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Theoretical and experimental exploration of finite sample size effects on the
propagation of surface waves supported by slot arrays
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The propagation of surface waves supported by a finite array of slots perforated on a zero thickness perfect
electrically conducting screen is studied both experimentally and theoretically. To generate numerical results, the
integral equation satisfied by the electric field in the slots is efficiently solved by means of Galerkin’s method,
treating the metal as perfectly conducting. The finite size of the array along the direction of propagation creates
a family of states of higher momentum and lower amplitude than the single mode for the corresponding infinite
array. These modes are spaced in momentum with a periodicity inversely proportional to the length of the array.
In addition, the finite width in the transverse direction produces a set of higher frequency modes due to this
additional quantization. Both effects arising from finite sample length and width are explained by the theoretical

model and validated experimentally.
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The existence of strongly localized surface modes sup-
ported by corrugated metallic surfaces at frequencies varying
from terahertz [1] to microwaves [2] is well established. At
optical frequencies, due to the Drude-like properties of the
metal, these exist even on flat surfaces, being labeled surface
plasmons polaritons (SPPs) [3,4]. However, following the
discovery of extraordinary optical transmission (EOT) [5]
and the later theoretical calculations, these surface waves
were linked to a massively enhanced transmission through
subwavelength holes [6,7] due to the diffractive coupling of
radiative modes with the SPPs. This theory was, however,
essentially developed for optical frequencies relying on the
presence of SPPs. The subsequent discovery of EOT at
frequencies at which metals behave as near perfect electric
conductors (PEC), such as microwaves [8,9], launched the
search for a more general theory. Many workers in the field
made analogies of the surface waves supported on a patterned
PEC with the aforementioned SPP, and due to the similarities
with the SPP dispersion, the modes became commonly known
as the “spoof surface plasmons” [10—12]. It should be noted,
however, that there has been a wealth of studies of surface
waves on metals at low frequencies, dating back to the 1940s
[13,14]. This connection between the surface waves supported
by hole arrays and the transmission through them has given rise
to much research [15,16] in which the transmission through
both infinite and finite arrays of holes and slits has been studied
often using a modal matching approach [17,18]. However,
there is no corresponding study on the effects of finite
sample size on the propagation of surface waves themselves.
At microwave frequencies, these surface modes have been
explored particularly using metasurfaces [19], subwavelength-
structured metallic surfaces that yield novel properties such
as negative refraction [20], band gaps [21], and dispersive
behavior leading to the design of surface wave lenses and
antennas [22-25]. With the development of miniaturization
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techniques, some of these applications have also been extended
to optical frequencies [26,27]. For the design of such surface
wave controlling structures, periodic boundary conditions are
assumed therefore reducing the analysis to a single unit cell.
In reality, however, infinite arrays do not exist, leading to the
necessity of characterizing a finite system assuming that it has
the same characteristics of an infinite array. In reality, when
experimentally measuring the dispersion relation of the surface
waves supported by an array of slots, effects due to the finite
dimensions along the different directions of a rectangular array
cannot be avoided. It is just these effects that are presented here
and numerically reproduced by using a method of moments
(MoM) technique, which is based on a previous study of some
of the authors [28]. To be able to compare the behavior of
infinite and finite arrays this method is first applied to the
analysis of infinite periodic arrays, and the results obtained
compared to those from a commercial software based on
finite element method. Then, the results for finite arrays with
MoM are presented and compared to the experimental results,
confirming the effects associated with the finite sample size.

I. INFINITE PERIODIC ARRAY

Let us start by considering the propagation of surface waves
supported by an infinite periodic array of slots. In Fig. 1, the
unit cell of dimensions a x b is shown, containing a negligible
thickness PEC screen perforated with a slot of dimensions
I x wy. This lossless approximation is accurate in the mi-
crowave regime up to millimeter-wave frequencies. We first
derive the integral equation that the electric field in the slot
needs to satisfy, for which a time dependence given by e/’
will be assumed and suppressed from this point forward.
Let us define the in-plane component of the electric field
as E/(x,y,z=0) = E\(x,y,z =0X+ E,(x,y,z = 0)§. The
electric field at any point of the surface will produce a
differential current at any other point, which can be calculated
in the form of a dyadic Green’s function. However, the total
electric current obtained by the sum of all those differential
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FIG. 1. Infinite periodic array of slots perforated in a negligible
thickness perfectly conducting screen. The periodicities of the array
along the x and y directions are a and b, respectively, and /, and w;
are the dimensions of the slots.

currents needs to vanish where there is no metal, i.e., at the
surface occupied by the slots. This reasoning can be expressed
mathematically as the following integral equation

o0 o0 _
/ / Gu(x —x',y —y)-E(x",y",z = 0)dx'dy’
—o0 —0oQ
=0 (x,y) € slots. @))]

Here Gy (x,y) is the dyadic Green’s function relating the
surface electric current density on the conducting screen and
the tangential electric field in the slots. The double integral has
to be extended to all the slots in the infinite periodic structure.
The dyadic Green’s function can be obtained as
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where ko and Z, represent the free space wave vector and
impedance, respectively. Due to the periodicity of the structure,
the limits of this integral can be reduced, applying Bloch’s
theorem, to a single unit cell by defining a periodic Green’s
function given by

3
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In this equation the phase factor accounts for the propagation of
a surface wave mode along the periodically perforated screen
and kyo and ko are the components of the momentum along
the x and y directions, respectively (k.oa would represent the
phase shift between the centers of two adjacent cells in the x
direction). When (4) is substituted in (1), an integral equation
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can be obtained given by
a prb
/ / Gh (x —x,y — ) E(,y'z = 0) dx'dy’
o Jo
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where d8g9 is the slot {(a —ws)/2 < x < (a + wy)/2;
b —1)/2 <y < (b+1)/2} of the periodic cell Cyy covering
the rectangular domain {0 < x < a; 0 < y < b}. To convert
this integral equation into a system of linear equations we
make use of Garlerkin’s version of the MoM. First, the
electric field at the surface of the slots is approximately
expanded as a linear combination of known basis functions,
this is,

Ny
E(x,y,2=0)~ Y exjbj(x,y)  (x,y) €80, (6)
j=1

where e, ; are unknown constant coefficients. Note that,
although in principle only an infinite number of basis functions
would be an exact solution, very good convergence can be
obtained when these are chosen adequately to the geometry of
the problem (in this case, these will be given by Chebyshev
polynomials multiplied by the edge behavior of the electric
field for each polarization) [28,29]. By substituting (6) in (5)
and using each of the basis functions as weighting and then
projecting that expression into the domain Cy the following
system of equations is obtained

Np
ZFijeoo,j =0 ((=1,...,Np) (N
j=1
where
a rb @ b—per
Iy :f / b (x,y) - |:/ / Gy (x —x"y =)
0o Jo 0 Jo
-b;(x',y") dx’dy’}dxdy' ®)

These matrix elements can be calculated very efficiently
by making use of the properties of the Fourier transform,
which lead to quasianalytical expressions, as shown elsewhere
[28]. With the addition of the in-plane momentum components
(ko and k), the calculation of the periodic dyadic Green’s
function needs to be generalized but can still be efficiently
calculated by means of Ewald’s method [30,31]. Once the
matrix I';; is calculated, the dispersion relation is obtained by
imposing the determinant of I';; to be equal to zero. Figure 2
shows the dispersion curve along the x direction (ko = 0)
obtained from (7) and (8) compared to the results predicted
by a commercial finite element method (FEM) solver [32]
for different lengths of the slot /; (varying from 6 to 9 mm).
The good agreement shown validates both the method and
the chosen set of basis functions. It can be observed that,
as the length of the slot increases, the wave vector between
the surface mode and the radiative zone (the zone for which
2rf > cky being f the frequency and c the speed of light)
increases, leading to a more rapid exponential decay of the
fields along the z direction. It is interesting to note that, when
the fields in the slots are excited by incident plane waves,
the resonance (associated with maximum transmission for
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FIG. 2. Predicted dispersion obtained using the presented MoM
implementation (lines) compared to FEM models (markers) for
different slot lengths /;. The gray area corresponds to the nonbound
regime (above the light line). The values for the other dimensions are
the same for every curve, with w;/a = 0.05 and @ = b = 10 mm.

dipole/slot elements) [33] is located near the frequency at
which the length of the slot corresponds to half the wavelength.
However, here we find that the surface mode is supported
at frequencies well below that resonance. For the case of
l; = 9mm, the expected transmission peak would be near
16.7 GHz, while we find that the bound surface mode only
exists below 12 GHz. We have found numerically, however,
that the same set of basis functions can reliably explain
the behavior of slot elements for both radiative (as shown
elsewhere [28]) and bound regimes (with weights ey, ; that
will vary from one problem to the other).

II. TRUNCATED PERIODIC ARRAY

Let us now consider the propagation of surface modes along
a finite array of slots. For this purpose, we will consider an
infinite (negligible thickness) metal layer perforated with a
truncated periodic array of M = N, x N, slots with constant
separation given by a and b in the x and y directions,
respectively, as that shown in Fig. 3.

Due to the lack of strict periodicity, Bloch’s theorem is
no longer applicable (which means that the electric field
distribution varies both in amplitude and phase from one cell
to another) and therefore the study cannot be reduced to a
single cell by assuming a phase shift in the fields between two
adjacent unit cells. Therefore, no periodic Green’s function
can be defined, and we need to use a different approach to
study the propagation of surface waves. From a physical point
of view this means that an excitation needs to be included into
our model. Here we replicate one method used experimentally,
by using a localized current density near the central element
of the array. This can be easily implemented as an excitation
term when deriving the integral equation that the electric field
needs to satisfy on the perforated surface.

Following the reasoning used for the infinite array, the
electric field on the surface needs to satisfy the following M
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FIG. 3. Truncated periodic array of slots perforated in an infinite
negligible thickness perfectly conducting screen. The periodicity of
the array along the x and y directions are a and b, respectively, and
I, and wy are the dimensions of the slots.

coupled integral equations

M
5+ // Gu(x—x',y =)
=1

BN,y z=0)dx'dy =0 (x,y) en
(i=1,....M), )

where G(x, y) is the dyadic Green’s function defined in
(2) and (3). Since in the case of a truncated array of slots
E}(x,y,z = 0) is not a periodic function of x and y, the set
of integral equations (9) cannot be reduced to one single unit
cell as for the infinite array as shown in (5). Note that in this
case, E(x,y,z = 0) represents only the field scattered by the
slots when illuminated with an excitation in the form of a
position-dependent surface current given by J*(x,y) in the
absence of slots. To determine the value of E°(x,y,z = 0) in
n; (j =1,...,M), we will apply the MoM to each of the M
integral equations of (9). That is, the tangential electric field
in the jth slot will be approximately expressed in terms of the
proposed basis functions (electric field profiles) d;;(x,y) =
djic(x,y)X+dj;,(x,y)§ (I =1,...,N,) as shown below

Np
Ef(yz=0)~Y epdy(x.y) (x.y)en;. (10)
=1

In this case, a nonhomogeneous linear system of equations
can be derived, given by

M N,
DO Alen=pi (i=1,....M; k=1,....N,;), (11)
j=11=1
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where

Afj = // i (x,y) - [// Gulx —x'y =)
ni nj

dj(x',y") dx/dy/]dxdy

G, j=1,....M; kl=1,...,Np) (12)
and where
Dik = —<// di(x,y) - JB(x,y) dxdy)
Ni
(i=1,....M; k=1,...,Np). (13)

In order to model the excitation of a very localized source,
we have made use of a delta-gap excitation [34], which
replicates an infinitely thin wire connecting the two parallel
vertical edges of the slot. For symmetry reasons it has been
chosen to be located in the middle x plane of the slot, but
it could be placed elsewhere. Mathematically, this can be
easily introduced into the model as J*(x,y) o< §(y — y..) for
(Xee — ws/2) < x < (xec + ws/2) and zero otherwise (where
Ve and x. are the y and x coordinates of the center of
the central slot, respectively). In a very similar manner to
the case of an infinite array, the matrix elements given by
(12) can be efficiently calculated when rearranged in terms
of cross correlations of the basis functions as explained in
detail elsewhere [28]. Once these coefficients are calculated,
the electric field is completely determined on the surface.
Following the experimental techniques used for the study of
surface waves [20,35], the dispersion diagram is calculated
by computing the Fourier transform of the field distribution
into the spectral domain (which is continuous given the
lack of periodicity). Taking advantage of the analytical basis
functions used to expand the electric field on the slots, we
can compute the analytical Fourier transform. This makes it
possible to obtain as small a resolution as needed in the Fourier
transformed fields, in contrast to the fast Fourier transform
algorithm used experimentally.

To test the convergence of our MoM implementation for
a finite array by comparison to the solution obtained for an
infinite array of slots (shown in Fig. 2), we have initially
modeled an array of 49 x 49 cells (this gives good definition
of the modes in k space in comparison to that obtained
for smaller arrays within a reasonable computational time)
with [y = 9mm, wy, = 0.5mm, a = b = 10 mm as previously
studied for the infinite case. The obtained dispersion diagram
is shown in Fig. 4, where the brightest feature can be directly
compared to the dispersion of the bound mode of the infinite
array identified in Fig. 2 (purple line). This is not, however,
the only mode supported by the truncated array: A family of
bound modes can be found at higher frequencies within the
light cone above the limit of the infinite array dispersion. In
addition, each of the modes appears to be periodically repeated
in k, (this can be easily seen outside of the cone formed by
the two light lines). In the following we will explore the origin
of these effects and how the dimensions of the array can be
optimized to reduce them.

Although the numerical results for an array of 49 x 49 ele-
ments show good agreement with those of an infinite array, the
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FIG. 4. Electric field Fourier transform predicted by MoM for a
range of frequencies for an array of N, = N, = 49 slots for which
I;/a=0.9, ws/a=0.05 and @ =b = 10mm. It is represented
linearly in color as the square root of the absolute value of the Fourier
amplitude. The white superposed squares correspond to the dispersion
diagram obtained for an infinite periodic array with the same unit cell.

validation of the truncation effects is most practically achieved
experimentally, as full-wave numerical solvers require a
significant computational effort to solve large but finite arrays.
In addition, the large number of higher order modes observed
(Fig. 4) would also make experimental validation challenging
since their position and number will also depend on the
symmetry of the sample. For these reasons, we have studied the
dependence of these higher order modes on the size of the array
in the x and y directions. We discover that the number of higher
frequency modes is only affected by the length of the array in
the direction perpendicular to that of the propagation of the
surface wave (N,b as we are studying propagation in x), with
the number of modes increasing with the number of elements.
In contrast, the spacing in k, between two of the translated
modes is only affected by the length of the array along
the propagation direction (N,a in our case), the separation
between the modes being reduced as the length increases.

In order to simplify our analysis, we have chosen to
experimentally study the case where N, =39 and N, =5.
Figure 5 shows the results obtained by means of MoM, where
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FIG. 5. Electric field Fourier transform predicted by MoM in a
range of frequencies for an array of N, =39 and N, =5 slots for
which [;/a = 0.9, w;/a = 0.05, and @ = b = 10 mm.
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FIG. 6. Experimental electric field Fourier transform in a range
of frequencies for an array of N, =39 and N, =5 slots for which
l;/a =0.9, w;/a =0.05,and a = b = 10mm.

three modes are clearly distinguished and the same periodic
repetition of the modes along the k, axis as for the case of
N, = N, =49 is present. The experimental sample has been
prepared by making use of a very thin plastic layer (50 um
with €, = 2.8) coated with 17 um thick copper, in which slots
have been etched. By making use of a pair of probe antennas
(made of a coaxial cable with the inner conductor exposed),
the electric field is excited at the center of the array and
scanned at a constant height across the surface [20,35]. This
electric field distribution is then Fourier transformed from the
spatial domain into the spectral domain making use of a fast
Fourier transform algorithm for each frequency, obtaining the
dispersion diagram shown in Fig. 6. A small frequency redshift
is present with respect to the numerically obtained dispersion
as a consequence of the introduction of the thin dielectric
layer. This shift, however, does not change any of the physics
involved, and the same truncation effects can be observed in
both figures. Note that in the experimental data, there is a
decrease in Fourier amplitude as k, increases. This is because
the source antenna does not provide an ideal wave-vector
(momentum) spectrum.

By investigating this simpler case (with 39 x 5 slots),
and thereby reducing the complexity of the mode structure
compared to the case of 49 x 49 slots, we are now in a
position to better understand the origin of these additional
modes. In Fig. 7 the electric field magnitude and phase
distribution at the surface of the array have been represented.
The first and third color maps correspond to the magnitude and
phase of the lowest frequency mode (excited at 12.19 GHz,
corresponding to kya/m = 1) and show how the fields in
every slot in each column responds in phase to the excitation
while two consecutive rows are out of phase, in concordance
with the mode being at the Brillouin zone boundary. In
contrast, the second and fourth color maps show the electric
field magnitude and phase distribution for the second lowest
frequency mode (excited at 13.54 GHz). In this case we
observe that two of the rows are not excited and that the slots on
the top and bottom of each column are excited out of phase with
respect to the slot in the central row. This shows that although
we are studying propagation along the x direction, the absence
of infinite periodicity allows for the excitation of modes with a
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FIG. 7. MoM predictions of the electric field distribution for the
two lowest frequency modes supported by a finite array of slots with
N, =39 and N, = 5 slots for which [;/a = 0.9, w,/a = 0.05, and
a = b = 10 mm excited at the central slot with a delta gap excitation.
From the top, first and third figures correspond to the magnitude and
phase of the electric field at 12.19 GHz while the second and fourth
correspond to the magnitude and phase at a frequency of 13.54 GHz,
respectively.
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structure in the direction perpendicular to that of propagation.
These occur at higher frequencies than for the most similar
mode to that supported by infinite arrays. Although not shown
here, the third mode that appears in Fig. 5 corresponds to the
excitation of all five rows with each element being out of phase
with respect to its closest neighbors, leading to the highest
frequency of the modes shown. This can be easily predicted
using simple reasoning: Each of the higher order modes will
require an extra (transverse) momentum k;.”ms to excite such
phase differences between the rows, which needs to be of
the order of k;,rans ~ 1 /(2b) in the case of the second lowest
frequency mode. This predicts, at the Brillouin zone boundary
along the x direction, a frequency separation of ~1.36 GHz
which is close to the 1.67 GHz separation between the two
lowest order modes found in Fig. 5. This discrepancy can
be explained by edge effects for the top and bottom rows, at
which the excited fields of these higher order resonances decay
over a short distance due to the presence of the semi-infinite
conducting plane.

We finally analyze the phenomenon of the multiple mode
dispersion curves that are translated in &, evident in Figs. 4,
5, and 6. The evolution of the spacing between such repeated
modes has been analyzed for different array sizes and is only
affected by the length of the array along the direction of
propagation (N,a in this case). In Fig. 8, data is plotted having
been extracted from different dispersion diagrams along the
Brillouin zone boundary (k,7/a = 1) for different values of
N, when keeping N, = 5. It can be seen how the frequency
separation of two consecutive modes reduces with the length
of the array (N,a), with corresponding narrowing of the
original mode (infinite array). This separation in frequency
is associated with a change in wavelength AA &~ N,a and a
change in wave vector Ak, ~ w/N.a. This quantization is
associated with the boundary condition imposed by the ends
of the array that dictates that the mode has zero electric field
amplitude. This effect cannot be found, however, for the third
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FIG. 8. Normalized amplitude of the Fourier transform of the
MoM prediction of the electric field distribution at the Brillouin zone
boundary along the k, direction (k, = 7/a) for finite arrays of slots
of different lengths when excited at the central slot. All three cases
have been calculated for N, =5, [;/a = 0.9, w,/a = 0.05, and a =
b =10mm.

nonbound mode, whose amplitude decays with distance from
the center to negligible values at the edges of the sample and
hence little scattering occurs. Consequently, no such repeated
modes can be observed in Fig. 5 above 14 GHz. Note that only
modes with nonzero amplitude in the center of the array can
be excited since this is where the source is positioned.

From the results presented here, one could think of the
modes supported by the finite array as very similar to those of
a two-dimensional cavity. However, the fact that it is an open
(infinite) system containing a finite array means that its field
distribution can only be decomposed in terms of a continuous
momentum spectrum. This can be understood from the need
of a Fourier transform (instead of Fourier series) to find the
modes supported by the structure from the decomposition of
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the electric field on the surface. This continuous momentum
spectrum allows the scattering of the surface mode (even if it
was the only component excited by an ideal source) at the end
of the array into both radiative and nonradiative components.
Although some of the latter may excite the mode associated
with the infinite periodic array, it will also excite components
not allowed there, as we could see in Figs. 4, 5, and 6.

III. CONCLUSION

In conclusion, the propagation of surface waves supported
by both infinite and finite periodic arrays of slots has been
investigated. To do this we have made use of an efficient
and accurate approach based on the method of moments to
solve the integral equation satisfied by the component of
electric field tangential to the surface of the rectangular holes
for both infinite and finite problems. Predictions from this
model have been verified by means of FEM modeling in
the case of infinite periodic arrays for different geometries
and experimentally for finite arrays. For finite systems, two
additional effects have been observed, separately related to
the size of the array along the propagation direction and
the transverse direction, respectively. By using the field
distributions predicted by the MoM, the existence of higher
frequency modes not present in the infinite case has been
explained in terms of quantization arising from the finite
width of the system which can quasiquantitatively predict this
frequency splitting. In addition, the periodic repetition of the
modes with decreasing amplitude along the k, axis has been
explained by the backscattering of the surface waves by the
ends of the array, with spacing in the wave vector controlled
by the length of the array.
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