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Abstract: In this letter, the problem of extraordinary (ET) transmission
of electromagnetic waves through opaque screens perforated with subwave-
length holes is addressed from an analytical point of view. Our purpose
was to find a closed-form expression for the transmission coefficient in a
simple case in order to explore and clarify, as much as possible, the physical
background of the phenomenon. The solution of this canonical example,
apart from matching quite well with numerical simulations given by
commercial solvers, has provided new insight in extraordinary transmission
as well as Wood’s anomaly. Thus, our analysis has revealed that one of the
key factors behind ET is the continuous increase of excess electric energy
around the holes as the frequency approaches the onset of some of the
higher-order modes associated with the periodicity of the screen. The same
analysis also helps to clarify the role of surface modes –or spoof plasmons–
in the onset of ET.
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1. Introduction

A few years ago Ebbesen et al. [1] reported a phenomenon of extraordinary transmission (ET)
through metallic screens periodically perforated with sub-wavelength holes. This physical ef-
fect was originally attributed to the excitation of surface plasmons on the diffraction screen
[3, 4, 5], in apparent contradiction with Bethe’s theory for small apertures [2]. In a first period,
this phenomenon was mainly related to the plasma-like behavior of metals at optical frequen-
cies. However ET has also been observed at millimeter wave frequencies [6], when metals can
no longer be considered solid plasmas (but rather quasi-perfect conductors). This last experi-
mental observation can be explained by means of diffraction theories [7, 8] which emphasize
the role of screen periodicity in ET, being the specific behavior of the opaque material sec-
ondary to the phenomenon. Subsequently, the surface plasmon concept was rescued to explain
ET after considering that plasmon-like surface waves (which some people call spoof plasmons)
can be supported by structured metallic surfaces [9, 10] even in the perfect conductor limit.
More recently, some of the authors of the present paper proposed a comprehensive equivalent
circuit model based on the theory of discontinuities in hollow waveguides [11, 12]. This model
accounts for the most salient features observed in ET experiments as well as for fine details of
the transmission spectrum obtained from exhaustive numerical computations. For a detailed and
comprehensive discussion on the topic, the reader might consult [12] (and references therein)
as well as the excellent reviews by C. Genet et al. [13] or by F.J. Garcı́a de Abajo [14].

The above works, among others, show that ET can be addressed from many different per-
spectives: surface waves excitation, diffraction theory, equivalent circuit models,..., with each
one providing a different approach to the problem. The main aim of this letter is to gain in-
sight into the physics behind ET through the development of an accurate analytical solution of
a canonical example. A first and very valuable attempt to develop this analytical solution was
recently developed in [15]. However, it will be shown that althoug many qualitative conclusions
of this analysis are correct, the numerical results presented in the paper are inaccurate probably
due to inappropriate approximations in the derivations. We feel that the present analytical so-
lution not only provides accurate numerical results but also shed new light on the problem and
makes apparent the interconnection between the previous perspectives.

For simplicity, we will first analyze a zero thickness perfect conducting plate with square
holes placed in a square periodic array. Although the present analysis can readily be extended
to more complex geometries, the straightforward physical interpretation of this simple structure
allows for a better understanding of the physical effects. Following the rationale in [12, 15], the
first step in our analysis is the transformation of the diffraction problem into the problem of
a small diaphragm inside a TEM waveguide. Then, the problem is solved employing well-
known results of diffraction and waveguide theories, and the accuracy of the numerical results
is numerically validated by careful electromagnetic simulations. However, as it was already
mentioned, the main purpose of this work is not to provide a tool for calculations (something
that can easily be obtained from numerical techniques already implemented in common com-
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mercial electromagnetic solvers) but to give a different physical insight into the physics of ET.
To better achieve this goal, an equivalent circuit (rather than a circuit model) is proposed. The
equivalent circuit will implicitly contain all the information already provided by the analytical
solution, but it has the additional advantage of making its physical interpretation much easier.
The role of the different waveguide modes in the onset of ET will be analyzed and connected
with the frequency dependence of the different elements of the proposed equivalent circuit. The
same analysis will also be applied to elucidate the role of surface waves (or spoof plasmons) in
the onset of ET. Finally the present proposal will allow us to link the reported results —which
come basically from a diffraction theory analysis— to the circuit theory approach proposed in
[11, 12].

Fig. 1. Perfect conductor screen perforated with square holes: front view (a) and two lateral
cuts (b). Front (c) and lateral (d) views of the structure unit cell or equivalent waveguide. (e)
Equivalent circuit for the discontinuity in the waveguide. It has been assumed that t → 0.

The structure under study is shown in Figs. 1(a)-(b). For normal incidence of a y-polarized
electromagnetic plane wave, this structure is equivalent to a TEM waveguide with perfect elec-
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tric conducting plates at the upper and bottom interfaces, perfect magnetic conducting plates at
both lateral sides, and a square diaphragm located, say, at z = 0 (see Figs. 1(c)-(d)). Due to the
symmetry of this structure, and assuming an incident field of amplitude equal to unity, the field
component Ey at z = 0+ can be expanded into the following Fourier series:

Ey(x,y) = T +
N

∑
n=1

ATE
n0 fn0(x,y) +

M

∑
m=1

ATM
0m f0m(x,y) +

N,M

∑
n,m=1

(ATE
nm + ATM

nm ) fnm(x,y) , (1)

where T is the transmission coefficient, ATE, ATM are the coefficients of the (be-
low cutoff) TE and TM waveguide modes excited at the discontinuity, and fnm(x,y) =
cos(2nπx/a)cos(2mπy/a) . Using waveguide theory [16], the electric field component Ex can
be written as

Ex(x,y) =
∞

∑
n,m=1

(m
n

ATE
nm − n

m
ATM

nm

)
gnm(x,y) (2)

with gnm(x,y) = sin(2nπx/a)sin(2mπy/a) .
The coefficients of the expansion (1) can be obtained from the orthogonality properties of

functions fnm. However, for small holes and not very large values of n and m (taking into
account that Ey must be zero at the metallic screen), the following approximation applies [15]:

∫∫

w
Ey fnm dxdy =

∫∫

h
Ey fnm dxdy ≈

∫∫

h
Ey dxdy =

∫∫

w
Ey dxdy = a2T , (3)

where subindex w and h stands for the waveguide and hole sections respectively, and a2 is the
waveguide section. Thus, it is finally found that

ATE
n0 ≈ 2T ; ATM

0m ≈ 2T ; ATE
nm +ATM

nm ≈ 4T . (4)

For small holes, Ex should be almost zero at the hole (and zero on the metallic screen). There-
fore, from (2) and (4):

ATE
nm ≈ 4T

n2

n2 +m2 ; ATM
nm ≈ 4T

m2

n2 +m2 . (5)

The transmission coefficient T can now be obtained after imposing the appropriate bound-
ary conditions for the transverse magnetic field. Since the scattered field is produced by the
electric currents induced in the diffraction screen, which are confined to the z = 0 plane, it
is deduced from symmetry that all the tangential components of the scattered magnetic field
must vanish at the aperture. This conclusion comes out from the fact that such induced currents
are vectors invariant by reflection in the z = 0 plane, whereas the scattered magnetic field is a
pseudo-vector, whose tangential components must change of sign after reflection in such plane.
Therefore, the total tangential magnetic field in the hole must be equal to the incident field [16],
that is, Hx = −Y0 = −√

ε0/μ0 and Hy = 0 1. Once the tangential magnetic field at the aperture
has been evaluated, upon substitution of (4)-(5) in (1) the transmission coefficient T can be
obtained after solving the following equation:

b2Y0(1−T ) = abT
N

∑
n=1

2
nπ

Y TE
2n,0 sin

(
nπb

a

)
+abT

M

∑
m=1

2
mπ

Y TM
0,2m sin

(
mπb

a

)

+a2 T
N,M

∑
n,m=1

4
nmπ2

(
Y TE

2n,2m
n2

n2 +m2 +Y TM
2n,2m

m2

n2 +m2

)
sin

(
nπb

a

)
sin

(
mπb

a

)
, (6)

1It is worth to mention that a completely different value for Hx and Hy was assumed in [15], which is probably the
sources of the numerical discrepancies with our analysis (see Fig. 2).
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where Y TE and Y TM are the TE and TM modal admittances given by [16]

Y TE
2n,2m = iY0

√(
nλ
a

)2

+
(

mλ
a

)2

−1 (7)

Y TM
2n,2m = −iY0/

√(
nλ
a

)2

+
(

mλ
a

)2

−1 . (8)

Since the maximum “resolution” of Eq. (1) is limited by the minimum wavelength, λn = a/n,
the upper limits of the series in (6) can be determined by imposing a “resolution” equal to the
hole size b. This leads to N,M ≈ a/b, which completes the determination of T from (6). Results
for the transmission coefficient for several values of a/b computed from (6) are shown in Fig.2
together with data coming from full-wave electromagnetic simulations using the commercial
software CST Microwave Studio. Both set of results agree quite well not only qualitatively but
also quantitatively. The figure also shows other previous analytical results on the same structure
[15].

Fig. 2. Transmission coefficient of the structure shown in Fig. 1 for different values of the
ratio a/b versus the ratio ( fW − f )/ fW , where fW = c/a is the Wood’s anomaly frequency,
with c being the light velocity in free space. Solid Lines correspond to data from (6). Dotted
lines correspond to data from CST. For comparison purposes, the numerical value for the
ET frequency provided in [15] for a/b = 7.07 (i.e. holes covering a 2% of the total area) is
shown with an arrow

Now, the equivalent circuit shown in Fig. 1(e) is proposed for the waveguide discontinuity
problem shown in Figs. 1(c) and (d). The transmission coefficient for this equivalent circuit
configuration can be found from the solution of the following equation:

Y0(1−T ) = T

(
−iω

C
2
− 1

iω2L

)
(9)

where ω = 2π f is the angular frequency. The above equation clearly shows that total transmis-
sion is obtained at frequency ω0 =

√
1/(LC). Considering now that the evanescent TE(TM)

mode admittances are imaginary and positive(negative) [16], a direct comparison between (9)
and (6) leads to the following expressions for the capacitive, BC, and inductive, BL, susceptances

#106467 - $15.00 USD Received 16 Jan 2009; revised 11 Mar 2009; accepted 13 Mar 2009; published 24 Mar 2009

(C) 2009 OSA 30 March 2009 / Vol. 17,  No. 7 / OPTICS EXPRESS  5575



appearing in (9):

BC = −ωC/2 =
1
i

{
a
b

M

∑
m=1

2Y TM
0,2m

mπ
sin

(
mπb

a

)

+
(a

b

)2 N,M

∑
n,m=1

4Y TM
2n,2m

nmπ2

m2

n2 +m2 sin

(
nπb

a

)
sin

(
mπb

a

)}
(10)

BL =
1

2ωL
=

1
i

{
a
b

N

∑
n=1

2Y TE
0,2m

nπ
sin

(
nπb

a

)

+
(a

b

)2 N,M

∑
n,m=1

4Y TE
2n,2m

nmπ2

m2

n2 +m2 sin

(
nπb

a

)
sin

(
mπb

a

)}
. (11)

This result is somehow expected since it is well known that evanescent TM(TE) modes present a
capacitive(inductive) behavior as they store mainly electric(magnetic) energy. The above trans-
formations makes it apparent that the equivalent circuit of Fig. 1(e) is not a simple model
but merely another way to express the previously obtained analytical results in a circuit-like
fashion. It is then apparent the connection between the proposed equivalent circuit and the
diffraction theory approach to ET. Furthermore, since the equivalent circuit of Fig. 1(e) is actu-
ally a particularization (for infinitesimal screen thickness) of the equivalent circuit reported in
[11, 12], the previous analysis can be considered as a “theoretical validation” of the equivalent
circuit theory proposed in those papers.

The frequency dependence provided by the modal admittances appearing in (10) and (11)
gives rise to some relevant facts. Near the Wood’s anomaly wavelength: λ = a (in our case,
it also corresponds to the cutoff frequency of the TM02 mode), the admittance of the TM02

mode suddenly grows to infinity, which makes the term associated with this latter mode be
dominant in the capacitive susceptance series (10). Under the same circumstances, however,
the admittance of the TE20 mode goes to zero, which means that there is no singularity in the
inductive susceptance BL. As it is well know from Bethe’s theory, for normal incidence and
frequencies far and below Wood’s anomaly, a small hole has an inductive behavior (it can be
modeled by an equivalent magnetic dipole). Nevertheless, as frequency approaches Wood’s
anomaly, we have just seen that the absolute value of the associated capacitive susceptance BC

grows to infinity and, at certain frequency, it will cancel out the inductive susceptance associated
with the hole (namely, BC +BL = 0) and will give rise to total transmission. It is also interesting
to note that, within the same previous frequency range, all admittances except Y TM

0,2 have a
smooth frequency dependence. In that case, the inductive susceptance BL (11) is found to be
roughly proportional to (a/b)2. However, the capacitive susceptance, which is dominated by
Y TM

0,2 , will be proportional to a/b. This means that |BC|/BL ∝ b/a as λ → a, which implies
that the smaller the hole, the smaller the absolute value of BC is with regard to BL. In other
words, the smaller the hole, the closer ET is to Wood’s anomaly. An additional observation can
be made after considering that the absolute value of the capacitive susceptance still increases
for frequencies above ET until it becomes infinity at Wood’s anomaly. At this last frequency,
the LC tank in the equivalent circuit of Fig.1(e) becomes a short circuit and total reflection will
appear. Therefore the equivalent circuit of Fig.1(e) along with the transformations (10) and (11)
explains satisfactorily both ET and Wood’s anomaly in periodically perforated zero thickness
screens.

Next, it will be studied the behavior of the corresponding electromagnetic field at frequencies
near Wood’s anomaly. According to (4) and (5), the amplitudes of the different evanescent
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modes (measured as the amplitudes of the electric field component Ey) excited around the
diffraction screen are roughly of the same order. However, given that the absolute value of the
admittance of the TM02 mode is much larger than the admittance of any other mode, the near
field will be dominated by the magnetic field component Hx of this mode, as well as for its
associated axial electric field Ez. Since the TM02 mode is near cutoff, its associated attenuation
constant is small and its near field configuration will extend relatively far from the diffraction
screen. This near field picture is valid not only at ET (total transmission) but also at Wood’s
anomaly (total reflection), and therefore it cannot explain by itself ET. Only when the combined
effect of all the remaining evanescent modes is also considered, ET can be properly explained.
That is, only when the admittance of the TM02 becomes exactly so large (and its attenuation
constant exactly so small) that the excess of electric energy stored in this mode equals the excess
of magnetic energy stored by all the remaining evanescent modes, ET will occur. We feel that
this is one of the most important conclusions of our analysis: ET is closely related to Wood’s
anomaly because in both cases the energy stored in the evanescent TM02 is much larger than
the energy stored in any other evanescent mode. However, whereas Wood’s anomaly appears
when this energy becomes infinite, ET appears when the excess of electric energy associated
with this TM02 mode cancels out the excess of magnetic energy associated with the remaining
evanescent modes excited at the hole.

Fig. 3. Equivalent circuit for the computation of the frequency of excitation of surface
waves with k = 2π/a.

The previous analysis can also help to clarify the role of surface waves or spoof plasmons
[9, 10] in the onset of ET. For this purpose we should consider the solutions of the equivalent
circuit of Fig. 1(e) in the absence of excitation. These solutions provide the frequency at which
the surface wave supported by the periodic structure has a propagation constant with zero real
part so that phase matching with the normally impinging TEM wave is possible and surface
plasmons are then excited. In such case only outgoing TEM waves can exist, and the left-
and right-hand side transmission lines, which account for free space, can be substituted by
resistances accounting for radiation in free space: R0 = 1/Y0(= Z0) =

√
μ0/ε0 ≈ 377Ω. The

frequency of excitation of surface plasmons with the appropriate wavevector, k = 2π/a, can
now be identified with the frequency of resonance of the loaded LC resonator shown in Fig. 3.
This frequency of resonance, ω̂ = ω ′ − iω ′′, must be complex in order to account for radiation
losses, and can be computed as the solution to the following implicit equation:

−iωC(ω)− 1
iωL(ω)

+
2

R0
= 0 (12)

(note that both C and L depends on frequency via the TM and TE admittances). The real part
of the complex frequency is actually the frequency of excitation of the surface wave (for k =
2π/a), and its imaginary part gives the lifetime of the wave through τ = 1/ω ′′. Clearly, if R0 is
much larger than |BC| as well as BL, the frequency of excitation of the surface waves will be very
close to the frequency of ET (although both frequencies will never coincide). Table 1 shows a
comparison between these resonance frequencies and the ET frequencies for the cases analyzed
in Fig. 2. This table shows that the higher the ratio a/b is, the closer both frequencies appear.
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Table 1. Normalized resonance and extraordinary transmission frequencies, ( fW − f )/ fW ,
for the cases studied in Fig. 2.

a/b Norm. Reson. freq. Norm. ET freq.

4 7.3472E-03 -i9.4994E-04 7.4472E-03
5 1.5265E-03 -i8.9025E-05 1.5266E-03
6 4.4240E-04 -i1.3641E-05 4.4240E-04
7 1.5887E-04 -i2.9409E-06 1.5887E-04
8 7.5485E-05 -i8.0277E-07 7.5485E-05

In fact, both frequencies have more than five identical significant digits for a/b > 5. Also,
the imaginary part of ω̂ becomes almost negligible for high values of this ratio, which shows
that this frequency exactly coincides with the frequency of ET in the limit of very small holes
(a/b → ∞). However, for smaller values of this ratio, both frequencies, although close, show
a significant deviation. Accordingly, the imaginary part of ω̂ becomes more significant as the
ratio a/b increases. Larger holes would yield even higher differences between the frequencies
associated with the surface plasmon and the extraordinary transmission.

Until now we have considered infinitely thin screens. However, the proposed theory can
easily be extended to diffraction screens of finite thickness t. In this case the circuit model
of Fig. 1(c) must be modified in order to include the evanescent waveguide formed by the
hole. If the hole is small, it will be assumed that only the dominant TE10 mode is significantly
excited inside the hole, and hence the effect of higher order modes are neglected. Thus the
hole is modeled as an evanescent transmission line with admittance equal to the admittance
of this TE10 mode. For square holes, this admittance (defined as the average current through
the hole divided by the average voltage accross the hole) coincides with the wave admittance
of the aformentioned TE10 mode: YTE10 = iY0

√
(λ/2b)2 −1. Moreover, only a fraction of the

current flowing through the diffraction screen will go through the holes. This fraction can be
roughly estimated as the fractional length along the x-axis (the axis perpendicular to the current)
occupied by the holes; namely, b/a. Thus, from power conservation, the admittance Y ′ seen in
the diffraction screen at the input of the hole can be obtained from

P =
1
2
|I|2
Y ′ =

1
2

(
YTE10

)−1
∣∣∣∣
b
a

I

∣∣∣∣
2

(13)

which gives Y ′ = (a/b)2YT E10 . The circuit element providing this admittance transformation is
an ideal transformer with turns ratio n = a/b. Therefore, this ideal transformer must be included
between the resonant tank modeling the step discontinuity and the transmission line modeling
the hole. The resulting equivalent circuit is shown in Fig. 4.

Fig. 4. Equivalent circuit for the structure of Figs. 1(a)-(b) with finite thickness (t �= 0).

In Fig.5 the computed results for a screen of thickness t = a/7 are shown and compared with
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Fig. 5. Transmission coefficient of the structure shown in Fig.1 with b = a/6 and t = 0, a/7.

the results obtained for a zero-thickness screen. For comparison purposes the results obtained
from numerical simulation using CST Microwave Studio are also shown. As it can be seen, there
is a good qualitative agreement between theory and simulations. This agreement includes the
presence of two transmission peaks, a well known effect in moderate thicknes screens (see [14]
and references therein). Taking into account the logaritmic scale, the quantitative agreement
between theory and simulations is also quite good (more than four digits in the frequency of
resonance). The source of the small numerical disagreement coul be attributed to the assumed
approximate value of the transformer ratio.

In summary, an analytical solution for ET through thin diffraction screens has been presented.
Our analysis, based on the equivalence with a waveguide discontinuity problem, shows that ET
and Wood’s anomaly can both be explained from the peculiar behavior of the evanescent TM02

mode excited at the holes. Since this behavior is imposed by the screen periodicity, the analysis
shows that it is this periodicity, rather than the physical nature of the screen, which is on the
grounds of ET. Our analysis is also in agreement with the circuit theory of ET recently proposed
by some of the authors. The analysis can also be applied to elucidate the role played by surface
waves (or spoof plasmons) in ET. It has been shown that a radiating surface wave can be excited
at a frequency very close to ET frequency but not exactly at the same frequency. This result
suggests that radiating surface waves can play a significant role in the transitory states at the
onset and at the end of a monochromatic ET steady state. Finally, the analysis was extended to
diffraction screens of finite thickness, thus showing that the present theory also applies to ET
in thick screens.

Acknowledgments

This work has been supported by the Spanish Ministerio de Educación y Ciencia and Euro-
pean Union FEDER funds (projects TEC2007-65376, TEC2007-68013-C02-01, and CSD2008-
00066), and by Junta de Andalucı́a (project TIC–253).

#106467 - $15.00 USD Received 16 Jan 2009; revised 11 Mar 2009; accepted 13 Mar 2009; published 24 Mar 2009

(C) 2009 OSA 30 March 2009 / Vol. 17,  No. 7 / OPTICS EXPRESS  5579


