
P systems with symport/antiport rules: When do the

surroundings matter?

David Orellana-Mart́ına, Miguel Á. Mart́ınez-del-Amora, Luis
Valencia-Cabreraa, Bosheng Songb, Linqiang Panb,c,

Mario J. Pérez-Jiméneza

aResearch Group on Natural Computing,
Department of Computer Science and Artificial Intelligence,

Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012, Sevilla, Spain
bKey Laboratory of Image Information Processing and Intelligent Control of Education

Ministry of China, School of Automation, Huazhong University of Science and
Technology, Wuhan, Hubei, 430074, China

cSchool of Electric and Information Engineering,
Zhengzhou University of Light Industry, Zhengzhou 450002, China

Abstract

Cell-like P systems where communication between the regions are carried out
by rules of type symport/antiport are considered. These systems compute
by changing the places of objects with respect to the membranes, and not
by changing the objects themselves. The environment plays an active role
in the sense that it not only can receive objects from the system, but also
send objects into it. There is an alphabet associated with the environment
whose elements appear in an arbitrary large number of copies at the initial
configuration. This property seems too strong from a complexity view, but
it has been widely exploited in the design of efficient solutions to compu-
tationally hard problems when some mechanisms (inspired by mitosis and
membrane fission) allowing to construct an exponential workspace in linear
time, are considered. In this paper, complexity aspects of P systems with
symport/antiport rules and membrane division are considered when the set
associated with the environment is the emptyset. It is shown that the role of

Email addresses: dorellana@us.es (David Orellana-Mart́ın), mdelamor@us.es
(Miguel Á. Mart́ınez-del-Amor), lvalencia@us.es (Luis Valencia-Cabrera),
boshengsong@163.com (Bosheng Song), lqpan@mail.hust.edu.cn (Linqiang Pan),
marper@us.es (Mario J. Pérez-Jiménez)

Preprint submitted to Theoretical Computer Science April 30, 2018

the environment is irrelevant for such kind of P systems, in contrast with the
well known results concerning to its relevance when membrane separation is
used instead of membrane division.

Key words: Membrane Computing, P System with Symport/Antiport,
Membrane Division, Computational Complexity.

1. Introduction

Membrane computing is a flexible and versatile branch of natural com-
puting, which arises as an abstraction of the compartmentalized structure of
living cells, and the way biochemical substances are processed in (or moved
between) membrane bounded regions [15]. Two main classes of systems have
been investigated: a hierarchical (cell-like) arrangement of membranes, in-
spired from the structure of the cell [15] and a network of cells (placed in
the nodes of a directed graph), inspired from the cell-interconnection in tis-
sues [9] or inspired from the way that neurons communicate with each other
by means of short electrical impulses (spikes), emitted at precise moments of
time [4]. In this computing paradigm, parallel and distributed computational
models, called P systems, are considered. Basic concepts and a comprehen-
sive information can be found in [17] and [19].

Networks of (elementary) membranes (linked by “communication chan-
nels”) which compute by communication only, using symport/antiport rules,
were first considered in [13]. These networks are formally structured by
means of directed graphs whose nodes are abstractions of membranes (or
cells). They are inspired by the biological phenomenon of trans-membrane
transport of couples of chemical substances, in the same or in opposite direc-
tions. The cell-like version is structured by means of rooted trees and they
were introduced in [14]. It is worth noting that in membrane systems with
symport/antiport rules, the environment plays an active role: it not only
receives objects from the system, but can also send objects inside it.

These basic systems are non-efficient in the sense that only problems
in class P can be solved in polynomial time by means of families of those
systems. In order to provide efficient solutions to computationally hard prob-
lems, some mechanisms able to produce an exponential workspace, expressed
in terms of the number of membranes/cells and objects, are needed.

In eukaryotic cells there are two relevant processes: mitosis andmembrane
fission. The first one is a process of nuclear division in eukaryotic cells

2

during which one cell gives place to two genetically identical daughter cells.
Membrane fission occurs when a membrane gives place to two separated
membranes where the initial chemical substances are distributed. These
processes have been a source of inspiration to incorporate new ingredients in
membrane computing in order to be able to produce exponential workspace in
polynomial time. In this context, P systems with membrane division [16] and
P systems with membrane separation [10] were introduced in the framework
of cell-like systems. These concepts were also introduced in the framework
of tissue P systems in [18] and [11].

The paper is structured as follows. First, some preliminaries needed for
the complete understanding of the work are given. Section 3 is devoted
to define the framework of cell-like P systems with symport/antiport rules
and membrane division or membrane separation. Next, recognizer tissue P
systems are briefly described and computational complexity classes in these
system are introduced. In Section 4, the limitations on the efficiency of
cell-like P systems with membrane division or membrane separation which
use communication rules of length one, that is, membrane systems without
cooperation, are studied. Finally, some conclusions and open problems are
presented.

2. Preliminaries

In order to make self-contained this paper, some basic concepts and no-
tations are introduced in this Section.

2.1. Alphabet, multisets

An alphabet Γ is a non–empty set whose elements are called symbols. A
string over Γ is an ordered finite sequence of symbols, that is, a mapping
from a natural number n onto Γ. The number n is called the length of the
string and it is denoted by |u|. The empty string (with length 0) will be
denoted by λ. The set of all strings over an alphabet Γ is denoted by Γ∗ and
subsets of Γ∗ are referred to as languages over Γ. Given an (ordered) alphabet
Σ = {a1, . . . , ar} ⊆ Γ, the Parikh mapping ΨΣ is a mapping whose domain
is Γ∗ defined as follows: ΨΣ(u) = (|u|a1 , . . . , |u|ar), where |u|ai denotes the
number of ocurrences of symbol ai in string u.

A multiset m over a set A is a pair (A, f) where f : A → N is a mapping.
The set supp(m) = {x ∈ A | f(x) > 0} is called the support of multiset
m = (A, f). A multiset is finite if its support is a finite set. If m = (A, f) is

3

a finite multiset over A and supp(m) = {a1, . . . , ak} then the cardinal of m,
denoted by |m|, is ∑k

i=1 f(ai). If m1 = (A, f1), m2 = (A, f2) are multisets
over A then the union of m1 and m2, denoted by m1 + m2, is the multiset
(A, g) defined as follows: g(a) = f1(a) + f2(a), for each a ∈ A.

For any sets A and B the relative complement A \B of B in A is defined
as follows: A \ B = {x ∈ A | x /∈ B}. For any set A we denote by |A| the
cardinality (number of elements) of A, as usual.

2.2. Graphs and trees

Let us recall some notions concerning to graph theory which are used
throughout the paper (see [1] for more details). An undirected graph is an
ordered pair (V,E) where V is a set whose elements are called nodes or
vertices and E ⊆ {{x, y} | x ∈ V, y ∈ V, x �= y} whose elements are called
edges. A directed graph is an ordered pair (V,E) where V is a set whose
elements are called nodes or vertices and E ⊆ {(x, y) | x ∈ V, y ∈ V } whose
elements are called arcs. A path of length k ≥ 1 from a node u to a node v in
a graph (V,E) is a finite sequence (x0, x1, . . . , xk) of nodes such that x0 = u,
xk = v and (xi, xi+1) ∈ E (in the case of a directed graph) or {xi, xi+1} ∈ E
(in the case of an undirected graph), for 0 ≤ i ≤ k−1 . If k ≥ 2 and x0 = xk

then we say that the path is a cycle of the graph. A graph with no cycle
is said to be acyclic. An undirected graph is connected if there exist paths
between every pair of nodes.

A rooted tree is a connected, acyclic, undirected graph with a distin-
guished node called the root of the tree. Given a node x in a rooted tree with
root r, being x �= r, any node y on the unique path from x to r is called an
ancestor of x. If y is an ancestor of x, then x is a descendant of y. If the last
edge on the (unique) path from r to x is {y, x}, then we say that y is the
parent of node x and x is a child of node y. The root is the only node in the
tree with no parent. A node with no children is called a leaf.

2.3. Decision problems

A decision problem X is an ordered pair (IX , θX), where IX is a language
over a finite alphabet and θX is a total Boolean function over IX . The
elements of IX are called instances of X. Each decision problem X has an
associated language LX defined as follows: LX = {u ∈ IX | θX(u) = 1}.
Conversely, each language L over an alphabet Γ has an associated decision
problem XL = (IXL

, θXL
) defined as follows: IXL

= Γ∗ and θXL
(u) = 1, for

each u ∈ L, and θXL
(u) = 0, for each u /∈ L. According with these definitions,

4

for each decision problem X we have XLX
= X and for each language L we

have LXL
= L.

Let us recall that given a language L over an alphabet Γ, a deterministic
Turing machine M recognizes the language L if and only if for each string
u ∈ Γ∗ the following holds: u ∈ L if and only if M(u) answers yes. Then,
we say that a deterministic Turing machine M solves a decision problem X
if and only if M recognizes the language LX associated with X.

2.4. On efficiency of computing models
Let us recall that each computing model provides a mathematical defini-

tion of the informal idea of solving abstract problems by means of a mechan-
ical procedure (algorithm). A computing model which is equivalent in power
to Turing machines is called universal.

An abstract problem is said to be tractable if it can be solved by a de-
terministic Turing machine working in polynomial time (the upper bound
of computational resources is polynomial). The complexity class of deci-
sion tractable problems is denoted by P. An abstract problem is said to be
intractable if it cannot be solved by a deterministic Turing machine work-
ing in polynomial time (the lower bound of the computational resources is
exponential).

A computing model with the ability to provide polynomial-time solutions
to intractable problems is called an efficient computing model. In a non
efficient computing model, only problems in class P can be solved in polyno-
mial time. It is widely believed that P �= NP and so NP-complete problems
(the hardest problems in class NP) are considered as presumably intractable
problems. A computing model with the ability to provide polynomial-time
solutions to NP-complete problems is called a presumably efficient comput-
ing model.

Given two computing models M1 and M2 we say that that M1 is a sub-
model of M2, denoted by M1 ⊆ M2, if each solution of a problem in M1 is also
a solution in M2, that is, M2 is an extension of M1 in the sense that M2 can
be obtained from M1 by adding some syntactic or semantic ingredients. If
M1 is a non-efficient computing model and M2 is a presumably efficient one
such that M1 ⊆ M2, then we can say that passing from M1 to M2 amounts
to passing from tractability to presumably intractability. In some sense, it
gives us a novel tool to tackle the P versus NP problem:

– In order to show that P = NP, it is enough to find a polynomial-
time solution to one NP-complete problem in M2 and translate it to

5

a polynomial-time solution in M1, that is, the ingredients added to
obtain M2 from M1 do not play a relevant role in that solution.

– In order to show that P �= NP, it is enough to find one NP-complete
problem that cannot be solved efficiently in M1, that is, that the ingre-
dients added to obtainM2 fromM1 are crucial to obtain the presumably
efficiency.

M1 M2

Non
efficiency

Presumably
efficiency

MMM11 MMM

ccyyyy efefee fifi

Fro
ntie

rs

In what follows, we assume the reader is already familiar with the basic
notions and terminology of P systems. For more details, see [17].

3. P systems with symport/antiport rules

Networks of membranes which compute by communication only, using
symport/antiport rules, were considered in [13]. These networks aim to ab-
stract the biological phenomenon of trans-membrane transport of couples of
chemical substances, in the same or in opposite directions. Such rules are
used both for communication with the environment and for direct communi-
cation between different membranes.

Definition 3.1. A basic P system with symport/antiport rules of degree q ≥
1 is a tuple (Γ, E , μ,M1, . . . ,Mq,R1, · · · ,Rq, iout), where:

– Γ is a finite alphabet and E ⊆ Γ.

– μ is a rooted tree with q nodes which are bijectively labelled with 1, . . . , q.

– Mi, 1 ≤ i ≤ q, are multisets over Γ.

– Ri, 1 ≤ i ≤ q, are finite sets of rules over Γ of the following form:

� (u, out) or (u, in), being u a non-empty multiset over Γ (symport
rules).

� (u, out; v, in), being u, v non-empty multisets over Γ (antiport rules).

6

– iout ∈ {0, 1, . . . , q}.

A basic P system with symport/antiport rules of degree q

(Γ, E , μ,M1, . . . ,Mq,R1, · · · ,Rq, iout)

can be viewed as a set of q membranes, labelled by 1, . . . , q, arranged in a
hierarchical structure given by a rooted tree μ whose root (called the skin
membrane) is labelled by 1, such that: (a) for each i, 1 ≤ i ≤ q,Mi represents
the multiset of objects initially placed in membrane labelled by i, and Ri is
a finite set of symport/antiport rules associated with membrane i; (b) E is
the set of objects initially located in the environment of the system, all of
them available in an arbitrary number of copies; and (c) iout represents a
distinguished zone which will encode the output of the system. We use the
term zone i (0 ≤ i ≤ q) to refer to membrane i in the case 1 ≤ i ≤ q
and to refer to the environment in the case i = 0. In the rooted tree μ,
the skin membrane is the only membrane in μ with no parent. However, by
convention we consider the environment (labelled by 0) as the parent of the
skin membrane The length of a symport rule (u, out) or (u, in) is |u|. The
length of an antiport rule (u, out; v, in) is |u|+ |v|.

In the framework of P systems with symport/antiport rules, some mecha-
nisms allowing to construct an exponential workspace (expressed in terms of
the number of objects and the number of membranes) in polynomial time.
Next, two mechanisms (membrane division and membrane separation) in-
spired by mitosis and membrane fission, respectively, are introduced. Mitosis
is a process in which an eukaryotic cell division produces two daughter cells
from a single parent cell that are genetically identical to one another and to
the original parent cell. Before a cell enters mitosis, it undergoes a period
of growth where its genetical components are replicated in the new created
cells. Membrane fission is a process in which “one membrane-enclosed com-
partment splits into two separate membrane-enclosed compartments”. The
contents of the initial membrane is distributed between the two new mem-
branes.

Next, an abstraction of these operations is introduced in the framework
of P systems with symport/antiport rules.

Definition 3.2. A P system with symport/antiport rules and membrane di-
vision of degree q ≥ 1 is a tuple (Γ, E , μ,M1, . . . ,Mq,R1, · · · ,Rq, iout), where:

7

– (Γ, E , μ,M1, . . . ,Mq,R1, · · · ,Rq, iout) is a basic P system with sym-
port/antiport rules.

– There exists i ∈ {2, . . . , q} such that i �= iout, i is the label of a leaf of
μ, and Ri contains at least one rule of the form [a]i → [b]i[c]i, being
a, b, c ∈ Γ (division rule).

Definition 3.3. A P system with symport/antiport rules and membrane sepa-
ration of degree q ≥ 1 is a tuple (Γ,Γ0,Γ1, E , μ,M1, . . . ,Mq,R1, · · · ,Rq, iout),
where:

– (Γ, E , μ,M1, . . . ,Mq,R1, · · · ,Rq, iout) is a basic P system with sym-
port/antiport rules.

– {Γ0,Γ1} is a partition of Γ, that is, Γ0,Γ1 �= ∅, Γ0∩Γ1 = ∅, Γ = Γ0∪Γ1.

– There exists i ∈ {2, . . . , q} such that i �= iout, i is the label of a leaf of
μ, and Ri contains at least one rule of the form [a]i → [Γ0]i[Γ1]i, being
a ∈ Γ (separation rule).

Definition 3.4. A P system with symport/antiport rules and membrane di-
vision or membrane separation such that the set E associated with the envi-
ronment is the empty set, is called a P system without environment.

Usually, the set E associated with the environment will be omited in the
tuple describing such P system without environment.

Next, the semantics of P systems with symport/antiport rules and mem-
brane division or membrane separation, is introduced. A configuration at an
instant t of such a P system is described by all multisets of objects over Γ
associated with all the membranes present in the system at instant t, and the
multiset of objects over Γ\E associated with the environment at that moment.
Recall that there are infinitely many copies of objects from E in the envi-
ronment, and hence this set is not properly changed along the computation.
The initial configuration of a P system with symport/antiport rules of degree
q whose initial multisets are M1, · · · ,Mq is the tuple (M1, · · · ,Mq; ∅).

A symport rule of the form (u, out) ∈ Ri is applicable to a configuration Ct
at an instant t if a membrane labelled by i is in Ct and multiset u is contained
in such membrane. When applying a rule (u, out) ∈ Ri to such membrane
i, the objects specified by u are sent to the parent of such membrane. A
symport rule of the form (u, in) ∈ Ri is applicable to a configuration Ct at
an instant t if a membrane labelled by i is in Ct and multiset u is contained
in its parent. When applying a rule (u, in) ∈ Ri to such membrane i, the

8

objects specified by u enters the region defined by such membrane from its
parent.

An antiport rule (u, out; v, in) ∈ Ri is applicable to a configuration Ct at
an instant t if a membrane labelled by i is in Ct, multiset u is contained in
such membrane, and multiset v is contained in its parent. When applying a
rule (u, out; v, in) ∈ Ri to such membrane i, the objects specified by u are
sent out of such membrane into its parent, at the same time bringing the
objects specified by v into such membrane.

A division rule [a]i → [b]i[c]i ∈ Ri is applicable to a configuration Ct at
an instant t if a membrane labelled by i is in Ct and object a is contained
in such membrane. When applying a division rule [a]i → [b]i[c]i to such
membrane i, under the influence of object a, the membrane is divided into
two membranes with label i; in the first copy, object a is replaced by object
b, in the second one, object a is replaced by object c; all the other objects
residing in membrane i are replicated and copies of them are placed in the
two new membranes. Let us recall that the skin membrane and the output
membrane (if iout ∈ {1, . . . , q}) cannot be divided.

A separation rule [a]i → [Γ0]i[Γ1]i ∈ Ri is applicable to a configuration Ct
at an instant t, if a membrane labelled by i is in Ct and object a is contained
in such membrane. When applying a separation rule [a]i → [Γ0]i [Γ1]i ∈ Ri to
such membrane i, under the influence of object a, the membrane is separated
into two membranes with the same label; at the same time, object a is
consumed; the objects from Γ0 are placed in the first membrane, while those
from Γ1 are placed in the second membrane.

In this way, by means of the application of division or separation rules,
several membranes with the same label i can be present in the new membrane
structure μ′ of the system: for each new membrane labelled by i we have an
arc (p(i), i) in μ′ as result from the application of a division rule [a]i → [b]i[c]i
or a membrane separation rule [a]i → [Γ0]i[Γ1]i.

The rules of a P system with symport/antiport rules and membrane divi-
sion or membrane separation, are applied in a non-deterministic maximally
parallel manner (at each step a multiset of rules which is maximal, that is, no
further applicable rule can be added, is applied), with the following impor-
tant remark: if a membrane divides/separates, then the division/separation
rule is the only one which is applied for that membrane at that step, that is,
the objects inside that membrane do not evolve by means of communication
rules. In other words, before division/separation a membrane interrupts all
its communication channels with the other membranes and with the environ-

9

ment. The new membranes resulting from division/separation can interact
with other membranes or with the environment only from the next step.

Let Π be a P system with symport/antiport rules and membrane division
or membrane separation. We say that configuration Ct yields configuration
Ct+1 in one transition step, denoted by Ct ⇒Π Ct+1, if we can pass from Ct to
Ct+1 by applying the rules from R1∪· · ·∪Rq following the previous remarks.
A computation of Π is a (finite or infinite) sequence of configurations such
that: the first term of the sequence is the initial configuration of the system;
for each n ≥ 2, the n-th term of the sequence is obtained from the (n − 1)-
th term in one transition step; and if the sequence is finite (called halting
computation) then the last term of the sequence is a halting configuration,
that is, a configuration where no rule of the system is applicable to it. If
C = (C0, C1, . . . Cr), with r ∈ N, is a halting computation of Π, then r is called
the length of C, denoted by |C|. For each i, 1 ≤ i ≤ q, and t, 0 ≤ t ≤ r, Ct(i)
denotes the multiset of objects over Γ contained in all membranes labelled
by i at configuration Ct. We denote by Ct(0) the multiset of objects over Γ\E
contained in the environment at configuration Ct. Finally, we denote by C∗

t

the multiset Ct(0) + Ct(1) + . . .+ Ct(q).
All computations start from an initial configuration and proceed as stated

above; only halting computations give a result, which is encoded by the ob-
jects present in the output zone iout associated with the halting configuration.

3.1. Recognizer membrane systems

Throughout this paper, the term membrane system is used to refer to
a generic P system with symport/antiport rules and membrane division or
membrane separation (with or without environment). These systems can
be described by means a tuple (Γ,Γ0,Γ1, E , μ,M1, . . . ,Mq,R1, · · · ,Rq, iout)
where Γ0 = Γ1 = ∅ in the case of P systems with membrane division and
E = ∅ in the case of P systems without environment.

Solving a decision problem is equivalent to recognize the language asso-
ciated with it. In this Section, recognizer membrane systems are introduced
following [21]. In a previous paper [20] these systems were called accepting
P systems.

Definition 3.5. A recognizer membrane system of degree q ≥ 1 is a tuple
(Γ,Γ0,Γ1, E ,Σ, μ,M1, . . . ,Mq,R1, · · · ,Rq, iin, iout), where:

– (Γ,Γ0,Γ1, E , μ,M1, . . . ,Mq,R1, · · · ,Rq, iout) is a membrane system of
degree q, as considered above.

10

– The working alphabet Γ has two distinguished objects yes and no, at
least one copy of them present in some initial multisets M1, . . . , Mq,
but none of them is present in E .

– Σ is an (input) alphabet strictly contained in Γ such that E ∩ Σ = ∅.
– Mi, 1 ≤ i ≤ q, are multises over Γ \ Σ.
– iin ∈ {1, . . . , q} is the input membrane.

– iout = 0, that is, the output zone iout is the environment.

– All computations halt.

– If C is a computation of Π, then either object yes or object no (but not
both) must have been released into the output zone (the environment),
and only at the last step of the computation.

Given a multiset m over the input alphabet Σ, the computation of the recog-
nizer membrane system Π with input multisetm starts from the configuration
of the form (M1, . . . ,Miin +m, . . . ,Mq; ∅), that is, the input multiset m has
been added to the initial contents of the input membrane iin. Thus, in this
kind of P systems there exists an initial configuration associated with each
multiset over the input alphabet Σ. We denote it by Π +m.

Given a recognizer membrane system Π and a halting computation C =
(C0, C1, . . . , Cr) of, we define the result of C as follows:

Output(C) =

⎧⎪⎪⎨
⎪⎪⎩

yes, if Ψ{yes,no}(Mr,iout) = (1, 0) ∧
Ψ{yes,no}(Mt,iout) = (0, 0) for t = 0, . . . , r − 1

no, if Ψ{yes,no}(Mr,iout) = (0, 1) ∧
Ψ{yes,no}(Mt,iout) = (0, 0) for t = 0, . . . , r − 1

where Ψ is the Parikh mapping, andMt,iout is the multiset over Γ\E associated
with the environment at configuration Ct. In particular, Mr,iout is the multiset
over Γ \ E associated with the environment at the halting configuration Cr.
We say that a computation C is an accepting computation (resp., rejecting
computation) if Output(C) = yes (resp., Output(C) = no), that is, if object
yes (resp., object no) appears in the environment associated with the halting
configuration of C, and neither object yes nor no appears in the environment
associated with any non–halting configuration of C.

11

If a recognizer P system has a symport rule of the type (i, λ/u, 0) then
supp(u) ∩ (Γ \ E) �= ∅, that is, multiset u must contains some object from
Γ \ E because on the contrary, all computations of Π would be not halting.

For each natural number k ≥ 1, CDC(k) (resp., CSC(k)) denotes the
class of recognizer P systems with membrane division (resp., membrane sepa-
ration) and with communication rules of length at most k. The corresponding
classes associated with P systems without environment will be denoted by

ĈDC(k) and ĈSC(k), respectively.
Next, we define what solving a decision problem in a uniform and effi-

cient way by recognizer membrane systems, means (see [20] for more details).
These systems have a finite description, so in order to solve a decision prob-
lem, a numerable family of membrane systems will be needed.

Definition 3.6. A decision problem X = (IX , θX) is solvable in a uniform
way and polynomial time by a family Π = {Π(n) | n ∈ N} of recognizer
membrane if the following holds:

– The family Π is polynomially uniform by Turing machines.

– There exists a pair (cod, s) of polynomial-time computable functions
over IX such that:

� for each instance u ∈ IX , s(u) is a natural number and cod(u) is
an input multiset of the system Π(s(u));

� for each n ∈ N, s−1(n) is a finite set;

� the family Π is polynomially bounded with regard to (X, cod, s);

� the family Π is sound with regard to (X, cod, s);

� the family Π is complete with regard to (X, cod, s).

From the soundness and completeness conditions above we deduce that for
each instance u ∈ IX , the system Π(s(u)) + cod(u) is confluent, in the fol-
lowing sense: every computation always gives the same answer.

Let R be a class of recognizer P systems with symport/antiport rules.
We denote by PMCR the set of all decision problems which can be solved
in a uniform way and polynomial time by means of families of systems from
R. The class PMCR is closed under complement and polynomial–time re-
ductions (see [20] for more details).

12

4. Recognizer membrane systems from CDC(k): Technical results

In this Section, an upper bound of the number of objects handled along
any computation of each system from CDC(k), k ≥ 2, corresponding to
a family solving a decision problem in a polynomial and uniform way, is
provided.

Lemma 1. Let Π = (Γ, E ,Σ,M1, . . . ,Mq,R1, · · · ,Rq, iin, iout) be a recog-
nizer P systems with symport/antiport rules with length at most k ≥ 2, and
without membrane division/separation. Let M = |M1 + . . . + Mq| and let
C = (C0, C1, . . . , Cr) be a computation of Π. Then, |C∗

0 | = M , and for each
t, 0 ≤ t < r, we have |C∗

t+1| ≤ M · kt+1

Proof. First, let us note that |C∗
0 | = |C0(0) + C0(1) + . . . + C0(q)| = M . In

order to compute C∗
t+1 = Ct+1(0) + Ct+1(1) + . . . + Ct+1(q), for 0 ≤ t < r, let

us note that only the skin membrane can send and receive objects from the
environment. Then, on one hand

Ct+1(0) + Ct+1(2) + Ct+1(3) + . . .+ Ct+1(q) ⊆ Ct(0) + Ct(1) + . . .+ Ct(q)
On the other hand, at step t+1, membrane 1 can receive objects from Ct(0)
and objects from E by means of rules in the skin membrane of the types:

– (a ei1 . . . eis , in) with a ∈ Ct(0) and ei1 , . . . , eis ∈ E , s ≤ k − 1.

– (a, out; ei1 . . . eis , in) with a ∈ Ct(1) and ei1 , . . . , eis ∈ E , s ≤ k − 1.

Thus, |Ct+1(1)| ≤ |Ct(0) + Ct(1)| · (k − 1). So, for each t, 0 ≤ t < r, we have

|C∗
t+1| = |Ct+1(0) + Ct+1(2) + Ct+1(3) + . . .+ Ct+1(q)|+ |Ct+1(1)|

≤ |Ct(0) + Ct(1) + . . .+ Ct(q)|+ |Ct(0) + Ct(1)| · (k − 1)
≤ |C∗

t |+ |C∗
t | · (k − 1) ≤ |C∗

t | · k
Finally, it is easy to show that |C∗

t+1| ≤ M · kt+1, for 0 ≤ t < r, by induction
on t.

�

Proposition 1. Let Π = {Π(n) | n ∈ N} a family of systems from CDC(k),
k ≥ 2, solving a decision problem X = (IX , θX) in a uniform way and polyno-
mial time. Let (cod, s) be a polynomial encoding associated with that solution.
Then, there exists a polynomial function f(n) such that for each instance
u ∈ IX we have:

13

(a) 2f(|u|) is an upper bound of the number of objects in all membranes of
the system Π(s(u)) + cod(u) along any computation.

(b) 2f(|u|) is an upper bound of the number of objects from E which are
moved from the environment to all membranes of the system Π(s(u))+
cod(u) along any computation.

Proof. Let p(n) be a polynomial function such that for each instance u ∈
IX every computation of Π(s(u)) + cod(u) is a halting computation and it
performs at most p(|u|) computation steps. Let us denote

Π(s(u)) + cod(u) = (Γ, E ,Σ,M1, . . . ,Mq,R1, . . . ,Rq, iin, iout)

Let M = |M1 + . . . + Mq| and C = (C0, C1, . . . , Cr), 0 ≤ r ≤ p(|u|), be a
computation of Π.
(a) If only communication rules at m consecutive transition steps are applied,
then from Lemma 1 we deduce that |C∗

0 | = M and |C∗
t+1| ≤ M · kt+1, for each

t, 0 ≤ t < r. Thus, if we apply in a consecutive way the maximum possible
number of communication rules (without applying any division rules) to the
system Π(s(u)) + cod(u), in any instant of any computation of the system,
M · kp(|u|) is an upper bound of the number of objects in the whole system.

Now, let us consider the effect of applying in a consecutive way the max-
imum possible number of division rules (without applying any communica-
tion rules) to the system Π(s(u)) + cod(u) when the initial configuration has
M · kp(|u|) objects. After that, an upper bound of the number of objects in
the whole system by any computation is M · kp(|u|) · 2p(|u|) · p(|u|). Then, we
consider a polynomial function f(n) such that f(|u|) ≥ log(M)+ p(|u|) · (1+
log k) + log(p(|u|)), for each instance u ∈ IX . The polynomial function f(n)
fulfills the property required.

Finally, (b) follows from (a).
�

5. Simulating the environment in systems from ĈDC(k)

In this Section, the meaning of efficient simulations in the framework of
recognizer P systems with symport/antiport rules is defined and it is shown
that any system Π(n) from CDC(k), k ≥ 1, belonging to a family solving
a decision problem in a unifor way and polynomial time, can be efficiently

simulated by a system Π′(n) from ĈDC(k).

14

Definition 5.1. Let Π and Π′ be recognizer membrane systems. We say that
Π′ simulates Π in an efficient way if the following holds:

– Π′ can be constructed from Π by a deterministic Turing machine work-
ing in polynomial time.

– There exists an injective function, F, from the set Comp(Π) of com-
putations of Π onto the set Comp(Π′) of computations of Π′ such that:

� There exists a deterministic Turing machine that constructs com-
putation F(C) from computation C in polynomial time.

� A computation C ∈ Comp(Π) is an accepting computation if and
only if F(C) ∈ Comp(Π′) is an accepting one.

� There exists a polynomial function p(n) such that for each com-
putation C ∈ Comp(Π) we have |F(C)| ≤ p(|C|).

In what follows throghout this section, let Π = {Π(n) | n ∈ N} a family
of recognizer P systems with symport/antiport rules and membrane division
solving a decision problem X in a uniform way and polynomial time. From
Proposition 1 we deduce that there exists a polynomial function f(n) such
that for each instance u ∈ IX , 2

f(|u|) is an upper bound of the number of
objects from E which are moved from the environment to all membranes of
the system by any computation of Π(s(u)) + cod(u).

For each n ∈ N, let Π(n) = (Γ, E ,Σ, μ,M1, . . . ,Mq,R1, . . . ,Rq, iin, iout).
For the sake of simplicity we denote f instead of f(n). Let us consider the
recognizer P system with symport/antiport rules of degree q1 = 1 + q · (f +
2) + |E|, with membrane division but without environment

Π′(n) = (Γ′,Σ′, μ′,M′
0,M′

1, . . . ,M′
q1
,R′

0,R′
1, . . . ,R′

q1
, i′in, i

′
out)

defined as follows:

– Γ′ = Γ ∪ {αi : 0 ≤ i ≤ f − 1} and Σ′ = Σ.

– μ′ is a rooted tree with q1 = 1 + q · (f + 2) + |E| nodes (membranes):

� A distinguished membrane labelled by 0 that is the root of μ′.

� For each i, 1 ≤ i ≤ q, membranes labelled by i, (i, 0), (i, 1), . . . , (i, f),

� A membrane labelled by lb, for each b ∈ E .

15

� The root of μ′, membrane 0, is the parent of the root of μ and the
parent of membrane lb, for each b ∈ E .

� For each i, 1 ≤ i ≤ q, membrane i is the parent of membrane
(i, f) and membrane (i, j) is the parent of membrane (i, j−1), for
1 ≤ j ≤ f .

– Initial multisets: M′
0 = ∅, M′

lb
= {α0}, for each b ∈ E , and for each i,

1 ≤ i ≤ q, M′
(i,0) = Mi and M′

i = M′
(i,j) = ∅, for 1 ≤ j ≤ f .

– Set of rules: R′
0 = ∅, R′

i = Ri for 1 ≤ i ≤ q, and

R′
(i,j) = {(a, out;λ, in) : a ∈ Γ}, for 1 ≤ i ≤ q ∧ 0 ≤ j ≤ f

R′
lb

= {[αj]lb → [αj+1]lb [αj+1]lb : 0 ≤ j ≤ f − 2} ∪
{[αf−1]lb → [b]lb [b]lb , (lb, out;λ, in)}, for each b ∈ E

– i′in = (iin, 0), and i′out = 0.

Let us notice that Π′(n) can be considered as an extension of Π(n) without
environment, in the following sense:

� Γ ⊆ Γ′, Σ ⊆ Σ′, E = ∅ and μ is a subtree of μ′.

� Each membrane in Π(n) is also a membrane in Π′(n) and there is a
distinguished membrane in Π′(n) labelled by 0 which plays the role of
environment of Π(n).

� Each rule in Π(n) is also a rule in Π′(n).

Next, we analyze the structure of the computations of system Π′(n) and we
compare them with the computations of Π(n).

Lemma 2. Let C ′ = (C ′
0, C ′

1, . . .) be a computation of Π′(n). Then,

(a) For each t, 0 ≤ t ≤ f :

– C ′
t(i) = ∅, for 0 ≤ i ≤ q.

– For each i, j, 1 ≤ i ≤ q and 0 ≤ j ≤ f , we have:

C′
t(i, j) =

{ Mi, if j = t
∅, if j �= t

16

– For each b ∈ E there exist 2t membranes labelled by lb whose parent
is membrane 0 and their content is:

C′
t(lb) =

{ {αt}, if 0 ≤ t ≤ f − 1
{b}, if t = f

(b) For 1 ≤ i ≤ q, 0 ≤ j ≤ f , we have C ′
f+1(i) = Mi = C0(i) and

C ′
f+1(i, j) = ∅. Moreover, C ′

f+1(0) = b2
f

1 . . . b2
f

α , where E = {b1, . . . , bα},
and for each b ∈ E there exist 2f membranes labelled by lb whose parent
is membrane 0 and their content is empty.

Proof. Let us show (a) by induction on t. The result holds for t = 0
according to the initial configuration C′

0 of system Π′(n). Only the following
rules are applicable to configuration C ′

0:

(1) [α0]lb → [α1]lb [α1]lb , for each b ∈ E .
(2) (a, out;λ, in) ∈ R(i,0), for each a ∈ supp(Mi).

Thus, C ′
1(0) = ∅ and for each i, 1 ≤ i ≤ q, we have C ′

1(i, 1) = Mi and
C ′
1(i) = C ′

1(i, 0) = C ′
1(i, 2) = C ′

1(i, 3) = . . . = C ′
1(i, f) = ∅. Moreover, for each

b ∈ E , there are two membranes labelled by lb whose parent is membrane 0
and their content is {α1}. Hence, the result holds for t = 1.

By induction hypothesis, let t be such that 1 ≤ t < f and let us suppose
the result holds for t. Then, at configuration C ′

t only the following rules are
applicable:

(1) If t ≤ f − 2, the rules [αt]lb → [αt+1]lb [αt+1]lb , for each b ∈ E .
(2) If t = f − 1, the rules [αt]lb → [b]lb [b]lb , for each b ∈ E .
(3) (a, out;λ, in) ∈ R′

(i,t), for each a ∈ supp(Mi).

By applying the rules of types (1) or (2) at configuration C ′
t, we deduce that

there are 2t+1 membranes labelled by lb in C ′
t+1, for each b ∈ E , whose parent

is membrane 0 and their content is {αt+1}, if t ≤ f − 2, or {b}, if t = f − 1.
By applying the rules of type (3) at configuration C ′

t, we deduce that

C ′
t+1(i, j) =

{ Mi, if j = t+ 1
∅, if 0 ≤ j ≤ f ∧ j �= f + 1

17

Bearing in mind that no other rule of system Π′(n) is applicable, we deduce
that C ′

t+1(i) = ∅, for 0 ≤ i ≤ q and the result holds for t+ 1.
In order to prove (b), let us note that from (a), the configuration C′

f

is the following: C ′
f (0) = C ′

f (i) = C ′
f (i, 0) = . . . = C ′

f (i, f − 1) = ∅ and

C′
f (i, f) = Mi, for 1 ≤ i ≤ q. Besides, for each b ∈ E , there exist 2f

membranes labelled by lb whose parent is membrane 0 and their content is
{b}.

At configuration C ′
f only the following rules are applicables:

(1) (a, out;λ, in) ∈ R′
(i,f), for each a ∈ Γ ∩ supp(Mi).

(2) (b, out;λ, in) ∈ R′
lb
, for each b ∈ E .

Thus,

– C ′
f+1(0) = b2

f

1 . . . b2
f

α , where E = {b1, . . . , bα}.
– C ′

f+1(i) = Mi = C0(i), for 1 ≤ i ≤ q.

– C ′
f+1(i, j) = ∅ , for 1 ≤ i ≤ q and 0 ≤ j ≤ f .

– For each b ∈ E , there exist 2f membranes labelled by lb whose parent
is membrane 0 and their content is empty.

�

In order to show that system Π′(n) simulates system Π(n) in an efficient
way, a mapping F from Comp(Π(n)) onto Comp(Π′(n)) is defined in such
manner that if verifies the conditions described in Definition 5.1. For that,
let C = (C0, C1, . . . , Cm) be a halting computation of Π(n). Then we define the
computation F(C) = (C ′

0, C ′
1, . . . , C ′

f , C ′
f+1, . . . , C ′

f+1+m) of Π
′(n) as follows:

(1) The initial configuration is:⎧⎪⎪⎨
⎪⎪⎩

C ′
0(i) = ∅, for 0 ≤ i ≤ q

C ′
0(i, 0) = C0(i), for 1 ≤ i ≤ q

C ′
0(i, j) = ∅, for 1 ≤ i ≤ q and 1 ≤ j ≤ f

C′
0(lb) = {α0}, for each b ∈ E

(2) The configuration C ′
t, for 1 ≤ t ≤ f + 1, is described by Lemma 2.

18

(3) The configuration C ′
f+1+s, for 0 ≤ s ≤ m, coincides with the configu-

ration Cs of Π, that is, Cs(i) = C ′
f+1+s(i), for 1 ≤ i ≤ q. The content

of the remaining membranes (excluding membrane 0) at configuration
C ′
f+1+s is equal to the content of that membrane at configuration C ′

f+1,
that is, these membranes do not evolve after step f + 1.

That is, every computation C of Π(n) can be “reproduced” by a computation
F(C) of Π′(n) with a delay: from step f+1 to step f+1+m, the computation
F(C) restricted to membranes 1, . . . , q provides the computation C of Π(n).
From Lemma 2 we deduce that F(C) is a computation of Π′(n) and F is an
injective function from Comp(Π(n)) onto Comp(Π′(n)).

Proposition 2. The system Π′(n) previously defined simulates the system
Π(n) in an efficient way, according with Definition 5.1.

Proof. In order to show that Π′(n) can be constructed from Π(n) by a
deterministic Turing machine working in polynomial time, it is enough to
note that the amount of resources needed to generate Π′(n) from Π(n) is
polynomial in the size of the initial resources of Π(n). Indeed,

– The size of the alphabet of Π′(n) is |Γ′| = |Γ|+ f .

– The initial number of membranes of Π′(n) is 1 + q · (f + 2) + |E|.
– The initial number of objects of Π′(n) is the initial number of objects
of Π(n) plus |E|.

– The number of rules of Π′(n) is |R′| = |R|+(r+1) · |E|+ |Γ| ·q · (f +1).

– The maximal length of a communication rule of Π′(n) is equal to the
maximal length of a communication rule of Π(n).

From Lemma 2 we deduce that:

(a) Every computation C ′ of Π′(n) has associated a computation C of Π(n)
such that F(C) = C ′ in a natural way.

(b) The function F is injective.

(c) A computation C of Π(n) is an accepting computation if and only if
F(C) is an accepting computation of Π′(n).

Finally, let us notice that if C is a computation of Π(n) with length m, then
F(C) is a computation of Π′(n) with length f + 1 +m.

�

19

6. The irrelevance of the environment in CDC

In this section, the role of the environment in P systems with sym-
port/antiport rules and membrane division is analized from a computational
complexity point of view. That is, the ability of these P systems with respect
to their computational efficiency when the alphabet of the environment is the
empty set, is studied.

Theorem 1. For each k ∈ N we have PMCCDC(k+1) = PMC
ĈDC(k+1)

.

Proof. Let us recall that PMCCDC(1) = P (see [8] for details). Then,

P ⊆ PMC
ĈDC(1)

⊆ PMCCDC(1) = P

Thus, the result holds for k = 0. Next, let us show the result holds for k ≥ 1.

Since ĈDC(k+1) ⊆ CDC(k+1) it suffices to prove that PMCCDC(k+1) ⊆
PMC

ĈDC(k+1)
. For that, let X ∈ PMCCDC(k+1).

Let {Π(n) | n ∈ N} be a family of P systems from CDC(k+1) solving X
according to Definition 3.6. Let (cod, s) be a polinomial encoding associated
with that solution. Let u ∈ IX be an instance of the problem X that will be
processed by the system Π(s(u))+ cod(u). According to Proposition 1, there
exists a polynomial function f(n) that 2f(|u|) is an upper bound of the number
of objects from E which are moved from the environment to all membranes
of the system by any computation of the system of degree q:

Π(s(u)) + cod(u) = (Γ, E ,Σ,M1, . . . ,Miin + cod(u), . . . ,Mq,R, iin, iout)

Then, we consider the “corresponding” P system without environment of
degree q1 = 1 + q · (f(|u|) + 2) + |E|, according with the previous definition:

Π′(s(u))+cod(u) = (Γ′,Σ′,M′
0,M′

1, . . . ,M′
iin

+cod(u), . . . ,M′
q1
,R′, i′in, i

′
out)

Therefore, if Π(s(u)) + cod(u) is a membrane system from CDC(k + 1)

then Π′(s(u)) + cod(u) is a membrane system from ĈDC(k + 1) such that
verifies the following:

– A distinguished membrane labelled by 0 has been considered, which
will play the role of the environment at the system Π(s(u)) + cod(u).

20

– At the initial configuration, it has enough objects in membrane 0 in
order to simulate the behaviour of the environment of the system
Π(s(u))) + cod(u).

– After f(n) + 1 step, computations of Π(s(u)) + cod(u) are reproduced
by the computations of Π′(s(u)) + cod(u) exactly.

Let us suppose that E = {b1, . . . , bα}. In order to simulate Π(s(u))+cod(u) by
a P system without environment Π′(s(u))+cod(u) in an efficient way, we need
to have enough objects in the membrane labelled by 0 of Π′(s(u)) + cod(u)
available. Specifically, 2f(|u|) objects in that membrane are enough.

In order to start the simulation of any computation C of Π(s(u))+cod(u),
it would be enough to have 2f(|u|) copies of each object bj ∈ E in the membrane
of Π′(s(u)) + cod(u) labelled by 0. For this purpose,

– For each b ∈ E a membrane in Π′(s(u)) + cod(u) labelled by lb is con-
sidered which only contains object α0 initially. We also consider the
following rules:

� [αj]lb → [αj+1]lb [αj+1]lb , for 0 ≤ j ≤ f(|u|)− 2,

� [αf(|u|)−1]lb → [b]lb [b]lb ,

� (lb, b/λ, 0).

– By applying the previous rules, after f(|u|) transition steps we get
2f(|u|) membranes labelled by lb, for each b ∈ E in such a way that each
of them contains only object b. Finally, by applying the third rule we
get 2f(|u|) copies of objects b in membrane 0, for each b ∈ E .

Therefore, after the execution of f(|u|) + 1 transition steps in each com-
putation of Π′(s(u)) + cod(u) in membrane 0 of the corresponding configu-
ration, we have 2f(|u|) copies of each object b ∈ E . This number of copies
is enough to simulate any computation C of Π(s(u)) + cod(u) through the
system Π′(s(u)) + cod(u)).

From Proposition 2 we deduce that the family {Π′(n)| n ∈ N} of systems

from ĈDC(k+1) solves X in a uniform way and polynomial time according
to Definition 3.6. Hence, X ∈ PMC

ĈDC(k+1)
.

�

21

From this result, a new frontier of the efficiency can be obtained in the
framework of P systems with symport/antiport rules with membrane division
and without environment, expressed in terms of the length of communication
rules. Indeed, of the one hand it is well known [3] that by using families from
CDC(1) only problems in class P can be efficiently solved, in particular

P = PMC
ĈDC(1)

, that is, computing models from ĈDC(1) are non-efficient.

On the other hand, in [25] a uniform and polynomial time solution of the
HAM-CYCLE problem by a family of P systems from CDC(2) is given. From
Theorem 1 we deduce that HAM-CYCLE ∈ PMC

ĈDC(2)
, that is, computing

models from ĈDC(2) are presumably efficient. Hence, assuming that P �=
NP, in the framework of P systems with membrane division and without
environment, the length of communication rules provides a new borderline of
the tractability: passing from 1 to 2 amounts to passing from non-efficiency
to the (presumably) efficiency.

7. The relevance of the environment in CSC

On the one hand, in [6] it has been shown that P = PMC
ĈSC(k+1)

, for

each k ∈ N, that is, computing models from ĈSC(k + 1) are non-efficient.
On the other hand, in [5], a uniform and polynomial time solution to the SAT
problem has been given by means of a family of systems fromCSC(3), that is,
computing models from CSC(3) are presumably efficient. Thus, assuming
that P �= NP, in the framework of P systems with membrane separation
which use communication rules of length at most three, the environment
provides a new borderline between the non-efficiency and the (presumably)
efficiency.

Besides, computing models from ĈSC(3) are non-efficient and it has been
show that VERTEX-COVER ∈ PMCCDC(3) [2]. Then, from Theorem 1 we de-

duce that computing models from ĈDC(3) are presumably efficient. Thus,
assuming that P �= NP, in the framework of P systems without environment
and with communication rules with length at most 3, the kind of rules (sepa-
ration versus division) provides a new borderline between the non-efficiency
and the (presumably) efficiency.

22

8. When the structure does not matter

Networks of cells linked by communication channels which compute by
communication only were first considered in [13]. These networks were for-
mally structured by means of directed graphs leading to tissue P systems with
symport/antiport rules. The cell-like version is structured by means of rooted
trees and they were introduced in [14].

By using similar notations, the classes of recognizer tissue P systems

TDC(k), TSC(k), T̂DC(k) and T̂SC(k) are defined in a natural way. The
following results have been obtained:

– PMCTDC(1) = P and PMCTSC(2) = P ([3] and [12]).

– For each k ∈ N we have PMC
T̂SC(k+1)

= P and PMCTDC(k+1) =

PMC
T̂DC(k+1)

([7] and [23]).

– HAM-CYCLE ∈ PMCTDC(2) and SAT ∈ PMCTSC(3) ([22] and [24]).

Comparing these results with the ones commented in the previous section, it
is easy to see that while changing the underlying directed graph structure of
tissue P systems with symport/antiport rules to the explicit rooted tree-like
structure of their cell-like counterpart, the frontiers from non-efficiency to
presumably efficiency are the same while keeping the length of communica-
tion rules. In some sense, we can affirm that from a complexity view the
structure of these systems does not matter.

9. Conclusions

In cell-like P systems with symport/antiport rules, E represents objects
that appear in an arbitrary large amount at the environment. This condition
is not too nice from the computational complexity point of view. In this
paper, we show that in P systems with symport/antiport rules and membrane
division the environment can be “removed” without a loss of efficiency, that
is, its role is irrelevant from a complexity view. However, by using membrane
separation instead of membrane division, the environment plays a crucial role
on the (presumably) efficiency of these systems. Besides, in this context it
has been justified that the structure of these types of P systems (directed
graph versus rooted trees) does not matter.

23

Acknowledgements

This work was supported by Project TIN2017-89842-P of the Ministerio
de Economı́a y Competitividad of Spain and by Grants No 61320106005 of
the National Natural Science Foundation of China.

[1] T.H. Cormen, C.E. Leiserson, R.L. Rivest. An Introduction to Algo-
rithms. The MIT Press, Cambridge, Massachussets, Third Edition, 2009.

[2] D. Dı́az-Pernil, M.Á. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-
Núñez, Á. Romero-Jiménez. Computational efficiency of cellular division
in tissue-like P systems. Romanian Journal of Information Science and
Technology, 11, 3 (2008), 229-241.

[3] R. Gutiérrez-Escudero, M.J. Pérez-Jiménez, M. Rius-Font. Character-
izing tractability by tissue-like P systems. Lecture Notes in Computer
Science, 5957 (2010), 289-300.

[4] M. Ionescu, Gh. Păun, T. Yokomori. Spiking neural P systems. Funda-
menta Informaticae, 71, 2-3 (2006), 279–308.

[5] L.F. Maćıas-Ramos, B. Song, L. Valencia-Cabrera, L. Pan, M.J. Pérez-
Jiménez. Membrane fission: A computational complexity perspective.
Complexity, 21, 6 (2016), 321-334.

[6] L.F. Maćıas-Ramos, M.J. Pérez-Jiménez, A. Riscos-Núñez, M. Rius-
Font, L. Valencia-Cabrera. Membrane fission versus cell division: when
membrane proliferation is not enough. Theoretical Computer Science,
608 (2015), 57-65

[7] L.F. Maćıas-Ramos, M.J. Pérez-Jiménez, A. Riscos-Núñez, M. Rius-
Font, L. Valencia-Cabrera. The efficiency of tissue P systems with cell
separation relies on the environment. Lecture Notes in Computer Sci-
ence, 7762 (2013), 243-256.

[8] L.F. Maćıas-Ramos, B. Song, T. Song, L. Pan, M.J. Pérez-Jiménez.
Limits on efficient computation in P systems with symport/antiport. In
C. Graciani, Gh. Păun, A. Riscos-Núñez, L. Valencia-Cabrera (eds.).
Proceedings of the Fifteenth Brainstorming Week on Membrane Com-
puting, Sevilla, Spain, January 31, February 3, 2017, Fénix Editora, pp.
147-160.

24

[9] C. Mart́ın-Vide, J. Pazos, Gh. Păun, A. Rodriguez-Paton. Tissue P
systems. Theoretical Computer Science, 296, 2 (2003), 295–326.

[10] L. Pan, T.-O. Ishdorj. P systems with active membranes and separation
rules. Journal of Universal Computer Science, 10, 5 (2004), 630–649.

[11] L. Pan, M.J. Pérez-Jiménez. Computational complexity of tissue–like P
systems. Journal of Complexity, 26, 3 (2010), 296–315.

[12] L. Pan, M.J. Pérez-Jiménez, A. Riscos-Núñez, M. Rius-Font. New fron-
tiers of the efficiency in tissue P systems. L. Pan, Gh. Păun, T. Song
(eds.) Pre-proceedings of Asian Conference on Membrane Computing
(ACMC 2012), Huazhong University of Science and Technology, Wuhan,
China, October 15-18, 2012, pp. 61-73.

[13] A. Păun, Gh. Păun, G. Rozenberg. Computing by communication in
networks of membranes. International Journal of Foundations of Com-
puter Science, 13, 6 (2002), 779–798.

[14] A. Păun, Gh. Păun. The power of communication: P systems with
symport/antiport. New Generation Computing, 20, 3 (2002), 295–305.

[15] Gh. Păun. Computing with membranes. Journal of Computer and Sys-
tem Sciences, 61, 1 (2000), 108–143.

[16] Gh. Păun. P systems with active membranes: attacking NP–complete
problems. Journal of Automata, Languages and Combinatorics, 6
(2001), 75–90.

[17] Gh. Păun. Membrane Computing. An Introduction. Springer–Verlag,
Berlin, 2002.

[18] Gh. Păun, M.J. Pérez-Jiménez, A. Riscos-Núñez. Tissue P Systems with
cell division. International Journal of Computers, Communications and
Control, 3, 3 (2008), 295-303.

[19] Gh. Păun, G. Rozenberg, A. Salomaa (eds.). The Oxford Handbook of
Membrane Computing, Oxford University Press, Oxford, 2010.

[20] M.J. Pérez-Jiménez, Á. Romero-Jiménez, F. Sancho-Caparrini. Com-
plexity classes in models of cellular computing with membranes. Natural
Computing, 2, 3 (2003), 265-285.

25

[21] M.J. Pérez-Jiménez, Á. Romero-Jiménez, F. Sancho-Caparrini. A poly-
nomial complexity class in P systems using membrane division. Journal
of Automata, Languages and Combinatorics, 11, 4 (2006), 423-434.

[22] A.E. Porreca, N. Murphy, M.J. Pérez-Jiménez. An optimal frontier of the
efficiency of tissue P systems with cell division. In M. Garćıa-Quismondo,
L.F. Maćıas-Ramos, Gh. Păun, I. Pérez-Hurtado, L. Valencia-Cabrera
(eds.) Proceedings of the Tenth Brainstorming Week on Membrane Com-
puting, Volume II, Seville, Spain, January 30- February 3, 2012, Report
RGNC 01/2012, Fénix Editora, 2012, pp. 141-166.

[23] M.J. Pérez-Jiménez, A. Riscos-Núñez, M. Rius-Font, F.J. Romero-
Campero. A polynomial alternative to unbounded environment for tissue
P systems with cell division. International Journal of Computer Math-
ematics, 90, 4 (2013), 760-775

[24] M.J. Pérez-Jiménez, P. Sośık. An Optimal Frontier of the Efficiency of
Tissue P Systems with Cell Separation. Fundamenta Informaticae, 138,
1-2 (2015), 45-60

[25] L. Valencia-Cabrera, B. Song, L.F. Maćıas-Ramos, L. Pan, A. Riscos-
Núñez, M.J. Pérez-Jiménez. Minimal cooperation in P systems with
symport/antiport: A complexity approach. In L.F. Maćıas-Ramos,
Gh. Păun, A. Riscos-Núñez, L. Valencia-Cabrera (eds.). Proceedings of
the Thirteenth Brainstorming Week on Membrane Computing, Sevilla,
Spain, February 2-6, 2015, Fénix Editora, pp. 301-323.

26

View publication statsView publication stats

https://www.researchgate.net/publication/324876135

