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A General Translinear Principle for
Subthreshold MOS Transistors

Teresa Serrano-Gotarredona, Bemalinares-Barranco, and Andreas G. Andreou

Abstract—This paper revises the conditions under which the MOS transistors, viewed as four terminal devices, satisfy a
translinear principle can be fully exploited for MOS transistors general translinear principle.

operating in subthreshold. Due to the exponential nature of = yhe gperation of a subthreshold MOS can be described by
subthreshold MOS transistors, the translinear principle applies . . )
the following equation [2], [7]-[9]:

immediately as long as the source-to-bulk voltages are made equal
to zero (or constant). This paper addresses the conditions under
which subthreshold MOS transistors still satisfy a translinear

principle, but without imposing this constraint on all Vs volt- _ ; ; i
ages. It is found that the translinear principle results in a more where Vi, = K7'/q is the thermal voltagel, is a positive

general formulation than the originally found for BJT's since constant (_:urrentﬁ_‘ 1S th? tranS|sto_r Size factors(= W_/Lv

now multiple translinear loops can be involved. The constraint Where W is transistor width and_ is its length), and is a

of an even number of transistors is no longer necessary. Sometechnology-dependent positive parameter. This equation holds
corollaries are stated as well and, finally, it is shown how to use trye as long as

the theorem for subthreshold MOS transistors operated in the

ohmic regime. L drB <Vas < ¢rp ()

_Index Terms—CMOS analog integrated circuits, current mode  \hare . s the device's flat-band voltage [10]. Voltage
circuits, low-power circuits, nonlinear circuits, subthreshold cir-

cuits, translinear circuits, very large scale integration. Vgrs can take either DC_JSitiV_e or negative vaIues_as long as
the parallel PN diode junction is biased below its forward
conduction threshold voltage. Parameteis known to have
. INTRODUCTION a slight dependency on voltagéss [2]. However, in this
HE translinear principle, introduced by Gilbert in 197%aper we will assume to be constant, which is a reasonable
[1], is one of the most important circuit theory contriassumption if care is taken to make thgs voltages similar
butions in the electronics era. In its original formulation, théor all transistors.
translinear principle provides a simple and efficient way to For operation in saturation, (1) can be simplified to
analyze and synthesize nonlinear circuits based on bipolar

Ips = I,5e"Vas/Vin) (A=) Vas/Vin)(1 _ o=Vos/Viny (1)

IDS (Ve A —x) (Vg A
junction transistors (BJT's). Due to their exponential char- I =5 = Le"(Ves/Va) ((1=m)(Vas/Vin)
acteristics, the translinear principle can be extended to MOS if Vps > Vi, (3)

transistors operating in weak inversion [2], [3] without or with
floating-gate devices [4]. For MOS transistors operating abo@gd can be rewritten as
threshold there has also been found a similar way to analyze I = [t 4)
and synthesize nonlinear circuits [5]. 7B

For bipolar transistors one practical problem that mayherel (a normalized current) is transistor current normalized
require some attention when applying the translinear principhdth respect to transistor size factSr= W/L andig,ip are
is the nonzero base current [6]. In contrast, the translinedimensionless numbers called pseudo-currents and equal to
principle holds for MOS subthreshold transistors in an exact

manner if source and bulk are short circuited. However, te :e‘fs”f“’

it has been found that the principle holds as well in an ip =c"Ps/ Vo )
exact manner under different circumstances [2]-[3], although

a general subthreshold MOS translinear theorem has not been |l. ORIGINAL TRANSLINEAR THEOREM APPLIED
devised until now. In this paper we provide this general TO SUBTHRESHOLD MOS TRANSISTORS

theorem and outline the conditions under which subthreshold| ot s use the symbol in Fig. 1 to represent a weak-inversion

MOS in saturation. Let us call the path that goes from the
gate terminalG to the source terminab the G branch (or
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B old MOS transistors, but without imposing the constraint of
i i making Vgs = 0. We will introduce first some preliminary
theorems and definitions and then state and prove the gen-
eralized translinear theorem for subthreshold MOS devices.
Afterwards, a few examples will illustrate the theorem.
g The first concepts to be introduced &reloop andB loop.
A G loop (or gate loop) is a closed loop 6f branches, and
Fig. 1. Translinear symbol representation for subthreshold MOS transisier g loop (or bulk loop) is a closed loop oB branches
in saturation. . L
For these loops we can state translinear theorems for their
seudocurrents.

and bulk terminals. I'gs = 0 (or constant) there is an exactp . .
55 =0 ( ) Theorem 2:In a (3 loop containing ararbitrary number

exponential relationship betweéfn,s and Ips [see (3)] and )
the original BJT translinear formulation can be directly an(af G branches, the product of pseudocurreifsof branches

exactly applied (see Fig. 2): connected in the CW direction is equal to the corresponding
Theorem 1:In a closed loop containing a&qual number of product for branches connected in the CCW Qirection.
oppositely connected translinear elements, the product of the Proof: the branch voltages of & loop satisfy
normalized currents in the elements connected in the clockwise
(CW) direction is equal to the corresponding product for 0= Z Vas, — Z Vas, - 9
elements connected in the counterclockwise (CCW) direction. je{Cw} le{ccw}
Proof: In aloop, the sum of branch voltages adds to zero.
Since voltages of CW-oriented junctions have opposite sigpplying the first equation of (5) in (9) yields
than those of CCW-oriented junctions, the following holds:

0= > Ves,— > Vas (6) 0= S Valic,— Y Valig

jC{CW} lc{CCW} jc(Ccw} lc{ccew}
Since Vgs = 0 for all subthreshold MOS transistors, using H iG;
(3) in (6) yields Vi In je{f[W}
~ Va I Vin I i,
0=— Z In <]_0 T Z In A le{CCW}
je{Cw} le{CCW} . .
I I = H tGq; = H [ZelB (20)
H J H o je{Cw} le{CCW}
~ Vin | FSlews  tereew
" I« II = O
le{CcCcw} je{CW} Note that since pseudocurrents are dimensionless entities,
H I H I, we can have an arbitrary number of branches oriented CW
jelewl ! lc{cCw} and another arbitrary number of branches oriented CCW [as
=1= H I’ H I (7)  opposed to the case of (7)]. A completely equivalent theorem
t 0 holds directly for B loops.

le{CCW JE{CW . _— . .
{ booddow Up to now, things are similar to classical translinear loops,

Since tthe number of CW-oriented devices is equal to tRgcept that an arbitrary number of branches are allowed.
CCW-oriented ones, thg, coefficients in (7) cancel out, thuspoever, the presence of two exponential branch voltages

resulting in in (3) is what makes subthreshold MOS translinear loops
H I; = H L. (8) more general and complicated than the classical ones. A first
je{cw} le{CCW} consequence of this fact is the following concept of coupled
loops.
O

Fig. 2 illustrates this Theorem. In Fig. 2(a) a loop with six Definition 1: Two G loops are said to be coupled if at least
G-branches is represented. Tebranches are not shownone MOS device of the firstz loop and at least one other
because their terminals are short circuited together and, c@ifferent device of the secon@ loop share their respective
sequently, have no effect on the circuit behavior. Fig. 2(fyanches in a commo# loop.
shows the same circuit, but using the MOS transistor symbolThis is illustrated in Fig. 3. Devices 1-3-5 form@G loop

to represent the devices. and devices 2-4-6 form anothéf loop. However, devices 1-
2-3-4 form aB loop, thus causing the previous tw® loops
[ll. GENERALIZED TRANSLINEAR THEOREM to be coupled through th& branches of devices 1-2-3-4.
FOR SUBTHRESHOLD MOS TRANSISTORS An equivalent definition applies for couple8l loops. Note

In this section, we will consider the conditions under whicthat two loops may have a common branch without being
translinear principles can be applied to circuits with subthreshecessarily coupled loops.
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Fig. 2. Subthreshold MOS transistors translinear loop where for all transistges = 0. (a) Translinear symbol representation. (b) Circuit schematic
representation.
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Fig. 3. Example of couple loops using translinear symbol representationrig. 4. lllustration of theG-order concept. Devices 1-2-3-6 formaloop
which is coupled to the7 loop formed by devices 2-4-5 because devices

1-2-3-4 form aB loop. Devices 1-2-3-4-5-6 form a closed translinear set and

In the example of Fig. 3, we can write for the twbloops so do devices 6 and 7. Device 2 has7aorder ofn¢, = 2 because its7
branch belongs to twé: loops of the same closed translinear set. All other

L Koy 1—k devices haver order one.
I3I; _J <LG3LG5> <L33L35>
— +0 . .
I Gl tB1 .
:IOG(VBSS+VBss—V351)(1—N/V¢1,) 8 7

1
2 4
. Koy " 2 4
Isls _7 <'LG4'LG6> <'LB4'LBG> \/%K]l—ﬂﬂ%\ 6
I ‘\ g2 B2 AN E7A! 3 <
:IOG(VBS4+VBSG—VBsz)(l—K/Vth) (11) l ! 6

3 s
where all pseudocurrents; have cancelled out by applyingFig. 5. Example of CTS's. MOS devices 7 and 8 form a CTS and so do
Theorem 2. However, due tB loop 1-2-3-4, MOS devices 1-7.
Ves1 + Vesa = Ves2 + Viss (12) Any of these three equations can be expressed as a linear

combination of the other two. Thus, the thr@eloops do not

which introduces a coupling between the two equations in (1}dym an NR set ofG loops. However, any two of these three
and makeg+ loops 1-3-5 and 2-4-6 to be coupled loops. loops do form an NR set ofy Ioop’)s.

When devices form multiple touching loops it is not clear the fact that subthreshold MOS transistors can form cou-
which ones to choose or how many to choose. For exampigaq |oops, yields naturally to the following concept of the
in Fig. 4 one can choos§ loops 1-2-3-6, 6-7, and 2-4-5. BUtqsed translinear set (CTS).

why not consider 1-3-4-5-6, 6-7, and 2-4-5 or 1-3-4-5-7 and 1- pefinition 3: Given a set of MOS devices, and once an NR
2-3-6. One can try all possible options as long as one choogg$ of |oops has been chosen, a CTS is a set of devices such

a set of nonredundant (NR) loops: that all loops they form are only coupled among themselves,

Definition 2: A set of loops is said to be NR if the sum ofy,;t are not coupled to loops where branches of other devices
branch voltages of any loop cannot be expressed as a Img@gt belonging to the CTS) are present.

combination of the sum of branch voltages of other loops In This is illustrated in Fig. 5. Let us select the NR set(®f
the set. o loops 1-2-3-7, 4-5-6, and 7-8 and the NR set/floops 1-
For example, in Fig. 4, foi loops 1-2-3-6, 2-4-5, and 3. 3.4.5.6 7, and 8G loops 1-2-3-7 and 4-5-6 are coupled
1-3-4-5-6 their respective sums of branch voltages are  pecayse there a8 branches of devices of boti loops that
Verco 4 Verct = Veres + Vo are shared in the commaB loop 1-2-3-4-5-6. The twad7
GS6 T TESL = VasE T Tass loops, 1-2-3-7 and 4-5-6, and the tw® loops, 1-2-3-4-5-6
Vasz2 + Vass =Vass and 7, are not coupled to other loops (neither @réoop 7-8
Vase + Vast + Vasa = Vass + Vass. (13) nor B loop 8), thus, (for the chosen NR set of loops) devices 1-
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2-3-4-5-6-7 form a CTS. On the other hand, neittdoop 7-8 translinear theorem for subthreshold MOS transistors

nor B-loops 7 and 8 are coupled to any other loop. Therefore, Theorem 3: Given a set of subthreshold MOS devices and

devices 7-8 form another CTS. choosing for them a set of NB loops andB loops, for each
When working with multipleG loops andB loops, with CTS the following can be stated.

some of them being coupled, it is not very convenient to If it is possible to find anv andSwise classification of their

classify each branch as being CW or CCW oriented, as wilt loops andB loops such that the following pertains.

become apparent later. Let us instead classify all branches int@) The sum ofG-« orders equals the sum 643 orders

two orientation groups, thewise oriented branches and the

Awise oriented branches. Two branches are classified into the Z o, Gj = Z ng.Gl- (15)

same group (either thewise or thewise) if they appear J€{awise} 1e{fwise}

in the same loop with the same orientation. On the contrary,b) Every time a device’s? branch is classified aswise

two branches are classified, each into a different group (one in a G loop, its B branch can be classified asvise in

into the awise, the other into theswise) if they appear in some B loop, and every time a device’§ branch is

the same loop with opposite orientation. Note that, now, a classified ag? wise in aG loop, its B branch can be

CW branch in one loop and a CCW branch in another loop classified ag3wise in someB loop.

can be classified into the samewise or fwise group. If & Then, the product of normalized currents raised to the power
branch is short circuited, it forms a one-branch loop and c@aR their (- order I™~-¢5 of all transistors in the CTS whose
be classified as eitherwise or fwise. G branches have been classifiediise equals the product of

translinear subthreshold MOS theorem is thatzobrder and Ims.¢t of all transistors whosé&' branches have been classified

B order of a MOS device in a CTS. Bwise.

Definition 4: Once an NR set of loops has been chosen, a proof: For eachc loop in the CTS, the following holds
subthreshold MOS transistor which is part of a CTS is said {gs we know from Theorem 2):
have aGG order of valuen if its GG branch belongs tag G

loops of the given CTS. H iqy

An equivalent definition of theB order can be stated for 1= je{awise} ) (16)
B loops. The concept is illustrated in Fig. 4. Let us choose H icu
the NR set ofGG loops 1-2-3-6, 2-4-5, and 6-7 and &floops le{Bwise}

1-2-3-4, 5, 6, and 7¢ loops 1-2-3-6 and 2-4-5 are coupledg; o i is true for every singlé& loop we can multiply
because devices 1-2-3-4 formZaloop. There are no other

. ) tfhese equations for the chosen set of KRoops and their
couplings among the chosen loops. Consequently, devices duct will still be equal to unit
2-3-4-5-6 form a CTS which consists 6f loops 1-2-3-6 and P q y

2-4-5 andB loops 1-2-3-4, 5, and 6. Devices 6 and 7 form H iGy
one G loop (6-7) and twoB loops (6 and 7) which are not 1— §C {awise}
coupled to any other loop. Therefore, devices 6 and 7 form - H i

another CTS. MOS device 2 h&s orderngs, = 2 because

its @ branch appears in tw6 loops of the same CTS. MOS (C{pwise} Gloop,
device 6 does not hav@ order two because, although its H (fel]
branch belongs to two differer¥ loops, these two loops do je{awise}
not belong to the same CTS. All MOS devices haverder XKoo X H ;
one because the branches appear only in or loop. e (Bwise) l
When aG branch hag= order greater than one, it belongs / Gloop,
to more than oné& loop of the same CTS. In such cases it is H (g )0
possible that the branch be classifiedasse in some&- loops je{awise}
and aspwise in otherG loops. Under these circumstances, it = H (i) . a7)
is convenient to divide it€7 order into two parts e {Borse)

Furthermore, we can raise it to the powerxoénd it still will
nG = No,c T Ngc (14) pe equal to unity
II (e

wheren, ¢ (let us call it G-« order) denotes the number of JC (awise}
times thisG branch is classified aswise in a CTS andhs ¢ 1=

(let us call itG-/3 order) denotes the times it is classified as H
pwise in the CTS. Similarly, foB branches, thé3 order can
be separated into th&-« order (n, g) and theB-/3 order 1The theorem will be stated using branches as primary branches and
(ﬂ,@,B)- making B branches depend on them. However, because of the symmetry

Usi h d limi h . d between branches and® branches [due to the symmetry betwédéns and
sing the concepts and preliminary theorems intro uce s voltages as (3)], the theorem can be stated, as well, by interchaéging

until now, it is possible to state and prove the generalizeghnches and3branches.

(18)
(fl:Gl)'"'ﬂ,Gl
le{Bwise}
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Note that, since the devices form a CTS, all branches will iy multiplying (21) and (22) and using (4) we obtain
present and no branch of another CTS appears. Consequently,

(18) includes all¥ branches of the CTS and only the branches I wms I Geigm e
of this CTS. Equivalently, the same can be stated forAall 1= i {awise} i {awise}
loops H (I, H (i ik, ot
le{Bwise} le{Bwise}
Py K N ,Bj .
N H (i8j) H (I;)mes
j€{awise} . X
1= - . jE{anse} (23)
II Gsomem I e
le{Bwise} -
1k le{Bwise}
7 o, Bj
i H (i) which concludes the proof of the generalized subthreshold
— | Stoised - (19) MOS translinear theorem. O
H (ip)"™o-m In the remaining of this section this theorem will be illus-
le{ Bwise} trated with a few examples. Consider the circuit of Fig. 6,

where we can choose the two NR loops 1-2-3 and 4-5-
but raising now to the power of — x for convenience. 6 and the two NRB loops 2-6 and 1-3-4-5. The twe!
Note that, due to statement b) in Theorem 3, every t|m6|(§bps are coupled through each of the tWoloops. Hence,
device has its pseudocurreitt; in the numerator of (18), all devices in Fig. 6 form a unique CTS. Table | shows a
its pseudocurrenip; will also appear in the numerator ofpossiblex or Swise classification of the branches. Coludn
(19) and both will appeafi, ¢, times. And the same holds denotes MOS devices whos branch has been classified
for pseudocurrents in the denominators of (18) and (19wise, columnG-3 those whose&x branch has been classified

Therefore, let us defing,, ; andng; such that Awise. Similarly, columnsB-« and B-3 do the same fo3
branches. The dashed lines in Table | encircle those devices in
No,Gj =Na,Bj = Na,j a common loop. In Table I, the classification is such that when
ng G =ng R =Ns1 (20) a device appears undét-«, it also appears undes-«, and

if it appears undet7-3, it also appears undds-/3, therefore,

Also, since the devices form a CTS, (18) includes all devic&&tisfying the requirement of condition b) in Theorem 3. Since
of the CTS, and so does (19). Consequently, we can multigifichG or B branch has order one (it appears only in one loop),
(18) and (19) and index thi; andiz pseudocurrents of the able | reveals that the sum 6f-« orders is equal to the sum
same device with the same subscript and use this subscripPt§7-? orders (and the sum @8-« orders is equal to the sum

index the MOS device of B-p3 (_)ro_lers). Consequently, _condition a) of Theore_m 3is
also satisfied. Therefore, applying Theorem 3 results in
K
II Gaymeo
1= j€{awise} §1§2§4 = (24)
It ool
IC{Bwise} For illustration purposes, let us now write the current
H (ig;)te B o equation for each transistor as follows. If G branch is
je{awise} ! connectedhvwise, we write its equation as in (4), but if its
H (im0 branch is connectefiwise we invert both sides of the equation
18] n3 B
le{Bwise} Il :IO Zgl IL]‘B_];Vv
[ G L=I, i i
. jC{awise} 21 i _ i i 1
_ P (21) =T o A=
H (LGILBI ) 3,1 3 o G3 B3
le{Bwise} Iy =1, Lgv4 L]]};LK
1 1 1 1
On the other hand, due to statement a) in the theorem, the I, 1, it Ji=r
following is satisfied: 7 B3
1 1 1 1
LI i i (29)
1 :I([)Eje{n\viso} o, ;=S {pwise} T3] 6 o G6 tBe

H (I,)m s Pseudocurrentsgs, ige, andigs are in the sames loop.
Consequently, by Theorem 2

_ jC {awise} (22)

H (Io)n/a,z ) 1= LKGng? (26)
le{Bwise} ng
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lzl 2 pu =L, 6 llﬁ

— B

(b)

Fig. 6. Example of subthreshold MOS translinear circuit witgs # 0. (a) Translinear symbol representation. (b) Circuit schematic representation.

TABLE | L , . .
G B é Tl l Tl (gmz

y

| {12l

Sy N —— L —— = d_——— _ 2

%Z(Iml +1,,)

The same applles for pseudocurreﬂ;&s, G5, andige. Simi- Fig. 7. Particular bias arrangement for the circuit configuration of Fig. 6.
larly, for pseudocurrentsg the following is satisfied:

Lor JAorglr resulting in
1=, 1= (27)
B6 ‘B3 'Bs Lini + Lina 5
l=p 5,
Consequently, by multiplying all equations in (25), (24) is Ifnl +If"2
obtained. Note that the generalized theorem imposes a topo- I = H Z . (29)
inl n2

logical constraint in the way thé&/ loops andB loops are

formed. This topological constraint is visualized in Table I, |, his example, all branches hauerder and3 order equal
where devices unde¥-a must also be undeB-« and devices o one because device branches were not present in more than
under G- must also be undeB-/3. one loop. The example in Fig. 8 illustrates Theorem 3 for the
A particular bias arrangement for the circuit in Fig. 6 igase in which one of the devices hasand 3 order greater
shown in Fig. 7, which applies the following constraints tthan one. Let us choose the NR set@®@floops 1-3-4-5 and

(24) for equally sized transistors: 1-2. On the other hand, devices 2-3 fornBdoop? while the
B branches of devices 1, 4, and 5 form three single-brahch
L =0 =1, loops. Consequently3 branches of devices 1, 4, and 5 can
- - n s . . .
be classified aswise or Swise as many times as needed.
Iy =1 = Iino
In — 2This will force Vs = —Vis3 so that one of them must be positive.
3 — 4ol In such a case, it needs to be insured that the positiye voltage is kept
L=1, below the threshold voltage of the diod&V junction between source and
e bulk.

Iy + Lo+ Iips + Linz =2(Tin1 + Lin2) (28) 3Note that the pseudocurrent of such a branch is equal to unity and can be
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will be satisfied:

2
]
1

3 I = L3104 (30)

A possible bias arrangement for this circuit is shown in

5 [ ™
I
Il ers anal
3 1 2 Fig. 8(c) where, for equally sized transistors, the following
% T % % constraints are applied:
4%

% i Iy =Ty
I, =1

4

—

(@ I =Ip
, , , I3+ 1y =14
I 1
4l|il ’S—lls 3ll_:il 1 l 2 lz Il +IQ+I4:IB (31)
I = I }tﬂ IL, This together with (30) forced,.. to solve the following
L“J L?J rJ second-order polynomial:
Igut +c1louwy — 12 =0
b Ic
® CIZI—C(IA—ID)
D
ll,,u, co=1Ip—Ip. (32)
P ' fe Note that, with the generalized subthreshold MOS translin-
ear theorem, the number of devices does not have to be an even
4 5 3 2 number, as opposed to the traditional translinear theorem. In

Fig. 7 there is an even number of transistors, while in Fig. 8

]
—H =
J‘_‘ IT_‘ L there is an odd number.

IV. COROLLARIES FOR THE GENERALIZED
SUBTHRESHOLD MOS TRANSLINEAR THEOREM

SL? a fa A set of immediate corollaries follow from the generalized
subthreshold MOS translinear theorem:
© Corollary 1: It is possible to have an exact translinear
Fig. 8. Example of subthreshold MOS translinear circuit with one devic%l'IbthreshOId behavior in a Smg@ ,lOOp,WIth all tr"’_mSIStor
having order-a higher than one. (a) Translinear symbol representation. lylks connected to the same terminal if the transistors share
Circuit schematic representation. (c) Particular bias arrangement. their sources pairwise and tl@@ branches form loops of even
TABLE I numbers, half of them connected CW and the other half CCW.
This was anticipated by Vittoz [3] and is illustrated in
G B Fig. 9(a). Devices 1-2-3-4-5-6 form a CTS and so do devices
6-7. For each CTS thei& branches and3 branches can be
classifieda andgwise, as is shown, respectively, in Tables Il
and V. Applying Theorem 3 results in

3]
=

R
=

————————————

w|

[ R
[a—

r=n

LI = LI
Is =I. (33)

L
r--

[ Rl

[, AU SR R )

|

[S—

P ] =1
R -

r-a
r-n

____________

A particular bias arrangement is shown in Fig. 9(b), which

“Table Il shows how¢i and B branches of the topology in jmngses the following constraints for equally sized transistors:
Fig. 8(a) can be classified aswise andgwise. In B loop

2-3 B branches of devices 2 and 3 are oriented in the same low =17 =Is = 1>

direction, therefore they must appear under the sBraelumn L =I-

in Table Il. Let us put them undeB-«. Then, forG loop 1- Lot Io=1.

3-4-5, device 3 should appear undeé+« and for G loop 1-2, 3raaTaa

device 2 should appear undér« as well. Devices 1, 4, and 5 Is+1s+ 1t =1p

fill the spaces needed in Table 1l under colufrio fulfill the I,=1Ip (34)

conditions of Theorem 3. Consequently, the following equality . | )
which, together with (33), make curreh,; solve the follow-
ing second-order polynomial

arbitrarily added to the numerator or denominator of (23) as many times as

desired. Igut + 2¢c1doyt — c1c0 =0
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1 2 3 4 5 7
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l PMOS Current Mirror [

S

Fig. 10. Translinear symbol representation for subthreshold MOS in ohmic
regime.

Fig. 9. Arrangement for translinear subthreshold MOS devices with common
bulk and sources shared pairwise. (a) Translinear symbol representation./(b

Schematic representation of a particular bias arrangement.

TABLE III Ml
2f
: ; ‘f T
o B o B @
________________________________ Fig. 11. Subthreshold MOS circuit with one transistor operating in ohmic
o1 2 o2 region. (a) Circuit schematic. (b) Translinear symbol representation.
3 R O D
L 6 bl bl et Sl V. EXTENSION TO OHMIC OPERATION
As suggested in [2], the translinear principle for subthresh-
old MOS in saturation is directly extendable to the ohmic
TABLE IV region by noting that, from (1), one can obtain the following:
1
G B DS
1= < = =11
__(f________fi—_ _—(f_—---——-?__ I IG(KV(S/Vl) ((1— K)VBS/Vl)_ILGf Bfm
SR R S I, = LerVan/Vi) ((1=r)Van/ Vo) = [ 5 Lok (36)
Under these circumstances, the symbol in Fig. 10 can be used
I to build (or analyze) circuit diagrams. The symbol indicates
c =7 (la—1Ip) that the fictitious current/; flowing out of terminal S is
s = I;j (35) exponentially controlled by s andVgg, while fictitious cur-

rent I,. flowing out of terminalD is exponentially controlled
by voltagesV;p and Vgp, as given by (36). In this case,
Corollary 2: There is a need to distinguish amo@gloops however, fictitious current$; and /. need to be eliminated
andB loops as long as and1—x are different. If a technology by using! = Iy — I and another circuit constraint wherfe
is available for whichx = 1 — x = 0.5, there would be no is the physical current (normalized to size facfrthat flows
need to distinguish betweear branches and branches, and from the drain terminal to the source terminal. Now the device
they could be mixed in common loops. has two@G branches, which will be called th& f branch and
Corollary 3: If different subthreshold MOS devices arelZr branch, and twa3 branches, which will be called thB f
available (for example, NMOS and PMQOS), such that thdyranch andBr branch. The new7f and Gr branches can be
have equak, they could be mixed to form translinear loops.treated like the previou§ branches, and the ne#f and B»
Corollary 4: If two different subthreshold devices are availbranches as the previous branches.
able, such that theit parameters add to or@; + w2 = 1), As an example, consider the circuit in Fig. 11(a), which was
thenG branches of the first type of device can be mixed vi#th introduced by Delhick in 1991 [11]. All transistors operate
branches of the second type, and vice versa, to form translingasaturation excepd/2. Consequently, all transistors can be
loops. represented by the symbol in Fig. 1 except far2, which
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shown because both their terminals are connected to ground.
In Fig. 11(b) we can choose the two NRloops 1-2f and 4-3-

2r-2f, and B loop 3-2r, which form two CTS’s (4-3-2r-2f and
1-2f). For each of them, a possibleand swise classification

table can be filled out, as shown in Tables V and VI. Sinc
in the G loop formed by 4-3-2r-2iG branches 3 and 2r are/™§
in opposite directions, and so af® branches 3 and 2r in [
the B loop, Theorem 3 is fulfilled and, hence, the following 4
translinear relations are satisfied: Y

I =1yp
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