) it follows that for every partition
(An) and for every sequence (an) ∈ `2, by considering αn = an‖ν(An)‖, we have

∥∥∥∥∥
∞∑
1

anν(An)

∥∥∥∥∥ =

∥∥∥∥∥
∞∑
1

αn
ν(An)
‖ν(An)‖

∥∥∥∥∥

≤K ·
( ∞∑

1

a2
n‖ν(An)‖2

)1/2

≤K ·
( ∞∑

1

a2
n‖ν‖(An)2

)1/2

.

(17)

Let g be a simple function. We can write it as g =
∑n

1 aiχAi where the sets
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Ai are disjoint. Let B ∈ Σ, then by (17) we have

‖
∫

B

g dν‖ =

∥∥∥∥∥
n∑
1

aiν(Ai ∩B)

∥∥∥∥∥

≤ K ·
(

n∑
1

a2
i ‖ν‖(Ai ∩B)2

)1/2

≤ K ·
(

n∑
1

a2
i ‖ν‖(Ai)2

)1/2

.

Considering the equivalent norm ||| · ||| in L1(ν) we deduce that
∥∥∥∥∥

n∑
1

aiχAi

∥∥∥∥∥
ν

≤ 2K ·
(

n∑
1

a2
i ‖ν‖(Ai)2

)1/2

. (18)

From having X cotype 2 we deduce, by Theorem 2.5, that L1(ν) has cotype
2, so it is 2–concave. Thus there exists a constant C > 0 such that for any scalars
a1, . . . , an and any measurable sets B1, . . . , Bn we have

(
n∑
1

a2
i ‖ν‖(Bi)2

)1/2

≤ C ·
∥∥∥∥∥∥

(
n∑
1

|aiχBi |2
)1/2

∥∥∥∥∥∥
ν

.

Set Bi = Ai, as the sets Ai are disjoint, we have
∥∥∥∥∥∥

(
n∑
1

|aiχAi |2
)1/2

∥∥∥∥∥∥
ν

=

∥∥∥∥∥
n∑
1

aiχAi

∥∥∥∥∥
ν

.

Hence (
n∑
1

a2
i ‖ν‖(Ai)2

)1/2

≤ C ·
∥∥∥∥∥

n∑
1

aiχAi

∥∥∥∥∥
ν

. (19)

It follows that for a simple function g =
∑n

1 aiχAi where the sets Ai are
disjoint, we have

1/C ·
(

n∑
1

a2
i ‖ν‖(Ai)2

)1/2

≤
∥∥∥∥∥

n∑
1

aiχAi

∥∥∥∥∥
ν

≤ 2K ·
(

n∑
1

a2
n‖ν‖(Ai)2

)1/2

. (20)
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From the previous inequality evaluated at a1 = . . . = an = 1 we obtain, for
disjoint measurable sets (Ai)n

1 ,

(1/C)2 ·
n∑
1

‖ν‖(Ai)2 ≤ ‖ν‖(
n⋃
1

Ai)2 ≤ (4K)2 ·
n∑
1

‖ν‖(Ai)2.

This inequality, similar to (14) for p = 2, allows to apply the same argument as
in 2.12, to obtain the measure µ associated to the square of the semivariation.
From (20) it follows that L1(ν) is order ismorphic to the space L2(Ω, Σ, µ),
which is a Hilbert space. Q.E.D.

The last part of the chapter is devoted to study a more especific Banach
lattice property which goes back to the study by Kadec y Pelczynski in [KP] of
the subspaces of Lp[0, 1]. The following definition is due to Weis [W].

Definition. [W, Definition 2.1] Let X be an order continuous Banach lattice

with weak unit. X has the subsequence splitting property if given a bounded

sequence (fn) in X there exists a subsequence (fnk
) and there exists sequences

(gk) and (hk) such that

a) fnk
= gk + hk for every k.

b) gk and hk are disjoint, for every k.

c) The sequence (gk) is equi–integrable.

d) (hk) are pairwise disjoint.

The spaces Lp[0, 1] satisfy this property. The space c0 is an example of a
Banach lattice not satisfying the property. Figiel, Ghoussoub and Johnson have
constructed a p–convex and reflexive Banach lattice not satisfying the property,
see [W]. Weis in [W] does the construction that follows in order to characterize
the Banach lattices satisfying the subsequence splitting property.
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Let U be a free ultrafilter in N. Consider the ultraproduct of X by U :

XU = `∞(X)
/
M where M =

{
(fn) ∈ `∞(X) : lim

U
‖fn‖ = 0

}
.

We will denote by [fn] the equivalence class of the sequence (fn). The space XU
is a Banach lattice for the following norm and order

‖[fn]‖U = lim
U
‖fn‖,

inf{[fn], [gn]} = [inf{fn, gn}].

For details on ultraproducts see Heinrich [H].

We will denote by 1 the weak unit of X. Let [1] be the equivalence class
of constant sequence 1. Let X̃ be the band generated by [1] in XU , that is
X̃ = [1]⊥⊥. Weis gives the following characterization.

Theorem. [W, Theorem 2.5] Let X be an order continuous Banach lattice with

weak unit. The following conditions are equivalent:

1) X has the subsequence splitting property.

2) X̃ has order continuous norm.

3) X̃ has no subspace isomorphic to c0.

In this context we have following result.

Theorem 2.14. Let X be an order continuous Banach lattice with weak unit

such that X and X∗ have the subsequence splitting property. Let ν: Σ −→ X

be a vector measure whose range is L–weakly compact in X. Then L1(ν) has

the subsequence splitting property.

PROOF. In order to prove the result we will construct a measure ν̃ such that
the space L̃1(ν) is contained order isomorphically in the space L1(ν̃) . This
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last space is order continuous, Theorem 1.14. It follows that L̃1(ν) is order
continuous and from the charaterization of Weis the theorem will be proved.

Let us construct the measure ν̃. Let λ be a Rybakov control measure for ν.
For this measure we have

L∞(Ω,Σ, λ) −→ L1(ν) −→ L1(Ω,Σ, λ),

where all injections are continuos.

Dacunha-Castelle and Krivine in [DK 1] and [DK 2] prove that the ultra-
product of the space L1(Ω,Σ, λ) can be identified in the following way

L1(Ω, Σ, λ)U = L1(Ω̃, Σ̃, λ̃)⊕∆′

where (Ω̃, Σ̃, λ̃) is a measure space and the elements of ∆′ are disjoint from [χΩ].
Thus it follows that

L̃1(Ω,Σ, λ) = L1(Ω̃, Σ̃, λ̃).

The same procedure can be done with L∞(Ω,Σ, λ). This allows to identify L̃1(ν)
as a function space by using the ultraproduct of the injections of the previous
diagram

L∞(Ω̃, Σ̃, λ̃) −→ L̃1(ν) −→ L1(Ω̃, Σ̃, λ̃),

being the injections continuous. See Weis [W].

The σ–algebra Σ̃ is isomorphic to the Boolean ring {[χAn ] : An ∈ Σ} in
the space L1(Ω,Σ, λ)U . Thus every measurable set Ã ∈ Σ̃ can be identified
with a sequence (An) for An ∈ Σ, identifing two sequences (An) and (Bn) if
limU λ(An 4Bn) = 0.

The measure λ̃ is defined as follows:

Ã = (An) ∈ Σ̃ 7−→ λ̃(Ã) = lim
U

λ(An) ∈ R .
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A function f̃ in L1(Ω̃, Σ̃, λ̃) is an element [fn] in L1(Ω,Σ, λ)U , being the
integration with respect to λ̃ defined as follows, for Ã = (An) ∈ Σ̃

∫

Ã

f̃ dλ̃ = lim
U

∫

An

fn dλ.

For more details see Heinrich [H].

We define the measure ν̃ as follows

Ã = (An) ∈ Σ̃ 7−→ ν̃(Ã) = [ν(An)] ∈ XU .

As the measure ν is bounded, ν̃ is well defined. It is finitely additive. Let ε > 0.
As ν is absolutely continuous with respect to λ, there exists δ > 0 such that
if λ(A) < δ then ‖ν‖(A) < ε. Let Ã = (An) ∈ Σ̃ such that λ̃(Ã) < δ, this is
limU λ(An) < δ. Then there exists V ∈ U such that for every n ∈ V we have
λ(An) < δ. Thus for every n ∈ V we have ‖ν(An)‖ ≤ ‖ν‖(An) < ε. Thus
‖ν̃(Ã)‖U < ε. Hence ν̃ is absolutely continuous with respect to λ̃ and we deduce
that ν̃ is countably additive.

From our hypothesis the range of the measure ν is L–weakly compact in X.
Using the following result of Weis we deduce that the measure ν̃ takes its values
in X̃.

Proposition. [W, Proposition 1.5] Let (fn) be equi–integrable in X. Then [fn]
is an order continuous element in X̃.

Let us see that L̃1(ν) is in L1(ν̃) . It would be enough to prove that the ele-
ments of L̃1(ν) are scalarly integrable with respect to ν̃, as, from our hypothesis
X has the subsequence property and so from the theorem of Weis it follows that
X̃ has no subspace isomorphic to c0. The characterization of Lewis, Theorem
1.10, guarantees then that integrability with respect to ν̃ is equivalent to scalar
integrability.



68 Chapter 2

Weis proves that if X and X∗ satisfy the subsequence splitting property
then X̃∗ = X̃∗ and the norms of both spaces coincide [W, Corollary 2.7]. Hence
the elements of X̃∗ can be expressed as x̃∗ = [x∗n] for x∗n ∈ X∗ and (x∗n) a
bounded sequence.

The measure x̃∗ν̃ is absolutely continuous with respect to λ̃ as it is so for ν̃.
Thus it has a Radon–Nikodym derivative with respect to λ̃, hx̃∗ in L1(λ̃). For
Ã = (An) ∈ Σ̃, we have

〈x̃∗, ν̃(Ã)〉 = 〈[x∗n], [ν(An)]〉
= lim

U
〈x∗n, ν(An)〉

= lim
U

∫

An

dx∗nν

= lim
U

∫

An

hx∗n dλ

=
∫

Ã

h̃ dλ̃,

where h̃ = [hx∗n ], being hx∗n Radon–Nikodym derivative of the measure x∗nν with
respect to λ.

Let F̃ = [fn] ∈ L̃1(ν) . Its norm in this space is ‖F̃‖U = limU ‖fn‖ν . Then
we have ∫

|F̃ | d|x̃∗ν̃| =
∫
|F̃ ||h̃| d λ̃

= lim
U

∫
|fn||hx∗n | dλ

≤ lim
U
‖fn‖ν · ‖x∗n‖

= ‖F̃‖U · ‖x̃∗‖U

Hence F̃ is integrable with respect to x̃∗ν̃. We deduce that F̃ is integrable with
respect to ν̃ and

‖F̃‖L1(ν̃) ≤ ‖F̃‖U .
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Given ε > 0, using the equivalent norm ||| · |||ν in L1(ν) , we can find for
every n a measurable set An such that

‖
∫

An

fn dν‖ ≥ 1/2 · (1− ε)‖fn‖ν .

Let Ã = (An) in Σ̃. Then

‖F̃‖L1(ν̃) ≥ ‖
∫

Ã

F̃ dν̃‖

= lim
U
‖

∫

An

fndν‖

≥ 1/2 · (1− ε) lim
U
‖fn‖ν

= 1/2 · (1− ε)‖F̃‖U

Thus both norms are equivalent and hence L1(ν) is order isomorphic to a sub-
space of L1(ν̃). This completes the proof. Q.E.D.



CHAPTER 3: When is L1(ν) an AL–space ?

Theorem 1.15 shows that every order continuous Banach lattice with weak
unit is obtained as L1 of a certain vector measure. Thus among the function
spaces that appear as L1 of a vector measure there are reflexive, even Hilbert
spaces. These spaces are, in their properties, very different from the classical
spaces L1(S, σ, µ) where µ is a positive finite measure. Thus it arises a natural
question: Under what conditions on the vector measure or on the Banach space
in which the measure takes its values, the space L1(ν) is of the form L1(S, σ, µ) ?
And in this case: Which is the relation between the measure space (S, σ, µ) and
the vector measure ν?

There is more flexibility if we require L1(ν) to be order isomorphic to a
space of the form L1(S, σ, µ) . Moreover we can limit the requirements to the
existence of a positive constant C such that for every pair of functions f and g

in L1(ν) with disjoint support we have:

C · (‖f‖ν + ‖g‖ν ) ≤ ‖f + g‖ν ≤ ‖f‖ν + ‖g‖ν ,

as in this case L1(ν) would be order isomorphic to an AL–space, that is a Banach
lattice in which the norm is additive for disjoint elements. Due to a theorem
of Kakutani [LT vol. II, Theorem 1.b.2] every AL–space is order isomorphic to
a space L1(S, σ, µ) for a certain measure space (S, σ, µ), where µ is a positive
measure that is finite if the space has a weak unit.

Thus the question can be restated in the following way:
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When can L1(ν) be equivalently renormed so that with the new norm

and the same order is a Banach lattice in which the norm is additive

for disjoint functions?

Lewis proved that the formal identity is a continuous injection of the space
L1(|ν|) into L1(ν) and that the elements f of L1(|ν|) are characterized in L1(ν)
for having bounded variation the measure with density f with respect to ν,
Theorem 1.12. The space L1(|ν|) has in this problem we are studying a more
important role than at first could be expected, as the following proposition
shows. The definition of L1–spaces is due to Lindenstrauss and Pelczynski [LP,
Definition 3.1].

Proposition 3.1. The following conditions are equivalent:

a) L1(ν) is an L1–space.

b) L1(ν) is isomorphic to an AL–space.

c) L1(ν) is order isomorphic to an AL–space.

d) In L1(ν) every positive summable sequence is absolutely summable.

e) The integration operator maps positive summable sequences into absolutely

summable sequences.

f) The transposed of the integration operator maps norm bounded sets into

order bounded sets.

g) The natural injection of L1(|ν|) into L1(ν) is an onto (order) isomorphism.

In this conditions the measure ν has bounded variation.

PROOF. As L1(ν) is an order continuous Banach lattice, the equivalence of a),
b) and c) follows from the results of Abramovich and Wojtaszczyk on uniqueness
of order [AW, p. 781]. The equivalence of c) and d) is a classical result of the
theory of Banach lattices [S, Theorem IV.2.7].
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The operators that satisfy condition e) are called cone absolutely summing ,
see [S IV.3]. We will see that conditions d) and e) are equivalent. Condition e)
follows from d) due to the continuity of the integration operator. Let (fn) be a
positive summable sequence in L1(ν) . By using the equivalent norm ||| · |||ν in
L1(ν) we find, for every n, a measurable set An such that

‖fn‖ν ≤ 4 · ‖
∫

An

fn d ν‖ = 4 · ‖ν(fnχAn)‖.

The sequence (fnχAn
) is positive and summable. From condition e) is follows

that the sequence (ν(fnχAn) is absolutely summable. From the previous in-
equality it follows that (fn) is absolutely summable in L1(ν) , so d) is satisfied.

To see that condition f) follows from c) consider that L1(ν) ∗ is an AM–space
with unit and so its unit ball is order bounded. Condition g) implies trivially
a). So we just have to prove that f) implies g).

Let λ be a Rybakov control measure for ν. Consider L1(ν) ∗ in L1(λ) . The
norm in L1(ν) can be written as:

‖f‖ν = sup
{∫

|f ||hx∗ | dλ : x∗ ∈ X∗
}

,

where hx∗ is the Radon–Nikodym derivative of the scalar measure x∗ν with
respect to λ. Let ν∗: X∗ −→ L1(ν) ∗ be the transposed of the integration
operator. In terms of ν∗ we have

∫
f dx∗ν = 〈x∗, ν(f)〉 = 〈ν∗(x∗), f〉.

So ν∗(x∗) = hx∗ for every x∗ ∈ X∗. Consider the set ν∗(BX∗). By f) is order
bounded in L1(ν) ∗. As L1(ν) ∗ is a dual Banach lattice, it is order complete, so
there exists h in L1(ν) ∗, the supremum of ν∗(BX∗). Thus we have:

‖f‖ν ≤
∫
|f |h dλ = ‖f‖L1(µ) (1)
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where µ is the measure with density h with respect to λ. Also we have

‖f‖L1(µ) =
∫
|f |h dλ ≤ 〈|f |, h〉 ≤ ‖f‖ν · ‖h‖L1(ν) ∗ . (2)

We deduce that L1(ν) is (order) isomorphic to L1(µ) .

Let A be a measurable set, consider the function χA. From inequality (1)
we have:

‖ν(A)‖ ≤ ‖ν‖(A) = ‖χA‖ν ≤ µ(A).

This inequality implies that µ is a positive measure that dominates the vector
measure ν, thus it also dominates its variation

|ν|(A) ≤ µ(A) for every measurable set A. (3)

Thus ν has bounded variation.

Let g be a simple function. It follows from inequality (2) and from (3) that

‖g‖L1(|ν|) ≤ ‖g‖L1(µ) ≤ ‖g‖ν · ‖h‖L1(ν) ∗ .

As simple functions are dense in L1(|ν|) , we deduce that the previous inequality
holds for every f in L1(|ν|) , and so the natural injection of L1(|ν|) into L1(ν)
is continuous, closed and has dense range. Thus both spaces are isomorphic.
Q.E.D.

Consequences 3.2. From the previous proposition we deduce two important
consequences. Firstly we identify the measure space we refered to at the begining
of the chapter, it is (Ω,Σ, |ν|). This allows us to reduce our problem, without
loss of generality, to study when L1(ν) coincides with L1(|ν|) .

Secondly we obtain the following necessary condition for L1(ν) being an
AL–space:

there exists C > 0 such that |ν|(A) ≤ C · ‖ν‖(A) for every A ∈ Σ, (L 1)
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that is the domination of the variation by the semivariation. This follows from
the isomorphism between L1(|ν|) and L1(ν) , as for A ∈ Σ we have that ‖χA‖ν =
‖ν‖(A).

The previous proposition shows that bounded variation is a necessary condi-
tion. Hence we will assume through this chapter that the measure ν has bounded
variation.

Condition (L 1) is restrictive, as the following example shows.

Example 3.3. Let X be an infinite dimensional Banach space. There exist

a measure ν with values in X and bounded variation such that there exists no

constant C > 0 satisfying

|ν|(A) ≤ C · ‖ν‖(A) for every A ∈ Σ.

PROOF. By the Theorem of Dvoretsky–Rogers there exists a sequence (xn) in
X such that the series

∑
xn is unconditionally convergent but not absolutely

convergent. Suppose that there exists a sequence of scalars (αn) satisfying the
following requirements:

(a) 0 ≤ αn ≤ 1 for every n,

(b)
∞∑
1

αn‖xn‖ < +∞,

(c)


∑

i≥n

αi‖xi‖

 ·


sup





∑

i≥n

|x∗xi| : x∗ ∈ BX∗







−1

→ +∞.

Consider the measure defined by

A ∈ P(N) 7−→ ν(A) =
∑

n∈A

αnxn ∈ X .
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As it is defined by an unconditional series, it is well defined and countably
additive. Its variation and semivariation are given by the following expressions:

|ν|(A) =
∑

n∈A

αn‖xn‖

‖ν‖(A) = sup

{∑

n∈A

αn|x∗xn| : x∗ ∈ BX∗

}
.

Condition (b) implies that the total variation of the measure ν is finite.
From condition (a) follows that the semivariation is bounded by

‖ν‖(A) ≤ sup

{∑

n∈A

|x∗xn| : x∗ ∈ BX∗

}

Let An = {n, n + 1, n + 2, . . .}. The it follows that

|ν|(An)
‖ν‖(An)

=


∑

i≥n

αi‖xi‖

 ·


sup





∑

i≥n

αi|x∗xi| : x∗ ∈ BX∗







−1

≥

∑

i≥n

αi‖xi‖

 ·


sup





∑

i≥n

|x∗xi| : x∗ ∈ BX∗







−1

that tends to infinity with n by condition (c). Hence the result would be proved.

The existence of a sequence (αn) satisfying the required conditions follows
from the next lemma.

Lemma 3.4. Let (γn) be a positive sequence decreasing to zero and (βn) a

positive sequence such that
∑

βn = +∞. Then there exists a sequence (an)
decreasing to zero, such that:

1) βn ≥ an − an+1,

2)
an

γn
tends to +∞.
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PROOF. We will see that we can define, in an inductive process, two increasing
sequences of non negative integers (nk) and (mk) such that, if we denote Jk =
{mk,mk + 1, . . . ,mk+1 − 1}, we have that ∪Jk = N and

i)
∑

n∈Jk

βn ≥ 1
2k

ii)
1

2nk
≥ √

γn >
1

2nk+1
for n ∈ Jk.

The sequence (
√

γn) decreases to zero. Dividing by supn
√

γn if necessary,
we can assume that

√
γn ≤ 1. Set m1 = 1 and n1 = 0. Suppose that nk−1 and

mk−1 are already defined. As the series
∑

βn diverges, there exists m′
k the first

integer for which
m′

k−1∑
n=mk−1

βn ≥ 1
2k−1

. (4)

Let nk be the first integer for which

√
γn >

1
2nk

for every mk−1 ≤ n < m′
k. (5)

Let mk be the biggest integer m′
k ≤ mk for which (5) holds. Inequality (4) still

is satisfied with mk instead of m′
k. We also deduce that

1
2nk

≥ √
γn for every n ≥ mk.

We will now define the sequence (an) we are looking for. Let Ak =
∑

n∈Jk

βn.

We then define:

a1 = 1,

an+1 = an − βn

2kAk
for mk < n < mk+1.

The sequence (an) is strictly decreasing as βn and are Ak positive. From condi-
tion i) it follows that Ak2k ≥ 1, so

an − an+1 =
βn

2kAk
≤ βn.
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We then have 1). Let us see that (an) is positive and convergent to zero. On
the one hand ∞∑

n=1

(an − an+1) =
∞∑

k=1

(
∑

n∈Jk

(an − an+1))

=
∞∑

k=1

(
∑

n∈Jk

βn

2kAk
)

=
∞∑

k=1

1
2k

= 1.

On the other hand, as the series is telescopic, we have that
n∑

i=1

(ai − ai+1) = a1 − an+1 = 1− an+1.

So an ≥ 0 for every n. We will see to finish that condition 2) is satisfied. Given
n ∈ N, let k0 be such that n ∈ Jk0 . Then by ii) we have

an

γn
= (

∞∑

i=n

(ai − ai+1))γ−1
n

≥ (
∞∑

k=k0+1

(
∑

i∈Jk

βi

2kAk
))γ−1

n

= (
∞∑

k=k0+1

1
2k

)γ−1
n

=
1

2k0γn

≥ 1
2nk0 γn

≥ 1√
γn,

that tends to infinity as (
√

γn) decreases to zero. Q.E.D.

Let us apply the previous Lemma to the following sequences βn = ‖xn‖
and γn = sup{∑i≥n |x∗xi| : x∗ ∈ BX∗}. Let (an) be the sequence given by
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the Lemma. Define the sequence αn = (an − an+1)/βn. Then 0 ≤ αn ≤ 1 by
condition 1). On the other hand

∞∑
n=1

αn‖xn‖ =
∞∑

n=1

(an − an+1) = a1 < +∞

so (b) is deduced. Let us see that (c) is satisfied:

(
∑

i≥n

αi‖xi‖) · (sup{
∑

i≥n

|x∗xi| : x∗ ∈ BX∗})−1 = (
∑

i≥n

αiβi) · (γn)−1

= (
∑

i≥n

(ai − ai+1)) · (γn)−1

= an · γ−1
n

that tends to infinity by 2). Q.E.D.

Conditions in order to have as L1(ν) an AL–space can be impossed, at first,
on the Banach space X and on the measure ν. The next example shows that it
is not sufficient to imposse them exclusively on the Banach space. It also shows
that condition (L 1), although necessary, it is not sufficient.

Example 3.5. Let X be an infinite dimensional Banach space. There exists

a measure ν with values in X, satisfying condition (L 1), such that L1(ν) is not

order isomorphic to an AL–space.

PROOF. Let (xn) be a sequence in X given by the Theorem of Dvoretsky–
Rogers, that is

∑
xn converges unconditionally but not absolutely. Consider

the following measure:

A ∈ P(N) 7−→ ν(A) =
∑

n∈A

xn

2n · ‖xn‖ ∈ X .

It is well defined and countably additive by the unconditional convergence of
the series that defines it. The absolute convergence of the series proves that the
measure has bounded variation, as

|ν|(A) =
∑

n∈A

1
2n

.
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Thus the total variation is 1. The spaces L1(ν) and L1(|ν|) are the sequence
spaces given by

L1(ν) =
{

(bn) :
∑ bnxn

2n · ‖xn‖ converges inconditionally in X

}

L1(|ν|) =
{

(bn) :
∑ bn

2n
is absolutely summable

}
.

Thus (2n · ‖xn‖) is a sequence in L1(ν) but not in L1(|ν|) . It follows from
Proposition 3.1 that L1(ν) is not order isomorphic to an AL–space.

Let us see that condition (L 1) is satisfied. Let A be a subset of N. Let
n0 = min{n : n ∈ A}. Then

|ν|(A) =
∑

n∈A

1
2n

≤
∑

n≥n0

1
2n

=
2

2n0
.

On the other hand we have

‖ν‖(A) ≥ sup {‖ν(B)‖ : B ⊂ A} ≥ ‖ν({n0})‖ =
1

2n0
.

That is, for every measurable set A we have

|ν|(A) ≤ 2 · ‖ν‖(A). Q.E.D.

For measures with values in certain spaces we can obtain simple sufficient
conditions, even characterizations.

Consider measures with values in AL–spaces. Recall that an operator be-
tween Banach lattices is regular if it is the difference of two linear, continuous
and positive operators. We have the following result.
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Proposition 3.6. Let ν be a measure with values in an AL–space. The

following conditions are equivalent:

a) L1(ν) is order isomorphic to an AL–space.

b) The integration operator is regular.

PROOF. a) ⇒ b) It follows from the fact that every operator defined on an
AL–space and with values in a Banach lattice which is complemented in its
bidual by a positive projection, is regular [S, Theorem IV.1.5].

b)⇒ a) Let ν: Σ −→ L , where L is an AL–space. Suppose that the operator
ν: L1(ν) −→ L is regular. It follows that the transposed ν∗: L∗ −→ L1(ν) ∗ is
also regular. Thus it maps order bounded sets in L∗ into order bounded sets in
L1(ν) ∗. L∗ is an AM–space with unit as it is the dual of an AL–space. Thus its
unit ball is order bounded. It follows that ν∗ maps norm bounded sets into order
bounded sets and so, by Proposition 3.1, we have that L1(ν) is an AL–space.
Q.E.D.

From the previous Proposition we can deduce the following sufficient con-
dition.

Corollary 3.7. Let ν be a measure with values in an AL–space. Then L1(ν)
is an AL–space if ν has a Hahn decomposition, that is, there exists a measurable

set A such that ν(B) ≥ 0 if B ⊂ A and ν(B) ≤ 0 if B ⊂ Ω \A.

PROOF. It suffices to prove the result for positive measures as in the general
case the measure ν is the direct sum of the measures ν1 and ν2, restriction of
ν to A and Ω \ A respectively, and so L1(ν) is order ismorphic to the space
L1(ν1) ⊕ L1(ν2) , see 1.13. For positive measures the integration operator is
positive and the results follows from the previous proposition. Q.E.D.
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A result of Diestel y Faires [DF, Theorem 2.1] states that for measures with
values in an AL–space it is equivalent bounded variation and regularity, that is
being the difference of two positive measures. This is not the situation of the
previous Corollary. The reason is that if the positive measures are not disjointly
suported there is no assurance that the integration operator will be regular. As
a counterexample just consider the one given by Example 3.5 when the Banach
space X is an AL–space.

We consider now measures with values in spaces C(K) of continuous func-
tions over a compact Hausdorff topological space K. This case includes measures
with values in AM–spaces as, by a theorem of Kakutani [LT vol. II, Theorem
1.b.6], these spaces are order isometric to a sublattice of a space C(K).

We will consider purely atomic measures. They can be defined over the
σ–algebra P(N) of subsets of N. We have the following result.

Theorem 3.8. Let ν:P(N) −→ C(K) where K is a compact Hausdorff topo-

logical space. Let fn = ν({n}) and let |fn| be the modulus of fn in C(K). The

following conditions are equivalent:

a) L1(ν) is order isomorphic to an AL–space.

b) The measure ν satisfies the condition

0 /∈ co

{ |fn|
‖fn‖ : n ∈ N

}
. (L 2)

PROOF. Proposition 3.1 shows that a) is equivalent to L1(ν) being isomorphic
to L1(|ν|) . The measure |ν| is the following

A ∈ P(N) 7−→ |ν|(A) =
∑

n∈A

‖fn‖ ∈ R .
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The natural injection of the space L1(|ν|) into L1(ν) is always continuous. As
ν has bounded variation and simple functions are dense the injection has dense
range. Thus it is equivalent to prove that the injection is open, that is there
exists a constant C > 0 such that for every function F in L1(|ν|) we have

‖F‖1 ≤ C · ‖F‖ν .

Again by density of simple functions in L1(|ν|) it suffices to prove the previous
inequality for simpe functions. Moreover it suffices to prove it for simple func-
tions with finite support (in N) and then extend the result by an approximation
argument. Lastly observe that it suffices to consider positive functions, as a
function and its modulus have the same norm in both spaces.

The previous argument shows that L1(ν) is an AL–space if and only if there
exists a constant C > 0 such that for every N ∈ N for arbitrary positive scalars
a1, . . . , aN we have

C ·
∥∥∥∥∥

N∑
1

anχ{n}

∥∥∥∥∥
1

≤
∥∥∥∥∥

N∑
1

anχ{n}

∥∥∥∥∥
ν

.

Consider in L1(ν) the equivalent norm given in 1.5

|||F |||ν = sup
{
‖

∫

B

F dν ‖ : B ⊂ N
}

,

we have

C ·
N∑
1

an‖fn‖ ≤ sup

{∥∥∥∥∥
∑

n∈B

anfn

∥∥∥∥∥ : B ⊂ {1, . . . , N}
}

.

Dividing the previous expression by
∑N

1 an‖fn‖ we obtain

C ≤ sup

{∥∥∥∥∥
∑

n∈B

an‖fn‖∑N
1 an‖fn‖

· fn

‖fn‖

∥∥∥∥∥ : B ⊂ {1, . . . , N}
}

.
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Denote gn = fn/‖fn‖. Then L1(ν) is an AL–space if and only if there exists
a constant C > 0 such that for every N ∈ N and every α1, . . . , αn positive with∑N

1 αn = 1, we have

C ≤ sup

{∥∥∥∥∥
∑

n∈B

αngn

∥∥∥∥∥ : B ⊂ {1, . . . , N}
}

.

Let us study the supremum that appears in the previous expression. On
the one hand given B in {1, . . . , N}

∥∥∥∥∥
∑

n∈B

αngn

∥∥∥∥∥ ≤
∥∥∥∥∥

N∑
1

αn|gn|
∥∥∥∥∥ .

So this last expression bounds the mentioned supremum. On the other hand
there exists a point t0 ∈ K where the function

∑N
1 αn|gn| attains its supremum,

thus ∥∥∥∥∥
N∑
1

αn|gn|
∥∥∥∥∥ =

N∑
1

αn|gn(t0)| =
∑

B1

αngn(t0) +
∑

B2

αngn(t0),

let B1 = {n, gn(t0) ≥ 0, 1 ≤ n ≤ N} and B2 the complement of B1 in {1, . . . , N}.

Then
∥∥∥∥∥

N∑
1

αn|gn|
∥∥∥∥∥ ≤

∥∥∥∥∥
∑

B1

αngn

∥∥∥∥∥ +

∥∥∥∥∥
∑

B2

αngn

∥∥∥∥∥

≤ 2 · sup

{∥∥∥∥∥
∑

n∈B

αngn

∥∥∥∥∥ : B ⊂ {1, . . . , N}
}

.

Thus both expressions are equivalent and so L1(ν) is an AL–space if and
only if there exists a constant C > 0 such that for every N ∈ N and every
α1, . . . , αn positive with

∑N
1 αn = 1, we have that

C ≤
∥∥∥∥∥

N∑
1

αn
|fn|
‖fn‖

∥∥∥∥∥ .
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This is precisely condition (L 2). Q.E.D.

We now start the study of the general case for a measure with values in a
Banach space X. Example 3.5 shows that a priori conditions have to be impossed
on the vector measure. We have seen that bounded variation for ν is a necessary
condition. This implies that the natural injection

L1(|ν|) −→ L1(ν)

has dense range, as simple functions are dense in L1(ν) . Thus the transposed is
an injective map, so L1(ν) ∗ can be identified with a linear subspace of L∞(|ν|)
the dual space of L1(|ν|) . In fact we have the following proposition.

Proposition 3.9. Let ν be a vector measure with bounded variation. Then

L1(ν) ∗ can be identified with a lattice ideal in L∞(|ν|).

PROOF. Let λ be a Rybakov control measure for ν. We have seen in 1.14 that
L1(ν) ∗ is a lattice ideal in L1(λ) . We have to prove that if g is a function in
L∞(|ν|) that belongs to L1(ν) ∗ and if h is in L∞(|ν|) such that |h| ≤ |g| but
for a |ν|–null set, then h is in L1(ν) ∗. As λ and |ν| have the same null sets, it
follows, on the one hand that |h| ≤ |g| but for a λ–null set, and on the other
hand, in this case of bounded variation, we have the following injections

L1(ν) ∗ −→ L∞(|ν|) −→ L1(λ) .

Hence h is in L1(ν) ∗. Q.E.D.

In L∞(|ν|) algebraic and lattice ideals coincide, so from the previous propo-
sition it follows that L1(ν) ∗ is an algebraic ideal in L∞(|ν|).

From Proposition 3.1 we know that L1(ν) being an AL–space is equivalent
to being sujective the natural injection of L1(|ν|) into L1(ν) , and so it is equiv-
alent to identifying, in the way we have seen, the space L1(ν) ∗ with L∞(|ν|).
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This happens precisely when L1(ν) ∗ is closed in L∞(|ν|). From the previous
proposition L1(ν) ∗ is a lattice ideal in L∞(|ν|), thus they coincide if and only
if there exists an element in L1(ν) ∗ that dominates a constant function. This
idea is precised in the discussion that follows.

Let µ be a finite measure over (Ω, Σ). L∞(µ) is a Banach algebra. Let ∆
be the set of linear and multiplicative functionals (characters) over L∞(µ) . En-
dowed with the induced σ(L∞, L1) topology is a topological compact Hausdorff
space. Let us consider the Gelfand transform, defined in the following way:

f ∈ L∞(µ) 7−→ fˆ ∈ C(∆)

defined by
s ∈ ∆ 7−→ fˆ(s) = s(f) ∈ R .

The Theorem of Gelfand states that the previous map is an algebraic isomor-
phism that preserves the order and the norm.

The next Lemma describes the action of a character over a function. Al-
though it is known we include a prove as we have not found any precise reference.
Let µ−1(0) be the family of measurable sets with measure zero. Let Σ/µ−1(0)
be the quotient σ–algebra.

Lema 3.10. Let s be a character over L∞(Ω,Σ, µ) , then there exists an

ultrafilter U in Σ/µ−1(0) such that

s(f) = lim
A∈U

∫
A

f dµ

µ(A)

for every f ∈ L∞(Ω, Σ, µ) . Conversely, for every ultrafilter in Σ/µ−1(0) the

previous expression defines a character over L∞(Ω, Σ, µ) .

PROOF. Let U be an ultrafilter in Σ/µ−1(0). In order to simplify notation
we will identify measurable sets with their equivalence class in the quotient σ–
algebra. Consider the map s defined in the statement of the Lemma. Let f be
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in L∞(Ω, Σ, µ) . As ∣∣∣∣
∫

A

f dµ

∣∣∣∣ ≤ ‖f‖∞ · µ(A),

it follows that the net
(
µ(A)−1 · ∫

A
f dµ

)
A∈U is bounded and so there exists

the limit by the ultrafilter U . So s is well defined. Linearity of integration
and limits guarantee the linearity of s. The previous bound shows that s is a
bounded functional over L∞(Ω,Σ, µ) . Let us see that it is multiplicative. Let
B ∈ U . Then

s(χB) = lim
A∈U

µ(B ∩A)
µ(A)

= lim
A∈U,A⊂B

µ(B ∩A)
µ(A)

= 1

Analogously we obtain that if B 6∈ U then s(χB) = 0. Let f ∈ L∞(Ω, Σ, µ) . We
have that for B ∈ U ,

s(f · χB) = lim
A∈U

∫
A

f · χB dµ

µ(A)

= lim
A∈U,A⊂B

∫
A

f · χB dµ

µ(A)

= lim
A∈U,A⊂B

∫
A

f dµ

µ(A)

= lim
A∈U

∫
A

f dµ

µ(A)
=s(f) · 1
=s(f) · s(χB)

Analogously, for B 6∈ U we obtain s(f · χB) = 0 = s(f) · s(χB). Thanks to the
linearity of s we deduce that it is multiplicative over the simple functions. As
simple functions are dense, we deduce that s is multiplicative.

Conversely let s be a character. Consider the family U = {A ∈ Σ/µ−1(0) :
s(χA) = 1}. It is well defined as s(0) = 0. As for every measurable set A we
have that s(χA) = 0 or 1, it follows that U is an ultrafilter. We have seen that
this ultrafilter defines a character, which coincides with s over the characteristic
functions and so over the simple functions. Hence it coincides with s. Q.E.D.
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Consider now the measure space (Ω, Σ, |ν|). We define the following sets in
the space ∆ of characters over L∞(|ν|).

Definition 3.11. Let H be the set of characters that are null over L1(ν) ∗.
That is, the set of zeros of the image in C(∆), by the Gelfand transform, of the

ideal L1(ν) ∗.

Given x∗ in X∗ let gx∗ be the Radon–Nikodym derivative, with respect to
|ν|, of the scalar measure x∗ν. As we have that |x∗ν|(A) ≤ ‖x∗‖·|ν|(A) for every
measurable set A, it follows that gx∗ is in L∞(|ν|). On the other hand the map:

f ∈ L1(ν) 7−→
∫

f dx∗ν =
∫

fgx∗d|ν| ∈ R

defines a countinuous linear functional. Hence gx∗ is in L1(ν) ∗.

Definition 3.12. Let I be the lattice ideal generated by the set {gx∗ : x∗ ∈
X∗} in L1(ν) ∗.

There exists a biyective map between the ideal I just defined and the one
that appears in Theorem 1.23, as the measures λ and |ν| have the same null sets.

Definition 3.13. Let H∗ be the set of characters that are null over I. That

is, the set of zeros of the image in C(∆), by the Gelfand transform, of the ideal

I

The usefulness of the previous definitions in what respects to our problem
is shown in the next propositions. Obviously we have H ⊆ H∗.

Proposition 3.14. The following conditions are equivalent:

a) L1(ν) is order isomorphic to an AL–space.

b) The set H is empty.
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PROOF. If L1(ν) is order isomorphic to an AL–space from Proposition 3.1 it
follows that L1(ν) is order isomorphic to L1(|ν|) and so H is empty. Conversely,
if H is empty, it follows that L1(ν) ∗ is dense in L∞(|ν|). As L1(ν) ∗ is an
(algebraic) ideal its clousure in L∞(|ν|) is also an ideal. An ideal is a proper
ideal if and only if it is so its clousure. Then from being L1(ν) ∗ dense in L∞(|ν|)
it follows that L1(ν) ∗ is not a proper ideal, so L1(ν) ∗ coincides with L∞(|ν|).
Hence L1(ν) is order isomorphic to L1(|ν|) . Q.E.D.

Proposition 3.15. The following conditions are equivalent:

a) There exists a finite partition (Ai)n
1 and there exists elements x∗1, . . . , x

∗
n in

X∗ such that the identity map is an (order) isomorphism between L1(ν) and

the space L1(µ) where µ =
∑n

1 µi and every measure µi is the restriction

of the measure |x∗i ν| to the trace of Σ over the set Ai.

b) The set H∗ is empty.

PROOF. a) ⇒ b) From Proposition 3.1 it follows that L1(|ν|) is order isomor-
phic to L1(µ) via the identity. Thus there exists a constant C > 0 such that the
following inequality holds

|ν|(A) ≤ C ·
n∑
1

|x∗i ν|(A ∩Ai) for every A ∈ Σ, (6)

by integration with respect to |ν| we deduce that

χΩ ≤ C ·
n∑
1

|gx∗
i
| · χAi a.e. |ν|.

So the unit of L∞(|ν|) is in the ideal I and so H∗ is empty.

b) ⇒ a) If H∗ is empty so is H, so L1(ν) is an AL–space and by Proposition
3.1 is isomorphic to L1(|ν|) . On the other hand the ideal I is dense in L∞(|ν|)
and so, as we have seen in the previous proposition, I coincides with L∞(|ν|).
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That is L∞(|ν|) is the lattice ideal generated by the set {gx∗ : x∗ ∈ X∗}. Thus
there exists x∗1, . . . , x

∗
n in X∗ such that

χΩ ≤
n∑
1

|gx∗
i
| |ν| a.e.

Let us see that there exists disjoint measurable sets (Ai)n
1 with |ν|(∪Ai) = |ν|(Ω)

and a constant C > 0 such that

χΩ ≤ C ·
n∑
1

|gx∗
i
| · χAi |ν| a.e..

Set Bi = [|gx∗
i
| < 1/n] for 1 ≤ i ≤ n. Then we have that ∩iBi has |ν|–null

measure. Set A1 = B1 and Ai+1 = Bi+1 \ ∪i
1Bj if i ≥ 1 and set C = n. By

integrating with respect to |ν| in the previous inequality we obtain inequality
(6). As we always have the inequality

n∑
1

|x∗i ν|(A ∩Ai) ≤ max
i
‖x∗i ‖ · |ν|(A) for every A ∈ Σ,

it follows that the identity map is an (order) isomorphism from L1(ν) onto
L1(µ) , for the measure µ of b). Q.E.D.

We deduce that in this case the space L1(ν) is order isomorphic to the space[⊕n
1 L1(|x∗i ν|, ΣAi)

]
1
.

The previous proposition allows to give a partial answer to the problem we
are studying. For this consider the following condition on the vector measure
ν: Σ −→ X :

0 /∈ co

{
ν(A)
|ν|(A)

: |ν|(A) 6= 0, A ∈ Σ
}

. (L 3)

Then we have the following result:
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Theorem 3.16. The following conditions are equivalent:

a) L1(ν) is order isomorphic via the identity map to L1(Ω,Σ, µ) where the

measure µ is as in Proposition 3.15.

b) There exists a finite partition (Bj)k
1 of the measure space such that the

restriction of the measure ν to each set Bj satisfies condition (L 3).

PROOF. a) ⇒ b) By hypothesis, and using the notation of Proposition 3.15,
there exists a constant C > 0 such that

|ν|(A) ≤ C ·
n∑
1

|x∗i ν|(A ∩Ai) for every A ∈ Σ.

Let us consider the Hahn decomposition of the measure x∗i ν restricted to the set
Ai. There exists disjoint measurable sets A1

i and A2
i whose union is Ai and such

that x∗i ν(B) ≥ 0 for every measurable set B ⊂ A1
i , and x∗i ν(B) ≤ 0 for every

measurable set B ⊂ A2
i . Then we have

∣∣∣∣
x∗i ν(A)
|ν|(A)

∣∣∣∣ ≥
1
C

for every measurable set A ⊂ Ak
i ,

for 1 ≤ i ≤ n and k = 1, 2. Thus the restriction of the measure ν to each set Ak
i

satisfies condition (L 3). As the sets Ai are disjoint so are the sets Ak
i .

b) ⇒ a) Let νj , 1 ≤ j ≤ k, be the restriction of the measure ν to Bj . As
the measures νj have disjoint supports, we have

‖f‖ν ≤
k∑
1

‖f‖νj
≤ k · ‖f‖ν .

So the space L1(ν) is order isomorphic to the space (
⊕k

1 L1(νj))1. It suffices
to prove the result for each space L1(νj) , so we can assume, without loss of
generality, that the measure ν satisfies condition (L 3). From Proposition 3.15
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it suffices to prove that H∗ is empty. Suppose that is not the case. There would
exist a character s ∈ ∆ such that s(gx∗) = 0 for every x∗ ∈ X∗. By Lemma 3.10
there exists an ultrafilter U in Σ/|ν|−1(0) such that, for every x∗ ∈ X∗

0 = lim
A∈U

∫
A

gx∗ d|ν|
|ν|(A)

= lim
A∈U

x∗ν(A)
|ν|(A)

.

That is, the net {ν(A)/|ν|(A) : A ∈ U} tends weakly to zero which contradicts
our hypothesis. Q.E.D.

The previous theorem does not solve completely the problem: there exists
measures for which L1(ν) is an AL–space, so H is empty, but such that L1(ν)
is not given by a finite number of spaces of the form L1(|x∗ν|) , that is H∗ is not
empty. This is shown in the next example.

Example 3.17. Suppose that there exists a sequence (fn) in C[0, 1] satisfying
the following conditions:

a) ‖fn‖ = 1 for every n,

b) 0 is in the weak clousure of {fn : n ∈ N},
c) there exist ε > 0, µ ∈ C[0, 1]∗, ‖µ‖ = 1 such that µ(|fn|) ≥ ε for every n.

Consider then the following measure

A ∈ P(N) 7−→ ν(A) =
∑

n∈A

1
2n

fn ∈ C[0 1], .

As it is defined by an absolutely convergent series, it is countably additive and
has bounded variation. Let us see that L1(ν) is order isomorphic to AL–space.
In virtue of Theorem 3.8 it suffices to verify that it satifies condition (L 2).
Consider a convex combination of the functions |fn| = |ν(n)|/‖ν(n)‖, then

∥∥∥
∑

αn|fn|
∥∥∥
∞
≥ µ(

∑
αn|fn|) ≥ ε.
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Thus L1(ν) is an AL–space. On the other hand, let (Bj)k
1 be a partition of N.

We have

0 ∈ {fn : n ∈ N} weak ⊂
k⋃

j=1

co

{
ν(A)
|ν|(A)

: A ⊂ Bj

}
,

so condition b) in Theorem 3.16 can not be satisfied, and so L1(ν) is not given
by a finite number of spaces of the form |x∗ν|,.

The existence of a sequence of continuous functions on the interval [0,1]
satisfying the required conditions follows from the next result, that, although it
is known, we prove, as we have not found a precise reference for it.

Lemma 3.18. Consider the space of continuous functions on the interval [0,1]

endowed with the supremum norm. The map that associates to every function

its modulus

f ∈ C[0, 1] 7−→ |f | ∈ C[0, 1]

is not weak to weak continuous at the origin.

PROOF. We will prove that there exists a weak neighborhood of the origin
W such that, for every basic weak neighborhood of the origin O, there exists a
function f in O whose modulus is not in W. Let m be the Lebesgue measure on
the interval [0,1] and let W = {g ∈ C[0, 1] : | ∫ g dm| < 1/2}, which is a weak
neighborhood of the origin.

Consider an arbitrary basic weak neighborhood of the origin

O =
{

g ∈ C[0, 1] :
∣∣∣∣
∫

g dµi

∣∣∣∣ < ε, 1 ≤ i ≤ k

}
,

where µ1, . . . , µk are in C[0, 1]∗ and 0 < ε < 1. Each µi is a Radon measure on
M[0, 1], the σ–algebra of Lebesgue measurable sets in [0,1], so it can be written
in the form

µi = τi +
∞∑

j=1

aijδxij ,
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where τi is non atomic and (xij) are points in [0,1] where the measure takes the
value aij . Let B = ∪i,j{xij}, as it is countable, we have m(B) = 0. Consider
the measure

A ∈M[0, 1] 7−→ τ(A) = (τ1(A), . . . , τk(A)) ∈ Rk .

It is a non atomic measure with values in a finite dimensional space, from the
Theorem of Liapunov it follows that its range is convex. Thus, there exists a
measurable set A ∈M[0, 1] such that

τ(A) =
1
2
· τ([0, 1]).

It follows that τi(A) = τi(Ac
i ) for every 1 ≤ i ≤ k. Consider the function

f = (χA − χAc) · χBc . We have
∫

f dµi = 0 for every 1 ≤ i ≤ k.

Consider the measure µ = m + |µ1| + · · · + |µk|. As the function f is
measurable, there exists, by the Theorem of Lusin, a compact set K in [0,1]
such that the restriction of f to K is continuous and µ(Kc) < ε/2. Let g be a
continuous function on [0,1] which coincides with f on K and has modulus less
or equal than one. Then, for every 1 ≤ i ≤ k we have

∣∣∣∣
∫

g dµi

∣∣∣∣ =
∣∣∣∣
∫

(g − f) dµi

∣∣∣∣

≤
∫

Kc

|f − g| d|µi|

≤2 · µ(Kc)

<ε

So g is in O. On the other hand
∫
|g| dm ≥

∫

K

|g| dm =
∫

K

|f | dm = 1−m(Kc) > 1− ε/2 > 1/2.

So |g| is not in W. Q.E.D.

The previous Lemma shows that the zero function is a weak cluster point of
the set of functions in C[0, 1] which have norm one and for which

∫ |f | dm ≥ 1/2.
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As C[0, 1] is separable, it is separable in its weak topology, thus there exists a
sequence (fn) that is weakly dense in the above set. This is the sequence we
were looking for. Q.E.D.

It should be pointed out that the map f ∈ C[0, 1] 7−→ |f | ∈ C[0, 1] is
weak to weak sequentially continuous, thus the previous example can not be
constructed from a weakly null sequence in C[0, 1].

We end this chapter showing that the coincidence of the sets H and H∗ is
related with the characterization of weak convergence in L1(ν) seen in Theorem
1.23.

Proposition 3.19. Consider the following conditions:

a) In L1(ν) the weak convergence of bounded nets is characterized by the

weak convergence (in X) of the integrals over arbitrary sets, that is, if

supα ‖fα‖ν < +∞, then

fα
w→ f in L1(ν) ⇐⇒

∫

A

fα dν
w→

∫

A

f dν in X for every A ∈ Σ.

b) The sets H and H∗ coincide.

Then a) implies b).

PROOF. We have to prove that H∗ ⊂ H. Let s be in H∗. It is given by an
ultrafilter U in Σ/|ν|−1(0). Consider the net {fA = χA/|ν|(A) : A ∈ U}. It is
bounded as ‖fA‖ν = ‖ν‖(A)/|ν|(A) ≤ 1.
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Let B ∈ U , then

lim
A∈U

∫

B

fA dx∗ν = lim
A∈U

∫
A∩B

hx∗ d|ν|
|ν|(A)

= lim
A∈U ,A⊂B

∫
A

hx∗ d|ν|
|ν|(A)

= lim
A∈U

∫
A

hx∗ d|ν|
|ν|(A)

=s(hx∗) = 0,

as s ∈ H∗. For B 6∈ U we also obtain that the integral tends to zero since from
a certain index on, the net is null. Thus the net (fA)U has the property that the
integrals over arbitrary sets tend to zero weakly. From a) it follows that (fA) is
weakly null in L1(ν) . So for every h in L1(ν) ∗ we have

s(h) = lim
A∈U

∫
A

h d|ν|
|ν|(A)

= lim
A∈U

〈h, fA〉 = 0.

Thus s(h) = 0, and so s is in H. Q.E.D.

The next example shows the situation in which L1(ν) is not an AL–space
and the ideal I is not dense in L1(ν) ∗, see Theorem 1.23. That is, we have
∅ 6= H and H 6= H∗.

Example 3.20. Let ν be the measure given in 3.17. Then L1(ν) is an AL–
space, but H∗ 6= ∅. Let 1 < p < +∞ and let (an) be a positive summable
sequence. Consider the measure

A ∈ P(N) 7−→ µ(A) =
∑

n∈A

anen ∈ `p ,

where (en) is the canonical basis of `p. It has bounded variation. From Proposi-
tion 1.22 it follows that L1(µ) = `p and the integration operator is the identity
map. Thus for this measure H 6= ∅ and H = H∗. The measure obtained as
the direct sum of the measures ν and µ, see 1.13, generates a space for which
∅ 6= H 6= H∗.



CHAPTER 4: Operators with values in L1(ν) .

We study in this chapter continuous linear operators defined on an arbitrary
Banach space taking values in the space L1(ν) . We will use a classical thecnique,
that goes back to the study by Bartle, Dunford and Schwartz of operators de-
fined on spaces of continuous functions [BDS]. The idea is to associate to each
operator, in the above conditions, a vector measure and study the properties of
the operator via de properties of the associated measure.

Let ν: Σ −→ X be a vector measure and let L1(ν) be the space of integrable
functions with respect to ν. Let Y be a Banach space. We will denote by L(Y, X)
the space of continuous linear operators defined on Y with values in X. Let us
consider a continuous linear operator:

T : Y −→ L1(ν) .

We will now define the measure associated to T .

Definition 4.1. Let T : Y −→ L1(ν) be a continuous linear operator. Let T̃

be the following set function associated to the operator T :

A ∈ Σ 7−→ T̃ (A) ∈ L(Y,X) ,

where we define T̃ (A) in the following way

y ∈ Y 7−→ T̃ (A)y =
∫

A

Ty dν ∈ X .
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Proposition 4.2. T̃ is a bounded finitely additive vector measure that is

countably additive when considered in L(Y,X) the strong operator topology.

PROOF. Let A ∈ Σ. T̃ (A) is an operator from Y into X. As the operator T

is linear and the integration with respect ν is linear, it follows that T̃ (A) is also
linear. Let us see that it is bounded:

‖T̃ (A)y‖ = ‖
∫

A

Ty dν ‖ ≤ ‖Ty‖ν ≤ ‖T‖ · ‖y‖.

So T̃ (A) is bounded and so T̃ is well defined. T̃ is finitely additive as integration
with respect to ν is finitely additive. From the previous equation it follows that

‖T̃ (A)‖ ≤ ‖T‖ for every A ∈ Σ.

So T̃ is bounded. Let (Ai)∞1 be a partition and let y ∈ Y be fixed. Consider the
measure with density Ty ∈ L1(ν) with respect to ν. It is countably additive.
Then

T̃ (
⋃

i

Ai)y =
∫

∪iAi

Ty dν =
∑

i

∫

Ai

Ty dν =
∑

i

T̃ (Ai)y.

Hence T̃ is countably additive with respect to the strong operator topology.
Q.E.D.

The following simple example shows that additivity of the measure T̃ can
not be improved, that is, it is not true, in general, that the measure T̃ is count-
ably additive when considered the uniform topology in L(Y, X).

Example 4.3. Consider the Lebesgue (vector) measure restricted to the inter-
val [0,1], m:M[0, 1] −→ R . The space of integrable functions with respect to m

in the sense of Definition 1.1 coincides with the space L1[0, 1]. Let Y = L1[0, 1]
and consider the identity operator

f ∈ L1[0, 1] 7−→ Tf = f ∈ L1[0, 1] .
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The measure T̃ takes values in the space L∞[0, 1] and it is defined as follows,
for every A ∈ Σ

T̃ (A)f =
∫

A

f dm = 〈f, χA〉

for each f ∈ L1[0, 1]. Thus T̃ (A) can be identified with χA ∈ L∞[0, 1]. Hence
the measure T̃ is not countably additive in the uniform topology, as ‖χA‖∞ = 1
for every A ∈ Σ with m(A) > 0.

Note 4.4. It will be usefull later the following equivalent expresion for the
semivariation of the measure T̃ :

1/2 · sup
y∈BY

‖Ty · χA‖ν ≤ ‖T̃‖(A) ≤ 2 · sup
y∈BY

‖Ty · χA‖ν .

To prove it it suffices to consider the equivalent expresions for the semivariation,
||| · |||, and for the norm in L1(ν) , ||| · |||ν , see 1.5. We will only prove one of the
inequalities

‖T̃‖(A) ≤2 · sup{‖T̃ (B)‖ : B ⊂ A} = 2 · sup
B⊂A

sup
y∈BY

‖
∫

B

Ty dν‖

=2 · sup
y∈BY

sup
B∈Σ

‖
∫

B

Ty · χA dν‖ ≤ 2 · sup
y∈BY

‖Ty · χA‖ν .

We are interested in characterizing the operators whose associated measure
is countably additive in the uniform operator topology. See the Preliminaries
for the defintion of L–weakly compact set.

Theorem 4.5. Let T :Y −→ L1(ν) be an operator and let T̃ : Σ −→ L(Y, X)
be the associated measure. The following conditions are equivalent

a) The operator T is L–weakly compact.

b) The measure T̃ is countably additive in the uniform operator topology.

c) The measure T̃ is strongly additive in the uniform operator topology.
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PROOF. a) ⇒ b) We know that in L1(ν) , as it is an order continuous Banach
lattice, L–weakly compact sets coincide with bounded equi–integrable sets. Thus
T (BY ) is equi–integrable. Let λ be a Rybakov control measure for ν. Then for
each ε > 0 there exists δ > 0 such that if A ∈ Σ and λ(A) < δ we have
‖Ty · χA‖ν < ε for every y ∈ BY . As ‖T̃ (A)y‖ ≤ ‖Ty · χA‖ν it follows that if
λ(A) < δ then ‖T̃ (A)‖ ≤ ε and b) follows as λ is countably additive.

b) ⇔ c) It is a general fact, as the measure is countably additive in the
strong operator topology which is a weaker Hausdorff topology.

c) ⇒ a) Suppose that T is not L–weakly compact. Then there exists a
sequence (gn) in L1(ν) of positive pairwise disjoint functions such that for every
n there exists yn ∈ BY such that 0 ≤ gn ≤ |Tyn|, but (gn) does not converge to
zero in L1(ν) . Thus we can assume that ‖gn‖ν ≥ ε > 0 for every n and some
ε > 0. Let An = {ω ∈ Ω : gn(ω) > 0}. They are measurable sets and we can
assume that they are pairwise disjoint. Then, by using the equivalent expresion
given for the semivariation of the measure T̃ , we have

2 · ‖T̃‖(An) ≥ ‖Tyn · χAn‖ν ≥ ‖gn‖ν ≥ ε,

for every n. Hence T̃ is not strongly additive (see [DU, Corollary I.1.18]). Q.E.D.

In order to characterize the operators whose associated measure has bound-
ed variation we have to consider a more restrictive class of operators. Recall that
an operator defined on a Banach space and with values in a Banach lattice is
order bounded if it maps norm bounded sets into order bounded sets.

From now on we are going to use the condition of σ–finiteness of the vari-
ation of the measure ν. Although it a restriction we recall that it is equivalent
to the localizability of |ν|, 1.13.
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Theorem 4.6. Let ν be a measure with σ–finite variation. Let T :Y −→
L1(ν) be an operator and T̃ : Σ −→ L(Y, X) the associated measure. The

following conditions are equivalent:

a) The measure T̃ has bounded variation.

b) The operator T factorizes in the following way: T = i◦S where the operator

i:L1(|ν|) −→ L1(ν) is the natural inclusion and S:Y −→ L1(|ν|) is an

order bounded operator.

In the previous conditions, the operator T is integral.

PROOF. a) ⇒ b) The measure T̃ has bounded variation, so it is strongly
additive. From the previous theorem it follows that it is countably additive in
the uniform operator topology. Let y ∈ Y , consider the measure with density
Ty with respect ν. Let (Ai) be a partition of a set A ∈ Σ. Then

∑

i

‖
∫

Ai

Ty dν‖ =
∑

i

‖T̃ (Ai)y‖ ≤
∑

i

‖T̃ (Ai)‖ · ‖y‖ ≤ |T̃ |(A) · ‖y‖. (1)

We deduce that the measure with density Ty with respect to ν has bounded
variation and so by Theorem 1.12 it follows that Ty is in L1(|ν|) . So T (Y ) is in
L1(|ν|) . From inequality (1) and Theorem 1.12 again it follows that, for every
A ∈ Σ, we have ∫

A

|Ty| d|ν| ≤ |T̃ |(A) · ‖y‖. (2)

Consider A = Ω. Then by (2) if follows that

‖Ty‖L1(|ν|) ≤ |T̃ |(Ω) · ‖y‖,

So the operator T factorizes through L1(|ν|) .

The measure T̃ has bounded variation so it is strongly additive and thus
countably additive. As it is absolutely continuous with respect to |ν|, which
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is σ–finite, it follows from the Radon–Nikodym Theorem that there exists a
function g ∈ L1(|ν|) such that

|T̃ |(A) =
∫

A

g d|ν| for every A ∈ Σ. (3)

Let y ∈ BY , it follows from inequality (2) and equality (3) that
∫

A

|Ty| d|ν| ≤ |T̃ |(A) =
∫

A

g d|ν| for every A ∈ Σ.

So |Ty| ≤ g almost everywhere with respect to |ν|, for every y ∈ BY .

Hence, the operator S: Y −→ L1(|ν|) defined by Sy = Ty is well defined,
linear, continuous and order bounded.

b) ⇒ a) As S(BY ) is order bounded in L1(|ν|) , there exists a function
g ∈ L1(|ν|) such that |Sy| ≤ g for every y ∈ BY . So, for y ∈ BY and A ∈ Σ we
have

‖T̃ (A)y‖ = ‖
∫

A

Ty dν‖ ≤
∫

A

|Ty| d|ν| =
∫

A

|Sy| d|ν| ≤
∫

A

g d|ν|.

Taking supremum over y ∈ BY it follows that ‖T̃ (A)‖ ≤ ∫
A

g d|ν|. Hence the
measure T̃ has bounded variation.

A theorem of Grothendieck characterizes integral operators T : Y −→ L1(µ)
for µ a positive measure, as those that are order bounded (see [DU, p. 258]).
Thus, condition b) implies that S is integral and from the ideal property of
integral operators, it follows that T is integral. Q.E.D.

Under what conditions every integral operator has an associated measure
with bounded variation? The next proposition shows that the fact that every
onedimensional (so integral) operator factorizes through L1(|ν|) characterizes
AL–spaces (see Proposition 3.1).
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Proposition 4.7. Let ν be a measure with σ–finite variation. Suppose that

there exists a Banach space Y 6= {0} such that every onedimensional operator

T : Y −→ L1(ν) factorizes through L1(|ν|) . Then L1(ν) is order ismorphic to

L1(|ν|) .

PROOF. Let f ∈ L1(ν) and y∗ ∈ Y ∗, non null. Consider the onedimensional
operator T : Y −→ L1(ν) defined by Ty = y∗(y) · f . By hypothesis T factorizes
through L1(|ν|) . So f ∈ L1(|ν|) . It follows that the natural inclusion of L1(|ν|)
into L1(ν) is sujective and so is an order preserving isomorphism. Q.E.D.

We consider now the problem of finding conditions in order to guarantee
that the measure T̃ : Σ −→ L(Y, X) associated to the operator T :Y −→ L1(ν) ,
has a Radon–Nikodym derivative with respect to the measure |ν|. That is, there
exists a function F : Ω −→ L(Y, X) Bochner integrable with respect to |ν| such
that T̃ (A) =

∫
A

F (ω) d|ν|(ω) for every A ∈ Σ.

Theorem 4.8. Let ν be a measure with σ–finite variation. Let T :Y −→
L1(ν) be an operator and T̃ : Σ −→ L(Y, X) its associated measure. Consider

the following conditions:

a) The measure T̃ has a Bochner integrable derivative with respect to the

variation of ν.

b) The operator T factorizes in the following way: T = i◦S where the operator

i:L1(|ν|) −→ L1(ν) is the natural inclusion and S:Y −→ L1(|ν|) is a

nuclear operator.

c) The operator T is nuclear.

Then a) implies b) and b) implies c).

PROOF. a) ⇒ b) Let F : Ω −→ L(Y, X) be a function Bochner integrable with
respect to |ν| such that T̃ (A) =

∫
A

F (ω) d|ν|(ω) for every A ∈ Σ. The measure T̃
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has bounded variation and so by Theorem 4.5 the operator T factorizes through
L1(|ν|) as T = i ◦ S where S:Y −→ L1(|ν|) is an order bounded operator. A
theorem of Grothendieck characterizes nuclear operators with values in L1(µ) ,
for a positive measure µ, as those that are order bounded and for which the
image of the unit ball is equimeasurable (see [DU, p. 258]). A set K in L1(µ)
is equimeasurable if for every ε > 0 there exists a set A with µ(A) < ε such that
{f · χΩ\A : f ∈ K} is relatively compact in L∞(µ). We just have to prove this
last condition for S(BY ).

Let x∗ ∈ BX∗ such that the measure λ = |x∗ν| is a Rybakov control measure
for ν. Let y ∈ BY and A ∈ Σ. On the one hand

〈x∗, T̃ (A)y〉 =
〈

x∗,
∫

A

F (ω)y d|ν|(ω)
〉

=
∫

A

〈x∗, F (ω)y〉 d|ν|(ω),

on the other hand

〈x∗, T̃ (A)y〉 =
〈

x∗,
∫

A

Sy dν

〉
=

∫

A

Sy(ω) dx∗ν(ω).

It follows that
∫

A

Sy(ω) dx∗ν(ω) =
∫

A

〈x∗, F (ω)y〉 d|ν|(ω)

As the measure |ν| is σ–finite and absolutely continuous with respect to λ, there
exists a function h locally integrable with respect to λ such that |ν|(A) =

∫
A

h dλ

(both members infinite in case one of them is). Then we have

∫

A

Sy(ω) dx∗ν(ω) =
∫

A

〈x∗, F (ω)y〉h(ω) dλ(ω). (4)

Consider the Hahn decomposition of the measure x∗ν, we can find a mea-
surable function g with |g| = 1 such that equation (4) can be written as

∫

A

Sy(ω) dλ(ω) =
∫

A

〈x∗, F (ω)y〉h(ω)g(ω) dλ(ω).
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Consider the function F ′ = h ·g ·F . Then we have that F ′ ∈ L1(λ,L(Y, X)) and

∫

A

Sy(ω) dλ(ω) =
∫

A

〈x∗, F ′(ω)y〉 dλ(ω).

As the previous expression holds for every A ∈ Σ we deduce that Sy(ω) =
〈x∗, F ′(ω)y〉 almost everywhere with respect to λ, for every y ∈ BY .

Suppose that F ′ is a simple function, that is, F ′(ω) =
∑n

1 Ti · χAi
(ω), for

Ti ∈ L(Y, X). Then Sy(ω) =
∑n

1 〈x∗, Tiy〉 · χAi
(ω) for every y ∈ BY . Thus the

set {Sy : y ∈ BY } is included in the set of linear combinations of the functions
{χAi

: 1 ≤ i ≤ n} with bounded coeficients |〈x∗, Tiy〉| ≤ ‖Ti‖ (as ‖y‖ ≤ 1 and
‖x∗‖ ≤ 1). Thus, S(BY ) is a compact in L∞(λ).

In the general case, let Gn be a sequence of simple functions that converge
almost everywhere with respect to λ to F . By Egoroff’s Theorem, given ε > 0
we can find A ∈ Σ with λ(A) < ε such that in Ω \A the convergence is uniform.
Thus, given δ > 0 we can find n such that ‖F ′(ω)−Gn(ω)‖L(Y,X) < δ for every
ω ∈ Ω \A. As ‖x∗‖ ≤ 1, for every y ∈ BY we have

|〈x∗, F ′(ω)y〉 − 〈x∗, Gn(ω)y〉| < δ for every ω ∈ Ω \A.

We have seen that Sy(ω) = 〈x∗, F ′(ω)y〉 almost everywhere with respect to λ,
for each y ∈ BY . We deduce then that

|Sy(ω)− 〈x∗, Gn(ω)y〉| < δ for almost every ω ∈ Ω \A.

Thus ‖Sy · χΩ\A − 〈x∗, Gny〉 · χΩ\A‖∞ < δ for every y ∈ BY .

Let Sny = 〈x∗, Gny〉 · χΩ\A for every y ∈ Y . As Gn is a simple function,
following what we have seen for F ′ simple, we have that the set Sn(BY ) =
{〈x∗, Gny〉 · χΩ\A : y ∈ BY } is compact in L∞(λ). Hence for every δ > 0 there
exists a compact set with distance less than δ to the set {Sy · χΩ\A : y ∈ BY }.
It follows that this last set is relatively compact in L∞(λ).
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This procedure can be done for every ε > 0, so S(BY ) is equimeasurable in
L1(λ) . As the measures λ and |ν| have the same null sets, it follows that S(BY )
is equimeasurable in L1(|ν|) and so the operator T is nuclear.

b) ⇒ c) It follows from de ideal property of nuclear operators. Q.E.D.

Proposition 4.7 shows that a less restrictive condition than c) ⇒ b) in the
previous theorem for every operator with values in L1(ν) implies that L1(ν) is
an AL–space.

We are interested in the implication b) ⇒ a) in Theorem 4.8. The next
theorem shows that it is related to the existence of a derivative of the measure
ν with respect to its variation |ν| which is Pettis integrable and strongly mea-
surable (pointwise limit almost everywhere with respect to |ν| of a sequence of
simple functions).

Theorem 4.9. Let ν be a measure with σ–finite variation. The we have:

1. If the measure ν has a strongly measurable and Pettis integrable density

with respect to its variation, then every operator T : Y −→ L1(ν) that

satisfies condition b) in Theorem 4.8 satisfies condition a).

2. If there exists a Banach space Y 6= {0} such that every operator T :Y −→
L1(ν) satisfying condition b) in Theorem 4.8 also satisfies condition a),

then the measure ν has a Pettis integrable and strongly measurable density

with respect to its variation.

PROOF. 1. Let G: Ω −→ X be a strongly measurable function that is Pettis
integrable with respect to |ν| such that ν(A) =

∫
A

G(ω) d|ν| for every A ∈ Σ.
Clearly ‖G(ω)‖ = 1 almost everywhere with respect to |ν|. For f ∈ L1(ν) and
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A ∈ Σ, we have ∫

A

f(ω) dν(ω) =
∫

A

f(ω)G(ω) d|ν|(ω).

Let T : Y −→ L1(ν) be an operator that can be factorized as T = i◦S where
S:Y −→ L1(|ν|) is nuclear. The operator S can be written as S =

∑
y∗n ⊗ fn

where y∗n ∈ Y ∗ , fn ∈ L1(|ν|) and
∑ ‖y∗n‖ · ‖fn‖1 is finite. Let y ∈ Y . As the

serie
∑

y∗n(y)fn converges in L1(ν) , we have

T̃ (A)y =
∫

A

Sy dν =
∫

A

(
∑

y∗n(y)fn) dν =
∑

y∗n(y)
∫

A

fn dν.

We deduce that T̃ (A) =
∑

y∗n⊗
∫

A
fn dν, for every A ∈ Σ, where the convergence

of the series is absolute as
∑

‖y∗n ⊗
∫

A

fn dν‖ ≤
∑

‖y∗n‖ · ‖fn‖ν ≤
∑

‖y∗n‖ · ‖fn‖1.

Consider the following function:

ω ∈ Ω 7−→ Fn = y∗n ⊗ fn(ω) ·G(ω) ∈ L(Y,X) .

As fn is measurable and G is strongly measurable it follows that Fn is strongly
measurable. It is integrable with respect to |ν| as

∫
‖Fn(ω)‖ d|ν|(ω) =

∫
‖y∗n ⊗ fn(ω) ·G(ω)‖ d|ν|(ω)

=
∫
‖y∗n‖ · |fn(ω)| · ‖G(ω)‖ d|ν|(ω)

= ‖y∗n‖
∫
|fn| d|ν|

= ‖y∗n‖ · ‖fn‖1.

We define the function ω ∈ Ω 7−→ F (ω) =
∑

Fn(ω) ∈ L(Y, X) . It is well
defined and strongly measurable. It is integrable with respect to |ν| as

∫
‖F (ω)‖ d|ν|(ω) ≤

∑∫
‖Fn(ω)‖ |ν|(ω) =

∑
‖y∗n‖ · ‖fn‖1 < +∞.
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Let A ∈ Σ, then
∫

A

F (ω) d|ν|(ω) =
∑∫

A

y∗n ⊗ fn(ω) ·G(ω) d|ν|(ω)

=
∑

y∗n ⊗
∫

A

fn(ω) ·G(ω) d|ν|(ω)

=
∑

y∗n ⊗
∫

A

fn dν

= T̃ (A).

So F is Bochner integrable and is the Radon–Nikodym derivative of the measure
T̃ with respect to |ν|.

2. As |ν| is σ–finite, there exists a partition (Bn) of Ω such that |ν|(Bn) <

+∞ for every n. Consider y0 ∈ Y with norm one and a functional y∗ ∈ BY ∗ such
that y∗(y0) = 1. Consider the operator y ∈ Y 7−→ Tn(y) = y∗(y)χBn ∈ L1(ν) ,
that is Tn = y∗ ⊗ χBn

. It factorizes through L1(|ν|) as
∫
|Tn(y)| d|ν| = |y∗(y)| · |ν|(Bn) ≤ |ν|(Bn) · ‖y‖.

Let us define Sny = Tny ∈ L1(|ν|) . Then Sn: Y −→ L1(|ν|) is nuclear and we
have the fatorization Tn = i ◦ Sn. By hypothesis, the associated measure T̃n

has a derivative which is Bochner integrable with respect to |ν|. That is, there
exists a function Fn ∈ L1(|ν|,L(Y, X)) such that

T̃n(A) =
∫

A

Fn(ω) d|ν|(ω) para todo A ∈ Σ.

Fix A ∈ Σ. Then, on the one hand we have the equality

T̃n(A)y0 =
∫

A

Fn(ω)y0 d|ν|(ω).

On the other hand, by definition of Tn, it follows that

T̃n(A)y0 =
∫

A

Tny0 dν =
∫

A

y∗(y0) · χBn dν = ν(A ∩Bn).
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We deduce that the measure ν satisfies

ν(A ∩Bn) =
∫

A

Fn(ω)y0 d|ν|(ω)

where the function Fny0 is in L1(|ν|, X) and it is null outside of Bn.

Let x∗ ∈ X∗. We have

|x∗ν|(Ω) =
∑

|x∗ν|(Bn) =
∑∫

|〈x∗, Fn(ω)y0〉| d|ν|(ω).

Thus the series
∑〈x∗, Fny0〉 converges absolutely in L1(|ν|) and so the function∑〈x∗, Fny0〉 is in L1(|ν|) . This holds for every x∗ ∈ X∗, thus the strongly

measurable function
∑

Fny0 is scalarly integrable.

Let A ∈ Σ and x∗ ∈ X∗, then
〈

x∗,
∫

A

(
∑

Fn(ω)y0) d|ν|(ω)
〉

=
∫

A

〈x∗,
∑

Fn(ω)y0〉 d|ν|(ω)

=
∫

A

(∑
〈x∗, Fn(ω)y0〉

)
d|ν|(ω)

=
∑ ∫

A

〈x∗, Fn(ω)y0〉 d|ν|(ω)

=
∑ 〈

x∗,
∫

A

Fn(ω)y0 d|ν|(ω)
〉

=
∑

x∗ν(A ∩Bn)

= x∗ν(A).

So
∫

A
(
∑

Fn(ω)y0) d|ν|(ω) = ν(A) ∈ X. It follows that the function
∑

Fny0 is
Pettis integrable. Hence ν has a derivative which is strongly measurable and
Pettis integrable with respect to its variation. Q.E.D.

Let us see some applications of the previous results. The problem of relating
the existence of a subspace isomorphic to `∞ in the space L(Y,X) with the
coincidence of L(Y,X) with an ideal of operators in L(Y, X), has been considered
by several authors (see for example [K], [To]).
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Theorem 4.10. Let E be an order continuous Banach lattice with weak unit

and let Y be a Banach space. If L(Y, E) contains no subspace isomorphic to `∞,

then every operator from Y into E is L–weakly compact.

PROOF. As E is an order continuous Banach lattice with weak unit, by
Theorem 1.15 there exists an E–valued measure such that E ≡ L1(ν) . Let
T : Y −→ E ≡ L1(ν) be a continuous linear operator. The associated measure
T̃ is bounded and takes values in L(Y, E). As this space does not contain sub-
spaces isomorphic to `∞, it follows from a theorem of Diestel and Faires [DU,
Theorem I.4.2] that the measure T̃ is strongly measurable, and so by Theorem
4.5 the operator T is L–weakly compact. Q.E.D.

The converse to the previous result is not true as the following example
shows.

Example 4.11. Let E = L1[0, 1] and Y = `2. Every operator from `2 into
L1[0, 1] is weakly compact. In L1[0, 1] relatively weakly compact sets and L–
weakly compact sets coincide due to the Dunford–Pettis Theorem. Thus every
operator from `2 into L1[0, 1] is L–weakly compact. On the other hand the space
L1[0, 1] has a subspace isomorphic to `2, thus the space L(`2, L1[0, 1]) contains
a subspace isomorphic to the space L(`2, `2) and this space contains a subspace
isomorphic to `∞.

In [K, Theorem 6] it is proven, among other results, that the equivalence
between the conditions “every operator from E into F is compact” and “L(E,F )
does not contain a copy of `∞” holds when F is an arbitrary Banach space
and E is a Banach space with an unconditional finitedimensional decomposition
of the identity. We prove a similar result without restrictions on the initial
space and the range space is an order continuous and atomic Banach lattice, see
Preliminaries.
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Theorem 4.12. Let F be an order continuous and atomic Banach lattice and

let Y be a Banach space. The following conditions are equivalent:

a) Every operator from Y into F is compact.

b) L(Y, F ) does not contain a subspace isomorphic to `∞.

PROOF. a) ⇒ b) Is a general fact, independently of the spaces F and Y , its
proof can be gleaned in [K, Theorem 6].

b) ⇒ a) Let us consider first the case in which the Banach lattice has a
weak unit. In this case by Theorem 4.10 every operator T :Y −→ F is L–weakly
compact. We know that in atomic order continuous Banach lattices relatively
compact sets and L–weakly compact sets coincide, see Preliminaries. It follows
that L–weakly compact operators coincide with compact operators. Hence every
operator is compact.

In the general case, let us assume that there exists an operator T : Y −→ F

that is non compact. Then there exists a sequence (xn) in T (BY ) and there
exists ε > 0 such that ‖xn − xm‖ > ε for n 6= m.

Let (zα) be the family of atoms of F and denote by Pzα the projection
associated with zα (see [LT vol. II, p. 8]). As F is order continuous, every
element x in F is disjoint from the atoms of F but for at most a countable number
of them. This follows from the fact that for every ε > 0 there exists at most a
finite number of atoms zα such that ‖Pzα(x)‖ ≥ ε. Assume this last assertion is
not true. Then there would exist ε > 0 and a sequence of atoms (zi) such that
‖Pzi(x)‖ ≥ ε. Consider the sequence hk = Psup{z1,...,zk}(x). It is increasing,
order bounded by |x| but it is not convergent as ‖hk − hk−1‖ = ‖Pzk

(x)‖ ≥ ε.
This contradicts the order continuity of F .

So there exists a countable family of atoms such that every element xn is
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disjoint from all atoms outside the family. Let Z be the space generated by this
family of atoms. As Z is a band in the order continuous Banach lattice F , it
is complemented by a norm one projection P : F −→ Z , satisfying ‖P (xn) −
P (xm)‖ = ‖xn − xm‖ ≥ ε for every n 6= m. Then the operator P ◦ T is a non
compact operator from Y into Z.

As L(Y, Z) is isometrically embedded into L(Y, F ), from our hypothesis it
folllows that L(Y, Z) does not contain a subspace isomorphic to `∞. But Z is
an atomic order continuous Banach lattice with weak unit (as it is separable).
It follows, as we have seen in the previous case, that every operator is compact.
This contradiction establishes the claim. Q.E.D.
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