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Wideband analytical equivalent circuit for coupled asymmetrical nonaligned slit arrays
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Microstructured metallic devices have been extensively studied because of their interesting properties for
controlling the transmission, reflection, and absorption of electromagnetic waves. A very simple implementation
is an array of infinitely long parallel metal strips printed on a dielectric substrate. In the past few years, several
analytical models have been reported based on the use of equivalent circuits with distributed and lumped
components to account for the electrical performance of these structures. However, the proposed models are
restricted to highly symmetrical configurations of the basic unit cell of the periodic structure. The purpose of
this paper is to present the nontrivial extension of such circuit models to deal with nonsymmetrical structures.
More specifically, a wideband equivalent-circuit model will be developed to describe the scattering properties
of a pair of coupled different nonaligned slit gratings printed on a dielectric slab of arbitrary thickness. The
relevant consequences of the lack of symmetry of the structures under study will be thoroughly discussed. The
obtained equivalent network can be straightforwardly used to model stacked structures with an arbitrary number
of nonsymmetrical striplike arrays.
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I. INTRODUCTION

The study of the optical scattering properties of periodic
metallo-dielectric structures has been a topic of interest for
many decades, from the pioneering works of Wood and
Rayleigh [1–3] to the most recent findings on extraordinary
transmission phenomena [4–7]. This interest has not been
restricted to the optical frequency range, with other examples
of research found in the infrared [8,9], terahertz [10], and
microwave [11–13] domains. The importance of structures of
that kind lies in their ability to tailor the reflected, transmitted,
or diffracted waves when a plane wave impinges on them. A
subclass of electromagnetic periodic structures of particular
interest consists of two-dimensional (2D) or 1D distributions
of metal patches (2D) or strips (1D) printed on (or embedded
in) a layered dielectric medium. The quasicomplementary
counterparts made of distributions of planar apertures or slits
in thin metal layers are also widely used. The spectral features
of these structures make them especially suitable for the design
of frequency selective surfaces [14,15], polarizers [16,17], and
high-impedance surfaces [18,19].

The analysis of the electrical response of periodic elec-
tromagnetic structures requires the solution of Maxwell’s
equations subject to the appropriate boundary conditions in a
single unit cell of the structure. In general, the boundaries that
define the unit cell in the numerical or analytical solution of the
problem are periodic boundary conditions (PBCs) [20], which
can become perfect electric or magnetic conductor virtual
boundaries for normal incidence and highly symmetrical
scatterers. This fact immediately suggests that the scattering
properties of the infinite periodic electromagnetic structure
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can be formulated as a discontinuity waveguide problem,
as it has been done, for instance, to analyze extraordinary
optical transmission through periodic arrays of electrically
small apertures in a metal slab [21–25]. This kind of problem
is very familiar to microwave practitioners and has been the
subject of intense study for many years [26]. Posing the
problem in this manner automatically leads, if desired, to
obtaining approximate analytical or quasianalytical models in
terms of equivalent circuits. Some recent examples extracted
from the literature on 1D thick metal gratings can be found
in [27–29]. In comparison with purely numerical approaches,
an equivalent circuit is certainly a very useful tool to speed
up calculations. Moreover, these circuit models are usually
much simpler than highly accurate and elegant analytical
solutions available for some practical geometries (for instance,
1D metal or dielectric strip gratings [30–32]). An additional
key feature of the equivalent circuits is that they provide good
physical insight into the behavior of the periodic device. This
is especially true if the circuit parameters can easily be related
to the geometric and material parameters of the physical
structure. As this feature is very helpful for the design of
devices based on this kind of system [33,34], great effort has
been made to develop accurate equivalent circuits for planar
periodic metallic structures; see, for instance, [14,35,36] and
references therein. The authors have also elaborated dynamic
equivalent circuits for 1D arrays of metal strips [37,38] or 2D
arrays of metal patches or apertures [39–41].

Most of the reported equivalent circuits consider a single
metalized layer (with a printed periodic pattern) embedded in
a layered dielectric environment. However, in many structures
of interest, these periodic gratings or grids are stacked to add
flexibility to the design process and obtain specific spectral
responses not achievable with a single grating. For instance,
artificial dielectric media based on stacked arrays of metal
strips were proposed in the 1950s [12,13,42,43] and much
more recent studies of its 2D version are reported in [44,45].
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The simplest way of addressing the characterization of stacked
planar structures is to consider each grating individually
and then use the so-called one-mode interaction approach
[46]. Under this approximation, the operation frequency is
assumed to be below the diffraction regime threshold and
the reactive coupling with adjacent gratings is neglected
(only the main beam is considered in the interaction between
successive gratings). In the circuit model associated with this
simplified approach, the equivalent admittances characterizing
the planar grids or gratings are simply connected through a
section of transmission line. Within its validity range, this
approach is often employed (implicitly or explicitly) with
reasonable accuracy [47–49]. However, in many practical
cases of interest, the periodically structured surfaces are
placed so close to each other as to make the above approx-
imation rather useless (fishnet structures [50,51] are good
examples of those situations). Even though the separation
between gratings is relatively large and no interaction through
evanescent modes or harmonics takes place, the one-mode
interaction model should also be dismissed if a high-order
harmonic (or mode) is excited above a cutoff in some of
the dielectric layers separating the metal gratings. In these
cases, more sophisticated methods have been proposed, such
as the mutual impedance approach [52,53] or the generalized
scattering-matrix method [54]. Although these methods are
efficient numerical tools, each individual scattering matrix
has still to be obtained using, typically, a method-of-moments
formulation [55] or an iterative algorithm [56]. Unfortunately,
these numerical methods demand a significant amount of
computational resources and do not provide too much physical
insight into the behavior of the analyzed structure. Again, the
development of analytical equivalent circuits also for this kind
of stacked structure not amenable to the one-mode interaction
model would be highly desirable.

Very recently, the present authors have proposed a circuit
model methodology for stacked 1D strip gratings [57] that
is valid for any separation between gratings as well as any
value of the slab dielectric constants. The model incorporates
the interaction between successive gratings through modes
(or Floquet harmonics) of any order. The procedure yields
an equivalent � circuit for every pair of adjacent strip-
like gratings, whose elements are analytically known. This
equivalent � circuit has some interesting properties that can
advantageously be used to deal with an arbitrary number of
stacked gratings. However, the developed circuit model has
an important limitation since its derivation was based on the
calculation of the equivalent admittances for the considered
grating in the presence of a perfect electric-magnetic wall
(using the procedure reported in [38]). Thus, the circuit is only
valid for gratings having exactly the same geometry, namely,
identical distributions of slits with the same width and perfectly
aligned (see Fig. 1 in [57]). The purpose of the present paper
is then to remove this limitation and develop a circuit model
for a pair of coupled striplike gratings having the same period
but different slit widths and/or misaligned slits. This problem
poses an interesting challenge in the field since a solution in the
form of an equivalent circuit is lacking in the literature. Once
the circuit model for a single pair of nonsymmetrical striplike
gratings has been obtained, the methodology in [57] can be
used to deal with stacked structures with an arbitrary number

slit gratings

FIG. 1. Cross section of a pair of periodic coupled slit arrays.
The metal strips are infinitely thin and infinitely long along the x

direction. The slit widths of each grating are, in general, different.
TM or TE oblique incidence is considered.

of gratings. Thus, the following sections present a detailed
explanation of the procedure followed to obtain analytical
equivalent circuits for a misaligned pair of coupled gratings.
The accuracy of the results computed with the proposed model
will be systematically checked by comparison with those
obtained using commercial electromagnetic solvers (HFSS
[58]) as well as the experimental data provided in [59]. Finally,
an example of a stacked structure with three gratings is also
studied.

II. DERIVATION OF THE EQUIVALENT � NETWORK

As stated previously, the equivalent �-circuit topology
derived in [57] for a pair of identical and aligned coupled slit
gratings separated by a dielectric slab of arbitrary thickness and
permittivity exhibits excellent performance over a very wide
frequency range, even well beyond the onset of the grating-lobe
regime. Due to restrictions of the methodology employed in the
derivation of that � circuit [57], the unit cell of the structure
under study needs to have a vertical symmetry plane (see
Fig. 1 in [57]). However, nonsymmetrical stacks of different
slit arrays with the same period but different slit widths and
relative slit locations have been shown to exhibit interesting
properties [59] and, in any case, introduce more flexibility in
the design of devices based on those structures. Fortunately,
there exists an alternative procedure to obtain a � topology
for different coupled slit arrays with the same period, which
is based on the matrix formalism of the microwave network
analysis [60].

A. Equivalent �-circuit topology for two different aligned
coupled gratings

The basic structure under study is schematically shown in
Fig. 1. A pair of 1D aligned periodic arrays with different slit
widths (w1 and w2), having the same lattice parameter (period
p), are sandwiching a dielectric slab with permittivity ε(1)

r and
thickness d. (Two slit gratings are considered aligned when the
center of their respective slit apertures is located at the same
height.) The lack of a vertical symmetry plane perpendicular
to the longitudinal z direction clearly precludes the use of
the even-odd excitation analysis employed in [57] to derive
the corresponding equivalent � circuit. A different strategy
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should then be found to obtain an appropriate � network to
model the scattering of a TE- or TM-polarized plane wave
that impinges obliquely on the structure, as shown in Fig. 1.
Before dealing with the coupled-grating case, it will first be
considered the multimode equivalent network for a single slit
grating surrounded by two semi-infinite dielectric media. This
case was already studied in [38]. The corresponding expression
for the equivalent admittance of the aperture discontinuity,
given in Eq. (11) of [38], is

Yeq =
∞∑

∀n�=0

[
f̃n(w)

f̃0(w)

]2(
Y (0)

n + Y (1)
n

)
, (1)

where Y (i)
n is the admittance of the nth Floquet harmonic in

medium i = 0,1, defined as

Y (i)
n =

{
ε(i)
r ε0ω/β(i)

n for TM incidence

β(i)
n /(μ0ω) for TE incidence,

(2)

with ε(i)
r being the relative permittivity in medium (i), ε0 the

free-space permittivity, ω the angular frequency, and β(i)
n the

wave number of the nth harmonic in medium (i), given by

β(i)
n =

√
ε

(i)
r k2

0 − (kn + kt )2. (3)

The parameter kn = 2nπ/p in (3) stands for the cutoff
wave number of the nth harmonic, kt = √

ε(0)
r k0 sin(θ ) is the

tangential (to the grating) component of the wave vector of the
incident plane wave, and k0 is the wave number in vacuum.
The term f̃n(w)/f̃0(w) in (1) represents the ratio between the
nth and zeroth-order spectral components of the aperture field
[f̃n(w) is the Fourier transform of the spatial profile of the
tangential electric field at the slit-aperture plane, evaluated at
k = kn + kt ]. Following the proposal in [38] for a physically
suitable approximation of the slit-aperture field, this spectral
ratio can be expressed as

f̃n(w)

f̃0(w)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

J0([kn + kt ]w/2)

J0(ktw/2)
for TM incidence

J1([kn + kt ]w/2)

J1(ktw/2)

kt

kn + kt

for TE incidence,

(4)

with w being the slit width and Jq(·) the qth-order Bessel
function of first kind, q = 0,1. From a circuit standpoint, the
expression in (1) can be interpreted as the parallel connection
of an infinite number of admittances. Each admittance,
recognized as a single addend in the series in (1), is in turn
a parallel connection of two semi-infinite nth transmission
lines with characteristic admittances Y (0)

n and Y (1)
n . Such

lines are connected through a transformer with turns ratio
Nn = f̃n(w)/f̃0(w). A schematic representation of the entire
network is depicted in Fig. 2.

Let us now consider the coupled-grating system shown in
Fig. 1 (the distance between gratings is denoted by d). Regard-
ing each individual grating separately, their respective circuit
models, depicted in Fig. 3(a), have the same representation
as the one described in Fig. 2. The information about the slit

FIG. 2. Multimode equivalent circuit for a single grating placed
between two semi-infinite half spaces.

width is included in the transformer ratio expression associated
with the nth harmonic, which is here defined as

Nn(wi) = f̃n(wi)

f̃0(wi)
. (5)

The transformer ratios will be different when w1 �= w2. On the
contrary, the characteristic admittances and the propagation
constants of the nth transmission lines in a particular medium
are identical to each other regardless of the geometry of the

(a)

(b)

FIG. 3. (a) Individual equivalent circuits for the slit arrays
forming the coupled system. (b) Equivalent circuit of the coupled
system, obtained after connecting the nth transmission lines of each
individual circuit.
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gratings under consideration (they basically depend on the
periodicity of the structure and the permittivity of the medium).
This fact allows us to construct the multimode circuit for the
pair of coupled gratings by simply connecting the transmission
lines associated with harmonics of the same order within
medium (1), as shown in Fig. 3(b). The length of each nth
internal line (gray lines in the figure) is precisely the dielectric
thickness d. In principle, the internal circuit comprises an
infinite number of internal lines. However, in practice, there
are only a few propagative harmonics in the region between
gratings, with the remaining ones being of evanescent nature.
Depending on the electrical distance between screens, several
evanescent harmonics could have an attenuation constant low
enough to give rise to a direct interaction between the two slits
discontinuities. In such a case, they should be treated similarly
to propagating harmonics, although the characteristic admit-
tance of their equivalent transmission lines would be purely
imaginary rather than real. Clearly, as the electrical distance
between gratings decreases, more evanescent harmonics would
be required to be represented as transmission lines (i.e., as
distributed circuit components) connecting the two gratings.
This idea was studied in depth by the present authors in [57]
in the context of aligned and identical arrays.

Now our attention will focus on the so-called internal region
in Fig. 3(b) (gray lines) in order to find an equivalent �-circuit
topology to describe the field behavior in this region. First,
it will be defined as an nth internal block, formed by the
nth left transformer, the nth internal transmission line, and
the nth right transformer. This block admits the following
matrix representation in terms of the product of their associated
ABCD matrices [60]:

[ABCD]n =
⎡
⎣ 1

Nn(w1)
0

0 Nn(w1)

⎤
⎦

×
[

cos
(
β(1)

n d
)

jZ(1)
n sin

(
β(1)

n d
)

jY (1)
n sin

(
β(1)

n d
)

cos
(
β(1)

n d
)

]

×
⎡
⎣Nn(w2) 0

0
1

Nn(w2)

⎤
⎦, (6)

where the leftmost (rightmost) matrix represents the nth
transformer placed at the left-hand (right-hand) termination of
the line and the middle matrix refers to the ABCD matrix for
the nth internal transmission line. After operating, the elements
of the resulting nth ABCD matrix ([ABCD]n) are found
to be

A = Nn(w2)

Nn(w1)
cos

(
β(1)

n d
)
, (7)

B = jZ(1)
n

1

Nn(w2)Nn(w1)
sin

(
β(1)

n d
)
, (8)

C = jY (1)
n Nn(w1)Nn(w2) sin

(
β(1)

n d
)
, (9)

D = Nn(w1)

Nn(w2)
cos

(
β(1)

n d
)
. (10)

The nth ABCD matrix is next converted into the nth
admittance matrix [Y ]n of a two-port network, whose entries

(a)

(b)

FIG. 4. (a) The nth � block. (b) Equivalent circuit resulting from
the substitution of the � blocks. In principle, the circuit consists of
an infinite number of � circuits connected in parallel.

are given by

Y11 = −jY (1)
n N2

n (w1) cot
(
β(1)

n d
)
, (11)

Y12 = jY (1)
n Nn(w1)Nn(w2) csc

(
β(1)

n d
)
, (12)

Y21 = jY (1)
n Nn(w2)Nn(w1) csc

(
β(1)

n d
)
, (13)

Y22 = −jY (1)
n N2

n (w2) cot
(
β(1)

n d
)
. (14)

Note that for propagative (evanescent) harmonics, both Y (1)
n

and β(1)
n are real (imaginary) and therefore the product

Y (1)
n csc(β(1)

n d) is always real. In consequence, the present
network is reciprocal and lossless (Y12 = Y21 and all the
elements of the admittance matrix are imaginary). Thus, the
above admittance matrix leads to a conventional � network
[60] [see Fig. 4(a)] whose associated series and parallel
reactive admittances are given by

Ys,n = −Y12 = −jY (1)
n Nn(w1)Nn(w2) csc

(
β(1)

n d
)
, (15)

YL
p,n = Y11 + Y12 = −jY (1)

n N2
n (w1) cot

(
β(1)

n d
) − Ys,n, (16)

YR
p,n = Y22 + Y12 = −jY (1)

n N2
n (w2) cot

(
β(1)

n d
) − Ys,n. (17)

This nth � circuit can now substitute the nth block
previously defined, thus leading to the equivalent network
represented in Fig. 4(b). Notice that the internal region is then
described by an infinite number of � blocks connected in
parallel, where each block represents the contribution of a
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different harmonic in such a region. The parallel admittances
of a particular � block (YL

p,n and YR
p,n) account for the near

field around the slit regions, whereas the series admittance
(Ys,n) accounts for the coupling field between both slit
arrays associated with the nth harmonic (which can be of
propagative or evanescent nature). At this point, the same
rationale employed in [57] to interpret the physical meaning
of the admittances can now be applied. In this sense, the
� blocks associated with low-order harmonics will keep
the exact dynamical frequency dependence of the modal
admittances. The number of low-order harmonics N necessary
for the accurate representation of the electrical response is
taken according to the criterion discussed in Eq. (16) in
[57] (namely, the number of propagative harmonics in the
highest-permittivity medium plus the first evanescent one).
Since high-order harmonics have a quasistatic frequency
dependence, they can be split into two groups depending on
the behavior of the series admittance in their corresponding �

blocks. The series admittance of high-order blocks accounts
for a purely reactive coupling between both screens. For largely
spaced gratings, the contribution of this series admittance is
practically negligible for all these high-order blocks. On the
contrary, for closely spaced arrays, the contribution of the
series admittance associated with the lowest-order harmonics
of high-order nature can be significant and their contribution
has to be explicitly taken into account. The number of
high-order harmonics with that significant value of Ys,n is well
established by the parameter M previously reported in Eq. (28)
in [57].

In summary, the so-called low-order (LO) � blocks keep
the dynamical frequency dependence of the modal admittances
and they all form a global � block whose admittances are
given by

Y
L/R

p,LO =
N∑

n=−N

YL/R
p,n , (18)

Ys,LO =
N∑

n=−N

Ys,n. (19)

Similarly, high-order (HO) harmonics also form another global
� block. The parallel admittances of this global � block
include the contribution of the parallel admittances associated
with all the individual high-order nth � blocks, but the series
admittance of this global high-order � circuit can be formed
as the contribution of only a few individual series admittances.
It results in the following expressions:

Y
L/R

p,HO =
∞∑

∀|n|�N+1

YL/R
p,n , (20)

Ys,HO =
|M|∑

∀|n|�N+1

Ys,n. (21)

Certainly, for TM incidence, the admittances in (20) and
(21) become capacitive and, for TE incidence, they become
inductive. The final version of the equivalent circuit
for both TM and TE incidence is illustrated in Fig. 5.

FIG. 5. Final version of the equivalent circuit.

In this figure we have boxed the block containing all the
information about the internal region (internal block). The
external region is characterized by the high-order admittance
Y

(0)
HO, which accounts for the reactive field around the external

face of the slits gratings, in addition to some transmission lines
accounting for the low-order fields. Following a procedure
similar to that in [57], internal blocks can now be cascaded to
build up an equivalent circuit for dealing with a stack of an
arbitrary number of slit arrays.

B. Equivalent � topology for two different and nonaligned
coupled gratings

In the previous section, an equivalent circuit was derived
for a pair of strongly coupled nonidentical but aligned arrays
(the aligned gratings have different slit widths but the same
period and the same relative location of the slits in the
unit cell). Nonaligned arrays are also of interest in the
literature, as reported in [55,59,61]. The general methodology
described above can still be employed to deal with the
nonaligned case, although the authors could derive a compact
� circuit for the internal region only for the case of normal
incidence.

A sketch of the system under consideration is shown in
Fig. 6(a) together with its corresponding unit cell in Fig. 6(b).
The misalignment between the centers of both slit apertures
(within the same unit cell) is given by h. The same procedure
in [38] can also be applied to vertically displaced single slit
gratings, resulting in the same circuit model as for centered
slit gratings (Fig. 2 above), but with the difference that now
the transformer turn ratios are complex numbers given by

N̄n(wi,hi) = Nn(wi) ejknhi , (22)

where Nn(wi) are the real-valued ratios in (4). The additional
phase factor ejknhi appearing in (22) comes from the vertical
displacement of the slits, since now the Fourier integral
of the aperture field is evaluated in an interval that is not
symmetric with respect to y = 0. This can be interpreted as
an ideal transformer, which, in addition to the usual scale
factor, also introduces a phase shift in the output voltage and
current with respect to the corresponding input magnitudes.
Such an ideal complex transformer is lossless and should
not store any reactive energy either. Taking into account
these considerations, the ABCD matrix for the ideal complex
transformer is

[ABCD]1:N̄ =
[

1/N̄ 0
0 N̄∗

]
. (23)
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slit gratings

FIG. 6. (a) Two coupled nonaligned slit gratings. (b) Unit cell of
the problem. The centers of the slits are placed at heights h1 and h2

with respect to an arbitrary y axis zero, with h = h2 − h1.

Proceeding as in the previous section, the multimode equiv-
alent circuit for the complete coupled structure is readily
obtained by connecting the corresponding nth lines in the
single-grating circuits, as shown in Fig. 7. The elements of the
admittance matrix [Y ]n corresponding to the internal system

FIG. 7. Equivalent circuit corresponding to a pair of coupled and
nonaligned slits arrays. The turn ratios of the transformers are given
by the complex-valued expression in (22).

formed by the nth left or right transformer and the nth internal
line are now found to be given by

Y11,n = −jY (1)
n N2

n (w1) cot
(
β(1)

n d
)
, (24)

Y12,n = jY (1)
n Nn(w1)Nn(w2)ejknh csc

(
β(1)

n d
)
, (25)

Y21,n = jY (1)
n Nn(w2)Nn(w1)e−jknh csc

(
β(1)

n d
)
, (26)

Y22,n = −jY (1)
n N2

n (w2) cot
(
β(1)

n d
)
, (27)

with h = h2 − h1. Since the product Y (1)
n csc(β(1)

n d) is al-
ways real, these admittance matrices are skew Hermitian
(Yij = −Y ∗

ji), which is the general condition for lossless
networks [62]. However, since the off-diagonal elements are
not purely imaginary, now the matrices are not symmetric,
which means that the network cannot be represented in terms
of regular, bilateral admittances (in either a � network or any
other network topology). Nevertheless, it is still feasible to
build the global admittance matrix of the internal region from
the summation of all the individual nth admittance matrices:

[Y ] =
∞∑

n=−∞
[Yn], (28)

where the entries of the [Yn] matrix are given by (24)–(27).
This admittance matrix can be straightforwardly converted
into its associated scattering matrix [60]. In particular,
the off-diagonal terms (transmission coefficients) can be
written as

S12 = −2Y
(0)
0

�Y
Y12, (29)

S21 = −2Y
(0)
0

�Y
Y21, (30)

with

�Y = (
Y11 + Y

(0)
0

)(
Y22 + Y

(0)
0

) − Y12Y21. (31)

Note that, since Y12 �= Y21, the transmission coefficients S12

and S21 provided by the equivalent network are not equal
(although Y12 = −Y ∗

21 does imply |S12| = |S21|, as expected
since the obtained circuit is lossless [62]). In this sense,
the obtained equivalent network is not reciprocal. However,
it should be emphasized that this is by no means a conse-
quence of an actual nonreciprocal behavior of the considered
coupled-grating structure, which is of course reciprocal. The
explanation for this apparent inconsistency is given in the
Appendix.

The above discussion does not apply to the case of normal
incidence. In this case kt = 0 and then harmonics of opposite
orders in the internal region satisfy

β(1)
n = β

(1)
−n, (32)

Y (1)
n = Y

(1)
−n, (33)

Nn = N−n. (34)
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Taking advantage of (32)–(34), we can construct the following
nth modal admittance matrix by grouping harmonics with
opposite orders (Ŷij,n = Yij,n + Yij,−n):

Ŷ11,n = −2jY (1)
n N2

n (w1) cot
(
β(1)

n d
)
, (35)

Ŷ12,n = 2jY (1)
n Nn(w1)Nn(w2) cos(knh) csc

(
β(1)

n d
)
, (36)

Ŷ21,n = 2jY (1)
n Nn(w2)Nn(w1) cos(knh) csc

(
β(1)

n d
)
, (37)

Ŷ22,n = −2jY (1)
n N2

n (w2) cot
(
β(1)

n d
)
. (38)

Since this resulting modal admittance matrix is symmetric,
a conventional � network can be derived whose series and
parallel admittances are given by

Ys,n = −2jY (1)
n Nn(w1)Nn(w2) cos(knh) csc

(
β(1)

n d
)
, (39)

YL
p,n = −2jY (1)

n N2
n (w1) cot

(
β(1)

n d
) − Ys,n, (40)

YR
p,n = −2jY (1)

n N2
n (w2) cot

(
β(1)

n d
) − Ys,n. (41)

The infinite number of � blocks admits a decomposition into
low-order and high-order blocks, as it was discussed for the
aligned-grating case. The admittances in the low-order blocks
retain their dynamical frequency dependence. The parallel
connection of the low-order � blocks gives rise to a global
� block whose elements are defined as

Y
L/R

p,LO =
N∑

n=0

YL/R
p,n , (42)

Ys,LO =
N∑

n=0

Ys,n . (43)

The � blocks associated with high-order harmonics also
give rise to a global � circuit whose parallel admittances
are the result of the contribution of all the individual parallel
admittances of the high-order � blocks, whereas the series
admittance of the global � circuit is the result of the
contribution of a few series admittances,

Y
L/R

p,HO =
∞∑

n=N+1

YL/R
p,n , (44)

Ys,HO =
M∑

n=N+1

Ys,n. (45)

The admittances in (44) and (45) are purely capacitive for TM
incidence and purely inductive for TE incidence. The resulting
equivalent circuit has the same topology as the one depicted
in Fig. 5.

III. NUMERICAL RESULTS

In order to check the robustness and accuracy of the
proposed approach, some results are shown in this section.
The first example can be found in Fig. 8, where three different
plots represent the reflection coefficient obtained for three
different structures under normal TM incidence. Figure 8(a)
shows the reflection response of a pair of two aligned and

(a)

(b)

(c)

FIG. 8. Reflection coefficient versus frequency under TM nor-
mal incidence for three cases. (a) A coupled and aligned pair
of identical slit arrays. The structure parameters are p = 5 mm,
w1 = w2 = 0.5 mm, ε(0)

r = 1, ε(1)
r = 4.4 − j0.088, d = 2 mm, and

h = 0 mm. (b) A coupled and aligned pair of different slit ar-
rays. The structure parameters are the same as in (a) except for
w2 = 1 mm. (c) A coupled and nonaligned pair of different slit
arrays. The structure parameters are the same as in (b) except for
h = 1 mm.
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FIG. 9. Transmission coefficient versus frequency obtained from
the configuration in Fig. 6(b) under normal TM incidence. Five
different values of h have been regarded. The vertical dotted line
in brown indicates the frequency of Wood’s anomaly in the internal
medium, at 13.42 GHz. The structure parameters are p = 10 mm,
w1 = 0.3 mm, w2 = 1 mm, d = 0.3 mm, ε(0)

r = 1, and ε(1)
r = 5.

identical coupled arrays sandwiching a FR4-dielectric layer
of thickness d = 2 mm. Assuming this same structure, but
modifying the slit size of the rightmost array (w2), its reflection
coefficient is plotted in Fig. 8(b). The third structure analyzed
in Fig. 8(c) is the same as the one in Fig. 8(b), but shifting
the rightmost array 1 mm upward. The influence of the
geometrical modifications in the reflection spectra can be
observed, especially at high frequencies. There is a reflection
minimum close to 10 GHz that appears for all the structures.
The aligned cases in Figs. 8(a) and 8(b) show three reflections
dips beyond 30 GHz located, approximately, at the same
frequencies. On the contrary, the nonaligned case provides
an additional reflection minimum. The agreement with results
from HFSS [58] is quite good in all cases. It should be
noticed that, due to the analytical nature of the proposed circuit
model, the CPU time employed to generate our data in the
above figures is almost negligible in comparison with the one
required by HFSS.

As mentioned above, misaligned arrays can be employed
for tailoring the transmission properties of an incident plane
wave when the arrays are closely spaced. For the structure
depicted in Fig. 6, five curves are plotted in Fig. 9, each
one representing the transmission coefficient obtained for a
different value of h. A transmission maximum is observed
in all the curves. This transmission maximum moves to
higher frequencies as h increases. Note that for h < p/4 the
transmission peak does not reach unity (perfect transmission)
and it is followed by a transmission dip (full reflection).
For p/4 � h � p/2, full transmission is achieved but full
reflection only appears at the frequency associated with
Wood’s anomaly in the dielectric medium at 13.42 GHz. The
reasons behind the appearance of full reflection just after the
transmission peak can be explained in terms of the equivalent
circuit. A simplified version of the model is represented in
Fig. 10 and, more specifically, the equivalent circuit obtained
for coupled gratings misaligned with h < p/4 is shown in

(a)

(b)

(c)

FIG. 10. Topology of the � circuit as a function of h.
(a) Topology of the � network for a misalignment of h < p/4,
where C

(1)
s,1(ω) remains positive. (b) Equivalent circuit for h = p/4.

Now the capacitance associated with the first-order mode is null.
(c) Equivalent circuit for p/4 � h � p/2, where the capacitance
C

(1)
s,1(ω) has become negative.

Fig. 10(a). The relevant series elements of interest are assumed
to be those associated with the fundamental and first-order
modes. According to (39), the series element associated with
the zeroth-order mode can be recognized as the following
inductive admittance:

Ys,0 = −2jY
(1)
0 csc

(
β

(1)
0 d

) ≈ −j
2

μ0ωd
, (46)

where sin(β(1)
0 d) has been approximated as β

(1)
0 d, leading to

an inductance of value L
(1)
s,0 = μ0d/2. Similarly, the series

element associated with the first-order mode is given by

Ys,1 = −2jY
(1)
1 N1(w1)N1(w2) cos(k1h) csc

(
β

(1)
1 d

)
≈ jω

2ε0εr N1(w1)N1(w2) cos(k1h)[
β

(1)
1

]2
d

= jωC
(1)
s,1(ω).

(47)

When the LC tank formed by C
(1)
s,1(ω) and L

(1)
s,0 resonates,

it gives rise to an open circuit that causes full reflection
in the circuit. For frequencies below such a resonance, a
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(a)

(b)

FIG. 11. (a) Unit cell of the structure under analysis. (b) Trans-
mission coefficient versus frequency for the structure in (a) for TM
normal incidence. The structure parameters are p = 5 mm, w1 =
0.5 mm, w2 = 1 mm, w3 = 0.8 mm, d1 = 2 mm, d2 = 1.5 mm,
h2 = 0 mm, h3 = 1.5 mm, ε(0)

r = 1, ε(1)
r = 2.2, and ε(2)

r = 4.

transmission peak appears as a result of the global resonance
given among the parallel admittances C(ω) and C ′(ω) and the
series admittances, with

jωC(ω) = Y
(0)
HO + YL

p,HO + YL
p,LO, (48)

jωC ′(ω) = Y
(0)
HO + YR

p,HO + YR
p,LO. (49)

It is important to highlight that C
(1)
s,1(ω) behaves as a positive

capacitance for h < p/4. When h = p/4, it can be inferred
from (47) and observed in Fig. 10(b) that C

(1)
s,1(ω) = 0.

Hence, no series resonance is expected and no full reflection
appears. The shift of the transmission peak toward higher
frequencies as h increases can be explained in terms of the
decrease of C

(1)
s,1(ω) from h = 0 to h = p/4. This decrease

in the series capacitance reduces the global capacitance in
the � network and increases the global resonance frequency
associated with the transmission peak. For p/4 � h � p/2,
the capacitance C

(1)
s,1(ω) becomes negative, enhancing the

“inductive” contribution of the series elements and therefore
increasing the frequency of the transmission resonance of the
circuit. The series branch formed by L

(1)
s,0 and −C

(1)
s,1(ω) does

not resonate [Fig. 10(c)].
Another example is shown in Fig. 11 and consists of a stack

of three different and nonaligned slit arrays [Fig. 11(a)] excited
by a normally impinging TM plane wave. This configuration

FIG. 12. Transmissivity versus frequency. Comparison of the
results from the model with experimental data extracted from
[59]. Results were obtained for a pair of two coupled and non-
aligned slit arrays. The structure parameters are p = 10.01 mm,
w1 = w2 = 0.33 mm, h = p/2, d = 0.356 mm, ε(0)

r = 1, and
ε(1)

r = 4.17 − j0.07.

provides a quite complicated transmission spectrum, as shown
in Fig. 11(b). It is remarkable that the analytical equivalent
circuit matches very well the numerical results provided by
HFSS. It is worth mentioning that, at the highest frequency of
operation (60 GHz), there are two propagative modes inside
the denser dielectric (ε(2)

r = 4).
Figure 12 shows a comparison of the results provided

by our model vs experimental data reported in [59]. The
plotted transmissivity coefficient corresponds to a pair of
identical nonaligned slit arrays under normal TM incidence
(the gratings are printed on both faces of a lossy FR4-dielectric
slab). Even though two transmission maxima appear around
13 and 26 GHz, no full transmission is achieved due to the
losses associated with the dielectric layer. The inclusion of
losses in the dielectric is straightforwardly incorporated in the
model by using the appropriate complex-valued permittivity
of the dielectric. The agreement shown between both curves
is excellent.

Finally, a last example is shown in Fig. 13 for a pair of
nonidentical and nonaligned coupled gratings under oblique
TE or TM incidence (structure in Fig. 6). In this situation, as
explained previously, there is not an equivalent � circuit for
the structure. Thus, the scattering parameters of the structure
are computed after calculating the network admittance matrix.
The figure shows a comparison of the magnitude of the
transmission coefficient provided by our circuit model and
by HFSS. Very good agreement between both sets of data
can be observed in Fig. 13(a) in the frequency range under
consideration. This particular plot deals with TE incidence,
where the structure is practically opaque except for some
narrow frequency intervals, associated with the excitation
of higher-order modes and Fabry-Pérot resonances in the
dielectric medium, ε(1)

r = 9. The case of TM incidence
plotted in Fig. 13(b) also shows good agreement with results
from HFSS, although some differences can be observed
around 50 GHz.
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FIG. 13. Transmission coefficient versus frequency for an
obliquely incident wave: (a) TE incidence and (b) TM incidence.
The structure parameters are p = 5 mm, w1 = 1 mm, w2 = 0.5 mm,
d = 1.5 mm, h = 1 mm, ε(0)

r = 1, ε(1)
r = 9, and θ = 30◦.

IV. CONCLUSION

An equivalent � network has been derived to compute
the scattering properties of a pair of nonidentical coupled slit
arrays with the same period. The equivalent circuit accounts
for normal and oblique TE and TM incidence in the case
of nonidentical but aligned slit arrays. The equivalent �

network also accounts for the scattering of nonaligned and
coupled arrays, but only for normal incidence. No � network
has been found for oblique incidence assuming nonaligned
arrays due to the fact that the obtained admittance matrices
are not symmetric. This lack of symmetry comes from
the natural appearance of phase-shifting transformers with
complex turn ratios. The scattering parameters in this case
can be calculated directly from the network matrix formalism.
Fully analytical expressions are obtained for all the circuit
elements, making the model self-contained and very efficient
from a computational point of view. The model provides
physical insight into the behavior of the structure, thus helping
to easily understand the appearance and the displacement
of transmission and reflection peaks. In addition, it can be

straightforwardly extended to obtain the scattering parameters
of stacked arrays.

ACKNOWLEDGMENTS

This work was supported by the Spanish Ministerio de
Economı́a y Competitividad with European Union FEDER
funds (Project No. TEC2013-41913-P) and by the Consejerı́a
de Economı́a y Conocimiento, Spanish Junta de Andalucı́a
(Project No. P12-TIC-1435).

APPENDIX: NONRECIPROCITY
OF THE CIRCUIT MODEL

The reciprocity theorem for the electromagnetic field in a
source-free region states that∮

S

(E(a) × H(b) − E(b) × H(a)) · dS = 0, (A1)

where S is the surface enclosing the considered region and
the superscripts refer to two independent excitations a and
b. If the considered region is a given waveguide section, then
we can split the integration surface into the input and output
ports (P ) and the lateral walls of the waveguide (L):∫

P

(E(a) × H(b) − E(b) × H(a)) · dS

+
∫

L

(E(a) × H(b) − E(b) × H(a)) · dS = 0. (A2)

For an actual metallic waveguide or a virtual waveguide
bounded by perfect electric or magnetic walls (discontinuities
may exist within the considered waveguide section), the
lateral integrals vanish because the tangential electric field, or
magnetic field in the case of a virtual magnetic wall, is zero.
In this case, reciprocity guarantees that the integrals of the a

and b fields at the two ports P1 and P2 satisfy∫
P1

(E(a) × H(b) − E(b) × H(a)) · dS

+
∫

P2

(E(a) × H(b) − E(b) × H(a)) · dS = 0. (A3)

It is easy to show (see, for instance, [60]) that (A3) directly
implies that the transmission coefficients between the two
ports are the same in either direction (S12 = S21) and thus the
considered waveguide problem can be modeled, in principle,
using a reciprocal equivalent circuit (i.e., an equivalent circuit
with symmetric scattering and admittance matrices).

In the case under study in this work, the virtual waveguide
is not bounded by perfect electric or magnetic walls but by
periodic boundary conditions that, for a given incidence angle,
impose a fixed phase shift between the fields at the boundaries
of the unit cell waveguide. Thus, let us consider excitations
a and b as plane waves impinging with an incidence angle θ

from either side of the structure, as shown in Fig. 14.
For both excitations, the fields at the lower (say, y = 0) and

upper (y = p) unit cell boundaries are related in the following
way:

A(a/b)|y=p = e−jktpA(a/b)|y=0, (A4)
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FIG. 14. Two plane-wave excitations of the coupled gratings,
impinging from different sides but with the same incidence angle
θ . For θ �= 0, the transmission coefficients for the a and b excitations
have the same magnitude but different phase. This is the scenario
modeled by our equivalent network.

where A stands for either E or H. Each term in the lateral
integrals (per unit length in the x direction) can then be written
as∫

y=0
(E(a/b)×H(b/a)) · (−ŷ) dz +

∫
y=p

(E(a/b)×H(b/a)) · ŷ dz

= (e−2jktp − 1)
∫

y=0
(E(a/b) × H(b/a)) · ŷ dz. (A5)

In general, the contribution of the lateral integrals is not zero,
which implies that (A3) is not satisfied and, consequently,
S21 �= S12. Nevertheless, it is not possible that the transmission
coefficients of a lossless structure have different magnitude
[62]. This fact causes the appearance of the phase-shifting
(complex) transformers in our circuit model. For normal
incidence, however, kt = 0 and therefore (A5) is identically
zero. In this case Eq. (A3) does hold and it is indeed possible
to derive an explicit �-network topology for the equivalent
circuit.

Finally, it is interesting to consider the case in which
the structure is excited by plane waves that impinge with
opposite angles, as shown in Fig. 15. This might seem a more
natural scenario when considering reciprocity in the complete

FIG. 15. Two plane-wave excitations impinging from different
sides and with opposite incidence angle. The transmission coefficients
for the a and b excitations have the same complex value (magnitude
and phase).

electromagnetic problem. In this situation we have

A(a)|y=p = e−jktpA(a)|y=0, (A6)

A(b)|y=p = e+jktpA(b)|y=0, (A7)

which, because of the different signs in the phase shifts, clearly
implies that

[E(a/b) × H(b/a)]y=p = [E(a/b) × H(b/a)]y=0 (A8)

and hence the lateral integrals in the upper and lower unit
cell boundaries cancel out and (A3) is satisfied once again.
In consequence, the transmission coefficients for the a and b

excitations in Fig. 15 have the same complex value (magnitude
and phase). The reader can verify that our model is consistent
with this observation since it implies S21(θ ) = S12(−θ ). A
relevant consequence of this fact is that, for the aligned coupled
gratings considered in Sec. II A, the transmission coefficients
for the a and b excitations in Fig. 14 also have the same
complex value. Indeed, for vertically aligned gratings, the
symmetry of the structure with respect to the slits’ middle
plane (see Fig. 1) clearly implies that the problem is invariant
with respect to a change of sign in the incidence angle and
therefore S21(θ ) = S12(−θ ) = S12(θ ).
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