
Automatic Generation of Analog Hardware Description 

Language (AHDL) Code from Cell Culture Images 

Alberto Yúfera 1 and Estefanía Gallego 2 
1
 Instituto de Microelectrónica de Sevilla (IMSE), Centro Nacional de Microelectrónica (CNM-CSIC) 

Universidad de Sevilla 
Av. Américo Vespucio s/n. 41092. Sevilla. SPAIN 

e-mail: yufera@imse-cnm.csic.es
2 Dto. Tecnología Electrónica, Universidad de Sevilla 

Av. Reina Mercedes  s/n. 41022. Sevilla. SPAIN 

e-mail: estefania.gallego@gmail.com

Abstract--This paper presents a computer tool for 
automatic analysis of cell culture images. The program allows 
the extraction of relevant information from biological images 
for pre and post system analysis. In particular, this tool is being 
used for electrical characterization of electrode-solution-cell 
systems in which bio-impedance is the main parameter to be 
known. The correct modeling of this kind of systems enables 
both electronic system characterization for circuit design 
specifications and data decoding from measurements. The 
developed program can be used in cell culture image 
processing for geographic information extraction and sensor 
sizing, generating cell count and Analog Hardware Description 
Language (AHDL) equivalent circuits useful for whole system 
electrical simulations. 

Keywords--Microelectrode; bioimpedance sensor; Analog 
Hardware Description Language;   image processing. 

I.  INTRODUCTION

The impedance is a useful parameter for determining the 

properties of biological materials for several reasons: first, they are 

conductive [1] second, the impedance measurement represents a 

non-invasive technique, and third, it is a relatively cheap technique. 

Many biological parameters and processes can be sensed and 

monitored using its impedance as marker [2-5]. Impedance 

Spectroscopy (IS) of cell culture [6] and Electrical Impedance 

Tomography (EIT) in bodies [7] are examples of the impedance 

utility for measuring biological and medical processes and 

parameters. Classical real-time monitoring and imaging systems for 

biological samples are based on optical stimulation of samples, 

demanding bulky and expensive equipments. Embedded 

Complementary Metal-Oxide-Semiconductor (CMOS) sensors have 

been reported as an alternative for increasing the sensitivity to cell 

location and manipulation. The most popular are optical [9], 

capacitive [7] and impedance [8] based sensors. Despite of the high 

number of papers with optical sensors the last years, they still need 

external lamps, optical fibbers, etc, while capacitive and impedance 

based detection do not rely on peripheral equipment. 

This paper is related to a new method for impedance 

measurement with applications to cell culture systems. The system 

in fig. 1 employs a two dimensional electrode array as sensors 

[10,11] together with CMOS circuits for impedance measurements 

[12]. Microelectronic circuits must be designed to work with 

constraints imposed by the electrode sensors. The whole system in 

fig. 1 can be fully-integrated in CMOS technologies [10]. When 

low concentration cell cultures are carried out on top of the 

electrode array, depending on the position of each cell, specific 

electrode-cell impedance will be measured, allowing cell detection. 

Electrical models reported for the electrode-cell interface 

description [11.12] are the key for matching electrical simulations 

to real systems performance and hence decoding correctly the 

experimental results, usually known as a reconstruction problem. 

This kind of system can be used for real-time monitoring of cell 

cultures with the Electrical Cell Impedance Spectroscopy technique 

(ECIS), [6]. 

Fig. 1. (a) Simplified system set-up: circuits and 2D electrode sensor array 
for bio-impedance measurement. (b) Each sensor has e1 and e2 electrodes. 

Cell culture is done on electrode top. 

In this paper is presented a computer tool that aids in cell 

culture image processing and reconstruction, helping to the 

optimization of circuit design since it enables the emulation of 

biological loads. In the system shown in fig. 1, the tasks of to be 

done are: 

To perform a pre-processing of a cell culture image to define 
the areas occupied by cells. Digital Image Processing (DIP) is 
focused on segmentation to discriminate the total area covered 
by cells. 

To incorporate the definition of the electrode area. This is 
important not only from the electrode-solution-cell system 
modeling and characterization point of view; but because the 
electrode sensitivity of the impedance sensor will be dependent 
of its size and working frequency. The electrode-cell overlap 



area will be considered as the main parameter of the electrode-
cell system. 

To deliver information to the electronic system design, 
including data files and an electrical description of the full 
system (electrode-solution-cell) necessary to reproduce 
confident electrical simulations. In our system, it is measured 
the covered area, position and cell number. It generates files in 
Analog Hardware Description Language (AHDL), required in 
functional and electrical simulations (SpectreHDL [14]) for 
system design and validation. 

The work is organized as follows: section II describes the 

program interface. Functions attached to the main menus are briefly 

detailed. Processing image algorithms are explained in section III. 

Electrode definition in the program and the proposed AHDL are 

described in sections IV and V respectively, together with the 

employed model. In section VI, some measurements are scheduled 

and data can be extracted from images are reported. Conclusions are 

highlighted in section VII. 

II. THE INTERFACE

The main functions developed are described from its interface, 

fig. 2. Input images are loaded and displayed in a historical register 

on the left panel: the image panel area. At the center panel area, the 

processed image is displayed. There are four main action modules 

described in the following. 

Fig. 2. Computer tool interface with: center panel, image panel, and the 

four functional panels: processing, electrode, measurements and advanced 
processing. The electrode panel is being displayed at the figure. 

The Processing panel includes functions and algorithms for 

image processing. Their objective is to separate the background area 

from the cells by using segmentation, filtering and morphological 

operations. This process can be done automatically or manually (by 

defining image processing functions and its parameters by the user). 

At the Electrode panel two actions are performed. First, a tool for 

scaling definition of the image size allows expressing a non-

dimensional image in microns units. Second, based on this scale, 

the electrode size is defined. The sensors are considered squared. 

The program will show the resulting array of sensors on the main 

panel. At the Measurement panel, the percent of cell coverage of 

each electrode can be obtained from the electrode-solution-cell 

overlapping area. This is the fill factor (ff) parameter. From the fill 

factor matrix, the parameterized electrical sensor (electrode) models 

are created using Analog Hardware Description Language (AHDL). 

At the Advanced processing panel, users can customize the 
segmentation process. 

III. IMAGE PROCESSING

A. Processing Approach

The main objective of the image processing [16] is to segment

it, dividing into two areas: covered and non-covered (by cells). The 

proposed image processing is based on histogram information. This 

information is employed to define a threshold grey level. Figure 3 

shows this process. When a threshold level is set at histogram, for 

example, the 160 grey levels, the image is easily binarized into two 

parts: with (black) and without (white) cells. However, not all 

images are directly binarized easily and some kind of pre-

processing should be done before. 

 

Two types of processing algorithms were considered: filter and 

morphological. They must to enhance the original images, 

eliminating noise sources, detecting closed areas, smoothing 

images, etc, before binarization. Both are based on convolution 

functions between basic templates (kernel) and digital images. The 

filter algorithms employed are median, mean, maximum, minimum 

and Sobel, while the morphological algorithms included are 

dilation, erosion, opening and closing. For both, erosion and 

dilation, it is used as structural element, a start in which, the pixel 

number at the main diagonal defines its size or length. 

B. Image Catalog

The image histogram changes strongly from one image to

another. The histograms were classified into five categories. For 

each one, the processing function parameters were customized to 

increases the quality of segmentation. The parameter values are 

fixed, but can be modified by the user in manual mode. Figure 4 

shows the corresponding histograms. 

Cat 1: The histogram has an absolute maximum much bigger 
than the rest. 

Cat 2: The histogram has only a main slope. All pixels are near 
zero, and there are only few grey levels. 

Cat 3: The histogram only has a main slope. All pixels are near 
255 level, and, there are few grey levels. 

Cat 4: The image histogram has a non-uniform background. 

Cat 5: The histogram has two well separated peaks. 

(a
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Fig. 3. (a) Original image and the corresponding histogram. (b) Image 

after binarization with the resulting histogram 

Fig. 4. Image histogram catalog 
Cat 1 Cat 3 Cat 4 Cat  5 Cat 2 



Based on this experience, the program has a proposal for image 

processing once it has been classified [16]. If not possible, as in 

images type 4, the manual mode is employed.  In Table 1 are 

summarized the processing actions for each image category, and in 

fig. 5 an example for each category. 

Table 1. Processing actions for each category of image histogram 

Cat Processing actions 

1 1. 1. Binarization plus Sobel

2. 2. B&W inversion for background
3. 3. Add images from points 1 and 2

4. 4. Closing (5) 

5. 5. Opening (3)

2 1. 1. Binarization with threshold 0

2. 2. B&W inversion for background

3. 3. Closing (5)
4. 4. Opening (3)

3 1. 1. Binarization with threshold 254

2. 2. B&W inversion for background
3. 3. Closing (3)

4. 4. Opening (6)

4 Histogram cannot be processed automatically 

5 1. 1. Automatic threshold 254
2. 2. B&W inversion for background

3. 3. Opening (3)

4. 4. Closing (3)

For example, in images Cat 1, are required five steps: 1. 

Binarization plus Sobel. 2. Black&Withe inversion for background. 

3. Add images from points 1 and 2. 4. Closing (5). 5. Opening (3).

 
 

IV. THE SENSOR-ELECTRODE 

Two operations are developed from the electrode panel. First, a 

scale is defined, allowing the real dimensioning. The user can 

evaluate the involved dimensions and set the specific tool 

developed for this purpose. A 100 m scale is set by default as 

input. Secondly, the sensor (squared) size is defined on the menu. 

Only squared shapes were considered for electrodes (Fig. 1) but this 

can be extended to any other shape. The main panel shows the final 

position for electrodes under the cell culture. In this paper, it has 

been considered that optimal electrodes must be sized similar to cell 

dimensions. The impedance sensor in fig. 1 has two microelectrodes 

(e1 and e2). When measuring, both are in contact with saline 

solution medium, and have or not part of its surface covered by 

cells.  To generate the corresponding AHDL models, first it has 

been considered the electrode-solution model described in [5]. 

Figure 6a shows the equivalent circuit. It has four circuit elements: 

double layer capacitance, Cdl, transfer resistance, Rt, Warburg 

impedance, Zw and the spreading resistance, Rs.  When the sensor 

surface (A) it is partially covered an area Ac, this circuit can be 

modified, fig. 6b, creating two branches (covered and not covered 

by cells). The Rgap resistance models the cell-electrode interface 

[12]. The program will generate automatically the AHDL model for 

each electrode considering its fill factor, ff. Reference electrodes 

(e2) are not been considered because of they are common for all 

sensors and its total area is large (with low resistive effects). 

 

V. THE AHDL ELECTRODE MODEL

Based on circuits in fig. 6, it has been developed the AHDL 

description for each bioimpedance sensor. It has been considered 

only the effect of sensing electrode (e1 in fig 1). Considering 

figures 6 (a) and (b), the AHDL code in fig. 7 represents the model 

of an electrode of area A, covered by cell a percent ff, at 

temperature T. Each electrode in figure 6b is described by a HDL 

module in fig. 7. 

module electrode (e1,e2) (A,ff,T) 

node [V,I] e1, e2;

parameter real A=2500e-12 ;

parameter real ff=0.0;

parameter real T=273;

{ 

module electrode_solution(e1,e2) (A,ff,T); 

module electrode_solution_covered(e1,e2) (A,ff,T) 

} 

module electrode_solution(e1,e2) (A,ff,T) 

node [V,I] e1, e2;

parameter real A=2500e-12 ;

parameter real ff=0.0; 

parameter real T=273;

{ 

node [V,I] ew, es;

capacitor_double_layer cdl(e1,es) (A,1-ff,T);   

resistor_transfer Rt(e1,ew) (A,1-ff,T);

impedance_warburg Zw(ew,es) (A,1-ff,T);

resistor_spread Rs(es,e2) (A,1-ff,T);

} 

module electrode_solution_covered(e1,e2) (A,ff,T) 

node [V,I] e1, e2;

parameter real A=2500e-12 ;

parameter real ff=0.0;  

parameter real T=273;

{ 

node [V,I] e1g, ew, es;

resistor_gap Rgap(e1,e1g) (A,ff,T);

capacitor_double_layer cdl(e1g,es) (A,ff,T);   

resistor_transfer Rt(e1g,ew) (A,ff,T);

impedance_warburg Zw(ew,es) (A,ff,T);

resistor_spread Rs(es,e2) (A,ff,T);

} 

Fig. 7.  HDL code for an electrode of area A, partially covered by cells an area Ac. 

Cat 2 Cat 3 Cat 4 Cat 5 

Fig. 5. Original and processed images for the five types of histograms 

considered. 

Fig. 6. Circuit elements in the electrode model for: (a) An electrode of area 

A. (b) An electrode of area A, partially covered by cells an area Ac.

Cat 1 



VI. MEASUREMENTS

Area Measurement can be done by detecting the cell-electrode 

area overlap. For each electrode, this process delivers the fill factor 

(ff) in the range [0,1] representing the percent of electrode area 

covered by cells. These data are expressed in a matrix that can be 

displayed on the main panel. Also, information is stored in a data 

file compatible with other computer tools such as MATLAB. The 

cell number, cell count, at the image is approximated by defining 

the radius of a circular cell as a pattern. Other cell shapes can be 

easily considered. The main motivation to develop this tool is to the 

fast input processing of information from cell culture images. The 

circuit design in Fig. 1 is dependent on load to be sensed, in our 

case the cells, being necessary to adjust the circuit specifications to 

impedance values of electrode-solution-cell system and to select the 

optimum working frequency. The program does a fast generation of 

circuit model from a cell culture image in AHDL useful for 

SpectreHDL mixed-mode simulator. Figure 8 shows an example, 

where each electrode is described with its corresponding area and 

fill factor. In the example, the input image is a cat 5 histogram like. 

The electrode/sensor size chosen is 50x50 m2. The center panel 

image displayed in fig. 8 shows the sensor grid obtained. Each 

square represents an impedance sensor, as illustrates fig. 1. The 

measurement panel shows the fill factor matrix obtained, in which 

each number represents the cell-electrode overlapping area percent 

for a given electrode. Also, considering a radius of 35 m for 

circular cells, 22 cells have been found in the image. Finally, fig. 9 

shows the file where the AHDL description of the electrode array is 

codified. Each line describes an electrode sensor in terms of its 

situation, area and fill factor, for electrical simulations. The area, in 

the last electrodes, considers the border effects derived from 

electrode size selection. 

Fig. 8. Example of the tool interface: measuring area covered by cells and number of 

cells 

VII. CONCLUSIONS

This paper describes a tool for computer aid in cell culture 

image processing useful for bio-impedance measurement systems 

based on microelectrode sensors. The program performs image 

segmentation, focused on cell location, based on threshold 

algorithms. A wide number of cell culture images were analyzed 

and classified including them into the database. The bio-impedance 

sensor-electrode design was specified for optimum sizing on the 

basis of electrode-cells area overlap. Resulting data from image 

processing and electrode sizing allows the automatic description of 

sensor-cell culture system in AHDL format, useful for mixed-mode 

electrical simulations. Electrical simulation results obtained from 

the generated AHDL models will be included at the final paper 

version. 
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Fig. 9. SpectreHDL file for the electrode matrix: Area (2500 m2) and fill factor 

(0.52 for sensor in position (0,0)) 

module electrode_2D(e1,e2) 

node [V,I] e1[15], e2[15] 

{ 

electrode elec_1_1(e1[1],e2[1])(2500,0.52,T); 

electrode elec_1_2(e1[1],e2[2])(2500,1.00,T); 

electrode elec_1_3(e1[1],e2[2])(2500,0.90,T); 

   ………. 

electrode elec_14_13(e1[14],e2[13])(350,0.24,T): 

electrode elec_14_14(e1[14],e2[14])(49,0.94,T); 

} 


