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ON 3D NAVIER-STOKES EQUATIONS:

REGULARIZATION AND UNIQUENESS BY DELAYS.

HAKIMA BESSAIH, MARÍA J. GARRIDO-ATIENZA, AND BJÖRN SCHMALFUSS

Abstract. A modified version of the three dimensional Navier-Stokes equations is considered with periodic
boundary conditions. A bounded constant delay is introduced into the convective term, that produces a
regularizing effect on the solution. In fact, by assuming appropriate regularity on the initial data, the solutions
of the delayed equations are proved to be regular and, as a consequence, existence and also uniqueness of a
global weak solution is obtained. Moreover, the associated flow is constructed and the continuity of the
semigroup is proved. Finally, we investigate the passage to the limit on the delay, obtaining that the limit is
a weak solution of the Navier-Stokes equations.

1. Introduction

The incompressible Navier-Stokes equations are described by time evolution of the velocity u in a bounded or
unbounded domain of Rn, n = 2, 3 and are given by:

u′(t, x) + (u(t, x) · ∇)u(t, x)− ν∆u(t, x) +∇p(t, x) = 0,

div u(t, x) = 0, u(0, x) = u0(x),

where ν > 0 is the viscosity of the fluid, p denotes the pressure and u0(x) denotes the initial datum. The
existence and uniqueness of solutions is known to hold for n = 2 while only partially solved in the case n = 3.
In fact, existence of global weak solutions is known since the seminal work of Leray [12], while their uniqueness
and regularity is still an open question. The difficulty in dimension 3 comes from the nonlinear term (u · ∇)u
that requires more regularity. In fact, this regularity is not satisfied by the energy estimates while it is in
dimension 2. In particular, the lack of this regularity is essentially the reason for which the uniqueness cannot
be proved for weak solutions.

Many regularizations have been considered into the nonlinear term to overcome this difficulty. Depending on
the way the regularization is introduced, yields to a wide range of models. We refer to [6] for the so-called
Camassa-Holm equations, to [5, 14] for the Leray-alpha models and the references therein. Another way
of regularizing the equation is to add a damping term consisting of a monotone operator, see for example
[2, 11, 13]. A different model that takes into account some physical aspects are the rotating flows, see for e.g.
[1, 3, 4].

In this paper, we will introduce a delay in the nonlinear term (u · ∇)u. We consider the following modified
version of the 3D Navier-Stokes equations with constant delay µ > 0:

u′(t, x) + (u(t− µ, x) · ∇)u(t, x) − ν∆u(t, x) +∇p(t, x) = f(x),

div u(t, x) = 0, u(0, x) = u0(x), u(τ, x) = φ(τ, x), τ ∈ [−µ, 0).
(1.1)

As we will prove later, this delay introduces a regularizing effect in the equations and allows to prove the
uniqueness of weak solutions. In [9], with a time variable bounded delay function in the convective term,
the authors investigated the existence of weak solutions and the existence and uniqueness of strong solutions
with their longtime behavior. For a more general delay (infinite delay of convolutional type) the same authors
investigated mild solutions in [10], however, these solutions are only local in time. In [18], Varnhorn considered
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a similar delay used in equation (1.1) and investigated the existence and uniqueness of strong solutions in a
bounded and regular domain D ⊂ R

3 with Dirichlet boundary conditions. In that article, the initial delay
function χ is assumed to satisfy that χ ∈ C([−µ, 0], H2(D)), with ∂χ

∂t ∈ C([−µ, 0], L2(D)) and div χ = 0. With
these assumptions, the author proved the existence and uniqueness of strong solutions. Our setting is different
since we are dealing with weak solutions. Indeed, our initial function χ = (φ, u0) ∈ L2(−µ, 0, V

1+α) × V α

with α > 1/2 (see the functional setting in Section 2) and our domain has periodic boundary conditions. This
choice makes possible to apply Lemma 2.2 which is specific for periodic boundary conditions. As we will see
later, the use of this lemma in the nonlinear term in (1.1) is crucial to get better estimates that improve the
regularity of solutions.

In this paper, our focus will be on the existence and uniqueness of global weak solutions, although our method
would include dealing with strong solutions when α ≥ 1 (as we said above, throughout the paper α > 1/2).
The main ingredient to establish it, as we mentioned earlier, is to use the regularizing effect of the delay on
the convective term. Indeed, first we will investigate the linearized version (3.1) of system (1.1). This equation
comes naturally when investigating the system on the interval [0, µ]. We prove existence and uniqueness of
weak solutions, then we establish that these solutions are more regular and are in the spaces V α (see Section
3 for details). Using the linearized equation, we are able to construct weak solutions for equation (1.1) by
glueing the solutions obtained on each interval [0, µ], [µ, 2µ], . . . and so on. Each solution is obtained from
the previous step and uses the linearized construction from Section 3. With this procedure, we are also able
to prove the existence of a continuous semigroup S(t), see Section 5 for details. The semigroup theory would
allow to study the longtime behavior in terms of global attractors, invariant manifolds, and so on, however
these topics are not investigated in the current paper and will be considered in a future research.
Furthermore, by passing to the limit on the delay, we prove that our regularized solutions converge to a weak
solution of the 3D Navier-Stokes equations. This passage to the limit on the delay was also addressed by
Varnhom in [18].

The contain of the paper is as follows: in Section 2 we introduce the functional spaces and one key result related
to a suitable estimate of the trilinear form in the Navier–Stokes equations. In Section 3, the linearized version
of (1.1) is investigated. Existence and uniqueness of a solution as well as its regularity are obtained. The
Navier–Stokes equations with constant delay are addressed in the rest of the paper. In Section 4 we construct
the weak solution by using a concatenation procedure based on the linearized equations. The generation of
a continuous semigroup in the phase space V α is obtained in Section 5 thanks to the uniqueness of the weak
solution. Finally, in Section 6 we address the passage to the limit when the delay µ goes to zero, obtaining in
the limit the Navier–Stokes equations.

2. Functional Setting

First of all, we introduce the functional setting in which our investigations will be carried out. For a more
exhaustive description of the setting, we refer the reader to [8], Chapter 3, from Page 152.
Let us consider the torus T

3
L in R

3 of length L given by the set {x = (x1, x2, x3) ∈ R
3 : −L/2 ≤ xi ≤

L/2, xi = −L/2 is identified with xi = L/2, i = 1, 2, 3}. Consider L-periodic functions ψ(x) that can be
expanded into Fourier series

ψ(x) =
∑

ζ∈Z3
L

ei(x,ζ)ψ̂(ζ),

where

Z
3
L = {ζ = (ζ1, ζ2, ζ3) : ζi = 2πki/L, ki is an integer, i = 1, 2, 3},

and

ψ̂(ζ) = L−3

∫

T3
L

e−(y,ζ)ψ(y)dy

denote the Fourier coefficients of ψ.
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For s ∈ R, we denote by Hs(T3
L) the Sobolev space of L–periodic functions such that ψ̂(ζ) = ψ̂(−ζ) equipped

with the norm

‖ψ‖s =

(

∑

ζ∈Z3
L

(1 + |ζ|2)s|ψ̂(ζ)|2
)

1
2

.

When ψ̂(0) = 0 the corresponding subspace is denoted by Ḣs(T3
L) with equivalent norm

(

∑

ζ∈Z3
L
\{0}

|ζ|2s|ψ̂(ζ)|2
)1/2

.

In particular, these spaces are Hilbert–spaces with the inner product

(ψ1, ψ2)s =
∑

ζ∈Z3
L
\{0}

|ζ|2sψ1(ζ)ψ̂2(ζ).

We denote by Ḣ
s(T3

L) = Ḣs(T3
L)

3 and introduce the spaces

V 1 ={u ∈ Ḣ
1(T3

L), div u = 0},

V 0 ={u ∈ Ḣ
0(T3

L), div u = 0},

V −1 ={u ∈ Ḣ
−1(T3

L) = (Ḣ1(T3
L))

′, div u = 0}.

Then V −1 is the dual space of V 1 and V 1 ⊂ V 0 ⊂ V −1 where the injections are continuous and each space is
dense in the following one. We shall denote by (·, ·) the scalar product in V 0.
We introduce the Stokes operator A as in [17], Section 2.2. Page 9, with domain of A given by

D(A) = {u ∈ V 0, ∆u ∈ V 0}.

Then for the periodic boundary conditions we have

Au = −∆u.

The operator A can be seen as an unbounded positive linear selfadjoint operator on V 0, and we can define
the powers As, s ∈ R with domain D(As). We set V s = D(As/2), that is a closed subspace of Ḣs(T3

L), then

V s = {u ∈ Ḣ
s(T3

L), div u = 0}

and the norms ‖As/2u‖0 and ‖u‖s are equivalent on V s. The operator A defines an isomorphism from V s to
V s−2. In addition, A has a positive countable spectrum of finite multiplicity 0 < λ1 ≤ λ2 ≤ · · · , λj → ∞, and
the associated eigenvectors e1, e2, · · · form a complete orthogonal system in V s.
When s1 < s2, the embedding V s2 ⊂ V s1 is compact and dense. The space V −s is the dual space of V s for
s ∈ R, see Temam [17], from page 9.
We will denote by 〈·, ·〉 the duality product between V s and V −s no matter the value of s ∈ R.

Let us consider the trilinear form which describes one of the coefficients of the Navier-Stokes equations:

b(u, v, w) =
3
∑

i,j=1

∫

T3
L

uj
∂vi
∂xj

widx.

To investigate this trilinear form we use the following multiplication lemma, proved in Fursikov [8], Lemma
3.4.4, page 153 1:

Lemma 2.1. Let r3 ≥ 0. For ψ ∈ Hr1(T3
L) and ϕ ∈ Hr2(T3

L), there exists a constant c > 0 such that

‖ψϕ‖r3 ≤ c‖ψ‖r1‖ϕ‖r2 ,

if either r1 > r3, r2 > r3, r1 + r2 ≥ r3 + 3/2 or r1 ≥ r3, r2 ≥ r3, r1 + r2 > r3 + 3/2.

As a consequence, we can establish the following result concerning the domain of b:

1Note that this result holds for more general periodic functions than those of Hs(T3

L
), see Remark 2.3 below.
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Lemma 2.2. The trilinear form b can be continuously extended to V s1 × V s2+1 × V s3 for si ∈ R if either
si + sj ≥ 0 for i 6= j, s1 + s2 + s3 > 3/2 or si + sj > 0 for i 6= j, s1 + s2 + s3 ≥ 3/2. Therefore, under either
of the previous settings, there exists a constant c depending only on si such that

|b(u, v, w)| ≤ c‖u‖s1‖v‖s2+1‖w‖s3

for u ∈ V s1 , v ∈ V s2+1, w ∈ V s3 .

Proof. We consider only the case in which si + sj ≥ 0 for i 6= j, with s1 + s2 + s3 > 3/2, since the proof for
the other case follows analogously.
Note that if the si ≥ 0, i = 1, 2, 3, then the result follows by [17], Lemma 2.1, Page 12 (see also [8], Lemma
4.4.6, Page 158 for the homogeneous Dirichlet boundary conditions case).
Hence, assume that there exists only one i∗ ∈ {1, 2, 3} such that si∗ < 0 (the uniqueness comes from the fact
that si + sj ≥ 0 for i 6= j). In a first step, let us consider trigonometric polynomials functions (u1, u2, u3) ∈
V s1 × V s2+1 × V s3 . Then the integral of the product u1u2u3 exists. Indeed, using a general notation, we
obtain

∣

∣

∣

∣

∫

T3
L

u1u2u3dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

T3
L

ui∗ujukdx

∣

∣

∣

∣

≤ ‖ui∗‖si∗‖ujuk‖−si∗ ≤ c‖ui∗‖si∗‖uj‖sj‖uk‖sk

where in the last inequality we have taken r1 = sj , r2 = sk and r3 = −si∗, that according to the assumptions,
are such that r1 ≥ r3, r2 ≥ r3 and r1 + r2 > 3/2+ r3, so that we can apply Lemma 2.1. The proof is therefore
complete, since one of the above factors corresponds to a derivative, hence this yields to the +1 that appears
in the statement of Lemma 2.2. Finally, it suffices to remind that the trigonometric polynomials functions are
dense in the spaces V s, hence the proof is complete. �

Remark 2.3. Similar results were proved by Fursikov [8] when considering a bounded domain Ω ⊂ R
3,

∂Ω ∈ C∞ with homogeneous Dirichlet conditions, but with more restrictive assumptions. In Lemma 3.4.2,
Page 150, with the additional assumptions si ≥ 0, and in Lemma 3.4.6, Page 157, under the additional
requirement that the parameters si > −1/2 for i = 1, 2, 3. In fact, these last constraints ensure that the
spaces Hs/2 and V s coincide in the homogeneous Dirichlet conditions case. On the other hand, in the periodic
boundary setting, for a similar result as Lemma 2.2 see also [17], Lemma 2.1, Page 12, where the additional
assumptions are si ≥ 0.

From b we can derive a bilinear operator B : V s1 × V s2+1 → V −s3 given by

〈B(u, v), w〉 = b(u, v, w),

such that

‖B(u, v)‖−s3 ≤ cB‖u‖s1‖v‖s2+1(2.1)

with s1, s2, s3 satisfying the conditions of Lemma 2.2. Note that in the following we shall denote the constant
cB simply by c, a positive constant that may change from line to line.

The following property of b is well-known:

Lemma 2.4. Suppose that u, v, w ∈ V 1. Then we have b(u, v, w) = −b(u,w, v), hence

b(u, v, v) = 0.

Finally we mention that for µ > 0 the spaces L∞(0, µ, V α), L2(0, µ, V
α), C([0, µ], V α) and Cβ([0, µ], V α), β ∈

(0, 1), have the usual meanings.

3. The 3D linearized Navier–Stokes equations

In the sequel, we consider the 3D linearized Navier–Stokes equations with periodic boundary conditions over
the torus T3

L in R
3

u′(t, x) + (ψ(t),∇)u(t)− ν∆u(t) +∇p(t, x) = f(x),

div u(t, x) = 0, u(0) = u0(x).
(3.1)
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Let us emphasize that these equations are a simpler version of the 3D Navier–Stokes equations, since the
term (u,∇)u has been replaced by (ψ,∇)u, where ψ will have a suitable regularity. As we will see below, the
analysis of the existence, uniqueness and regularity of solutions to (3.1) will play an important role to further
deal with the delayed Navier–Stokes equations.

3.1. Existence and Uniqueness of weak solutions. Assume from now on that α is a real parameter such
that α > 1/2. In virtue of the well-known Helmholtz-projection, which is commonly applied to the Navier-
Stokes equations in order to eliminate the pressure, the meaning of a weak solution to (3.1) is understood as
follows:

Definition 3.1. For α > 1/2, let µ > 0, ψ be a fixed element in L2(0, µ, V
1+α), u0 ∈ V 0 and f ∈ V −1. We

say that u is a weak solution to (3.1) on (0, µ) if u ∈ L2(0, µ, V
1) and

(3.2)
d

dt
〈u(t), v〉 = 〈f − νAu(t)−B(ψ(t), u(t)), v〉, u(0) = u0,

for any v ∈ V 1, or
du(t)

dt
= f − νAu(t)−B(ψ(t), u(t)), u(0) = u0,

as an equation in V −1.

Notice that the last definition makes sense because the right hand side belongs to L1(0, µ, V
−1). Indeed we

have Au(·) ∈ L2(0, µ, V
−1) since

(3.3)

∫ µ

0

‖Au(r)‖2−1dr =

∫ µ

0

‖A−1/2Au(r)‖20dr =

∫ µ

0

‖u(r)‖21dr <∞,

and, thanks to (2.1),
‖B(ψ(t), u(t))‖−1 ≤ c‖ψ(t)‖1‖u(t)‖1.

The time derivative in the above definition has to be understood in the distributional sense, hence multiplying
(3.2) by a test function ϕ ∈ C∞

0 ([0, µ]), by integration we obtain

−

∫ µ

0

〈u(r), v〉ϕ′(r)dr + ν

∫ µ

0

〈A
1
2u(r), A

1
2 v〉ϕ(r)dr +

∫ µ

0

b(ψ(r), u(r), v)ϕ(r)dr

=

∫ µ

0

〈f, v〉ϕ(r)dr.

(3.4)

Lemma 3.2. For α > 1/2, assume that ψ ∈ L2(0, µ, V
1+α). Then the equation (3.2) has a (weak) solution

in L∞(0, µ, V 0) ∩L2(0, µ, V
1) ∩Cγ([0, µ], V −s), 0 ≤ γ ≤ 1/2, s ≥ 1. Moreover, u is weakly continuous in V 0.

Proof. Let denote by πm the projection on the linear subspace of V 0 given by the span of the eigenvectors
e1, · · · , em, which are supposed to have norm one in V 0. Consider the Galerkin–approximations um(t) ∈ πmV

0

to (3.2), then
u′m(t) + νAum(t) + πmB(ψ(t), um(t)) = πmf, um(0) = πmu0.

By standard methods we obtain the following a priori estimate

‖um‖2L∞(0,µ,V 0) + ν‖um‖
2
L2(0,µ,V 1) ≤ ‖u0‖

2
0 +

1

ν
‖f‖2−1.

In addition, for s ≥ 1 and 0 ≤ τ < t ≤ µ, we have

‖um(t)− um(τ)‖−s ≤ν(t− τ)
1
2

(
∫ µ

0

‖Aum(r)‖
2
−sdr

)
1
2

+ (t− τ)
1
2

(
∫ µ

0

‖πmB(ψ(r), um(r))‖2−sdr

)
1
2

.

On the other hand,
∫ µ

0

‖Aum(r)‖
2
−sdr =

∫ µ

0

‖A−s/2Aum(r)‖20dr =

∫ µ

0

‖um(r)‖2−s+2dr ≤ c‖um‖
2
L2(0,µ,V 1),
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for an appropriate embedding constant c (note that V 1 ⊆ V −s+2 because s ≥ 1). Furthermore, by Lemma
2.1, with the choice s1 = 1 + α, s2 = −1, s3 = s ≥ 1 > 3/2 − α (where this last inequality follows by the
assumption α > 1/2), we obtain

‖B(ψ(r), um(r))‖−s ≤ c‖ψ(r)‖1+α‖um(r)‖0.

Hence the sequence (um)m∈N is uniformly bounded in C
1
2 ([0, µ], V −s) ∩ L2(0, µ, V

1). By the Dubinskij-
theorem, see Vishik and Fursikov [19] Chapter 4, Theorem 4.1, (um)m∈N is relatively compact in L2(0, µ, V

0)∩
C([0, µ], V −s), weak relatively compact in L2(0, µ, V

1) and weak star relatively compact in L∞(0, µ, V 0).
Standard arguments now allow us to conclude that the limit point of this sequence satisfies (3.4) in a weak
sense. Indeed, the following equations are equivalent to the Galerkin approximations

−

∫ t

0

〈um(r), v〉ϕ′(r)dr+ν

∫ t

0

〈A1/2um(r), A1/2v〉ϕ(r)dr +

∫ t

0

πmb(ψ(r), um(r), v)ϕ(r)dr

= (πmu0, v)ϕ(0)− (um(t), v)ϕ(t) +

∫ t

0

〈πmf, v〉ϕ(r)dr,

(3.5)

for v ∈ V s and ϕ ∈ C∞([0, t]), for every t ∈ [0, µ]. In particular, there exists a subsequence, also denoted by
(um)m∈N and an element u ∈ L∞(0, µ, V 0) ∩ L2(0, µ, V

1) ∩ C([0, µ], V −s) such that

lim
m→∞

‖um − u‖L2(0,µ,V 0) = 0,

lim
m→∞

‖um − u‖C([0,µ],V−s) = 0,

w− lim
m→∞

um = u in L2(0, µ, V
1),

w − ∗ lim
m→∞

um = u in L∞(0, µ, V 0),

lim
m→∞

‖um(t)− u(t)‖−s = 0, t ∈ [0, µ].

The last limit shows in particular that u(0) = u0. In addition, it follows easily

lim
m→∞

∫ t

0

〈um(r), v〉ϕ′(r)dr =

∫ t

0

〈u(r), v〉ϕ′(r)dr

lim
m→∞

∫ t

0

〈A
1
2um(r), A

1
2 v〉ϕ(r)dr =

∫ t

0

〈A
1
2 u(r), A

1
2 v〉ϕ(r)dr,

lim
m→∞

∫ t

0

πmb(ψ(r), um(r), v)ϕ(r)dr =

∫ t

0

b(ψ(r), u(r), v)ϕ(r)dr.

In the last limit we have used that for v ∈ πmV
s

|b(ψ(r), um(r), v)ϕ(r) − b(ψ(r), u(r), v)ϕ(r)| ≤ ‖ψ(r)‖1+α‖um(r) − u(r)‖0‖v‖s|ϕ(r)|

for a.e. t ∈ [0, µ] which follows by Lemma 2.2.
Finally, the weak continuity of u in V 0 follows by Lemma 1.4, Chapter 3, Page 263 in [16], since in particular
u ∈ L∞(0, µ, V 0) ∩ C([0, µ], V −s) and V 0 ⊂ V −s with a continuous injection. �

Remark 3.3. Some of the steps of the previous proof are based on Lemma 2.2, which is valid for boundary
periodic conditions. Moreover, as a consequence of (3.5), taking a test function ϕ ∈ C∞([0, t]), the weak
solution of (3.2) satisfies

−

∫ t

0

〈u(r), v〉ϕ′(r)dr + ν

∫ t

0

〈A
1
2u(r), A

1
2 v〉ϕ(r)dr +

∫ t

0

b(ψ(r), u(r), v)ϕ(r)dr

=(u0, v)ϕ(0)− (u(t), v)ϕ(t) +

∫ t

0

〈f, v〉ϕ(r)dr,

(3.6)

for every t ∈ [0, µ].

In the following lemma, we establish an energy equality which will be essential to prove the uniqueness of
solutions to (3.1). It relies on the fact that the solution is such that u′ ∈ L2(0, µ, V

−1). This last property is
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well–known for the 2D Navier Stokes equations, see for example [17], Theorem 3.1, Page 21, but it is unknown
for the 3D case, although for our linearized system (3.1) holds true.

Lemma 3.4. Suppose that u0 ∈ V 0 and ψ ∈ L2(0, µ, V
1+α). Then, any weak solution u to (3.1) satisfies the

energy equality

‖u(t)‖20 + 2ν

∫ t

0

‖u(r)‖21dr = ‖u0‖
2
0 + 2

∫ t

0

〈f, u(r)〉dr

for t ∈ [0, µ]. In addition u ∈ C([0, µ], V 0).

Proof. We remark that we already know that u′ ∈ L1(0, µ, V
−1) (see the comment after Definition 3.1). We

want to prove now that this derivative is more regular, namely u′ ∈ L2(0, µ, V
−1). The termAu ∈ L2(0, µ, V

−1)
thanks to (3.3). Moreover,

∫ µ

0

‖B(ψ(r), u(r))‖2−1dr ≤ c‖ψ‖2L2(0,µ,V 1+α)‖u‖
2
L∞(0,µ,V 0) <∞,

which follows by Lemma 2.2 for s1 = 1 + α, s2 = −1, s3 = 1. As a consequence,

u ∈ L2(0, µ, V
1), u′ ∈ L2(0, µ, V

−1)

hence, Lemma 1.2, Chapter 3, Page 260 of [16] ensures that u ∈ C([0, µ], V 0) and fulfills

d

dt
‖u(t)‖20 = 2〈

du(t)

dt
, u(t)〉,

where the time derivatives are given in the distributional sense. This together with Lemma 2.4 above imply

(3.7)
1

2

d

dt
‖u(t)‖20 + ν‖u(t)‖21 = 〈f, u(t)〉.

Integrating this equality, the energy equality follows easily.
�

As an immediate consequence of the previous result, in the next lemma we can establish the uniqueness of
weak solutions to (3.1).

Lemma 3.5. Suppose that the assumptions of Lemma 3.2 hold. Then, there exists only one weak solution to
(3.1).

Proof. Let u1 and u2 be two weak solutions to (3.1) corresponding to the same elements ψ, u0 and f . Then,
by Lemma 3.2, u1 − u2 ∈ L2(0, µ, V

1). Furthermore,

d

dt
(u1(t)− u2(t)) = −νA(u1(t)− u2(t))−B(ψ(t), u1(t)− u2(t)),

hence, by the same reasoning as Lemma 3.4, d
dt(u

1 − u2) ∈ L2(0, µ, V
−1), with energy equality given by

‖u1(t)− u2(t)‖20 + 2ν

∫ t

0

‖u1(r) − u2(r)‖21dr = 0.

This shows the uniqueness of solutions to (3.1). �

3.2. Further regularity properties. In what follows, assuming more regularity of the initial condition u0
and the external force f , we are going to show that we obtain more regularity for the weak solution u of (3.1).
This extra regularity of u will be essential to further prove the uniqueness of solutions to the delay system
(1.1), see Section 4.

Lemma 3.6. Assume that ψ ∈ L2(0, µ, V
1+α), u0 ∈ V α and f ∈ V α−1. Then the equation (3.2) has a (weak)

solution in L∞(0, µ, V α) ∩ L2(0, µ, V
1+α).

Proof. For the Galerkin approximations um, considering its scalar product with Aαum(t) in the space V 0, we
obtain

d

2dt
‖um(t)‖

2
α + ν‖um(t)‖

2
α+1 ≤ |b(ψ(t), um(t), Aαum(t))|+ |〈f,Aαum(t)〉|.
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Hence, by choosing in Lemma 2.2 s1 = 1 + α, s2 = α and s3 = −α (the conditions of that lemma hold since
α > 1/2), we have

d

dt
‖um(t)‖

2
α + 2ν‖um(t)‖

2
α+1 ≤ 2c‖ψ(t)‖1+α‖um(t)‖1+α‖um(t)‖α +

2

ν
‖f‖2α−1 +

ν

2
‖um(t)‖

2
α+1

≤
c2

ν
‖ψ(t)‖21+α‖um(t)‖

2
α + ν‖um(t)‖2α+1 +

2

ν
‖f‖2α−1 +

ν

2
‖um(t)‖

2
α+1

and therefore

(3.8)
d

dt
‖um(t)‖

2
α +

ν

2
‖um(t)‖

2
α+1 ≤

c2

ν
‖ψ(t)‖21+α‖um(t)‖

2
α +

2

ν
‖f‖2α−1.

By Gronwall’s Lemma we first obtain

(3.9) sup
m∈N

‖um‖L∞(0,µ,V α) <∞.

Indeed, Gronwall’s Lemma gives us the estimate

‖um(t)‖
2
α ≤ ‖u0‖

2
αe

c2

ν

∫
t

0
‖ψ(r)‖2

1+αdr +
2

ν
‖f‖2α−1

∫ t

0

e
c2

ν

∫
t

τ
‖ψ(r)‖2

1+αdrdτ

where the right hand side is independent of m. Then substituting (3.9) into (3.8) and integrating we have

sup
m∈N

‖um‖L2(0,µ,V 1+α) <∞.

As a consequence, there exists a subsequence of the sequence of Galerkin approximations that is converging
to ũ weakly-star in L∞(0, µ, V α) and weakly in L2(0, µ, V

1+α). On the other hand, we know from Lemma
2.2 that we can extract a subsequence converging to u ∈ L∞(0, µ, V 0) ∩ L2(0, µ, V

1). Therefore, taking into
account the dense embedding of V α onto V 0 (and hence the dense embedding L2(0, µ, V

α) onto L2(0, µ, V
0))

we have ũ = u in L∞(0, µ, V 0). Similarly, we can identify ũ and u in L2(0, µ, V
1). �

Let us now prove the continuity of u(t) in V α.

Lemma 3.7. Let ψ ∈ L2(0, µ, V
1+α), u0 ∈ V α and f ∈ V α−1. Then u ∈ C([0, µ], V α).

Proof. We know from Lemma 3.6 that u ∈ L2(0, µ, V
1+α). Furthermore, d

dtu ∈ L2(0, µ, V
α−1), since straight-

forwardly Au ∈ L2(0, µ, V
α−1) and, in virtue of Lemma 2.2, taking s1 = 1 + α, s2 = α − 1, s3 = 1 − α, we

obtain
∫ µ

0

‖B(ψ(r), u(r))‖2α−1dr ≤ c‖ψ‖2L2(0,µ,V 1+α)‖u‖
2
L∞(0,µ,V α).

Hence, Aα/2u ∈ L2(0, µ, V
1) and d

dtA
α/2u ∈ L2(0, µ, V

−1). Now, using Lemma 1.2, Chapter 3, Page 260 of

[16] we deduce that Aα/2u ∈ C([0, µ], V 0), which completes the proof. �

Let Xµ
α be the Hilbert space L2(0, µ, V

1+α)× V α.

Theorem 3.8. Consider the mapping

U : Xµ
α → Xµ

α , U(ψ, u0) = (u, u(µ))

where u is the weak solution to (3.1) for the function ψ and initial condition u0. Then, under the assumptions
of Lemma 3.6, it follows that U is a continuous mapping in Xµ

α .

Proof. By Lemma 3.6 and Lemma 3.7 this mapping is well–defined. Let (ψi, ui0) ∈ Xµ
α and let ui for i = 1, 2

be the associated weak solutions. Then, the distributional derivative exists

d(u1(t)− u2(t))

dt
= A(u1(t)− u2(t)) +B(ψ1(t)− ψ2(t), u1(t)) +B(ψ2(t), u1(t)− u2(t))

Hence, for the distributional derivative of ‖u1(t)− u2(t)‖2α we have

d‖u1(t)− u2(t)‖2α
dt

+ 2ν‖u1(t)− u2(t)‖21+α ≤ 2c‖ψ1(t)− ψ2(t)‖1+α‖u
1(t)‖1+α‖u

1(t)− u2(t)‖α

+ 2c‖ψ2(t)‖1+α‖u
1(t)− u2(t)‖1+α‖u

1(t)− u2(t)‖α,

(3.10)
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where we have applied Lemma 2.2 with s1 = 1+α, s2 = α, s3 = −α in order to estimate the terms related to
the nonlinearity. From this inequality we derive

d‖u1(t)− u2(t)‖2α
dt

≤ c2‖ψ1(t)− ψ2(t)‖21+α + ‖u1(t)‖21+α‖u
1(t)− u2(t)‖2α +

c2

ν
‖ψ2(t)‖21+α‖u

1(t)− u2(t)‖2α.

Applying Gronwall’s lemma we obtain

‖u1(t)− u2(t)‖2α ≤‖u1(0)− u2(0)‖2α exp

(
∫ t

0

(‖u1(r)‖21+α +
c2

ν
‖ψ2(r)‖21+α)dr

)

+ c2
∫ t

0

exp

(
∫ t

s

(‖u1(r)‖21+α +
c2

ν
‖ψ2(r)‖21+α)dr

)

‖ψ1(s)− ψ2(s)‖21+αds.

Now integrating the inequality (3.10) from 0 to µ we obtain

ν‖u1 − u2‖2L2(0,µ,V 1+α) ≤‖u1(0)− u2(0)‖2α + c2‖ψ1 − ψ2‖2L2(0,µ,V 1+α)

+‖u1‖2L2(0,µ,V 1+α) sup
t∈[0,µ]

‖u1(t)− u2(t)‖2α +
c2

ν
‖ψ2‖2L2(0,µ,V 1+α) sup

t∈[0,µ]

‖u1(t)− u2(t)‖2α.

Now it suffices to consider a sequence (ψn, un0 )n∈N ⊂ Xµ
α converging to (ψ, u0) ∈ Xµ

α , and let (un)n∈N be
the associated sequence of weak solutions. Since ‖ψn‖2L2(0,µ,V 1+α) is bounded, by the last two inequalities

we derive that (un, un(µ))n∈N converges to (u, u(µ)) in Xµ
α , where u is the weak solution related to the data

(ψ, u0) ∈ Xµ
α .

�

4. The 3D Navier-Stokes Equations with Delay

Let µ be a positive number. We consider the following version of the 3D Navier-Stokes equations with constant
delay µ:

u′(t, x) + (u(t− µ),∇)u(t)− ν∆u(t) +∇p(t, x) = f(x),

div u(t, x) = 0, u(0) = u0(x), u(τ) = φ(τ), τ ∈ [−µ, 0).
(4.1)

Denote the solution of this equation depending on the time shift by uµ. Taking again the Helmholtz-projection
into account we can formulate the equation as

(4.2)











duµ(t) + (Auµ(t) +B(uµ(t− µ), uµ(t)))dt = fdt, t ≥ 0,

uµ(t) = φ(t), t ∈ [−µ, 0),

uµ(0) = u0.

Definition 4.1. Let µ > 0 and α > 1/2. We are given u0 ∈ V α, φ ∈ L2(−µ, 0, V 1+α) and f ∈ V α−1. We say
that uµ is a weak solution to system (4.2) on the time interval [−µ, T ] if

uµ ∈ L2(−µ, T, V
1+α),

with uµ(0) = u0, u
µ(t) = φ(t) for t ∈ [−µ, 0), and, given any v ∈ V α+1 and any test function ϕ ∈ C∞

0 ([0, T ]),

−

∫ T

0

〈uµ(r), v〉ϕ′(r)dr + ν

∫ T

0

〈A1/2uµ(r), A1/2v〉ϕ(r)dr +

∫ T

0

〈B(uµ(r − µ), uµ(r)), v〉ϕ(r)dr

=

∫ T

0

〈f, v〉ϕ(r)dr.(4.3)

Theorem 4.2. Suppose that φ ∈ L2(−µ, 0, V
1+α), u0 ∈ V α and f ∈ V α−1. Then there exists a unique weak

solution to (4.3) in the sense of Definition 4.1. Furthermore, uµ|[0,T ] ∈ C([0, T ], V α) and, if 0 ≤ γ ≤ 1/2 and

s ≥ 1, we also obtain uµ|[0,T ] ∈ L∞(0, T, V α) ∩Cγ([0, T ], V −s), and duµ

dt ∈ L2(0, T, V
α−1).
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Proof. Without loss of generality, assume that T = kµ for some k ∈ N.
In what follows, by induction we are going to construct a sequence (uµn)n∈N such that any uµn is a weak
solution to the delay problem (4.1) on [−µ, µ], with initial condition uµn(0) = uµn−1(µ) and initial delay
function uµn(t− µ) = uµn−1(t), for t ∈ [0, µ) (hence t− µ ∈ [−µ, 0)).
Step 1: Existence and uniqueness of the first element of the sequence, namely uµ1 , corresponding to φ ∈
L2(−µ, 0, V

1+α) and u0 ∈ V α. For this first step we take

ψ(t) := uµ1 (t− µ) = φ(t− µ) for almost all t ∈ [0, µ).

Due to the regularity of φ, we have ψ ∈ L2(0, µ, V
1+α) and therefore, as a consequence of Lemma 3.2, Lemma

3.5 and Lemma 3.6, there exists a unique weak solution uµ1 ∈ L2(−µ, µ, V
1+α)∩L∞(0, µ, V α)∩Cγ([0, µ], V −s)

to (4.1) corresponding to u0 and φ.
Moreover, in virtue of Lemma 3.7, such solution fulfills uµ1 ∈ C([0, µ], V α) and thus uµ1 (µ) ∈ V α.

Step i: Let us assume that we have already obtained the elements uµj for j = 1, · · · , i − 1. In particular,

uµi−1 ∈ L2(−µ, µ, V
1+α)∩L∞(0, µ, V α)∩Cγ([0, µ], V −s)∩C([0, µ], V α), such that in particular uµi−1(µ) ∈ V α.

We would like to obtain the new element of the sequence uµi , defined on [−µ, µ] and with initial condition
uµi (0) = uµi−1(µ) and delay function uµi (t−µ) = uµi−1(t) for almost all t ∈ [0, µ). Then, for almost all t ∈ [0, µ)
choosing now

ψ(t) := uµi (t− µ) = uµi−1(t) ∈ L2(0, µ, V
1+α),

we obtain uµi ∈ L2(−µ, µ, V
1+α)∩L∞(0, µ, V α)∩Cγ([0, µ], V −s), as a direct result of Lemma 3.2, Lemma 3.5

and Lemma 3.6 (note that uµi (0) ∈ V α). Lemma 3.7 implies uµi ∈ C([0, µ], V α).
Now it suffices to define the function u given by

uµ(t) =



































φ(t) if t ∈ [−µ, 0),
u0 if t = 0,
uµ1 (t) if t ∈ [0, µ],
uµ2 (t− µ) if t ∈ [µ, 2µ],
...

...
uµk(t− (k − 1)µ) if t ∈ [(k − 1)µ, T ].

(4.4)

Then uµ ∈ L2(−µ, T, V
1+α), uµ|[0,T ] ∈ L∞(0, T, V α) ∩Cγ([0, T ], V −s).

It remains to prove that uµ given by (4.4) satisfies (4.3). To simplify the presentation, let us assume that only
the two first pieces uµ1 and uµ2 come into play.
Take a test function ϕ ∈ C∞

0 ([0, 2µ]). Since uµ1 is a solution on [−µ, µ] corresponding to the initial delay
function φ, thanks to (3.6) and taking into account that ϕ(0) = 0, we obtain

−

∫ µ

0

〈uµ1 (r), v〉ϕ
′(r)dr + ν

∫ µ

0

〈A1/2uµ1 (r), A
1/2v〉ϕ(r)dr

+

∫ µ

0

〈B(φ(r − µ), uµ1 (r)), v〉ϕ(r)dr −

∫ µ

0

〈f, v〉ϕ(r)dr

= −(uµ1 (µ), v)ϕ(µ).

(4.5)

On the other hand, since uµ2 is a solution on [−µ, µ], such that uµ2 (t− µ) = uµ1 (t), for almost all t ∈ [0, µ), for
a test function ϕ̂ ∈ C∞([0, µ]) to be determined later, thanks to (3.6) we have

−

∫ µ

0

〈uµ2 (r), v〉ϕ̂
′(r)dr + ν

∫ µ

0

〈A1/2uµ2 (r), A
1/2v〉ϕ̂(r)dr

+

∫ µ

0

〈B(uµ1 (r), u
µ
2 (r)), v〉ϕ̂(r)dr −

∫ µ

0

〈f, v〉ϕ̂(r)dr

= (uµ2 (0), v)ϕ̂(0)− (uµ2 (µ), v)ϕ̂(µ),
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or equivalently

−

∫ 2µ

µ

〈uµ2 (r − µ), v〉ϕ̂′(r − µ)dr + ν

∫ 2µ

µ

〈A1/2uµ2 (r − µ), A1/2v〉ϕ̂(r − µ)dr

+

∫ 2µ

µ

〈B(uµ1 (r − µ), uµ2 (r − µ)), v〉ϕ̂(r − µ)dr −

∫ 2µ

µ

〈f, v〉ϕ̂(r − µ)dr

= (uµ2 (0), v)ϕ̂(0)− (uµ2 (µ), v)ϕ̂(µ),

hence, taking as test function ϕ̂(r − µ) := ϕ(r), r ∈ [µ, 2µ], since then ϕ̂(µ) = ϕ(2µ) = 0 we have

−

∫ 2µ

µ

〈uµ2 (r − µ), v〉ϕ′(r)dr + ν

∫ 2µ

µ

〈A1/2uµ2 (r − µ), A1/2v〉ϕ(r)dr

+

∫ 2µ

µ

〈B(uµ1 (r − µ), uµ2 (r − µ)), v〉ϕ(r)dr −

∫ 2µ

µ

〈f, v〉ϕ(r)dr

= (uµ2 (0), v)ϕ(µ),

(4.6)

therefore, summing (4.5) and (4.6), taking into account the definition of uµ, since by construction uµ2 (0) =
uµ1 (µ) we obtain

−

∫ 2µ

0

〈uµ(r), v〉ϕ′(r)dr + ν

∫ 2µ

0

〈A1/2uµ(r), A1/2v〉ϕ(r)dr +

∫ 2µ

0

〈B(uµ(r − µ), uµ(r)), v〉ϕ(r)dr

=

∫ 2µ

0

〈f, v〉ϕ(r)dr,

and this completes the proof.
�

Remark 4.3. As we have shown, under the conditions of Theorem 4.2, the weak solution uµ ∈ L2(−µ, T, V
1+α)∩

L∞(0, T, V α) ∩Cγ([0, T ], V −s) ∩C([0, T ], V α), with 0 ≤ γ ≤ 1/2, s ≥ 1 and α > 1/2. However, the estimates
in the previous spaces are not uniform in µ. Nevertheless, the estimates in L2(−µ, T, V

1) and L∞(0, T, V 0) are
uniform in µ, which follows by the estimates obtained in Lemma 3.2. For a uniform estimate of the solution
in the space of Hölder continuous functions see the Lemma 4.4. Let us emphasize that, in order to obtain
uniform estimates in Cγ([0, T ], V −s), we have to pay the price of replacing the space V −s, s ≥ 1, with V −s

being s > 3/2. This uniform estimate will be used in Section 6 to pass to the limit when µ→ 0.

Lemma 4.4. Under the conditions of Theorem 4.2, the weak solution u is uniformly bounded in µ in the space
Cγ([0, T ], V −s), for 0 ≤ γ ≤ 1/2 and s > 3/2.

Proof. Let us assume that s > 3
2 and 0 ≤ τ < t ≤ T , then

‖u(t)− u(τ)‖−s ≤ν(t− τ)
1
2

(
∫ T

0

‖Au(r)‖2−sdr

)
1
2

+ (t− τ)
1
2

(
∫ T

0

‖B(u((r − µ), u(r))‖2−sdr

)
1
2

.

On the one hand, similar to the proof in Lemma 3.2, the estimate of
∫ T

0 ‖Au(r)‖2−sdr follows. Furthermore,
by Lemma 2.1, with the choice s1 = s2 = 0, s3 = s > 3/2, we obtain

‖B(u(r − µ), u(r))‖−s ≤ c‖u(r − µ)‖1‖u(r)‖0.

Putting all the estimates together completes the proof. �

5. The semigroup generated by the solution of (4.2)

From now on, denote by Yµα the space L2(−µ, 0, V
1+α)× V α.
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Lemma 5.1. The weak solution u to (4.2) corresponding to the initial data (φ, u0) ∈ Yµα defines a semigroup
S(t) : Yµα → Yµα , for t ≥ 0, given by

(5.1) S(t)(φ, u0) = (uµt , u
µ(t)),

where uµt is the segment function defined by uµt (s) = uµ(t+ s), s ∈ (−µ, 0).

Proof. To simplify the proof, we drop off the superscript µ.
First of all, it is straightforward to check that S(0) = IdYµ

α
.

In order to prove the semigroup property, namely, S(t + τ)(φ, u0) = S(t)(S(τ)(φ, u0)), for t, τ ≥ 0, it is
sufficient to consider u1 to be the solution to (4.2) on [−µ, τ ], with initial data (φ, u0) ∈ Yµα , and u

2 to be the
solution to (4.2) on [−µ, t], with initial data (u1τ , u

1(τ)) ∈ Yµα . Now, for almost all θ ∈ [−µ, τ + t] we define
the function u as follows

u(θ) =

{

u1(θ) if θ ∈ [−µ, τ ],
u2(θ − τ) if θ ∈ [τ, τ + t].

(5.2)

Let us observe that if θ ∈ [τ − µ, τ ] then u1(θ) = u2(θ − τ), or equivalently, u1(τ + s) = u1τ (s) = u2(s), for
almost all s ∈ [−µ, 0], which follows from the fact that the initial delay function for u2 is given by u1τ .
In order to prove the semigroup property we simply need to show that u is a solution on [−µ, t+ τ ], which is
similar to the concatenation property proved in Theorem 4.2, hence we omit the proof.

�

Remark 5.2. There exists a clear relation between the mapping U given in Theorem 3.8 and the semigroup
S(·). Let us recall that Xµ

α = L2(0, µ, V
1+α)× V α and U(ψ, u0) = (u, u(µ)) for (ψ, u0) ∈ Xµ

α .
If now (φ, u0) ∈ Yµα , then

S(µ)(φ(·), u0) = (uµ(·), u(µ)) = (u(µ+ ·), u(µ)) = U(ψ(·), u0),

which relies on the fact that if φ ∈ L2(−µ, 0, V
1+α), then ψ(·) := φ(· − µ) is such that ψ ∈ L2(0, µ, V

1+α).

Note that since confusion is not possible, we have dropped off the superscript µ from the notation of the
solution uµ.

Lemma 5.3. For t ≥ 0, the semigroup S(t) given by (5.1) is continuous on Yµα .

Proof. Given t ≥ 0, there exists k ∈ N such that t ∈ [kµ, (k + 1)µ]. Due to the relationship between the
mapping U and the semigroup S, see Remark 5.2, we have that

S(t)(φ(·), u0) = S(t− kµ)S(kµ)(φ(·), u0) = S(t− kµ)(S(µ) ◦ · · · ◦ S(µ))(φ(·), u0)

= S(t− kµ)(U ◦ · · · ◦ U)(ψ(·), u0).

We proved previously in Theorem 3.8 that U is a continuous map in Xµ
α . Since 0 ≤ t− kµ ≤ µ, it is sufficient

to prove the continuity of S on the time interval [0, µ].
Let us consider S(t) for t ∈ [0, µ], let (φi, ui0) ∈ Yµα , and let ui for i = 1, 2 be the associated weak solutions.
Note that because t ∈ [0, µ] the nonlinear term can be handle as follows:

B(u1(t− µ), u1(t))−B(u2(t− µ), u2(t)) = B(u2(t− µ), u1(t)− u2(t)) +B(u1(t− µ)− u2(t− µ), u1(t))

= B(φ2(t− µ), u1(t)− u2(t)) +B(φ1(t− µ)− φ2(t− µ), u1(t)).

Then, in a similar way to the proof of Theorem 3.8, we arrive at

‖u1(t)− u2(t)‖2α ≤‖u1(0)− u2(0)‖2α exp

(
∫ t

0

(‖u1(r)‖21+α +
c2

ν
‖φ2(r − µ)‖21+α)dr

)

+c2
∫ t

0

exp

(
∫ t

s

(‖u1(r)‖21+α +
c2

ν
‖φ2(r − µ)‖21+α)dr

)

‖φ1(s− µ)− φ2(s− µ)‖21+αds.

and

ν‖u1 − u2‖2L2(0,µ,V 1+α) ≤ ‖u1(0)− u2(0)‖2α + c2‖φ1 − φ2‖2L2(−µ,0,V 1+α)

+ ‖u1‖2L2(0,µ,V 1+α) sup
t∈[0,µ]

‖u1(t)− u2(t)‖2α +
c2

ν
‖φ2‖2L2(−µ,0,V 1+α) sup

t∈[0,µ]

‖u1(t)− u2(t)‖2α.
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From this last inequality, we obtain a suitable inequality for ‖u1t − u2t‖
2
L2(−µ,0,V 1+α), since

‖u1t − u2t‖
2
L2(−µ,0,V 1+α) =

∫ 0

−µ

‖u1(t+ r)− u2(t+ r)‖21+αdr

=

∫ 0

t−µ

‖u1(r) − u2(r)‖21+αdr +

∫ t

0

‖u1(r) − u2(r)‖21+αdr

≤ ‖φ1 − φ2‖2L2(−µ,0,V 1+α) + ‖u1 − u2‖2L2(0,µ,V 1+α).

Now it suffices to consider a sequence (φn, un0 )n∈N ⊂ Yµα converging to (φ, u0) ∈ Yµα . Let (un)n∈N be the
associated sequence of weak solutions corresponding to (φn, un0 )n∈N, while that u denotes the solution of
(4.3) corresponding to (φ, u0). Since ‖φn‖2L2(−µ,0,V 1+α) is bounded, by the last inequalities we derive that

(unt , u
n(µ))n∈N converges to (ut, u(µ)) in Yµα .

�

6. The convergence µ→ 0

In this section we would like to study the behavior of the solution uµ when the delay µ tends to zero. To be
a bit more precise, we will prove that one can extract a subsequence, still denoted uµ, that converges to u
in some appropriate sense and that u is a weak solution to the 3D Navier-Stokes equations associated to the
initial condition u0.

Theorem 6.1. Given T > 0, let {µn}n∈N a sequence such that limn→∞ µn = 0. Assume that φµn ∈
L2(−µn, 0, V

1+α), such that supn∈N ‖φ
µn‖L2(−µn,0,V 1+α) <∞. Let {uµn

0 }n∈N ⊂ V α , such that w–limn→∞ uµn

0 =

u0 in V 0, and f ∈ V α−1. If uµn denotes the corresponding weak solution of (4.2) on [−µn, T ] with u
µn(0) =

uµn

0 and uµn(t) = φµn(t) for almost all t ∈ [−µn, 0), then we can extract a subsequence that converges in
L2(0, T, V

0) ∩ C([0, T ], V −s), s > 3/2, to a limit u when n goes to infinity. Moreover, the limit u is a weak
solution of the 3D Navier-Stokes equations, namely, given any v ∈ V 1 and any test function ϕ ∈ C∞

0 ([0, T ])
then

−

∫ T

0

〈u(r), v〉ϕ′(r)dr + ν

∫ T

0

〈A1/2u(r), A1/2v〉ϕ(r)dr +

∫ T

0

〈B(u(r), u(r)), v〉ϕ(r)dr

=

∫ T

0

〈f, v〉ϕ(r)dr(6.1)

with u(0) = u0 ∈ V 0.

Proof. Using the results of the previous sections, we have that the sequence uµn is uniformly bounded in
L∞(0, T, V 0) ∩ L2(0, T, V

1) ∩ Cγ([0, T ], V −s), for 0 ≤ γ ≤ 1/2 and s > 3/2, which is compactly embedded in
L2(0, T, V

0) ∩C([0, T ], V −s). Hence, we deduce that there exists a subsequence still denoted uµn such that

lim
n→∞

‖uµn − u‖L2(0,T,V 0) = 0,

w− lim
n→∞

uµn = u in L2(0, T, V
1),

lim
n→∞

‖uµn(t)− u(t)‖−s = 0, ∀t ∈ [0, T ],

lim
n→∞

〈uµn(t)− u(t), v〉 = 0, ∀t ∈ [0, T ], v ∈ V s, s > 3/2.

In particular,

0 = lim
n→∞

‖uµn(0)− u(0)‖−s = lim
n→∞

‖uµn

0 − u(0)‖−s.

Since by assumption limn→∞(uµn

0 , v) = (u0, v), ∀v ∈ V 0, we deduce that u(0) = u0 ∈ V 0.
From the previous convergences, it is straightforward to obtain the following convergences when n tends to
infinity:

−

∫ T

0

〈uµn(r), v〉ϕ′(r)dr → −

∫ T

0

〈u(r), v〉ϕ′(r)dr
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and
∫ T

0

〈A1/2uµn(r), A1/2v〉ϕ(r)dr →

∫ T

0

〈A1/2u(s), A1/2v〉ϕ(r)dr.

For the nonlinear term, we can consider the following splitting:
∫ T

0

(

〈B(uµn(r − µn), u
µn(r)), v〉 − 〈B(u(r), u(r)), v〉

)

ϕ(r)dr

=

∫ T

0

〈B(uµn(r − µn), u
µn(r)− u(r)), v〉ϕ(r)dr

+

∫ T

µn

〈B(uµn(r − µn)− u(r − µn), u(r)), v〉ϕ(r)dr

+

∫ T

µn

〈B(u(r − µn)− u(r), u(r)), v〉ϕ(r)dr

+

∫ µn

0

〈B(uµn(r − µn)− u(r), u(r)), v〉ϕ(r)dr =: I1 + I2 + I3 + I4.

Now it suffices to apply in suitable ways Lemma 2.2. Hence, choosing s > 3/2,

|I1| ≤

∫ T

0

‖uµn(r)− u(r)‖0‖u
µn(r − µn)‖1‖v‖sϕ(r)dr

≤ ‖v‖s‖u
µn‖L2(−µn,T,V 1)

(
∫ T

0

‖uµn(r) − u(r)‖20dr

)1/2
(

sup
r∈[0,T ]

|ϕ(r)|

)

,

that tends to zero when n→ ∞. Also, for s > 3/2,

|I2| ≤

∫ T

µn

‖uµn(r − µ)− u(r − µn)‖0‖u(r)‖1‖v‖sϕ(r)dr

≤ ‖v‖s‖u‖L2(0,T,V 1)

(
∫ T−µn

0

‖uµn(r) − u(r)‖20dr

)1/2
(

sup
r∈[0,T ]

|ϕ(r)|

)

≤ ‖v‖s‖u‖L2(0,T,V 1)

(
∫ T

0

‖uµn(r) − u(r)‖20dr

)1/2
(

sup
r∈[0,T ]

|ϕ(r)|

)

,

which converges to zero when n→ ∞.
Now, in order to prove the convergence of I3 we use the weakly continuity of u in V 0, see Lemma 1.4, Chapter
3, Page 263 in [16]. Indeed, we can express I3 equivalently as

I3 =

∫ T

0

1[µn,T ](r)b(u(r − µn)− u(r), v, u(r))ϕ(r)dr.

The integrand of that expression can be estimated by 2‖u‖L∞(0,T,V 0)‖u(r)‖1‖v‖s|ϕ(r)|, for s > 3/2, which is
integrable.

lim
n→∞

|I3| =

∫ T

0

lim
n→∞

1[µn,T ](r)b(u(r − µn)− u(r), v, u(r))ϕ(r)dr

≤

∫ T

0

lim
n→∞

1[µn,T ](r)

3
∑

i,j=1

(

∫

T3
L

(uj(r − µn, x)− uj(r, x))
∂vi(x)

∂xj
ui(r, x)dx

)

ϕ(r)dr

=

∫ T

0

lim
n→∞

1[µn,T ](r)(u(r − µn)− u(r), πκ(r))dr

and this last limit is zero due to the weak continuity of u in V 0 by choosing κj(r, x) =
∑

i
∂vi(x)
∂xj

ui(r, x)ϕ(r) ∈

L2(T
3
L), for almost every r ∈ [0, T ] by Lemma 2.1. π denotes the Helmholtz projection. In particular, we have
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for almost all r

lim
n→∞

(u(r − µn)− u(r), πκ(r)) = lim
n→∞

(u(r − µn)− u(r), κ(r))L2(T3
L
)3 = 0.

To ensure that πκ(r) ∈ V 0 for almost all r, it is enough that v ∈ V s and u(r) ∈ V 1 for almost all r. The
dominated convergence theorem gives the convergence of I3 to zero. Finally we have

|I4| ≤

∫ µn

0

‖uµn(r − µn)− u(r)‖1‖u(r)‖0‖v‖sϕ(r)dr

≤

∫ µn

0

‖φµn(r − µn)‖1‖u(r)‖0‖v‖sϕ(r)dr +

∫ µn

0

‖u(r)‖1‖u(r)‖0‖v‖sϕ(r)dr

≤ µn
1/2

(

sup
r∈[0,T ]

|ϕ(r)|

)

‖v‖s‖u‖L∞(0,T,V )

(

‖φµn‖L2(−µn,0,V 1) + ‖u‖L2(0,T,V 1)

)

,

hence the proof is complete.
�
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