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Abstract

We present a methodology for automated sizing of analog cells using statistical optimi-

zation in a simulation based approach. This methodology enables to design complex analog

cells from scratch within reasonable CPU time. Three different specification types are covered:

strong constraints on the electrical performance of the cells, weak constraints on this perfor-

mance, and design objectives. A mathematical cost function is proposed and a bunch of heuris-

tics is given to increase accuracy and reduce CPU time to minimize the cost function. A

technique is also presented to yield designs with reduced variability in the performance param-

eters, under random variations of the transistor technological parameters. Several CMOS ana-

log cells with complexity levels up to 48 transistors are designed for illustration. Measurements

from fabricated prototypes demonstrate the suitability of the proposed methodology.



Global Design of Analog Cells using Statistical Optimization Techniques 3

Global Design of Analog Cells using Statistical Optimiza-
tion Techniques

F. Medeiro, R. Rodríguez-Macías, F.V. Fernández, R. Domínguez-Castro, J.L. Huertas

and A. Rodríguez-Vázquez

Dept. of Analog Circuit Design,
Centro Nacional de Microelectrónica,

Edificio CNM, Avda. Reina Mercedes sn.
41012-Sevilla, SPAIN

FAX #34 5 4624506, Phone #34 5 4239923
email angel@cnm.us.es

1. Introduction

The design of analog VLSI building blocks, and in general the design of any integrated

circuit, comprises three major steps. First, a suitable schematic must be selected. Then this

schematic must be sized to comply requiredperformance specifications on gain, bandwidth,

slew-rate, etc., as well as to meet design objectives regarding area, power consumption, etc.

Finally, a layout must be generated for the sized schematics. Of these three major steps, this

paper focuses on the problem of analog sizing.

Analog sizing is a very complicated, time-consuming task whose automation has drawn

strong attention in recent years, where several tools and methodologies have evolved [1]-[8].

Two basic reasons lie behind these developments: a) market pressure to reduce the design cost

of the analog components of modern analog-digital ASICs and b) the need for custom analog

design to be available to ASIC system designers.

Most previously reported approaches for automated analog cell design areclosedsystems

covering only a limited number (though not necessarily small, see for instance [1]) of schemat-

ics. Some tools work on aflat schematic library where topologies are defined at the device-level

[1], [6], [8], [9]. In others [3], [5], [7], [10] architectures are defined at the conceptual level as

a connection of sub-blocks (differential pairs, current mirrors, etc.), each of which can be

expandedhierarchically down to the device-level. Tools also differ among themselves depend-

ing on the sizing strategy used. In some approaches, the sizing process is reduced to acon-

strained optimization problem [6],[8]; in others, sizing is performed by following specific

design plans for each topology, previously developed by expert designers and stored in the tool

database [1], [3], [5], [7], [10].

Closed sizing systems are allequation-based; that is, the knowledge about the available

topologies is provided asanalytical design equations. The associated design equations for new

topologies must be generated -- a task for only real analog design experts to tackle. Another
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drawback relating to closed systems is that they do not allow the exploration of topology

enhancements as conceived by designers with some expertise.

 Some of the drawbacks of closed systems are overcome by the approaches in [9],[11],

which are also equation based. The distinctive feature is that some of the design equations for

new topologies are automatically generated via auxiliary symbolicanalysis tools [9],[12].

Expert concourse is not further required to that end. Unfortunately, symbolic analysis tools pro-

vide equations for neither DC nor large signal transient characteristics, whose associated

design equations must still be manually provided. Hence, the methodology is only partially

open. Furthermore, the level of complexity for AC automatic modeling is limited by the capa-

bilities of symbolic analysis tools (currently, about 15 MOS transistors using high-frequency

MOST models and workstation standard configurations). Consequently, this approach is not

the most suitable for the automated sizing of complex analog building blocks (for instance,

fully-differential opamps), or for applications where large signal specifications play a major

role, for instance, oversampled modulators for high resolution A/D converters [13].

Whether closed or open, equation-based systems have a common drawback in that sizing

is carried out using simplified analytical descriptions of the blocks. Hence, manual fine-tuning

using an electrical simulator and detailed MOS transistor models may be necessary once rough

automated sizing is completed. This drawback is overcome in the so-calledsimulation-based

systems [14], which also reduce sizing to a constrained optimization problem, and aim to solve

it by following an iterative procedure built around an electrical simulator. No design equations

are required in these approaches; the design parameters are updated at each iteration based on

the results provided by simulations with detailed transistor models. Thus, they are intrinsically

open. A representative example of this methodology is DELIGHT.SPICE [14] where

DELIGHT (a general algorithmic optimization tool) and SPICE are combined. Also, advanced

electrical simulators, like HSPICE [15], incorporate optimization routines. However, the opti-

mization routines in both tools search for a local solution, and consequently are typically used

to redesign cells whose performance specifications are close to the design goals (for instance,

technology updating of a cell library), but are inappropriate to size analog cells from scratch.

This is a real challenge in analog design automation and requires the development of other tech-

niques.

This paper presents a simulation based approach forglobal sizing ofarbitrary topology

analog cells usingstatisticaloptimization. We demonstrate that by combining proper cost func-

tion formulation and innovative optimization heuristics complex cells are designed starting

from arbitrary initial points, within reasonable CPU times and with no designer interaction

required -- a very appealing feature for ASIC applications. We present results obtained for two

fully-differential CMOS opamps, a comparator and an analog output buffer, which were sized

using the proposed methodology, fabricated in different CMOS technologies, and whose per-

formance was corroborated from actual silicon prototypes. The proposed technique is also
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extended to design for low variability incorporating mismatching information in the design

procedure. This is illustrated in the design of a CMOS folded-cascode operational amplifier.

2. Some Generalities on Optimization-Based Sizing

Analog sizing is a constructive procedure to map cellspecifications into design parame-

ter values. Design specifications are given a broad meaning here which includesconstraints on

the electrical performance parameters of the cell as well as designobjectives.Let us consider

for illustration purposes the output buffer of Fig.1, one of the examples covered in this paper.

A possible specification set for this circuit could include constraints on its DC gain (Ao > tar-

get), input capacitance (Cin < target), 3-dB frequency (f3dB > target), and output voltage range

(target < OS < target), in addition to the design objective of minimum possible power consump-

tion. With regards to the design parameters, these include transistor dimensions and passive

component values.

In a generic circuit, the design parameters can be viewed as components of a vectorxT =

{ x1, x2, . . . xN} defining a multidimensional design space. Thus, performance parameters and

the features involved in design objectives are given as functions ofx; referring again to the

example of Fig.1:Ao(x), Cin(x), f3dB(x), OS(x), andPower(x). Then the problem of sizing is for-

mulated as a constrained optimization problem; in particular, for the case of the buffer of Fig.1,

(1)

Unfortunately, even for elementary analog cells like that shown in Fig.1, the analytical solution
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Figure 1:  A CMOS output buffer.

Cc

IB

subjected to

minimize Powerx( )
Ao x( ) target>

Cin x( ) target<

f 3dB x( ) target>

target OSx( ) target< <



Global Design of Analog Cells using Statistical Optimization Techniques 6

to the sizing problem is not possible due, among other factors, to the following:

• Design equations, i.e., functional relationships among performance parameters and

design objectives on one hand, and design parameters on the other, are very difficult

to obtain accurately.

• These relationships are typically highly nonlinear and, consequently, unsolvable ana-

lytically. A further complication arises due to the large dimensions of the design and

the specification spaces.

• The need to minimize some functions forces the calculation of first and second deriv-

atives and hence, introduces additional complications to the analytical solution pro-

cess.

Due to these difficulties, analog circuits are most conveniently sized by using aniterative,

dynamic process. This concept is illustrated in Fig.2: starting from an initial design parameter

estimate, x0, a discrete sequence of movements (represented generically as∆xn) is performed

Figure 2: Iterative analog cell sizing: (a) General concept. (b) Manual and automated
design updating management.
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through the design parameter space until an equilibrium solution pointx* is found.

A key component of this iterative loop is process management: the calculation of the

direction and magnitude of the movement∆xn to be made at each iteration. Inmanual design,

∆xn is chosen by the designer based on his/her knowledge of the circuit structure being sized -

- a difficult and time-consuming task even for experienced analog designers. Inautomated

design, the selection of∆xn must be performed by the computer based on the evaluation of

some critical circuit performance indicators. A convenient approach to do this is to recast the

problem formulation as acostfunctionΦ(x) which quantifies the degree of achievement of the

design goals and their relation to the design parameters. Thus, the parameter updating to be

done for the subsequent iteration∆xn is selected at each iteration using functional analysis data

of Φ(x). This approach also provides simple and accurate criteria to finish the sizing process at

points where the cost function is either maximized or minimized.

In the simplest case,∆xn is calculated by using pieces of information calculated only at

xn. However, as demonstrated in this paper, the use of additional information from previous

points, at time instancesn−1, n−2, etc., may produce more robust solutions of the sizing prob-

lem, in the sense of yielding cells whose specifications have lowervariability when statistical

variations of the technological parameters are taken into account. In this more general case, the

updating process is described as a high-order nonlinear discrete-time system,

(2)

As stated in the introduction, we will assume that performance evaluations in Fig.2

(equivalently, the calculation of performance specification values and the values of the features

involved in the design equations as functions ofx) are made using electrical simulation and

detailed transistor models to guarantee accuracy of the sizing process. Many different alterna-

tive implementations of Fig.2 are possible depending on:a) formulation of the cost function

itself, b) the updating procedure. Two major alternatives can be roughly identified, depending

of the functional structure ofS[•] in (2):

• Deterministic,incremental techniques where∆xn calculation uses information about

the derivatives of the cost function. This is an important drawback since analytical

expressions for the cost function and its derivatives as functions of the design param-

eters are not commonly available, so that the derivatives must be calculated by numer-

ical interpolation. Another major drawback is that only∆xn values which lower the

cost function are considered. Hence, the optimization process is easily trapped in local

minima, rendering it very suitable only for fine adjustment of the design.

• Statistical techniques, where∆xn is calculated at random and hence, requires no infor-

mation about the cost function derivatives.

Parameter updating in deterministic techniques is done only in the direction which lowers

∆xn S Φ x( ) xn xn 1– xn 2– … xn M–, , , , ,[ ]=
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the cost function. This makes them very sensitive to the starting point and hence, inadequate

for global circuit sizing. This is overcome using statistical optimization techniques where

movements in the design space are done heuristically, following statistical optimization princi-

ples [16]. The price to pay for an independent initial point is a larger number of iterations and

hence, longer CPU times. However, as shown here, proper formulation of the cost function, the

movement generator, and the cooling schedule, adapted to the nature of analog synthesis, pal-

liates the high computational cost and thus provides a convenient methodology for global

design of analog cells.

3. Cost Function Formulation

A first step towards devising a tool for automated sizing of analog cells using statistical

optimization is to formalize the setting of performance specifications. In a more general case,

three different specification classes must be considered:

• Strong restrictions: These are specifications whose fulfillment is considered essential

by the designer; for instance, the phase margin of an opamp must be larger than 0(PM

> 0) for stability [17]. No relaxation of the specified value is allowed. Hence, if any

setting of the design parameters (equivalently, any point of the design parameter

space) does not satisfy one strong restriction, it must be rejected immediately.

• Weak restrictions: These are the typical performance specifications required of ana-

log building blocks, i.e.Ao > 80dB. Unlike strong restrictions, weak restrictions allow

some relaxation of the target parameters, making such circuit sizings which do not

meet such specifications acceptable.

• Design objectives: Stated as the minimization (maximization reduces to this case by

either changing the sign or using the inverse of the function to maximize) of some per-

formance features,

(3)

for instance, minimize−GB of an opamp (equivalently, maximizeGB), whereGB

denotes the gain-bandwidth product; or minimize the occupied area of the circuit.

Mathematically, the fulfillment of these specifications can be formulated as a multi-

objective constrained optimization problem,

(4)

whereyΨi denotes the value of thei-th design objective;ysj andywk denote values of the circuit

minimize yΨi x( ) 1 i P≤ ≤

minimize yΨi x( ) 1 i P≤ ≤,

subjected to
ysj x( ) Ysj or ysj x( ) Ysj≤ 1 j Q≤ ≤,≥

ywk x( ) Ywk or ywk x( ) Ywk≤ 1, k R≤ ≤≥


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specifications (subscriptss andw denote strong and weak specifications respectively); andYsj

andYwk are the corresponding targets (for instance,Ao ≥ 80dB, settling time ≤ 0.1µs).

The cost function is defined in theminimax sense as follows,

(5)

where thepartial cost functionsFΨ(•), Fsj(•), and Fwk(•) are defined as,

(6)

wherewi (called weight parameters for the design objectives) is a positive (alternatively nega-

tive) real number ifyΨi is positive (alternatively negative), and forKsj(•) and Kwk(•) we have,

(7)

wherekk (weight parameters assigned to weak restrictions) is a positive (alternatively negative)

real number if the weak specification is of≥ (alternatively≤) type. Weight parameters are used

to give priority to the associated design objectives and weak specifications. As shown in the

cost function formulation, only relative magnitude of the weight parameters of the same type

makes sense. In (7) weak specifications are assumed positive. Sign criteria is reversed for neg-

ative specifications.

Strong restrictions are checked first at each iteration. If any of them are not met, the cor-

responding movement must be rejected. Otherwise, weak restrictions are examined. Weak

restrictions have priority over design objectives. If some weak restriction is not fulfilled, the

cost function is built only with their contribution. Hence, if no circuit sizing is able to cover all

weak specifications, the optimization process will provide results as close as possible. Once all

of them are met, the design objectives are evaluated and their influence in the cost function

guides their maximization or minimization.

4. Parameter Updating and Process Management

Fig.3 shows a block diagram illustrating the operation flow in the proposed methodology.

The updating vector,∆xn, israndomly generated at each iteration. The value of the cost function

is calculated at the new parameter space point and compared to the previous one. The new point

is accepted if the cost function has a lower value. Unlike deterministic techniques, it may also

be accepted if the cost function increases, according to aprobability function,

minimize Φ x( ) max FΨ yΨi( ) Fsj ysj( ) Fwk ywk( ), ,{ }=

FΨ yΨi( ) wi yΨi( )log
i

∑–= Fsj ysj( ) Ksj ysj Ysj,( )=,

Fwk ywk( ) Kwk ywk Ywk,( )
ywk

Ywk
--------- 

 log–=

Ksj ysj Ysj,( )
∞– if strong restriction holds,

∞ otherwise,



=

Kwk ywk Ywk,( )
∞ kk( )sgn if weak restriction holds,

kk otherwise,



=
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(8)

depending on acontrol parameter,T. The random character of movements and the statistical

acceptance of those which increase the cost function enable escaping from local minima and

hence, wide exploration of the design space. This probability of acceptance changes during the

optimization process, being high at the beginning (for largeT) and decreasing as the system

cools (decreasingT). This is the general concept lying behindsimulated annealing optimiza-

tion techniques -- a process whose name is justified by its analogies to the physical annealing

in solids [16]. The tool proposed herein incorporates new heuristics relating to both parameter

updating and the cooling schedule itself, as explained below.

4.1. Cooling Schedule

Cooling schedule refers to the strategy used to modify the temperature while the process

evolves. Unlike classical simulated annealing algorithms [16], whereT in (8) decreases mono-

P Poe

Φ∆
T

--------–

=

Figure 3: Operation flow in the proposed methodology.
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tonically during the process, our tool uses a composed temperature parameter,

(9)

wheren denotes the iteration count,To(n) (thenormalized temperature) is a function ofn, and

α(x) (the temperaturescale) is a function of the position in the design parameter space. Our tool

incorporates heuristics to chooseTo andα for increased convergence speed, namely:

• Non-monotonic and adaptive normalized temperature.

• Use of a nonlinear scale, with different expressions for different regions of the design

parameter space.

4.1.1. Normalized Temperature. Instead of a conventional slow monotonically decreasing

temperature [18], a sequence of fast coolings and re-heatings is used. In circuits with not very

demanding specifications, this enables to obtain feasible designs for low iteration counts. Also,

for those cases where demanding specifications are asked for, we have found that this strategy

reduces iteration count by, on the average, a factor of 6. Two different evolutionary laws for the

normalized temperature are incorporated in the tool:exponential decreasing, and linear

decreasing. For illustration purposes Fig.4a shows an exponential schedule with 8 re-heatings.

Initial and final temperatures, number of coolings, decreasing law and rate, etc. are completely

controlled by the user. An alternative cooling schedule makesTo to change as a function of the

percentage of accepted movements,

(10)

whereρ is calculated as,

(11)

during the lastM iterations, whereM is an heuristic variable whose typical value is around 25;

β in (10) controls the rate of temperature chage and has a typical value around 0.1; andρs(n) is

a prescribed acceptance ratio, which can be fixed or vary with some given law. This schedule

provides very good results for practical circuits, rendering the outcome of the optimization pro-

cess somewhat independent of the specified values of the initial and final temperature. Fig.4b

illustrates this type of cooling schedule.

4.1.2. Temperature Scale. As (9) shows, the temperature scale parameter is a function of the

position in the design parameter space. More specifically, the scale depends on which region of

the parameter space is reached after each movement. This is so done to compensate the large

differences that may eventually appear in the increments of the cost function in the different

regions. Thus, no temperature definition is used for those regions where strong restrictions do

T α x( )To n( )=

To n( ) To n 1–( ) β 1 ρ
ρs n( )
-------------– 

 +=

ρ number of accepted movements
number of movements

------------------------------------------------------------------------------------------=
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not hold, due to the fact that any design entering this region is automatically rejected. On the

Figure 4: Cooling schedules: (a) Exponential decreasing with re-heatings. (b) Adaptive
temperature with given acceptance ratio.
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other hand, in regions where some weak specifications are violated, temperature is given as,

(12)

wherekmax is the weight associated to the maximum among theFw(•)’s in (6), andTo is the nor-

malized temperature at the current iteration. Finally, if both strong and weak restrictions hold,

temperature is given as,

(13)

wherewi is the weight associated to thei-th design objective.

4.2. Parameter Updating

Concerning the updating of design parameters three kinds of heuristics have been

adopted:

• Changes in the amplitude of the movement∆xn as a function of the temperature. In

particular, at highT, large amplitude movements are allowed as they are likely to be

accepted and favor wide exploration of the design parameter space. On the contrary,

at lowT, acceptance probability decreases and, hence, only small movements are per-

formed (equivalent to fine-tuning the design).

• The possibility of defining logarithmic scales for independent variables. This has been

done because many design parameters, i.e., transistor sizes, bias currents, etc., may

vary over several decades. For instance, a change of 2µA in a bias current does not

have the same significance if the previous bias current values is 5µA as if it is 100µA;

hence, linear movement of this variable would underexplore the low bias current range

-- a drawback which is overcome by using logarithmic scales.

• Discretization of the design parameter space. Many design parameters are already dis-

crete in nature, i.e. in many microelectronic technologies transistor dimensions can

only vary over integer multiples of the technology grid. Our discretization consists in

making discrete those variables which are continuous, and define a larger size grid for

those variables which are already discrete in nature. Then, the parameter space can be

viewed as a collection ofhypercubes. Only movements over vertices of this multidi-

mensional grid are allowed, being marked when they are visited. Thus, if during the

optimization process one vertex is re-visited the corresponding simulation need not be

performed. Hence, an important number of simulations is saved. When this optimiza-

tion process ends, a local optimization is started inside a multidimensional cube

around the optimum vertex for fine tuning of the design. In this local optimization,

design variables recover their continuous nature or their original grid size.

Together with these heuristics, large efficiency enhancements are also achieved by proper

T To kmax α x( )⇒ kmax= =

T To wi∑= α x( )⇒ wi∑=
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control of the DC electrical simulator routines. For this purpose a dynamic, adaptive, DC ini-

tialization schedule is implemented which uses operating point information of previous itera-

tions to increase convergence speed of the simulator. This yields significant CPU time,

especially at low temperatures.

4.3. Heuristics Comparison

A multiminima analytical function is used in what follows to demonstrate the advantages

of the proposed heuristics. Its mathematical structure for aN-dimensional case is,

(14)

whereK, ξ, d andγ are constants. This function has one absolute minimum (of value−K) and

many local minima, and exhibits the interesting feature that the number of minima increases

linearly with the number of variables. This means that the complexity of the optimization pro-

cess is determined exclusively by the number of variables, and not by structural changes in the

cost function. Fig.5a shows this function for two independent variables. A cross-section is

shown in Fig.5b.

The heuristics described in Section 4.1 and 4.2 have been tested using the test function in

(14) with different number of independent variables. The test procedure consisted in the

repeated execution of the different heuristics on the test function, starting from random points

of the parameter space and with a fixed iteration count. For each of these executions the best

achieved minimum was stored. Experimental results arising from these tests are shown in the

three-dimensional plots in Fig.6. In order to get better insight into the test results, the plot of

the test function is allowed to take only integer values. Hence, the minimum achieved at each

test execution is represented by its closest integer value. TheX-axis in Fig.6 represents the mag-

nitude of the achieved minimum (its closest integer value). TheY-axis corresponds to the num-

ber of independent variables in the test functionf(•), and theZ-axis represents the percentage

of iterations that achieved that minimum. Fig.6a corresponds to a conventional cooling sched-

ule. It had a single cooling with fixed scale in variable movements and variable Markov chain

length [16]. For a function with a small number of variables most iterations provided the global

minimum of the function but this percentage decreased rapidly when the number of variables

was increased. Fig.6b corresponds to our improved cooling schedule with the same number of

iterations. The cooling schedule used had four successive coolings and re-heatings, variable

scale, and a Markov chain length equal to 1. Most iterations provided the global minimum of

the function, even when the number of independent variables was increased.

f x( ) K min e–
ξ xk d–( )2

k 1=

N

∑–

xk d–( )cos
k 1=

N

∏ e
ξ– xk d–( )2

k 1=

N

∑
–, xk d+( ) γ+cos

k 1=

N

∏

 
 
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 
 
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5. Extension to Low-Variability Sizing

All heuristics mentioned above assume that devices of the same type (i.e, NMOS transis-

tor, PMOS transistors, etc.) have identical technological parameters (i.e., threshold voltages,

intrinsic transconductance, etc.) and that these parameters remain constant for a given technol-

ogy. However, this does not hold in practice; technological parameters are subjected to large

random variations which may degrade significantly the performance of analog cells, specially

when small devices are used [19],[20],[21].

Although statistical process variations can not be annulled, they can be measured, cap-

tured into models [19],[20],[21] and incorporated to the circuit design process. However, the

Figure 5: (a) Test function with two variables for optimization heuristics comparison. (b)
Cross section.
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conventional approach to measure performance variations by Monte Carlo simulations is very

Figure 6: Cooling schedule heuristics comparison.
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costly in CPU time and, consequently, not well suited to be used into an iterative optimization

loop. Since dispersion of the transistor parameter values is inversely proportional to the

device’s area, and to the distance among nominally identical devices [21], a strategy to reduce

variability of the cells is to put additional constraints on the design variables. However, this

strategy drastically reduces the search space, limiting the achievement of demanding perfor-

mances. The heuristics described below provides a more convenient approach that take advan-

tage of the large amount of data generated during the statistical optimization process. It

encompasses a modification of the cost function structure and a new comparison methodology,

in combination to the nonmonotonic cooling schedule.

 First of all, design specifications, and, hence, the cost function is made to depend not only

on the vector of design parametersx, but also on a vector of transistor model parameterse.

These model parameters change during the optimization process as a consequence of the

dependance of their statistical variability with device area and distances between devices [21].

At each iteration, design parameters are updated according to the heuristics in Section 4.2 and

device model parameters are changed according to the statistical distribution of the technolog-

ical independent parameters [20]. In addition to enlarging the number of parameters, a new

addend is incorporated to the cost function to evaluate the sensitivity of performance specifica-

tions to device model parameter variations. Such addend is:

(15)

which incorporates information from the lastM iterations, whereM corresponds typically to

the number of iterations performed in one cooling. Each addend in (15) contains the ratio of

the relative increase in the specifications (either weak specifications or design objectives) to the

increase in theL device model parameters with respect to previous iteration. The numerator

evaluates relative variations of theP performance specifications with respect to previous itera-

tion due to variations in the design parametersx, and the device model parameterse.

The amplitude of design parameter variations decreases along each cooling. Therefore,

the variability of performance specifications is evaluated with higher precision as the optimi-

zation process evolves. This fact is reflected in (15) by the weight parameterw1, which is given

by:

(16)

wherer in an heuristic parameter larger than 1. Hence,w1 increases along a cooling, giving

more importance in (15) to the addends corresponding to the last iterations within each cooling.

A similar weighting between different coolings is done with parameterw2, which is given
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by

(17)

wherer’  is a heuristically chosen constant parameter which must be smaller than 1 andl is the

ordinal of the current re-heating within the cooling schedule.

The cost function at some given iteration must be compared with some previous iteration

in order to accept or reject the current design parameter movement. A new comparison meth-

odology is introduced adapted to the new cost function formulation. Each iteration in a given

cooling is compared with the iteration of equal ordinal from the best of previous coolings, for

acceptance or rejection, following the statistical optimization principles of Section 2. If

rejected, the design point of the best cooling is adopted as new point in the current iteration and

the optimization process continues. Since (15) is added to the cost function, the optimization

process tends to minimize it. That implies small specification increases in the lastM iterations

and, hence, reduced performance statistical deviations.

A mathematical test function has also been used here, to prove the method’s capability

and as a benchmark for heuristics refinements. Its analytical struture for aN-dimensional case

is,

(18)

The first addend in (18), sets the mean value off(•) and the second one creates variations around

that mean value. Statistical deviations are simulated at the third addend by means of a random

variable,h. The global minimum of dispersion is located inxmin. Sinusoidal variations set local

dispersion minima. A method to reduce variance will be acceptable, if the final solution is close

to xmin.

For a test example with eight independent variables comprised in the interval

xn∈[−0.7,0.7], a mean valueK=100 and sinusoidal variations with an amplitudeK´=10, the

new heuristics provides a solution to a distance of 1.75 from the global minimum, where stan-

dard deviation isσ= 0.25. A conventional statistical optimization technique ends in distances

around 12 fromxmin, where standard deviation isσ= 12.

6. Practical Results

Proposed techniques have been applied to a wide variety of analog building blocks.

Results are shown for the design of two fully-differential opamps, a comparator and an output

buffer. Simulated results and measurement of silicon prototypes of the circuits demonstrate the

feasibility of the approach.
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6.1. Fully Differential Class-AB Opamp with Dynamic Biasing

Let us first consider the fully differential opamp of Fig.7 [22], intended for a

16bit@16KHz second order∑∆ modulator. This class-AB opamp includes dynamic biasing of

the output branches to obtain large output swing and high slew-rate, and uses a dynamic com-

mon-mode feedback network. These advanced circuit strategies, and the complexity of the cir-

cuit itself (it contains 48 transistors) renders its sizing a difficult task, hard to handle for system

level designers. However, the herein proposed methodology was able to automatically size the

circuit for the intended application after 1hour CPU time on a 100mips sparcstation, starting

from scratch and with no designer interaction required. Table 2 shows the sizing obtained.

The first column in Table 1 contains the design goals, which includes a design objective

on the power consumption and weak restrictions on the gain-bandwidth product (GBW), phase

margin (PM), input white noise and output swing (OS). Fig.7 shows the evolution of the cost

function during the optimization process. Note that the vertical axis contains two regions, sep-

arated by a dashed line. The weak region corresponds to the case where any of the weak restric-

Table 1. Simulated and measured results for the class-AB opamp.

Specifications Simulated Measured Units

A0 ≥ 70 74.9 74.6 dB

GBW ≥ 20 19.7 19.4 MHz

PM ≥ 60 63.3 65 o

Input white noise ≤ 50 44.7 - nV/√Hz

OS ≥ 7 8.0 8.2 V

Offset - − 3.35 mV

Power minimize 4.3 4.3 mW
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Figure 7: Fully-differential opamp.
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tions is violated, while the objective region corresponds to the case where all weak restrictions

are fulfilled; inside this region the optimization process focuses on the design objectives. Note

that agood design (meaning one that fulfills all the weak restrictions) is obtained after 750 iter-

ations. Simulated results corresponding to the obtained sizing are shown in the second column

of Table 1.

Fig.9 is a microphotograph of a CMOS 1.2µm double poly n-well prototype of the fully

differential opamp. Measured results from the silicon prototype are also shown in Table 1. The

Table 2. Sizing for the opamp of Fig.7

M1,2 149.2 / 2.2 µm M21,22 48.2 / 2.2 µm

M3,4 22.0 / 2.2 “ M23,24 42.8 / 2.2 “

M5,6 80.4 / 2.2 “ M25,26 6.2 / 2.2 “

M7,8 11.8 / 2.2 “ M27,28 5.4 / 2.2 “

M9,10 149.8 / 2.2 “ M29,30 78.8 / 2.2 “

M11,12 65 / 2.2 “ M31,32 34.2 / 2.2 “

M13,14 78.8 / 2.2 “ M33-48 5.0 / 1.2 “

M15,16 34.2 / 2.2 “ Mbias 378.0/ 5 “

M17,18 121.8 / 2.2 “ C1-4 0.4 pF

M19,20 142.8 / 2.2 “ Ibias 74 µA
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Figure 8: Cost function evolution for the optimization of Fig.7.
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Σ∆ modulator CMOS prototype, which was built using this opamp, displayed a measured res-

olution of 15.7bit@16Khz.

6.2. Fully-Differential Folded-Cascode Opamp

As a second example, let us consider the folded-cascode fully-differential opamp of

Fig.10, which displays the sizes provided by the tool. These sizes were obtained fot the speci-

fications needed in a 17bit@40KHz fourth order∑∆ modulator. The specifications are given in

the first column of Table 3. Once again only the power consumption was a design objective.

The optimization process started from scratch on a 10-dimension design space and required

about 45mins. of CPU time on a 100mips sparcstation. Simulation results for the sized circuit

are shown in the second column of Table 3. The opamp has been integrated in a CMOS 1.2µm

double poly n-well technology. Experimental results are given in third column of Table 3. The

final Σ∆ modulator prototype displayed 16.8bit@40Khz [23].

Table 3. Simulated and measured results for the folded-cascode opamp.

Specifications Simulated Measured Units

A0 ≥ 70 78.52 76.01 dB

GBW (1pF) ≥ 30 34.88 - MHz

GBW(12pF,1MΩ) 4.17 4.21 MHz

PM(1pF) ≥ 60 66.28 - o

PM(12pF, 1ΜΩ) 87.2 86.8 o

Input white noise ≤ 12 13.53 - nV/√Hz

SR ≥ 70 74.81 70.5 V/µs

OS ≥ ±3 ± 3.2 ± 3.0 V

Offset - − 3.35 mV

Power minimize 1.95 1.93 mW

Figure 9: Microphotograph of the fully-differential opamp of Fig.7.
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6.3. Regenerative Comparator

The comparator used in the same 17bit∑∆ modulator was designed using the high-fre-

quency regenerative latch of Fig.11 to meet the specifications of Table 4. The simulated and

measured results of the sized schematics provided by the design tool are also shown in Table

4. As for the previous opamp, measurements correspond to a prototype built in a CMOS 1.2µm

double poly n-well technology. We have analyzed the origin of the slight deviations observed

in the measured resolution time and have found that they can be fully explained by taking into

account the dynamics of the measurement set-up.

6.4. High-Frequency Analog Buffer

The analog buffer of Fig.1 was designed for very low input capacitance. The sizing

obtained after 30mins CPU time is shown in Table 5. Table 6 shows the specifications, where

the DC gain (A0), output range (OS), and power consumption are design objectives; the 3-dB

frequency is a weak restrictions, and the input capacitance is included as a constrained design

objective. As shown in the third column of Table 6 the tool was able to obtain a solution with

input capacitance as low as 0.07pF andf3dB of 34.35Mhz.

Table 4. Simulated and measured results for the comparator.

Specifications Simulated Measured Units

TPHL < 20 8.0 12.0 ns

TPLH < 20 10.0 14.0 ns

Resolution < 60 40 36.4 mV

Offset - 77 22.5 mV

183.6/9.4

61.8/3

63.8/3
29/3

274.4/3

166.2/36

19.4/5

21.2/5
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Figure 10: Fully-differential folded-cascode opamp.
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6.5. An Example of Low Variability Sizing

The reduced variability technique has been applied to practical topologies with good

results. Table 7 gives the results of the application to the folded-cascode opamp of Fig.10. Elec-

trical parameters were correlated according to [16], and their variations are proportional to tran-

sistor area and the distances between them [21]. Comparative Monte Carlo analyses are shown

for the design obtained with the statistical optimization technique described in Section 3 and 4,

and that described in this Section. In particular, we have focused on those specifications which

are more sensitive to technological variations: offset, DC gain, common-mode rejection ratio,

and power supply rejection ratio. Probability distributions resulting from Monte Carlo analysis

for the latter two are very asymmetric. Hence, it is more interesting to show their possible min-

imum value in said probability distribution.

Experimental results with the memory-less technique of Section 3 and 4 are seen to differ

with the results shown in Table 3 for the same example. This is a due to the change in techno-

Table 5. Transistor sizes for the analog buffer of Fig.1.

M1,2 48/2.2 M5,6 20.8/2.2 M8 403.2/2.2 µm

M3,4 167.2/2.2 M7 148.8/3 Cc 4.7 pF

Table 6. Simulated results for the analog buffer (Output load 10pF@1MΩ).

Specifications Simulated Units

f-3dB > 30Mhz 34.35 MHz

minimizeCin, with Cin < 0.1pF 0.07 pF

maximize A0 −0.169 dB

maximizeOS 0.6 <->−2.2 V

minimize Power 3.726 mW

2/1.8

11/1.8

12.2/1.8
12.2/1.8

2.4/1.8

10.4/1.8
2/1.8

vin+ vin−
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Figure 11: Regenerative latch.
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logical parameters. A technology with available data about electrical parameter correlations

was necessary to apply the reduced variance technique. Hence, it was reasonable to compare

the results with the memory-less technique using the same technological parameters.

6.6. Discussion of Results

Summarizing, previous results demonstrate the possibility to size complex analog cells in

fully automatic way, starting from scratch and without designer iteraction required -- features

that render the proposed methodology very appealing for system designers. As a matter of fact,

resorting to the concourse of this methodology, and using it also at the functional and system

levels has enabled to design full-customΣ∆ modulators with reduced manpower in short time

cycles [23].
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